
The Complexity of Gradient Descent:
CLS = PPAD ∩ PLS

John Fearnley

john.fearnley@liverpool.ac.uk

University of Liverpool

Liverpool, UK

Paul W. Goldberg

paul.goldberg@cs.ox.ac.uk

University of Oxford

Oxford, UK

Alexandros Hollender

alexandros.hollender@cs.ox.ac.uk

University of Oxford

Oxford, UK

Rahul Savani

rahul.savani@liverpool.ac.uk

University of Liverpool

Liverpool, UK

ABSTRACT

We study search problems that can be solved by performing Gradi-

ent Descent on a bounded convex polytopal domain and show that

this class is equal to the intersection of two well-known classes:

PPAD and PLS. As our main underlying technical contribution,

we show that computing a Karush-Kuhn-Tucker (KKT) point of

a continuously differentiable function over the domain [0, 1]2 is
PPAD∩ PLS-complete. This is the first natural problem to be shown

complete for this class. Our results also imply that the class CLS

(Continuous Local Search) – which was defined by Daskalakis and

Papadimitriou as a more “natural” counterpart to PPAD∩ PLS and
contains many interesting problems – is itself equal to PPAD∩ PLS.

CCS CONCEPTS

• Theory of computation→ Problems, reductions and com-

pleteness; •Mathematics of computing→ Continuous func-

tions.

KEYWORDS

TFNP, computational complexity, continuous optimization

ACM Reference Format:

John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Sa-

vani. 2021. The Complexity of Gradient Descent: CLS = PPAD ∩ PLS. In

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC ’21), June 21–25, 2021, Virtual, Italy. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3406325.3451052

1 INTRODUCTION

It is hard to overstate the importance of Gradient Descent. As

noted by Jin et al. [26], “Machine learning algorithms generally

arise via formulations as optimization problems, and, despite a

massive classical toolbox of sophisticated optimization algorithms

and a major modern effort to further develop that toolbox, the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00

https://doi.org/10.1145/3406325.3451052

simplest algorithms—gradient descent, which dates to the 1840s

[6] and stochastic gradient descent, which dates to the 1950s [35]—

reign supreme in machine learning.” Jin et al. [26] continue by

highlighting the simplicity of Gradient Descent as a key selling-

point, and the importance of theoretical analysis in understanding

its efficacy in non-convex optimization.

In its simplest form, which we consider in this paper, Gradient

Descent attempts to find aminimum of a continuously differentiable

function 𝑓 over some domain 𝐷 , by starting at some point 𝑥0 and

iterating according to the update rule

𝑥𝑘+1 ← 𝑥𝑘 − 𝜂∇𝑓 (𝑥𝑘)

where 𝜂 is some fixed step size. The algorithm is based on the

fundamental fact that for any point 𝑥 the term −∇𝑓 (𝑥) points in
the direction of steepest descent in some sufficiently small neigh-

bourhood of 𝑥 . However, in the unconstrained setting—where the

domain is the whole space—it is easy to see that Gradient Descent

can at best find a stationary point. Indeed, if the gradient is zero at

some point, then there is no escape. Note that a stationary point

might be a local minimum, but it could also be a saddle point or

even a local maximum. Similarly, in the constrained setting—where

the domain 𝐷 is no longer the whole space—Gradient Descent can

at best find a point 𝑥 that satisfies the Karush-Kuhn-Tucker (KKT)

optimality conditions. Roughly, the KKT conditions say that the

gradient of 𝑓 is zero at 𝑥 , or if not, 𝑥 is on the boundary of 𝐷 and

any further local improvement would take us outside 𝐷 .

In this paper we investigate the complexity of finding a point

where Gradient Descent terminates—or equivalently, as we will

see, a KKT point—when the domain is bounded. It is known that

a global or even a local minimum cannot be found in polynomial

time unless P =NP [2, 32]. Indeed, even deciding whether a point is

a local minimum is already co-NP-hard [32]. In contrast, it is easy

to check whether a point satisfies the KKT conditions. In general,

finding a KKT point is hard, since even deciding whether a KKT

point exists is NP-hard in the unconstrained setting [1]. However,

when the domain is bounded, a KKT point is guaranteed to exist!

This means that in our case, we are looking for something that

can be verified efficiently and that necessarily exists. Intuitively, it

seems that this problem should be more tractable. This intuition

can be made formal by noting that these two properties place the

problem in the complexity class TFNP of total search problems in

NP: any instance has at least one solution, and a solution can be

46

https://doi.org/10.1145/3406325.3451052
https://doi.org/10.1145/3406325.3451052

STOC ’21, June 21–25, 2021, Virtual, Italy John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

checked in polynomial time. A key feature of such problems is that

they cannot be NP-hard unless NP= co-NP [29]. TFNP problems

have been classified via certain “syntactic subclasses” of TFNP, of

which PPAD and PLS are two of the most important ones.

1.1 NP Total Search Classes: PPAD, PLS, CLS

As discussed by Papadimitriou [34], TFNP is unlikely to have com-

plete problems, and various syntactic subclasses have been used to

classify the many diverse problems that belong to it. Among them,

the classes PPAD and PLS (introduced by Papadimitriou [34] and

Johnson et al. [27] respectively) have been hugely successful in this

regard. Each of these classes has a corresponding computationally
inefficient existence proof principle, one that when applied in a gen-

eral context, does not yield a polynomial-time algorithm.
1
In the

case of PPAD this is the parity argument on a directed graph, equiv-
alent to the existence guarantee of Brouwer fixpoints: a Brouwer
function is a continuous function 𝑓 : 𝐷 → 𝐷 where 𝐷 is a convex

compact domain, and Brouwer’s fixed point theorem guarantees a

point 𝑥 for which 𝑓 (𝑥) = 𝑥 . PPAD has been widely used to classify

problems of computing game-theoretic equilibria (a long line of

work on Nash equilibrium computation beginning with Daskalakis

et al. [12], Chen et al. [10], and market equilibria, e.g., Chen et al.

[8]). PPAD also captures diverse problems in combinatorics and

cooperative game theory [28].

PLS, for “Polynomial Local Search”, captures problems of finding

a local minimum of an objective function 𝑓 , in contexts where any

candidate solution 𝑥 has a local neighbourhood within which we

can readily check for the existence of some other point having a

lower value of 𝑓 . Many diverse local optimization problems have

been shown complete for PLS, attesting to its importance. Examples

include searching for a local optimum of the TSP according to the

Lin-Kernighan heuristic [33], and finding pure Nash equilibria in

many-player congestion games [17].

The complexity class CLS (“Continuous Local Search”) was in-

troduced by Daskalakis and Papadimitriou [13] to classify various

important problems that lie in both PPAD and PLS. PPAD and PLS

are believed to be strictly incomparable—one is not a subset of the

other—a belief supported by oracle separations [4]. It follows from

this that problems belonging to both classes cannot be complete for

either one of them. CLS is seen as a strong candidate for capturing

the complexity of some of those important problems, but, prior

to this work, only two problems related to general versions of Ba-

nach’s fixed point theoremwere known to be CLS-complete [15, 19].

An important result—supporting the claim that CLS-complete prob-

lems are hard to solve—is that the hardness of CLS can be based on

the cryptographic assumption of indistinguishability obfuscation

[24]. Prior to the present paper, it was generally believed that CLS

is a proper subset of PPAD ∩ PLS, as conjectured by Daskalakis and
Papadimitriou [13].

1.2 Our Contribution and Its Significance

Our main result is to show that finding a point where Gradient

Descent on a continuously differentiable function terminates—or

1
The other well-known such classes, less relevant to the present paper, are PPA and

PPP; it is known that PPAD is a subset of PPA and also of PPP. These set-theoretic

containments correspond directly to the strength, or generality, of the corresponding

proof principles.

equivalently a KKT point—is PPAD ∩ PLS-complete, when the do-

main is a bounded convex polytope. This continues to hold even

when the domain is as simple as the unit square [0, 1]2. The PPAD
∩ PLS-completeness result applies to the “white box” model, where

functions are represented as arithmetic circuits.

Computational Hardness. As an immediate consequence, our re-

sult provides convincing evidence that the problem is computation-

ally hard. First of all, there are reasons to believe that PPAD ∩ PLS
is hard simply because PPAD and PLS are believed to be hard.

Indeed, if PPAD ∩ PLS could be solved in polynomial time, then,

given an instance of a PPAD-complete problem and an instance of

a PLS-complete problem, we would be able to solve at least one of

the two instances in polynomial time. Furthermore, since CLS ⊆
PPAD ∩ PLS, the above-mentioned cryptographic hardness of CLS

applies automatically to PPAD ∩ PLS, and thus to our problem of

interest.

Continuous Local Search. Since Gradient Descent is just a special

case of continuous local search, our hardness result implies that

CLS = PPAD ∩ PLS

which disproves the widely believed conjecture by Daskalakis and

Papadimitriou [13] that the containment is strict. Our result also

allows us to resolve an ambiguity in the original definition of CLS

by showing that the high-dimensional version of the class reduces

to the 2-dimensional version of the class (the 1-dimensional version

is computationally tractable, so no further progress is to be made).

Equality to PPAD ∩ PLS also applies to a linear version of CLS

analogous to the class Linear-FIXP of Etessami et al. [16].

PPAD ∩ PLS. Perhaps more importantly, our result establishes

PPAD ∩ PLS as an important complexity class that captures the

complexity of interesting problems. It was previously known that

one can construct a problem complete for PPAD ∩ PLS by gluing

together two problems, one for each class (see Section 2.2), but

the resulting problem is highly artificial. In contrast, the Gradient

Descent problem we consider is clearly natural and of separate

interest.

Some TFNP classes can be characterized as the set of all prob-

lems solved by some type of algorithm. For instance, PPAD is the

class of all problems that can be solved by the Lemke-Howson algo-

rithm. PLS is the class of all problems that can be solved by general

local search methods. Analogously, one can define the class GD

containing all problems that can be solved by the Gradient Descent

algorithm on a bounded domain, i.e., that reduce to our Gradi-

ent Descent problem in polynomial time. Our result shows that

GD=PPAD ∩ PLS. In other words, the class PPAD ∩ PLS, which is

obtained by combining PPAD and PLS in a completely artificial

way, turns out to have a very natural characterization:

PPAD ∩ PLS is the class of all problems that can be solved
by performing Gradient Descent on a bounded domain.

Our new characterization has already been very useful in the con-

text of Algorithmic Game Theory, where it was recently used by

Babichenko and Rubinstein [3], to show PPAD ∩ PLS-completeness

of computing mixed Nash equilibria of congestion games.

47

The Complexity of Gradient Descent: CLS = PPAD ∩ PLS STOC ’21, June 21–25, 2021, Virtual, Italy

1.3 Further Related Work

Following the definition of CLS by Daskalakis and Papadimitriou

[13], two CLS-complete problems were identified: Banach [15]

and MetametricContraction [19]. Banach is a computational

presentation of Banach’s fixed point theorem in which the met-

ric is presented as part of the input (and could be complicated).

Banach fixpoints are unique, but CLS problems do not in general

have unique solutions, and the problem Banach circumvents that

obstacle by allowing certain “violation” solutions, such as a pair of

points witnessing that 𝑓 is not a contraction map. Metametric-

Contraction is a generalisation of Banach, where the metric is

replaced by a slightly relaxed notion called a meta-metric.

Chatziafratis et al. [7] showed that online gradient descent can

encode general PSPACE-computations. In contrast, our result pro-

vides evidence that the problem itself (which gradient descent at-

tempts to solve) is hard. The distinction between these two types of

statements is most clearly apparent in the case of linear program-

ming, where the simplex method can encode arbitrary PSPACE

computations [21], while the problem itself can be solved in poly-

nomial time.

Daskalakis et al. [14] study nonlinear min-max optimization, a

conceptually more complex problem than the purely “min” opti-

mization studied here. The PPAD-completeness they obtain reflects

the extra structure present in such problems. An important point

is that our hardness result requires inverse-exponential parame-

ters, whereas Daskalakis et al. [14] achieve hardness with inverse-

polynomial parameters—for us the inverse-exponential parameters

are a necessary evil, since the problem can otherwise be solved in

polynomial time, even in high dimension (simply by running Gradi-

ent Descent). Finally, note that in contrast to our hardness result, in

the special case of convex optimization our problem can be solved

efficiently, even in high dimension and with inverse-exponential

precision.

2 OVERVIEW

In this section we give a condensed and informal overview of the

concepts, ideas, and techniques of this paper. We begin by providing

informal definitions of the problems of interest and the complexity

classes. We then present an overview of our results, along with the

high-level ideas of our main reduction.

2.1 The Problems of Interest

The motivation for the problems we study stems from the ulti-

mate goal of minimizing a continuously differentiable function

𝑓 : R𝑛 → R over some domain 𝐷 . As mentioned in the introduc-

tion, this problem is known to be intractable, and so we instead

consider relaxations where we are looking for a point where Gra-

dient Descent terminates, or for a KKT point. Our investigation

is restricted to bounded domains, namely we consider the setting

where the domain 𝐷 is a bounded convex polytope defined by a

collection of linear inequalities. Furthermore, we also assume that

the function 𝑓 and its gradient ∇𝑓 are Lipschitz-continuous over 𝐷 ,

for some Lipschitz constant 𝐿 provided in the input. Let 𝐶1

𝐿
(𝐷,R)

denote the set of continuously differentiable functions 𝑓 from 𝐷 to

R, such that 𝑓 and ∇𝑓 are 𝐿-Lipschitz.

In order to define our Gradient Descent problem, we need to

specify what we mean by “a point where Gradient Descent termi-

nates”. We consider the following two stopping criteria for Gradient

Descent: (a) stop when we find a point such that the next iterate

does not improve the objective function value, or (b) stop when we

find a point such that the next iterate is the same point. In practice,

of course, Gradient Descent is performed with some underlying

precision parameter 𝜀 > 0. Thus, the appropriate stopping crite-

ria are: (a) stop when we find a point such that the next iterate

improves the objective function value by less than 𝜀, or (b) stop

when we find a point such that the next iterate is at most 𝜀 away.

Importantly, note that, given a point, both criteria can be checked

efficiently. This ensures that the resulting computational problems

lie in TFNP. The totality of the problems follows from the simple

fact that a local minimum must exist (since the domain is bounded)

and any local minimum satisfies the stopping criteria. The first

stopping criterion has a local search flavour and so we call the

corresponding problem GD-Local-Search. The second stopping

criterion is essentially asking for an approximate fixed point of the

Gradient Descent dynamics, and yields the GD-Fixpoint problem.

Since we are performing Gradient Descent on a bounded domain,

we have to ensure that the next iterate indeed lies in the domain

𝐷 . The standard way to achieve this is to use so-called Projected

Gradient Descent, which computes the next iterate as usual and

then projects it onto the domain. Define Π𝐷 to be the projection

operator, that maps any point in 𝐷 to itself, and any point outside

𝐷 to its closest point in 𝐷 (under the Euclidean norm). The two

Gradient Descent problems are defined as follows.

GD-Local-Search and GD-Fixpoint (informal)

Input: 𝜀 > 0, step size 𝜂 > 0, domain 𝐷 , 𝑓 ∈ 𝐶1

𝐿
(𝐷,R) and

its gradient ∇𝑓 .
Goal: Compute any point where (projected) gradient de-

scent for 𝑓 on 𝐷 terminates. Namely, find 𝑥 ∈ 𝐷 such that

𝑥 and its next iterate 𝑥 ′ = Π𝐷 (𝑥 − 𝜂∇𝑓 (𝑥)) satisfy:
• for GD-Local-Search: 𝑓 (𝑥 ′) ≥ 𝑓 (𝑥) − 𝜀,
(𝑓 decreases by at most 𝜀)
• for GD-Fixpoint: ∥𝑥 − 𝑥 ′∥ ≤ 𝜀.

(𝑥 ′ is 𝜀-close to 𝑥)

In a certain sense, GD-Local-Search is a PLS-style version of

Gradient Descent, while GD-Fixpoint is a PPAD-style version.
2

We show that these two versions are computationally equivalent

by a triangle of reductions (see Figure 3). The other problem in that

triangle of equivalent problems is the KKT problem, defined below.

KKT (informal)

Input: 𝜀 > 0, domain 𝐷 , 𝑓 ∈ 𝐶1

𝐿
(𝐷,R) and its gradient ∇𝑓 .

Goal: Compute any 𝜀-KKT point of the minimization prob-

lem for 𝑓 on domain 𝐷 .

2
A very similar version of GD-Fixpoint was also defined by Daskalakis et al. [14] and

shown to be equivalent to finding an approximate local minimum (which is essentially

the same as a KKT point).

48

STOC ’21, June 21–25, 2021, Virtual, Italy John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

A point 𝑥 is a KKT point if 𝑥 is feasible (it belongs to the domain

𝐷), and 𝑥 is either a zero-gradient point of 𝑓 , or alternatively 𝑥 is

on the boundary of 𝐷 and the boundary constraints prevent local

improvement of 𝑓 . “𝜀-KKT” relaxes the KKT condition so as to allow

inexact KKT solutions with limited numerical precision.

Representation of 𝒇 and ∇𝒇 . We consider these computational

problems in the “white box” model, where some computational

device computing 𝑓 and ∇𝑓 is provided in the input. In our case, we

assume that 𝑓 and ∇𝑓 are presented as arithmetic circuits. In more

detail, following Daskalakis and Papadimitriou [13], we consider

arithmetic circuits that use the operations {+,−,×,max,min, <},
and rational constants.

3
Another option would be to assume that

the functions are given as polynomial-time Turing machines, but

this introduces some extra clutter in the formal definitions of the

problems. The definition with arithmetic circuits is cleaner, and, in

any case, the complexity of the problems is the same in both cases.

Promise-version and total-version. Given an arithmetic circuit

for 𝑓 and one for ∇𝑓 , we know of no easy way of checking that the

circuit for ∇𝑓 indeed computes the gradient of 𝑓 , and that the two

functions are indeed 𝐿-Lipschitz. There are two ways to handle this

issue: (a) consider the promise version of the problem, where we

restrict our attention to instances that satisfy these conditions, or

(b) introduce “violation” solutions in the spirit of Daskalakis and

Papadimitriou [13], i.e., allow as a solution a witness of the fact

that one of the conditions is not satisfied. The first option is more

natural, but the second option ensures that the problem is formally

in TFNP. Thus, we use the second option for the formal definitions

of our problems. However, we note that our “promise-preserving”

reductions ensure that our hardness results also hold for the promise
versions of the problems.

2.2 Complexity Classes

In this section we provide informal definitions of the relevant com-

plexity classes, and discuss their key features. Formal definitions

can be found in the full version [18] of this paper (and many others),

but the high-level descriptions presented here are intended to be

sufficient to follow the overview of our main proof.

PPAD. The complexity class PPAD is defined as the set of TFNP

problems that reduce in polynomial time to problem End-of-Line.

End-of-Line (informal)

Input: A directed graph on the vertex set [2𝑛], such that

every vertex has in- and out-degree at most 1, and such

that vertex 1 is a source.

Goal: Find a sink of the graph, or any other source.

Importantly, the graph is not provided explicitly in the input,

but instead we are given Boolean circuits that efficiently compute

the successor and predecessor of each vertex. This means that the

size of the graph can be exponential with respect to its description

length. A problem is complete for PPAD if it belongs to PPAD and

if End-of-Line reduces in polynomial time to that problem. Many

3
A subtle issue is that it might not always be possible to evaluate such a circuit

efficiently, because of “repeated squaring”. To avoid this issue, we restrict ourselves to

what we call well-behaved arithmetic circuits. See Section 3 for more details.

1 4

6
2

8

3
7

5

Figure 1: Example of an End-of-Line instance for 𝒏 = 3.
Here, the solutions are the vertices 3, 7 and 8.

1 2 3 4 5 6 7 8

Figure 2: Example of an Iter instance for 𝒏 = 3. Nodes 2, 6
and 8 are the fixed points and the solutions are nodes 3 and 7.

variants of the search for a fixed point of a Brouwer function turn

out to be PPAD-complete. This is essentially the reason why GD-

Fixpoint, and thus the other two equivalent problems, lie in PPAD.

See Figure 1 for an example of an instance of End-of-Line.

PLS. The complexity class PLS is defined as the set of TFNP prob-

lems that reduce in polynomial time to the problem Localopt.

Localopt (informal)

Input: Functions 𝑉 : [2𝑛] → R and 𝑆 : [2𝑛] → [2𝑛].
Goal: Find 𝑣 ∈ [2𝑛] such that 𝑉 (𝑆 (𝑣)) ≥ 𝑉 (𝑣).

The functions are given as Boolean circuits. A problem is com-
plete for PLS if it belongs to PLS and if Localopt reduces in poly-

nomial time to that problem. PLS embodies general local search

methods where one attempts to optimize some objective function

by considering local improving moves. Our problem GD-Local-

Search is essentially a special case of local search, and thus lies in

PLS. In this paper we make use of the problem Iter, defined below,

which is known to be PLS-complete [31].

Iter (informal)

Input: A function 𝐶 : [2𝑛] → [2𝑛] such that 𝐶 (𝑣) ≥ 𝑣 for

all 𝑣 ∈ [2𝑛], and 𝐶 (1) > 1.

Goal: Find 𝑣 such that 𝐶 (𝑣) > 𝑣 and 𝐶 (𝐶 (𝑣)) = 𝐶 (𝑣).

For this problem, it is convenient to think of the nodes in [2𝑛] as
lying on a line, in increasing order. Then, any node is either a fixed

point of 𝐶 , or it is mapped to some node further to the right. We

are looking for any node that is not a fixed point, but is mapped to

a fixed point. It is easy to see that the condition 𝐶 (1) > 1 ensures

that such a solution must exist. See Figure 2 for an example.

49

The Complexity of Gradient Descent: CLS = PPAD ∩ PLS STOC ’21, June 21–25, 2021, Virtual, Italy

PPAD ∩ PLS. The class PPAD ∩ PLS contains, by definition, all

TFNP problems that lie in both PPAD and in PLS. Prior to our work,

the only known way to obtain PPAD ∩ PLS-complete problems

was to combine a PPAD-complete problem 𝐴 and a PLS-complete

problem 𝐵 as follows [13].

Either-Solution(𝐴,𝐵)

Input: An instance 𝐼𝐴 of 𝐴 and an instance 𝐼𝐵 of 𝐵.

Goal: Find a solution of 𝐼𝐴 or a solution of 𝐼𝐵 .

In particular, the problem Either-Solution(End-of-Line,Iter)

is PPAD ∩ PLS-complete, and this is the problem we reduce from

to obtain our results.

CLS.Noting that all known PPAD ∩ PLS-complete problems looked

very artificial, Daskalakis and Papadimitriou [13] defined the class

CLS ⊆ PPAD ∩ PLS, which combines PPAD and PLS in a more nat-

ural way. The class CLS is defined as the set of TFNP problems that

reduce to the problem 3D-Continuous-Localopt.

3D-Continuous-Localopt (informal)

Input: 𝜀 > 0, 𝐿-Lipschitz functions 𝑝 : [0, 1]3 → [0, 1]
and 𝑔 : [0, 1]3 → [0, 1]3.
Goal: Compute any approximate local optimum of 𝑝 with

respect to 𝑔. Namely, find 𝑥 ∈ [0, 1]3 such that

𝑝 (𝑔(𝑥)) ≥ 𝑝 (𝑥) − 𝜀.

This problem is essentially a special case of the Localopt prob-

lem, where we perform local search over a continuous domain

and where the functions are continuous. The formal definition of

3D-Continuous-Localopt includes violation solutions for the

Lipschitz-continuity of the functions. We also consider a more gen-

eral version of this problem, which we call General-Continuous-

Localopt, where we allow any bounded convex polytope as the

domain.

2.3 Results

The main technical contribution of this work is Theorem 4.1, which

shows that the KKT problem is PPAD ∩ PLS-hard, even when the

domain is the unit square [0, 1]2. The hardness also holds for the
promise version of the problem, because the hard instances that we

construct always satisfy the promises. We present the main ideas

needed for this result in the next section, but we first briefly present

the consequences of this reduction here.

A chain of reductions, presented in Section 5 and shown in

Figure 3, which includes the “triangle” between the three problems

of interest, establishes the following theorem.

Theorem 5.1. The problems GD-Local-Search, GD-Fixpoint,
KKT and General-Continuous-Localopt are PPAD ∩ PLS-com-
plete, even when the domain is fixed to be the unit square [0, 1]2. This
hardness result continues to hold even if one considers the promise-
versions of these problems, i.e., only instances without violations.

These reductions are domain-preserving—whichmeans that they

leave the domain 𝐷 unchanged—and promise-preserving—which

means that they are also valid reductions between the promise

versions of the problems. As a result, the other problems “inherit”

the hardness result for KKT, including the fact that it holds for

𝐷 = [0, 1]2 and even for the promise versions.

Consequences for CLS. The PPAD ∩ PLS-hardness of General-
Continuous-Localopt on domain [0, 1]2, and thus also on domain

[0, 1]3, immediately implies the following surprising collapse.

Theorem 6.1. CLS = PPAD ∩ PLS.

As a result, it also immediately follows that the two known CLS-

complete problems [15, 19] are in fact PPAD ∩ PLS-complete.

Theorem 6.2. Banach and MetametricContraction are
PPAD ∩ PLS-complete.

The fact that our hardness result holds on domain [0, 1]2 implies

that the 𝑛-dimensional variant of CLS is equal to the 2-dimensional

version, a fact that was not previously known. Furthermore, since

our results hold even when General-Continuous-Localopt is

considered as a promise problem, this implies that the definition of

CLS is robust with respect to the removal of violations (promise-

CLS =CLS). Finally, we also show that restricting the circuits to be

linear arithmetic circuits (that compute piecewise-linear functions)

does not yield a weaker class, i.e., 2D-Linear-CLS =CLS. This result

is obtained by showing that linear circuits can be used to efficiently

approximate any Lipschitz-continuous function with arbitrary pre-
cision (proved in the appendix of the full version), which might be

of independent interest. All the consequences for CLS are discussed

in detail in Section 6.

2.4 Proof Overview for Theorem 4.1

In this section we provide a brief overview of our reduction from the

(PPAD ∩ PLS-complete) problem Either-Solution(End-of-Line,

Iter) to the KKT problem on domain [0, 1]2.
Given an instance 𝐼EOL of End-of-Line and an instance 𝐼 ITER

of Iter, we construct an instance 𝐼KKT = (𝜀, 𝑓 ,∇𝑓 , 𝐿) of the KKT
problem on domain [0, 1]2 such that from any 𝜀-KKT point of 𝑓 ,

we can efficiently obtain a solution to either 𝐼EOL or 𝐼 ITER. The

function 𝑓 and its gradient ∇𝑓 are first defined on an exponentially

small grid on [0, 1]2, and then extended within every small square

of the grid by using bicubic interpolation. This ensures that the

function is continuously differentiable on the whole domain. The

most interesting part of the reduction is how the function is defined

on the grid points, by using information from 𝐼EOL, and then, where

necessary, also from 𝐼 ITER.

Embedding 𝑰 EOL. The domain is first subdivided into 2
𝑛 × 2𝑛 big

squares, where [2𝑛] is the set of vertices in 𝐼EOL. The big squares

on the diagonal (shaded in Figure 4) represent the vertices of 𝐼EOL

and the function 𝑓 is constructed so as to embed the directed edges

in the graph of 𝐼EOL. If the edge (𝑣1, 𝑣2) in 𝐼EOL is a forward edge,

i.e, 𝑣1 < 𝑣2, then there will be a “green path” going from the big

square of 𝑣1 to the big square of 𝑣2. On the other hand, if the edge

(𝑣1, 𝑣2) in 𝐼EOL is a backward edge, i.e., 𝑣1 > 𝑣2, then there will be

an “orange path” going from the big square of 𝑣1 to the big square

of 𝑣2. These paths are shown in Figure 4 for the corresponding

example instance of Figure 1.

The function 𝑓 is constructed such that when we move along a

green path the value of 𝑓 decreases. Conversely, when we move

50

STOC ’21, June 21–25, 2021, Virtual, Italy John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

PPAD ∩ PLS KKT

GD-

Fixpoint

GD-Local-

Search

General-

Continuous-

Localopt

PPAD ∩ PLS
Theorem 4.1

Prop. 5.3

Prop. 5.4

Prop. 5.2

Prop. 5.5

Prop. 5.6

Figure 3: Our reductions. Themain one is Theorem 4.1; note that the other reductions are all domain- and promise-preserving.

along an orange path the value of 𝑓 increases. Outside the paths,

𝑓 is defined so as to decrease towards the origin (0, 0) ∈ [0, 1]2,
where the green path corresponding to the source of 𝐼EOL starts. As

a result, we show that an 𝜀-KKT point can only occur in a big square

corresponding to a vertex 𝑣 of 𝐼EOL such that (a) 𝑣 is a solution of

𝐼EOL, or (b) 𝑣 is not a solution of 𝐼EOL, but its two neighbours (in

the 𝐼EOL graph) are both greater than 𝑣 , or alternatively both less

than 𝑣 . Case (b) exactly corresponds to the case where a green path

“meets” an orange path. In that case, it is easy to see that an 𝜀-KKT

point is unavoidable.

The PLS-Labyrinth. In order to resolve the issue with case (b)

above, we use the following idea: hide the (unavoidable) 𝜀-KKT

point in such a way that locating it requires solving 𝐼 ITER! This is im-

plemented by introducing a gadget, that we call the PLS-Labyrinth,

at the point where the green and orange paths meet (within some

big square). An important point is that the PLS-Labyrinth only

works properly when it is positioned at such a meeting point. If it

is positioned elsewhere, then it will either just introduce additional

unneeded 𝜀-KKT points, or even introduce 𝜀-KKT points that are

easy to locate. Indeed, if we were able to position the PLS-Labyrinth

wherever we wanted, this would presumably allow us to show PLS-

hardness, which as we noted earlier we do not expect. In Figure 4,

the positions where a PLS-Labyrinth is introduced are shown as

grey boxes labelled “PLS”.

Every PLS-Labyrinth is subdivided into exponentially many

medium squares such that the medium squares on the diagonal

(shaded in Figure 5) correspond to the nodes of 𝐼 ITER. The point

where the green and orange paths meet, which lies just outside the

PLS-Labyrinth, creates an “orange-blue path” which then makes its

way to the centre of the medium square for node 1 of 𝐼 ITER. Simi-

larly, for every node 𝑢 of 𝐼 ITER that is a candidate to be a solution

(i.e., with 𝐶 (𝑢) > 𝑢), there is an orange-blue path starting from

the orange path (which runs along the PLS-Labyrinth) and going

to the centre of the medium square corresponding to 𝑢. Sinks of

orange-blue paths introduce 𝜀-KKT points, and so for those 𝑢 that

are not solutions of 𝐼 ITER, the orange-blue path of 𝑢 turns into a

“blue path” that goes and merges into the orange-blue path of𝐶 (𝑢).
This ensures that sinks of orange-blue paths (that do not turn into

blue paths) exactly correspond to the solutions of 𝐼 ITER. An inter-

esting point to note is that sources of blue paths do not introduce
𝜀-KKT points. This allows us to handle crossings between paths

in a straightforward manner. Figure 5 shows an overview of the

PLS-Labyrinth that encodes the Iter example of Figure 2.

Bicubic interpolation.Within our construction, we specify how

the objective function 𝑓 behaves within the “small squares” of

[0, 1]2. At this stage, we have values of 𝑓 and ∇𝑓 at the corners of

the small squares, and we then need to smoothly interpolate within

the interior of the square. We use bicubic interpolation to do this. It

constructs a smooth polynomial over the small square given values

for 𝑓 and ∇𝑓 at the square’s corners.

We must prove that using bicubic interpolation does not intro-

duce any 𝜀-KKT points within any small square, unless that small

square corresponds to a solution of 𝐼 ITER or 𝐼EOL. Each individual

small square leads to a different class of polynomials, based on the

color-coding of the grid point, and the direction of the gradient at

each grid point. Our construction uses 101 distinct small squares,

and we must prove that no unwanted solutions are introduced in

any of them. By making use of various symmetries we are able to

group these 101 squares into just four different cases for which we

can directly verify that the desired statement holds: an 𝜀-KKT point

can only appear in a small square that yields a solution of 𝐼 ITER or

𝐼EOL.

3 PRELIMINARIES

The full preliminaries, including the formal definitions of the com-

putational problems and important notions from nonlinear opti-

mization, can be found in the full version [18]. Here we only briefly

discuss the representation of functions by arithmetic circuits.

An arithmetic circuit representing a function 𝑓 : R𝑛 → R𝑚 , is

a circuit with 𝑛 inputs and𝑚 outputs, and every internal node is

a binary gate performing an operation in {+,−,×,max,min, >} or
a rational constant (modelled as 0-ary gate). The comparison gate

>, on input 𝑎, 𝑏 ∈ R, outputs 1 if 𝑎 > 𝑏, and 0 otherwise. We let

size(𝑓) denote the size of the circuit. The definition we use here is

the same as the one used by Daskalakis and Papadimitriou [13] in

their original definition of CLS.

These circuits are very natural, but they suffer from a subtle

issue that seems to have been overlooked in prior work. Using the

multiplication gate, such an arithmetic circuit can perform repeated

squaring to construct numbers that have exponential representation

size with respect to the size of the circuit and the input to the circuit.

In other words, the circuit can construct numbers that are doubly
exponential (or the inverse thereof). Thus, in some cases, it might

not be possible to evaluate the circuit on some input efficiently, i.e.,

in time polynomial in the size of the circuit and the given input.

51

The Complexity of Gradient Descent: CLS = PPAD ∩ PLS STOC ’21, June 21–25, 2021, Virtual, Italy

1

2

3

4

5

6

7

8

PLS

PLS

Figure 4: A high-level illustration of our construction.

Shaded squares on the diagonal correspond to vertices of the

graph represented by 𝑰 EOL, in this case corresponding to the

graph in Figure 1. The green and orange arrows encode the

directed edges of the graph. The positions where 𝑰 ITER is en-

coded, i.e., the PLS-Labyrinths, are shown as boxes labelled

“PLS”.

This subtle issue was recently also noticed by Daskalakis and

Papadimitriou, who proposed a way to fix it in a corrigendum
4
to

the definition of CLS. In this paper, we use an alternative way to

resolve the issue. We restrict our attention to what we call well-
behaved arithmetic circuits. An arithmetic circuit 𝑓 is well-behaved

if, on any directed path that leads to an output, there are at most

log(size(𝑓)) true multiplication gates. A true multiplication gate

is one where both inputs are non-constant nodes of the circuit. In

particular, note that we allow our circuits to perform multiplication

by a constant as often as needed without any restriction. Indeed,

these operations cannot be used to do repeated squaring. In the full

version, we prove that well-behaved circuits can be evaluated in

polynomial time.

4 KKT IS PPAD ∩ PLS-HARD

In this section, we prove our main technical result.

Theorem 4.1. KKT is PPAD ∩ PLS-hard, even when the domain
is fixed to be the unit square [0, 1]2. The hardness continues to hold
even if one considers the promise-version of the problem, i.e., only
instances without violations.

In order to show this we provide a polynomial-time many-one

reduction from Either-Solution(End-of-Line,Iter) to KKT on

the unit square.

4
http://people.csail.mit.edu/costis/CLS-corrigendum.pdf

1

2

3

4

5

6

7

8

Figure 5: High-level illustration of the PLS-Labyrinth corre-

sponding to the Iter example of Figure 2. Shaded squares

on the diagonal correspond to the nodes of Iter.

Overview. Consider any instance of End-of-Line with 2
𝑛
ver-

tices and any instance of Iter with 2
𝑚

nodes. We construct a func-

tion 𝑓 for the KKT problem as follows. We first work on the domain

[0, 𝑁]2 with a grid 𝐺 = {0, 1, 2, . . . , 𝑁 }2, where 𝑁 = 2
𝑛 · 2𝑚+4. In

the conceptually most interesting part of the reduction, we carefully

specify the value of the function 𝑓 and the direction of −∇𝑓 (the
direction of steepest descent) at all the points of the grid 𝐺 . Then, in

the second part of the reduction, we show how to extend 𝑓 within

every square of the grid, so as to obtain a continuously differen-

tiable function on [0, 𝑁]2. Finally, we scale down the domain to

[0, 1]2. We show that any 𝜀-KKT point of 𝑓 (for some sufficiently

small 𝜀) must yield a solution to the End-of-Line instance or a

solution to the Iter instance.

4.1 Defining the Function on the Grid

Overview of the embedding. We divide the domain [0, 𝑁]2 into
2
𝑛 × 2𝑛 big squares. For any 𝑣1, 𝑣2 ∈ [2𝑛], let 𝐵(𝑣1, 𝑣2) denote the
big square [

(𝑣1 − 1)
𝑁

2
𝑛
, 𝑣1

𝑁

2
𝑛

]
×
[
(𝑣2 − 1)

𝑁

2
𝑛
, 𝑣2

𝑁

2
𝑛

]
.

We use the following interpretation: the vertex 𝑣 ∈ [2𝑛] of the
End-of-Line instance is embedded at the centre of the big square

𝐵(𝑣, 𝑣). Thus, the vertices are arranged along the main diagonal of

the domain. In particular, the trivial source 1 ∈ [2𝑛] is located at

the centre of the big square that lies in the bottom-left corner of

the domain and contains the origin.

We seek to embed the edges of the End-of-Line instance in our

construction. For every directed edge (𝑣1, 𝑣2) of the End-of-Line

52

http://people.csail.mit.edu/costis/CLS-corrigendum.pdf

STOC ’21, June 21–25, 2021, Virtual, Italy John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

instance, we are going to embed a directed path in the grid 𝐺 that

goes from the centre of 𝐵(𝑣1, 𝑣1) to the centre of 𝐵(𝑣2, 𝑣2). The
type of path used and the route taken by the path will depend on

whether the edge (𝑣1, 𝑣2) is a “forward” edge or a “backward” edge.
In more detail:

• if 𝑣1 < 𝑣2 (“forward” edge), then we will use a so-called green
path that can only travel to the right and upwards. The path

starts at the centre of 𝐵(𝑣1, 𝑣1) and moves to the right until it

reaches the centre of 𝐵(𝑣2, 𝑣1). Then, it moves upwards until it

reaches its destination: the centre of 𝐵(𝑣2, 𝑣2).
• if 𝑣1 > 𝑣2 (“backward” edge), then we will use a so-called orange
path that can only travel to the left and downwards. The path

starts at the centre of 𝐵(𝑣1, 𝑣1) and moves to the left until it

reaches the centre of 𝐵(𝑣2, 𝑣1). Then, it moves downwards until

it reaches its destination: the centre of 𝐵(𝑣2, 𝑣2).

Figure 4 illustrates the high-level idea of the embedding.

For points of the grid 𝐺 that are part of the “environment”,

namely that do not lie on a path, the function 𝑓 will simply be

defined by (𝑥,𝑦) ↦→ 𝑥 +𝑦. Thus, if there are no paths at all, the only
local minimum of 𝑓 will be at the origin. However, a green path

starts at the origin and this will ensure that there is no minimum

there. This green path will correspond to the outgoing edge of the

trivial source 1 ∈ [2𝑛] of the End-of-Line instance.
The green paths will be constructed such that if one moves along

a green path the value of 𝑓 decreases, which means that we are

improving the objective function value. Furthermore, the value

of 𝑓 at any point on a green path will be below the value of 𝑓 at

any point in the environment. Conversely, the orange paths will

be constructed such that if one moves along an orange path the

value of 𝑓 increases, so the objective function value becomes worse.

Additionally, the value of 𝑓 at any point on an orange path will be

above the value of 𝑓 at any point in the environment.

As a result, if any path starts or ends in the environment, there

will be a local minimum or maximum at that point (and thus a

KKT point). The only exception is the path corresponding to the

outgoing edge of the trivial vertex 1 ∈ [2𝑛]. The start of that path
will not create a local minimum or maximum. Thus, in the example

of Figure 4, there will certainly be KKT points in 𝐵(3, 3), 𝐵(7, 7)
and 𝐵(8, 8), but not in 𝐵(1, 1).

Recall that every vertex 𝑣 ∈ [2𝑛] has at most one incoming edge

and at most one outgoing edge. Thus, for any vertex 𝑣 ≠ 1, one of

the following cases occurs:

• 𝑣 is an isolated vertex. In this case, the big square 𝐵(𝑣, 𝑣) will not
contain any path and will fully be in the environment, thus not

containing any KKT point. Example: vertex 5 in Figure 4.

• 𝑣 has one outgoing edge and no incoming edge. In this case, the

big square 𝐵(𝑣, 𝑣) will contain the start of a green or orange

path. There will be a KKT point at the start of the path, which is

fine, since 𝑣 is a (non-trivial) source of the End-of-Line instance.

Example: vertex 7 in Figure 4.

• 𝑣 has one incoming edge and no outgoing edge. In this case,

the big square 𝐵(𝑣, 𝑣) will contain the end of a green or orange

path. There will be a KKT point at the end of the path, which is

again fine, since 𝑣 is a sink of the End-of-Line instance. Example:

vertices 3 and 8 in Figure 4.

• 𝑣 has one outgoing and one incoming edge. In this case, there

are two sub-cases:

– If both edges yield paths of the same colour, then we will be

able to “connect” the two paths at the centre of 𝐵(𝑣, 𝑣) and
avoid introducing a KKT point there. Example: vertex 4 in

Figure 4.

– If one of the paths is green and the other one is orange, then

there will be a local maximum or minimum in 𝐵(𝑣, 𝑣) (and
thus a KKT point). It is not too hard to see that this is in fact

unavoidable. This is where we use the main new “trick” of

our reduction: we “hide” the exact location of the KKT point

inside 𝐵(𝑣, 𝑣) in such a way, that finding it requires solving

a PLS-complete problem, namely the Iter instance. This is

achieved by introducing a new gadget at the point where the

two paths meet. We call this the PLS-Labyrinth gadget.

The construction of the green and orange paths is described in

detail in Section 4.1.2. The PLS-Labyrinth gadget is described in

detail in Section 4.1.3.

4.1.1 The Value Regimes. Recall that we want to specify the value

of 𝑓 and −∇𝑓 (the direction of steepest descent) at all points on the

grid 𝐺 = {0, 1, 2, . . . , 𝑁 }2, where 𝑁 = 2
𝑛 · 2𝑚+4. In order to specify

the value of 𝑓 , it is convenient to define value regimes. Namely, if a

point (𝑥,𝑦) ∈ 𝐺 is in:

• the red value regime, then 𝑓 (𝑥,𝑦) := 𝑥 − 𝑦 + 4𝑁 + 20.
• the orange value regime, then 𝑓 (𝑥,𝑦) := −𝑥 − 𝑦 + 4𝑁 + 10.
• the black value regime, then 𝑓 (𝑥,𝑦) := 𝑥 + 𝑦.
• the green value regime, then 𝑓 (𝑥,𝑦) := −𝑥 − 𝑦 − 10.
• the blue value regime, then 𝑓 (𝑥,𝑦) := 𝑥 − 𝑦 − 2𝑁 − 20.

Note that at any point on the grid, the value regimes are ordered:

red > orange > black > green > blue. Furthermore, it is easy to

check that the gap between any two regimes at any point is at least

10. Figure 6 illustrates the main properties of the value regimes.

x

y

Figure 6: The value regimes. On the left, the colours are or-

dered according to increasing value, from left to right. On

the right, we indicate for each value regime, the direction in

which it improves, i.e., decreases, in the 𝒙-𝒚-plane.

The black value regime will be used for the environment. Thus,

unless stated otherwise, every grid point is coloured in black, i.e.,

belongs to the black value regime. Furthermore, unless stated oth-

erwise, at every black grid point (𝑥,𝑦), the direction of steepest

descent, i.e., −∇𝑓 (𝑥,𝑦), will point to the left.
5
The only exceptions

to this are grid points that lie in paths, or grid points that lie on the

left boundary of the domain (i.e., 𝑥 = 0).

5
Notice that that is not exactly the same as the negative gradient of the “black regime

function” (𝑥, 𝑦) ↦→ 𝑥 + 𝑦, which would point south-west. Nevertheless, as we show

later, this is enough to ensure that the bicubic interpolation that we use does not

introduce any points with zero gradient in a region of the environment.

53

The Complexity of Gradient Descent: CLS = PPAD ∩ PLS STOC ’21, June 21–25, 2021, Virtual, Italy

Figure 7: Left: Green path turn. Right: Orange path turn.

4.1.2 Embedding the End-of-Line Instance: The Green and Orange
Paths. Our construction specifies for each grid point a colour (which
represents the value of 𝑓 at that point) and an arrow that represents

the direction of −∇𝑓 at that point. A general “rule” that we follow

throughout our construction is that the function values should be

consistent with the arrows. For example, if some grid point has

an arrow pointing to the right, then the adjacent grid point to the

right should have a lower function value, while the adjacent grid

point to the left should have a higher function value. This rule is

not completely sufficient by itself to avoid KKT points, but it is

already a very useful guide.

Recall that the grid 𝐺 = {0, 1, 2, . . . , 𝑁 }2 subdivides every big

square 𝐵(𝑣1, 𝑣2) into 2
𝑚+4 × 2𝑚+4 small squares. The width of the

paths we construct will be two small squares. This corresponds to a

width of three grid points. We refer to the full version of the paper

for illustrations of every gadget in the construction.

Green paths. When a green path moves to the right, the two

lower grid points will be coloured in green, and the grid point at

the top will be in black. When a green path moves upwards, the two

right-most grid points will be coloured in green, and the grid point

on the left will be in black. Recall that a green path implementing

an edge (𝑣1, 𝑣2) (where 𝑣1 < 𝑣2) comes into the big square 𝐵(𝑣2, 𝑣1)
from the left and leaves at the top. Thus, the path has to “turn”.

Figure 7 shows how this turn is implemented. The black arrows

indicate the direction of −∇𝑓 at every grid point.

If a vertex 𝑣 ∈ [2𝑛] has one incoming edge (𝑣1, 𝑣) and one

outgoing edge (𝑣, 𝑣2) such that 𝑣1 < 𝑣 < 𝑣2, then both edges will

be implemented by green paths. The green path corresponding to

(𝑣1, 𝑣) will enter 𝐵(𝑣, 𝑣) from the bottom and stop at the centre of

𝐵(𝑣, 𝑣). The green path corresponding to (𝑣, 𝑣2) will start at the
centre of 𝐵(𝑣, 𝑣) and leave the big square on the right. In order

to avoid introducing any KKT points in 𝐵(𝑣, 𝑣) (since 𝑣 is not a

solution of the End-of-Line instance), we will connect the two

paths at the centre of 𝐵(𝑣, 𝑣). This will be achieved by a simple turn,

similar to the one shown in Figure 7.

If a vertex 𝑣 ∈ [2𝑛] \ {1} has one outgoing edge (𝑣, 𝑣2) such that

𝑣 < 𝑣2, and no incoming edge, then this will yield a green path

starting at the centre of 𝐵(𝑣, 𝑣) and going to the right. It is not hard
to see that there will be a KKT point at the source of that green

path. On the other hand, if a vertex 𝑣 ∈ [2𝑛] \ {1} has one incoming

edge (𝑣1, 𝑣) such that 𝑣1 < 𝑣 , and no outgoing edge, then this will

yield a green path coming from the bottom and ending at the centre

of 𝐵(𝑣, 𝑣). Again, the sink of that green path will yield a KKT point.

Orange paths. The structure of orange paths is, in a certain sense,

symmetric to the structure of green paths. When an orange path

moves to the left, the two upper grid points will be coloured in

orange, and the grid point at the bottom will be in black. When an

orange path moves downwards, the two left-most grid points will

be coloured in orange, and the grid point on the right will be in

black. The construction of the gadgets for the “turns” is completely

analogous to the one for the green paths. See Figure 7. Note that the

arrows on an orange path essentially point in the opposite direction
compared to the direction of the path. This is because we want the

value to increase (i.e., worsen) when we follow an orange path.

Crossings. Note that, by construction, green paths only exist

below the diagonal, and orange paths only exist above the diagonal.

Thus, there is no point where an orange path crosses a green path.

However, there might exist points where green paths cross, or

orange paths cross. This problem always occurs when one tries

to embed an End-of-Line instance in a two-dimensional domain.

Chen and Deng [9] proposed a simple, yet ingenious, trick to resolve

this issue. The idea is to locally re-route the two paths so that they

no longer cross. This modification has the following two crucial

properties: a) it is completely local, and b) it does not introduce any

new solution (in our case a KKT point).

Boundary and origin squares. The big square 𝐵(1, 1) is special.
Since it corresponds to the trivial source of the End-of-Line in-

stance, it has one outgoing edge (which necessarily corresponds to

a green path) and no incoming edge. Normally, this would induce a

KKT point at the centre of 𝐵(1, 1). Furthermore, recall that, by the

definition of the black value regime, there must also be a KKT point

at the origin, if it is coloured in black. By a careful construction

(which is very similar to the one used by Hubáček and Yogev [24]

for Continuous-Localopt) we can ensure that these two KKT

points neutralise each other. In other words, instead of two KKT

points, there is no KKT point at all in 𝐵(1, 1). Figure 8 shows a

complete instance (including the special construction for 𝐵(1, 1))
for a small example where 𝑛 = 1 and big squares have size 8 × 8.

Green and orange paths meeting. Our description of the con-

struction is almost complete, but there is one crucial piece missing.

Indeed, consider any vertex 𝑣 that has one incoming edge (𝑣1, 𝑣)
and one outgoing edge (𝑣, 𝑣2) such that: A) 𝑣1 < 𝑣 and 𝑣2 < 𝑣 , or

B) 𝑣1 > 𝑣 and 𝑣2 > 𝑣 . As it stands, a green path and an orange

path meet at the centre of 𝐵(𝑣, 𝑣) which means that there is a local

minimum or maximum at the centre of 𝐵(𝑣, 𝑣), and thus a KKT

point. However, 𝑣 is not a solution to the End-of-Line instance.

Even though we cannot avoid having a KKT point in 𝐵(𝑣, 𝑣), we can
“hide” it, so that finding it requires solving the Iter instance. This is

implemented by constructing a PLS-Labyrinth gadget at the point

where the green and orange paths meet. Figure 4 shows where this

PLS-Labyrinth gadget is positioned inside the big square for both

cases A and B. The PLS-Labyrinth gadget can only be positioned at

a point where a green path and an orange path meet. In particular,

it cannot be used to “hide” a KKT point occurring at a source or

sink of a green or orange path, i.e., at a solution of the End-of-Line

instance.

54

STOC ’21, June 21–25, 2021, Virtual, Italy John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

Figure 8: Full construction for a small example, in particular

showing the whole boundary and construction for 𝑩(1, 1).

4.1.3 Embedding the Iter Instance: The PLS-Labyrinth.

PLS-Labyrinth. We begin by describing the PLS-Labyrinth gad-

get for case A, i.e., 𝑣 has one incoming edge (𝑣1, 𝑣) and one outgoing
edge (𝑣, 𝑣2) such that 𝑣1 < 𝑣 and 𝑣2 < 𝑣 . The PLS-Labyrinth gadget

comprises 2
𝑚+2 × 2𝑚+2 small squares and is positioned in the big

square 𝐵(𝑣, 𝑣) as shown in Figure 4 for vertex 6. Note, in particular,

that the bottom side of the gadget is adjacent to the orange path,

and the bottom-right corner of the gadget lies just above the point

where the green and orange paths intersect (which occurs at the

centre of 𝐵(𝑣, 𝑣)). Finally, observe that since 𝐵(𝑣, 𝑣) has 2𝑚+4×2𝑚+4
small squares, there is enough space for the PLS-Labyrinth gadget.

For convenience, we subdivide the PLS-Labyrinth gadget into

2
𝑚 × 2𝑚 medium squares. Thus, every medium square is made out

of 4 × 4 small squares. We index the medium squares as follows:

for 𝑢1, 𝑢2 ∈ [2𝑚], let 𝑀 (𝑢1, 𝑢2) denote the medium square that

is the 𝑢2th from the bottom and the 𝑢1th from the right. Thus,
𝑀 (1, 1) corresponds to the medium square that lies at the bottom-

right of the gadget (and is just above the intersection of the paths).

Our construction will create the following paths inside the PLS-

Labyrinth gadget:

• For every 𝑢 ∈ [2𝑚] such that 𝐶 (𝑢) > 𝑢, there is an orange-blue

path starting at 𝑀 (𝑢, 1) and moving upwards until it reaches

𝑀 (𝑢,𝑢).
• For every 𝑢 ∈ [2𝑚] such that 𝐶 (𝑢) > 𝑢 and 𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢),
there is a blue path starting at 𝑀 (𝑢,𝑢) and moving to the left

until it reaches𝑀 (𝐶 (𝑢), 𝑢).
Figure 5 shows a high-level overview of how the Iter instance

is embedded in the PLS-Labyrinth. Note that if 𝐶 (𝑢) > 𝑢 and

𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢), then the blue path starting at𝑀 (𝑢,𝑢) will move

to the left until𝑀 (𝐶 (𝑢), 𝑢) where it will reach the orange-blue path

moving up from𝑀 (𝐶 (𝑢), 1) to𝑀 (𝐶 (𝑢),𝐶 (𝑢)) (which exists since

𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢)). Thus, every blue path will always “merge” into

some orange-blue path. On the other hand, some orange-blue paths

Figure 9: Left: An orange-blue path. Right: A blue path.

will stop in the environment without merging into any other path.

Consider any 𝑢 ∈ [2𝑚] such that 𝐶 (𝑢) > 𝑢. The orange-blue path

for 𝑢 stops at𝑀 (𝑢,𝑢). If 𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢), then there is a blue path

starting there, so the orange-blue path “merges” into the blue path.

However, if 𝐶 (𝐶 (𝑢)) ≤ 𝐶 (𝑢), i.e., 𝐶 (𝐶 (𝑢)) = 𝐶 (𝑢), there is no blue

path starting at𝑀 (𝑢,𝑢) and the orange-blue path just stops in the

environment. Thus, the only place in the PLS-Labyrinth where a

path can stop in the environment is in a medium square 𝑀 (𝑢,𝑢)
such that 𝐶 (𝑢) > 𝑢 and 𝐶 (𝐶 (𝑢)) = 𝐶 (𝑢). This corresponds exactly
to the solutions of the Iter instance𝐶 . In our construction, we will

ensure that KKT points can indeed only occur at points where a

path stops without merging into any other path.

Orange-blue paths. An orange-blue path moves from 𝑀 (𝑢, 1)
upwards to 𝑀 (𝑢,𝑢) (for some 𝑢 ∈ [2𝑚] such that 𝐶 (𝑢) > 𝑢) and

has a width of two small squares. The left-most point is coloured

in orange and the two points on the right are blue. Figure 9 shows

a medium square that is being traversed by the orange-blue path,

i.e., a medium square𝑀 (𝑢,𝑤) where𝑤 < 𝑢. When the orange-blue

path reaches 𝑀 (𝑢,𝑢), it either “turns” to the left and creates the

beginning of a blue path, or it just stops there. The case where

the orange-blue path just stops, occurs when there is no blue path

starting at 𝑀 (𝑢,𝑢). Note that, in that case, 𝑢 is a solution of the

Iter instance, and so KKT points are acceptable in𝑀 (𝑢,𝑢).
The orange-blue path begins in 𝑀 (𝑢, 1), which lies just above

the orange path. In fact, the beginning of the orange-blue path is

adjacent to the orange path. This is needed, since if the orange-blue

path started in the environment, the point coloured orange would

yield a local maximum and thus a KKT point. The beginning of the

orange-blue path for 𝑢 = 1 is special, since, in a certain sense, this

path is created by the intersection of the green and orange paths.

Blue paths. A blue path starts in𝑀 (𝑢,𝑢) for some 𝑢 ∈ [2𝑚] such
that 𝐶 (𝑢) > 𝑢 and 𝐶 (𝐶 (𝑢)) > 𝐶 (𝑢). It moves from right to left and

has a width of two small squares. All three points on the path are

coloured blue and the direction of steepest descent points to the left.

Figure 9 shows a medium square traversed by a blue path. As men-

tioned above, the blue path starts at𝑀 (𝑢,𝑢), which corresponds to

a “turn”. When the blue path reaches𝑀 (𝐶 (𝑢), 𝑢), it merges into the

orange-blue path going from 𝑀 (𝐶 (𝑢), 1) to 𝑀 (𝐶 (𝑢),𝐶 (𝑢)). This
merging is implemented in a straightforward way. Crossings be-

tween blue and orange-blue paths can be easily handled here, be-

cause blue paths can start in the environment.

The PLS-Labyrinth gadget for case B is essentially symmetric to

the one presented above. It can be obtained by rotating the gadget

by 180 degrees and applying the following simple transformation

to the colours: swap green and orange, and replace blue by red.

55

The Complexity of Gradient Descent: CLS = PPAD ∩ PLS STOC ’21, June 21–25, 2021, Virtual, Italy

4.2 Extending the Function to the Rest of the

Domain

Up to this point we have defined the function 𝑓 and the direction

of its gradient at all grid points of 𝐺 . In order to extend 𝑓 to the

whole domain [0, 𝑁]2, we use bicubic interpolation (see e.g. [36] or

the corresponding Wikipedia article
6
). Note that the more standard

and simpler bilinear interpolation (used in particular by Hubáček

and Yogev [24]) yields a continuous function, but not necessarily

a continuously differentiable function. On the other hand, bicubic

interpolation ensures that the function will indeed be continuously

differentiable over the whole domain [0, 𝑁]2.
We use bicubic interpolation in every small square of the grid

𝐺 . Consider any small square and let (𝑥,𝑦) ∈ [0, 1]2 denote the
local coordinates of a point inside the square. Then, the bicubic

interpolation inside this square will be a polynomial of the form:

𝑓 (𝑥,𝑦) =
3∑

𝑖=0

3∑
𝑗=0

𝑎𝑖 𝑗𝑥
𝑖𝑦 𝑗

where the coefficients 𝑎𝑖 𝑗 are computed as follows
𝑎00 𝑎01 𝑎02 𝑎03
𝑎10 𝑎11 𝑎12 𝑎13
𝑎20 𝑎21 𝑎22 𝑎23
𝑎30 𝑎31 𝑎32 𝑎33

 =

1 0 0 0

0 0 1 0

−3 3 −2 −1
2 −2 1 1

 ·
𝑓 (0, 0) 𝑓 (0, 1) 𝑓𝑦 (0, 0) 𝑓𝑦 (0, 1)
𝑓 (1, 0) 𝑓 (1, 1) 𝑓𝑦 (1, 0) 𝑓𝑦 (1, 1)
𝑓𝑥 (0, 0) 𝑓𝑥 (0, 1) 𝑓𝑥𝑦 (0, 0) 𝑓𝑥𝑦 (0, 1)
𝑓𝑥 (1, 0) 𝑓𝑥 (1, 1) 𝑓𝑥𝑦 (1, 0) 𝑓𝑥𝑦 (1, 1)

 ·

1 0 −3 2

0 0 3 −2
0 1 −2 1

0 0 −1 1


Here 𝑓𝑥 and 𝑓𝑦 denote the partial derivatives with respect to 𝑥

and 𝑦 respectively. Similarly, 𝑓𝑥𝑦 denotes the second order partial

derivative with respect to 𝑥 and 𝑦. It remains to explain how we

set the values of 𝑓 , 𝑓𝑥 , 𝑓𝑦 and 𝑓𝑥𝑦 at the four corners of the square:

• The values 𝑓 (0, 0), 𝑓 (0, 1), 𝑓 (1, 0) and 𝑓 (1, 1) are set according
to the value regimes in our construction.

• The values of 𝑓𝑥 (0, 0), 𝑓𝑥 (0, 1), 𝑓𝑥 (1, 0), 𝑓𝑥 (1, 1), 𝑓𝑦 (0, 0), 𝑓𝑦 (0, 1),
𝑓𝑦 (1, 0) and 𝑓𝑦 (1, 1) are set based on the direction of steepest

descent (−∇𝑓) in our construction, with a length multiplier of

𝛿 = 1/2. For example, if the arrow of steepest descent at (0, 1) is
pointing to the left, then we set 𝑓𝑥 (0, 1) = 𝛿 and 𝑓𝑦 (0, 1) = 0. If it

is pointing up, then we set 𝑓𝑥 (0, 1) = 0 and 𝑓𝑦 (0, 1) = −𝛿 .
• We always set 𝑓𝑥𝑦 (0, 0) = 𝑓𝑥𝑦 (0, 1) = 𝑓𝑥𝑦 (1, 0) = 𝑓𝑥𝑦 (1, 1) = 0.

By using this interpolation procedure in each small square, we

obtain a function 𝑓 : [0, 𝑁]2 → R. We then have the following

Lemma, which is proved in the full version.

Lemma 4.2. The function 𝑓 : [0, 𝑁]2 → R we obtain by bicubic
interpolation has the following properties:

• It is continuously differentiable;
• 𝑓 and its gradient ∇𝑓 are Lipschitz-continuous on [0, 𝑁]2 with
Lipschitz-constant 𝐿 = 2

18𝑁 ;
• Well-behaved arithmetic circuits computing 𝑓 and ∇𝑓 can be con-
structed in polynomial time.

6
https://en.wikipedia.org/wiki/Bicubic_interpolation

4.3 Correctness

To show the correctness of the construction, we prove the following

lemma, which states that 0.01-KKT points of 𝑓 only lie at solutions

for the End-of-Line instance or the Iter instance.

Lemma 4.3. Let 𝜀 = 0.01. We have that (𝑥,𝑦) is an 𝜀-KKT point
of 𝑓 on the domain [0, 𝑁]2 only if (𝑥,𝑦) lies in a “solution region”,
namely:

• (𝑥,𝑦) lies in a big square 𝐵(𝑣, 𝑣), such that 𝑣 ∈ [2𝑛] \ {1} is a
source or sink of the End-of-Line instance, or
• (𝑥,𝑦) lies in a medium square 𝑀 (𝑢,𝑢) of some PLS-Labyrinth
gadget, such that 𝑢 ∈ [2𝑚] is a solution to the Iter instance𝐶 , i.e.,
𝐶 (𝑢) > 𝑢 and 𝐶 (𝐶 (𝑢)) = 𝐶 (𝑢).

Proof Sketch. The behaviour of the function in a given small

square depends on the information we have about the four corners,

namely the colours and arrows at the four corners, but also on the

position of the square in our instance, since the value defined by a

colour depends on the position. For our proof, it is convenient to

consider a square with the (colour and arrow) information about its

four corners, but without any information about its position. Indeed,

if we can show that a square does not contain any 𝜀-KKT point

using only this information, then this will always hold, wherever

the square is positioned. As a result, we obtain a finite number of

squares (with colour and arrow information) that we need to check.

However, this still leaves us with 101 distinct small squares to

verify. Fortunately, using various symmetries, these squares can be

grouped into just four distinct cases that we can check individually.

The details can be found in the full version. □

4.4 Re-scaling

The last step of the reduction is to re-scale the function 𝑓 so

that it is defined on [0, 1]2 instead of [0, 𝑁]2. As a result, the

final function and its gradient are 𝐿̂-Lipschitz-continuous with

𝐿̂ = 𝑁 · 𝐿 = 2
18𝑁 2 = 2

2𝑛+2𝑚+26
. Note that we can re-scale the

instance depending on the parameter regime we are interested in.

For example, we immediately obtain hard instances with Lipschitz-

constant 1, and with inversely exponential precision parameter.

5 GRADIENT DESCENT AND KKT ARE

PPAD ∩ PLS-COMPLETE

In this section, we explain how the PPAD ∩ PLS-hardness of KKT
(Theorem 4.1) implies that our other problems of interest, including

our Gradient Descent problems, are PPAD ∩ PLS-complete.

Theorem 5.1. The problems GD-Local-Search, GD-Fixpoint,
KKT and General-Continuous-Localopt are PPAD ∩ PLS-com-
plete, even when the domain is fixed to be the unit square [0, 1]2. This
hardness result continues to hold even if one considers the promise-
versions of these problems, i.e., only instances without violations.

The hardness results in this theorem are the “best possible”, in the

following sense:

• Promise-problem: as mentioned in the theorem, the hardness

holds even for the promise-versions of these problems. In other

words, the hard instances that we construct are not pathological:

they satisfy all the conditions that we would expect from the

56

https://en.wikipedia.org/wiki/Bicubic_interpolation

STOC ’21, June 21–25, 2021, Virtual, Italy John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

input, e.g., ∇𝑓 is indeed the gradient of 𝑓 , ∇𝑓 and 𝑓 are indeed

𝐿-Lipschitz-continuous, etc.

• Domain: the problems remain hard even if we fix the domain

to be the unit square [0, 1]2, which is arguably the simplest

two-dimensional bounded domain. All the problems become

polynomial-time solvable if the domain is one-dimensional.

• Exponential parameters: in all of our problems, the parameters,

such as 𝜀 and 𝐿, are provided in the input in binary representation.
This means that the parameters are allowed to be exponentially

small or large with respect to the length of the input. Our hard-

ness results make use of this, since the proof of Theorem 4.1

constructs an instance of KKT where 𝜀 is some constant, but 𝐿

is exponential in the input length. By a simple transformation

(essentially, a re-scaling), this instance can be transformed into

one where 𝜀 is exponentially small and 𝐿 is constant. It is easy to

see that at least one of 𝜀 or 𝐿 must be exponentially large/small,

for the problem to be hard on the domain [0, 1]2. However, this
continues to hold even in high dimension, i.e., when the domain

is [0, 1]𝑛 . In other words, if the parameters are given in unary,

the problem is easy, even in high dimension. This is in contrast

with the problem of finding a Brouwer fixed point, where moving

to domain [0, 1]𝑛 makes it possible to prove PPAD-hardness even

when the parameters are given in unary.

Theorem 5.1 follows from Theorem 4.1 and a set of domain- and

promise-preserving reductions as pictured in Figure 3, which are

stated below and proved in the full version. The first three Proposi-

tions establish that the KKT problem and the two versions of the

Gradient Descent problem are equivalent. The two remaining Propo-

sitions prove the membership of all our problems in PPAD ∩ PLS.

Proposition 5.2. GD-Local-Search reduces to GD-Fixpoint
using a domain- and promise-preserving reduction.

Proposition 5.3. GD-Fixpoint reduces to KKT using a domain-
and promise-preserving reduction.

Proposition 5.4. KKT reduces to GD-Local-Search using a
domain- and promise-preserving reduction.

Proposition 5.5. GD-Local-Search reduces to General-
Continuous-Localopt using a domain- and promise-preserving
reduction.

Proposition 5.6. General-Continuous-Localopt lies in
PPAD ∩ PLS.

6 CONSEQUENCES FOR CONTINUOUS

LOCAL SEARCH

In this section, we explore the consequences of Theorem 4.1 for

the class CLS. We also consider a Gradient Descent problem where

“finite differences” are used to compute an approximate gradient.

6.1 Consequences for CLS

The class CLS was defined by Daskalakis and Papadimitriou [13]

as a more natural counterpart to PPAD ∩ PLS. Indeed, they noted

that all known PPAD ∩ PLS-complete problems were unnatural,

namely uninteresting combinations of a PPAD-complete and a PLS-

complete problem. As a result, they defined CLS, a subclass of

PPAD ∩ PLS, as a more natural combination of PPAD and PLS, and

conjectured that CLS is a strict subclass of PPAD ∩ PLS. They were

able to prove that various interesting problems lie in CLS, thus

further strengthening the conjecture that CLS is a more natural

subclass of PPAD ∩ PLS, and more likely to capture the complexity

of interesting problems.

It follows from our results that, surprisingly:

Theorem 6.1. CLS = PPAD ∩ PLS.

Recall that by Theorem 5.1, General-Continuous-Localopt with

domain [0, 1]2 is PPAD ∩ PLS-complete. Theorem 6.1 follows from

the fact that this problem lies in CLS, almost by definition. This is

formally proved in the full version. We now explore some further

consequences of our results for CLS.

An immediate consequence is that the two previously known

CLS-complete problems [15, 19] are in fact PPAD ∩ PLS-complete.

Theorem 6.2. Banach and MetametricContraction are
PPAD ∩ PLS-complete.

Furthermore, our results imply that the definition of CLS is “robust”

in the following sense:

• Dimension: the class CLS was defined by Daskalakis and Pa-

padimitriou [13] as the set of all TFNP problems that reduce to 3D-

Continuous-Localopt, i.e., Continuous-Localopt with 𝑛 = 3.

Even though it is easy to see that 𝑘D-Continuous-Localopt

reduces to (𝑘 + 1)D-Continuous-Localopt, it is unclear how
to construct a reduction in the other direction. Indeed, similar

reductions exist for the Brouwer problem, but they require using

a discrete equivalent of Brouwer, namely End-of-Line, as an

intermediate step. Since no such discrete problem was known

for CLS, this left open the possibility of a hierarchy of versions

of CLS, depending on the dimension, i.e., 2D-CLS ⊂ 3D-CLS ⊂
4D-CLS We show that even the two-dimensional version

is PPAD ∩ PLS-hard, and thus the definition of CLS is indeed

independent of the dimension used. In other words,

2D-CLS = CLS = 𝑛D-CLS.

Note that this is tight, since 1D-Continuous-Localopt can be

solved in polynomial time, i.e., 1D-CLS = FP.

• Domain: some interesting problems can be shown to lie in CLS,

but the reduction produces a polytopal domain, instead of the

standard domain [0, 1]𝑛 . In other words, they reduce to General-

Continuous-Localopt, which we have defined as a generaliza-

tion of Continuous-Localopt. Since General-Continuous-

Localopt is PPAD ∩ PLS-complete (Theorem 5.1), it follows that

CLS can equivalently be defined as the set of all TFNP problems

that reduce to General-Continuous-Localopt.

• Promise: the problem Continuous-Localopt, which defines

CLS, is a problem with violation solutions. One can instead con-

sider promise-CLS, which is defined as the set of all TFNP prob-

lems that reduce to a promise version of Continuous-Localopt.

In the promise version of Continuous-Localopt, we restrict

our attention to instances that satisfy the promise, i.e., where

the functions 𝑝 and 𝑔 are indeed 𝐿-Lipschitz-continuous. The

class promise-CLS could possibly be weaker than CLS, since the

reduction is required to always map to instances of Continuous-

Localopt without violations. However, it follows from our re-

sults that promise-CLS =CLS, since the promise version of the

57

The Complexity of Gradient Descent: CLS = PPAD ∩ PLS STOC ’21, June 21–25, 2021, Virtual, Italy

Continuous-Localopt problem is shown to be PPAD ∩ PLS-
hard, even on domain [0, 1]2 (Theorem 5.1).

• Turing reductions: since PPAD and PLS are closed under Turing

reductions [5], it is easy to see that this also holds for PPAD ∩ PLS,
and thus by our result also for CLS.

• Circuits: CLS is defined using the Continuous-Localopt prob-

lem where the functions are represented by general arithmetic

circuits. If one restricts the type of arithmetic circuit that is used,

this might yield a weaker version of CLS. Linear arithmetic cir-

cuits are a natural class of circuits that arise when reducing from

various natural problems.We define Linear-CLS as the set of prob-

lems that reduce to Continuous-Localopt with linear circuits.

In Section 6.2 we show that Linear-CLS = CLS.

6.2 Linear-CLS and Gradient Descent with

Finite Differences

The class CLS was defined by Daskalakis and Papadimitriou [13]

using the Continuous-Localopt problem which uses arithmetic

circuits with gates in {+,−,min,max,×, <} and rational constants.

In this section we show that even if we restrict ourselves to lin-

ear arithmetic circuits (i.e., only the gates in {+,−,min,max,×𝜁 }
and rational constants are allowed), the Continuous-Localopt

problem and CLS remain just as hard as the original versions.

Definition 6.3. Linear-Continuous-Localopt:
Input:

• precision/stopping parameter 𝜀 > 0,

• linear arithmetic circuits 𝑝 : [0, 1]𝑛 → [0, 1] and
𝑔 : [0, 1]𝑛 → [0, 1]𝑛 .

Goal: Compute an approximate local optimum of 𝑝 with

respect to 𝑔. Formally, find 𝑥 ∈ [0, 1]𝑛 such that

𝑝 (𝑔(𝑥)) ≥ 𝑝 (𝑥) − 𝜀.

We define the class 2D-Linear-CLS as the set of all TFNP problems

that reduce to 2D-Linear-Continuous-Localopt. We show that:

Theorem 6.4. 2D-Linear-CLS = PPAD ∩ PLS.

This theorem mainly relies on a general result which says that

any arithmetic circuit can be arbitrarily well approximated by a

linear arithmetic circuit on a bounded domain. This approximation

theorem is proved (in a more general form) in the appendix of the

full version. The proof uses known techniques developed in the

study of the complexity of Nash equilibria [10, 12], but replaces

the usual averaging step by a median step, which ensures that we

obtain the desired accuracy of approximation.

Instead of reducing 2D-Continuous-Localopt to 2D-Linear-

Continuous-Localopt, we prove Theorem 6.4 by a different route

that also allows us to introduce a problem which might be of in-

dependent interest. To capture the cases where the gradient is not

available or perhaps too expensive to compute, we consider a ver-

sion of Gradient Descent where the finite differences approach is

used to compute an approximate gradient, which is then used as

usual to obtain the next iterate. Formally, given a finite difference

spacing parameter ℎ > 0, the approximate gradient ∇̃ℎ 𝑓 (𝑥) at some

point 𝑥 ∈ [0, 1]𝑛 is computed as[
∇̃ℎ 𝑓 (𝑥)

]
𝑖
=

𝑓 (𝑥 + ℎ · 𝑒𝑖) − 𝑓 (𝑥 − ℎ · 𝑒𝑖)
2ℎ

for all 𝑖 ∈ [𝑛]. The computational problem is defined as follows.

GD-Finite-Diff (informal)
Input:

• precision/stopping parameter 𝜀 > 0,

• step size 𝜂 > 0,

• finite difference spacing parameter ℎ > 0,

• linear arithmetic circuit 𝑓 : R𝑛 → R.
Goal: Compute any point where (projected) gradient de-

scent for 𝑓 on domain 𝐷 = [0, 1]𝑛 using finite differences

to approximate the gradient and fixed step size 𝜂 termi-

nates.

GD-Finite-Diff reduces to Linear-Continuous-Localopt by set-

ting 𝑝 := 𝑓 and 𝑔 := Π𝐷 (𝑥 −𝜂∇̃ℎ 𝑓 (𝑥)). Furthermore, this reduction

is domain-preserving and thus Theorem 6.4 immediately follows

from the following theorem, which is proved in the full version.

Theorem 6.5. GD-Finite-Diff is PPAD ∩ PLS-complete, even
with fixed domain [0, 1]2.

This result is interesting by itself, because the problem is arguably

quite natural, but also because it is the first problem that is com-

plete for PPAD ∩ PLS (and CLS) that has a single arithmetic circuit

in the input. Note that our other problems which we prove to

be PPAD ∩ PLS-complete, as well as the previously known CLS-

complete problems, all have two arithmetic circuits in the input.

7 FUTURE DIRECTIONS

Our results may help to identify the complexity of the following

problems that are known to lie in PPAD ∩ PLS:
• Mixed-Congestion: The problem of finding a mixed Nash equi-

librium of a congestion game. It is known that finding a pure
Nash equilibrium is PLS-complete [17]. As mentioned in Sec-

tion 1.2, Babichenko and Rubinstein [3] have recently applied

our main result to obtain PPAD ∩ PLS-completeness for Mixed-

Congestion. It would be interesting to extend this to network
congestion games, where the strategies are represented implicitly.

• polynomial-KKT: The special case of the KKT problem where

the function is a polynomial, provided explicitly in the input

(exponents in unary). A consequence of the above-mentioned

reduction by Babichenko and Rubinstein [3] is that the problem

is PPAD ∩ PLS-complete for polynomials of degree 5. It remains

open to extend this hardness result to lower degree polynomials.

• Contraction: Find a fixed point of a function that is contracting

with respect to some ℓ𝑝 -norm.

• Tarski: Find a fixed point of an order-preserving function, as

guaranteed by Tarski’s theorem [11, 16, 22].

• ColorfulCarathéodory: A problem based on a theorem in

convex geometry [30].

The first three problems on this list were known to lie in CLS [13],

while the other two were only known to lie in PPAD ∩ PLS.

58

STOC ’21, June 21–25, 2021, Virtual, Italy John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

The collapse between CLS and PPAD ∩ PLS raises the question
of whether the class EOPL (for End of Potential Line), a subclass of

CLS, is also equal to PPAD ∩ PLS. The class EOPL, or more precisely

its subclass UEOPL (with U for unique), is known to contain various

problems of interest that have unique solutions such as Unique Sink

Orientation (USO), the P-matrix Linear Complementarity Problem

(P-LCP), Simple Stochastic Games (SSG) and Parity Games [20]. We

conjecture that EOPL≠ PPAD ∩ PLS. Unlike CLS, EOPL has a more

standard combinatorial definition that is simultaneously a special

case of End-of-Line and Localopt. While PPAD ∩ PLS captures
problems that have a PPAD-type proof of existence and a PLS-type

proof of existence, EOPL seems to capture problems that have a

single proof of existence which is simultaneously of PPAD- and

PLS-type. The first step towards confirming this conjecture would

be to provide an oracle separation between EOPL and PPAD ∩ PLS,
in the sense of Beame et al. [4].

Ishizuka [25] has recently shown that the definition of EOPL is

robust with respect to some modifications (similarly to PPAD [23]),

and has provided a somewhat artificial problem that is complete

for PPA ∩ PLS. This raises the interesting question of whether

PPA ∩ PLS, and other intersections of well-studied classes, also

admit natural complete problems, or if PPAD ∩ PLS is in fact an

isolated case.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for suggestions that helped

improve the presentation of the paper. Alexandros Hollender was

supported by an EPSRC doctoral studentship (Reference 1892947).

REFERENCES

[1] Amir Ali Ahmadi and Jeffrey Zhang. 2020. Complexity aspects of local minima

and related notions. arXiv:2008.06148

[2] Amir Ali Ahmadi and Jeffrey Zhang. 2020. On the complexity of finding a local

minimizer of a quadratic function over a polytope. arXiv:2008.05558

[3] Yakov Babichenko and Aviad Rubinstein. 2021. Settling the complexity of Nash

equilibrium in congestion games. In Proceedings of the 53rd ACM Symposium on
Theory of Computing (STOC). arXiv:2012.04327

[4] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann

Pitassi. 1998. The Relative Complexity of NP Search Problems. J. Comput. System
Sci. 57, 1 (1998), 3–19. https://doi.org/10.1145/225058.225147

[5] Samuel R. Buss and Alan S. Johnson. 2012. Propositional proofs and reductions

between NP search problems. Annals of Pure and Applied Logic 163, 9 (2012),

1163–1182. https://doi.org/10.1016/j.apal.2012.01.015

[6] Augustin-Louis Cauchy. 1847. Méthode générale pour la résolution des systèmes

d’équations simultanées. C. R. Acad. Sci. Paris 25 (1847), 536–538.
[7] Vaggos Chatziafratis, Tim Roughgarden, and Joshua R. Wang. 2019. On the

Computational Power of Online Gradient Descent. In Proceedings of the 32nd
Conference on Learning Theory (COLT). 624–662. http://proceedings.mlr.press/

v99/chatziafratis19a.html

[8] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. 2009. Settling the Complexity

of Arrow-Debreu Equilibria in Markets with Additively Separable Utilities. In

Proceedings of the 50th IEEE Symposium on Foundations of Computer Science
(FOCS). 273–282. https://doi.org/10.1109/FOCS.2009.29

[9] Xi Chen and Xiaotie Deng. 2009. On the complexity of 2D discrete fixed point

problem. Theoretical Computer Science 410, 44 (2009), 4448 – 4456. https://doi.

org/10.1016/j.tcs.2009.07.052

[10] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the complexity of

computing two-player Nash equilibria. J. ACM 56, 3 (2009), 14:1–14:57. https:

//doi.org/10.1145/1516512.1516516

[11] Chuangyin Dang, Qi Qi, and Yinyu Ye. 2020. Computations and Complexities of

Tarski’s Fixed Points and Supermodular Games. arXiv:2005.09836

[12] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. 2009.

The complexity of computing a Nash equilibrium. In SIAM Journal on Computing,
Vol. 39. 195–259. https://doi.org/10.1137/070699652

[13] Constantinos Daskalakis and Christos Papadimitriou. 2011. Continuous local

search. In Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms

(SODA). 790–804. https://doi.org/10.1137/1.9781611973082.62

[14] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. 2021. The

Complexity of Constrained Min-Max Optimization. In Proceedings of the 53rd
ACM Symposium on Theory of Computing (STOC). arXiv:2009.09623

[15] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. 2018. A

converse to Banach’s fixed point theorem and its CLS-completeness. In Pro-
ceedings of the 50th ACM Symposium on Theory of Computing (STOC). 44–50.
https://doi.org/10.1145/3188745.3188968

[16] Kousha Etessami, Christos Papadimitriou, Aviad Rubinstein, and Mihalis Yan-

nakakis. 2020. Tarski’s Theorem, Supermodular Games, and the Complexity of

Equilibria. In Proceedings of the 11th Innovations in Theoretical Computer Science
Conference (ITCS). 18:1–18:19. https://doi.org/10.4230/LIPIcs.ITCS.2020.18

[17] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. 2004. The complexity

of pure Nash equilibria. In Proceedings of the 36th ACM Symposium on Theory of
Computing (STOC). 604–612. https://doi.org/10.1145/1007352.1007445

[18] John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. 2020.

The Complexity of Gradient Descent: CLS = PPAD ∩ PLS. arXiv:2011.01929

[19] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. 2017. CLS: New

Problems and Completeness. arXiv:1702.06017

[20] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. 2020. Unique

End of Potential Line. J. Comput. System Sci. 114 (2020), 1–35. https://doi.org/10.

1016/j.jcss.2020.05.007

[21] John Fearnley and Rahul Savani. 2015. The Complexity of the Simplex Method. In

Proceedings of the 47th ACM Symposium on Theory of Computing (STOC). 201–208.
https://doi.org/10.1145/2746539.2746558

[22] John Fearnley and Rahul Savani. 2021. A faster algorithm for finding Tarski

fixed points. In 38th International Symposium on Theoretical Aspects of Computer
Science (STACS). 29:1–29:16. https://doi.org/10.4230/LIPIcs.STACS.2021.29

[23] Paul W. Goldberg and Alexandros Hollender. 2019. The Hairy Ball Problem is

PPAD-Complete. In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). 65:1–65:14. https://doi.org/10.4230/LIPIcs.

ICALP.2019.65

[24] Pavel Hubáček and Eylon Yogev. 2017. Hardness of continuous local search:

Query complexity and cryptographic lower bounds. In Proceedings of the 28th
ACM-SIAM Symposium on Discrete Algorithms (SODA). 1352–1371. https://doi.

org/10.1137/1.9781611974782.88

[25] Takashi Ishizuka. 2021. The complexity of the parity argument with potential. J.
Comput. System Sci. 120 (2021), 14–41. https://doi.org/10.1016/j.jcss.2021.03.004

[26] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan.

2021. OnNonconvexOptimization forMachine Learning: Gradients, Stochasticity,

and Saddle Points. J. ACM 68, 2 (2021), 11:1–11:29. https://doi.org/10.1145/

3418526

[27] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. 1988.

How easy is local search? J. Comput. System Sci. 37, 1 (1988), 79–100. https:

//doi.org/10.1016/0022-0000(88)90046-3

[28] Shiva Kintali, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, and

Shang-Hua Teng. 2013. Reducibility among Fractional Stability Problems. SIAM
J. Comput. 42, 6 (2013), 2063–2113. https://doi.org/10.1137/120874655

[29] Nimrod Megiddo and Christos H. Papadimitriou. 1991. On total functions, exis-

tence theorems and computational complexity. Theoretical Computer Science 81,
2 (1991), 317–324. https://doi.org/10.1016/0304-3975(91)90200-L

[30] Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein.

2017. The rainbow at the end of the line—a PPAD formulation of the colorful

Carathéodory theorem with applications. In Proceedings of the 28th ACM-SIAM
Symposium on Discrete Algorithms (SODA). 1342–1351. https://doi.org/10.1137/1.

9781611974782.87

[31] Tsuyoshi Morioka. 2001. Classification of search problems and their definability
in bounded arithmetic. Master’s thesis. University of Toronto. https://www.

collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf

[32] Katta G. Murty and Santosh N. Kabadi. 1987. Some NP-complete problems in

quadratic and nonlinear programming. Mathematical Programming 39, 2 (1987),

117–129. https://doi.org/10.1007/BF02592948

[33] Christos H. Papadimitriou. 1992. The complexity of the Lin-Kernighan heuristic

for the traveling salesman problem. SIAM J. Comput. 21, 3 (1992), 450–465.

https://doi.org/10.1137/0221030

[34] Christos H. Papadimitriou. 1994. On the complexity of the parity argument and

other inefficient proofs of existence. J. Comput. System Sci. 48, 3 (1994), 498–532.
https://doi.org/10.1016/S0022-0000(05)80063-7

[35] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.

Annals of Mathematical Statistics (1951), 400–407.
[36] William S. Russell. 1995. Polynomial interpolation schemes for internal derivative

distributions on structured grids. Applied Numerical Mathematics 17, 2 (1995),
129 – 171. https://doi.org/10.1016/0168-9274(95)00014-L

59

https://arxiv.org/abs/2008.06148
https://arxiv.org/abs/2008.05558
https://arxiv.org/abs/2012.04327
https://doi.org/10.1145/225058.225147
https://doi.org/10.1016/j.apal.2012.01.015
http://proceedings.mlr.press/v99/chatziafratis19a.html
http://proceedings.mlr.press/v99/chatziafratis19a.html
https://doi.org/10.1109/FOCS.2009.29
https://doi.org/10.1016/j.tcs.2009.07.052
https://doi.org/10.1016/j.tcs.2009.07.052
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/1516512.1516516
https://arxiv.org/abs/2005.09836
https://doi.org/10.1137/070699652
https://doi.org/10.1137/1.9781611973082.62
https://arxiv.org/abs/2009.09623
https://doi.org/10.1145/3188745.3188968
https://doi.org/10.4230/LIPIcs.ITCS.2020.18
https://doi.org/10.1145/1007352.1007445
https://arxiv.org/abs/2011.01929
https://arxiv.org/abs/1702.06017
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1145/2746539.2746558
https://doi.org/10.4230/LIPIcs.STACS.2021.29
https://doi.org/10.4230/LIPIcs.ICALP.2019.65
https://doi.org/10.4230/LIPIcs.ICALP.2019.65
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1016/j.jcss.2021.03.004
https://doi.org/10.1145/3418526
https://doi.org/10.1145/3418526
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1137/120874655
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1137/1.9781611974782.87
https://doi.org/10.1137/1.9781611974782.87
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://doi.org/10.1007/BF02592948
https://doi.org/10.1137/0221030
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/0168-9274(95)00014-L

	Abstract
	1 Introduction
	1.1 NP Total Search Classes: PPAD, PLS, CLS
	1.2 Our Contribution and Its Significance
	1.3 Further Related Work

	2 Overview
	2.1 The Problems of Interest
	2.2 Complexity Classes
	2.3 Results
	2.4 Proof Overview for Theorem 4.1

	3 Preliminaries
	4 KKT is PPAD PLS-hard
	4.1 Defining the Function on the Grid
	4.2 Extending the Function to the Rest of the Domain
	4.3 Correctness
	4.4 Re-scaling

	5 Gradient Descent and KKT are PPAD PLS-complete
	6 Consequences for Continuous Local Search
	6.1 Consequences for CLS
	6.2 Linear-CLS and Gradient Descent with Finite Differences

	7 Future directions
	Acknowledgments
	References

