
Robotics and Autonomous Systems
Lecture 23: LeJOS and Jason

Richard Williams

Department of Computer Science
University of Liverpool

1 / 59



Today

• Today we will just go through an example of how to interface Jason
with LeJOS

• This is essential to be able to do Assignment 2.

2 / 59



Jason and LeJOS

PC−leJOS NXT−leJOSwritten in Eclipse
written in Eclipse

3 / 59



Jason and LeJOS

Jason Agent

PC−leJOS NXT−leJOS

or Eclipse

written in Eclipse
written in Eclipse

written in jEdit

4 / 59



Jason and LeJOS

Jason Agent

PC−leJOS NXT−leJOS

or Eclipse

written in Eclipse
written in Eclipse

written in jEdit

5 / 59



Jason and LeJOS

Jason Agent

PC−leJOS NXT−leJOS

or Eclipse

written in Eclipse
written in Eclipse

leJOS NXJ project in Eclipse

Jason Project in Eclipse

containing a package with PC

LeJOS code. The project loads

classes for PC LeJOS

written in jEdit

6 / 59



Jason and LeJOS

• A Jason agent is interfaced with a LeJOS PC program
• The robot provides the environment for the agent.

which in turn communicates with an NXT brick.

• The Jason agent uses an action distance to obtain information
about the distance read by the US sensor on the NXT brick.

• The action is hooked to a method of a LeJOS PC program, which
obtains the reading through BT from the NXT brick.

• The program is run as a Jason project

7 / 59



Jason and LeJOS

8 / 59



Jason and LeJOS

9 / 59



Jason and LeJOS

10 / 59



Jason and LeJOS

11 / 59



The MAS file

MAS jasonAppTest {

infrastructure: Centralised

agents:
agent1 sample;

classpath:
"C:/Program Files/leJOS NXJ/lib/pc/*.jar";
"C:/Program Files/leJOS NXJ/lib/pc/3rdparty/*.jar";

aslSourcePath:
"src/asl";

}

12 / 59



The MAS file

• Note the classpath to the leJOS PC library.

• This tells Jason where these files are.

• The compilation of the Jason part is carried out by Jason, invoked by
Eclipse.

• Since this compilation involves compiling leJOS/PC code, Jason
needs to know where the library is.

• (Since Jason is written in Java, a Jason program could include any
other Java library also).

13 / 59



The MAS file

14 / 59



The agent

/* Initial beliefs and rules */

/* Initial goals */

!start.

/* Plans */

+!start : true
<- robot.distance(Object);
.print("Distance is", Object);
.wait(1000);
!start.

15 / 59



The agent

• Begin with the (aptly named) goal !start
• This calls the actions:

robot.distance
.print
.wait

• Then reinvokes !start

• Jason equivalent of an infinite loop.

16 / 59



The agent

• Where does robot.distance come from?

17 / 59



The agent

• Where does robot.distance come from?

• It is part of the environment.

18 / 59



The agent

• Where does robot.distance come from?

• It is part of the environment.

• Which in this case is provided by the robot.

19 / 59



The agent

• Where does robot.distance come from?

• It is part of the environment.

• Which in this case is provided by the robot.

• It is a command to the robot to do something.

20 / 59



The agent

21 / 59



The agent

• This is the package that provides the “environment” in which the
sample.asl agent runs.

• It is a Java program that runs on the PC.
• Provides the distance command.

• As far as Jason is concerned, that is all it needs to know.

22 / 59



The agent

• This is the package that provides the “environment” in which the
sample.asl agent runs.

• It is a Java program that runs on the PC.
• Provides the distance command.

• As far as Jason is concerned, that is all it needs to know.

• In reality this program talks to an NXT robot.

23 / 59



The agent

24 / 59



Communication

• Two bits:
• Communication.java
• distance.java

25 / 59



Communication.java

package robot;

import java.io.*;
import java.util.concurrent.LinkedBlockingQueue;

import lejos.pc.comm.NXTConnector;

public class Communication implements Runnable{

NXTConnector conn;
DataOutputStream dos;
DataInputStream dis;

String received;
LinkedBlockingQueue<String> q;

26 / 59



Communication.java

• This is the communication infrastructure object.

• NXTConnector to provide the connection.

• Two streams, for passing data over the connection.

• A LinkedBlockingQueue<String> for buffering data for transport.

• The whole thing is Runnable to allow it to be easily threaded.

27 / 59



Communication.java

public Communication(String nxtName, String nxtBTAddress){
received=null;
q = new LinkedBlockingQueue<String>();

// Open up a BlueTooth connection
conn = new NXTConnector();
boolean connected = conn.connectTo(nxtName, nxtBTAddress,2);
if(!connected){
System.err.println("Failed to connect!");
System.exit(1);

}
System.out.println("Connected to " + nxtName);

//Set up input (from Bluetooth), and output (to Bluetooth)
dis = new DataInputStream(conn.getInputStream());
dos = new DataOutputStream(conn.getOutputStream());

}

28 / 59



Communication.java

• Pretty standard communication stuff.

• Exploits the Java/LeJOS infrastructure.

• Key line is
conn.connectTo(nxtName, nxtBTAddress,2);
which opens the connection.

29 / 59



Communication.java

• Then we add:

public void run(){
try{
while(true){
q.put(dis.readUTF());
Thread.sleep(100);
}

}
catch(Exception e){}

}

30 / 59



Communication.java

• The “main” of the Runnable
• Is kicked off when the Runnable is popped into a thread.

• Every tenth of a second it grabs from the input stream.

• Puts what it gets into the q.

31 / 59



Communication.java

• And:

public String read(){
while(q.size()==0){
Thread.yield();

}
return q.poll();

}

32 / 59



Communication.java

• Main interface function — read from the q.

• The reason for the q is to make this asynchronous

• Communication happens when it happens, and the results are stored
in the q.
Happens when the NXT is ready.

• The Jason program causes the q to be read when it is ready.

• q handles the slack.

• Being a blocking queue, it can’t be over-filled, and it causes a wait if it
is empty.

33 / 59



Communication.java

• Communication.java also provides a write method, but the
example doesn’t use it.

34 / 59



What else?

35 / 59



distance.java

package robot;

import jason.*;
import jason.asSemantics.*; // to do unification
import jason.asSyntax.*; // to handle AgentSpeak

// syntax.

public class distance
extends DefaultInternalAction {

Communication comm;
Thread commThread;

36 / 59



distance.java

• This is the connection to Jason.

• We create a Jason action by extending its default code for an action.

• This action will be a read from a Communication object.

37 / 59



distance.java

public distance(){
comm = new Communication("NXT", "00:16:53:1a:a7:11");
commThread = new Thread(comm);
commThread.start();

}

38 / 59



distance.java

• The constructor opens up a channel using the Communication object.

• Note that this relies on the address of the specific NXT that you are
connecting to.

• Not only is it paired, but it is coded to the robot.

39 / 59



distance.java

public Object execute(TransitionSystem ts,
Unifier un, Term[] args)

throws Exception{

String message = comm.read();
StringTerm result = new StringTermImpl(message);

return un.unifies(result, args[0]);
}

40 / 59



distance.java

• This is what gets called when Jason executes robot.distance
• ts is the state when the action is called.

• So actions can refer to the agent state.
• un captures the unification

• Gives you the access to the values of the variables in the plan which
are referenced by the action.

• args are the arguments of the action.

41 / 59



distance.java

• This winds up what happens on the Jason side.

• More now to discuss what happens on the LeJOS side.

• This is just a regular LeJOS program.

42 / 59



On the LeJOS side

Jason Agent

PC−leJOS NXT−leJOS

or Eclipse

written in Eclipse
written in Eclipse

leJOS NXJ project in Eclipse

Jason Project in Eclipse

containing a package with PC

LeJOS code. The project loads

classes for PC LeJOS

written in jEdit

43 / 59



On the LeJOS side

44 / 59



BTSend.java

public class BTSend implements Runnable{
Queue<String> q;
NXTConnection conn;
DataOutputStream out;

public BTSend(NXTConnection conn){
q = new Queue<String>();
this.conn=conn;
out=conn.openDataOutputStream();

}

45 / 59



BTSend.java

• Looks a lot like Communication.java

• Uses NXTConnection to provide a connection over BlueTooth.

• Uses a (regular) q to load up data to send.

• Only has an output stream.

46 / 59



BTSend.java

public void run(){
try{
while(true){
while(q.empty()){
Thread.yield();

}
out.writeUTF((String)q.pop());
out.flush();

}
}
catch (Exception e) {}

}

47 / 59



BTSend.java

• Do nothing if q is empty.

• Else pop an item off the q and send it to the output stream.

48 / 59



On the LeJOS side

49 / 59



lejosJasonTest.java

import lejos.nxt.LCD;
import lejos.nxt.SensorPort;
import lejos.nxt.UltrasonicSensor;
import lejos.nxt.comm.Bluetooth;
import lejos.nxt.comm.NXTConnection;

public class lejosJasonTest {
static UltrasonicSensor us;
static NXTConnection conn;
static BTSend sender;
static Thread senderThread;

• Make use of BTSend to communicate over the NXTConnection

50 / 59



lejosJasonTest.java

public static void main(String[] args) throws Exception{
us= new UltrasonicSensor(SensorPort.S3);
int distance;

System.out.println("Waiting");
conn = Bluetooth.waitForConnection();
System.out.println("Connected");

sender = new BTSend(conn);
senderThread = new Thread(sender);
senderThread.setDaemon(true);
senderThread.start();

while(true){
distance = us.getDistance();
LCD.clear();
LCD.drawString(distance+"", 0, 0);
sender.write(distance+"");
Thread.sleep(3000);
}

}
}

51 / 59



lejosJasonTest.java

• Open a Bluetooth connection.

• Use this to instantiate the BTSend object (which gives communication
over the link)...

• ... and kick that communication off in its own thread.

• (That is what the start does.)

• Then, every three seconds, read the ultrasound sensor and send the
result over the connection.

52 / 59



Next

• Now we can run it.

53 / 59



This is what you should see

54 / 59



Note

• Even with these notes you will find it tricky getting things set up.

55 / 59



Need to include this

56 / 59



How the second assignment might look

Jason Agent

PC−leJOS NXT−leJOS

or Eclipse

written in Eclipse
written in Eclipse

leJOS NXJ project in Eclipse

Jason Project in Eclipse

containing a package with PC

LeJOS code. The project loads

classes for PC LeJOS

written in jEdit

Jason Agent

57 / 59



Summary

• This lecture looked at interfacing LeJOS to Jason.

• This allows a Jason agent to execute commands that have an effect
on the NXT.

• (Note that this is not what happens in the example.)

• This general structure will likely be helpful in Assignment 2.

58 / 59


