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Abstract. We will briefly describe the recently implemented hyper-
set approach to semi-structured or Web-like and possibly distributed
databases with the query system available online at http://www.csc.

liv.ac.uk/~molyneux/t/. As this approach is crucially based on the
bisimulation relation, the main stress in this paper is on its computation
in the distributed case by using a so called bisimulation engine and local
approximations of the global bisimulation relation.

1 Introduction

Unlike the more widely known traditional view on semi-structured data (SSD)
as labelled graphs or as text based XML documents [1], the hyperset approach
discussed in this paper assumes an abstract data model where such data is con-
sidered as set of sets of sets, etc. All elements of such sets, which are themselves
sets, are assumed to have labels. Labels are the proper carriers of the atomic
information, whereas sets just organise this information. Moreover, non-well-
founded sets or hypersets allowing cyclic, as well as nested structure adopted in
this approach are, in fact, a known extension of classical set theory.

Hyperset data model and graphs. The set theoretical view is, in fact, closely
related with the graph view on semi-structured data by the evident and natural
correspondence between labelled set equations like s = {l1 : s1, . . . , ln : sn},
with s and si set names, and “fork” graph fragments determined by labelled
directed edges outgoing from s: s l1−→ s1, . . . , s

ln−→ sn. This way a system of
such (labelled) set equations can generate arbitrary directed graph (possibly with
cycles), and vice versa. All sets and graphs are assumed to be finite. Another
way to view such graphs is thinking on set names as analogies of URLs (Web
addresses) and on the labels li as marking hyperlinks s li−→ si between these
URLs. This analogy also leads to the term Web-like database (WDB) [12] for any
such system of set equations (and corresponding graph). “Graph” is essentially
synonymous to the “web”, and “semi-structured” usually means “structured as
a graph”. Semi-structured databases arose also essentially due to Web [1] as



the possibility of easy accessing various data having no unique and uniform
structure. Moreover, the analogy with the WWW can be further supported by
allowing system of set equations to be distributed amongst many WDB files,
not necessarily in one computer, where a set name s participating in one file as
. . . = {. . . , l : s, . . .} can possibly refer to other file in which s is described by
appropriate set equation s = {l1 : s1, . . . , ln : sn}. This assumes distinguishing
between simple set names and full set names involving the URL of appropriate
WDB file. The idea of distributed WDB seems inevitable and reasonable in the
age of Internet (and Intranets) as it is unpractical and illogical to have all set
equations of a big WDB to be contained in one file and in one computer.

Hypersets and relational databases. Before going further in describing hyperset
approach, it makes sense to note the analogy of a set s = {l1 : s1, . . . , ln : sn}
with a relational record where it is assumed the restriction that the fields or at-
tributes l1, . . . , ln are all different. Thus, a set of such records with the same list
of attributes li constitute a relation. Then, the possible distributed character of
such data mentioned above would correspond, for example, to a heterogeneous
system of relational databases as a very special case of arbitrary semi-structured
hyperset data in the form of a system of such equations. Even if the same could
be represented in terms of a (distributed) graph, the set theoretic approach
(assuming considering arbitrary sets s of sets si, etc.) is closer to the spirit of
relational (or nested relational) databases having essentially the same logical
background which cannot be said so straightforwardly concerning the purely
graph theoretical view. Also, the general hyperset query language ∆ discussed
below would potentially allow to query arbitrary heterogeneous distributed rela-
tional databases in a quite natural and logically coherent way. In fact, the great
success of relational databases arose due to their highly transparent logical and
set theoretical nature, and we develop the same set theoretical paradigm having,
as we believe, good theoretical and practical potential.

Equality between hypersets. The concept of equality makes the main and crucial
difference between graph nodes and hypersets. Hyperset view assumes that two
set names (graph nodes) can denote the same abstract hyperset as the order of
elements and repetitions—occasional redundancies in the data—should not play
a role in the abstract meaning of these data. For example, given set equations

BibDB = {book:b,paper:p}
b = {author:"Jones",title:"Databases"}
p = {author:"Jones",title:"Databases"},

we should conclude that b = p.3 Mathematically, this means that two set names
(graph nodes) which are bisimilar or informationally equivalent denote the same

3 It might be either intended or not by the designer of this database that the same
publication is labelled both as a book and as a paper. Of course, this WDB can
also be redesigned by replacing book and paper with publication and by adding
elements type:"book" to b and type:"paper" to p thereby distinguishing b and p.



hypersets (see also [3, 4]). That is, possible redundancies and order in set equa-
tions should be ignored (or eliminated). In this sense the hyperset approach is
a kind of graph approach where graph nodes are considered up to bisimulation.
Anyway, the main style of thought implied here is rather a set theoretical one,
particularly in writing queries to such databases. The corresponding set theoretic
query language ∆ will be briefly described, which was recently implemented [15]
and now is fully functioning at least as a demo query system available online [7].

On the other hand, pure graph approach to SSDB such as [2] assumes that
different graph nodes are considered as different “objects” or “object identities”.
Also in XML the predefined order of data is considered as essential (see e.g. [5] on
querying XML and tree data). In the literature we find only one approach via the
query language UnQL [6] which is most close to the hyperset one where queries
to graph databases are also required to be bisimulation invariant. However, it
is argued in [18], where UnQL is imitated by our query language ∆, that the
former is still more graph rather than set theoretic approach because the graphs
considered in UnQL have so called input and output nodes (which made the
embedding of UnQL into ∆ rather complicated and not very natural as these
multiple inputs and outputs conflict with the hyperset view). Anyway, ∆ has
quite sufficient expressive power for this imitation. Also the mere bisimulation
invariance used both in UnQL and ∆ is only a half-story. An essential theoretical
advantage of pure set theoretic query language ∆ and its versions consists in
precise characterisation of their expressive power in terms of PTIME [14, 17]
and (N/D)LOGSPACE [11, 13].

As the bisimulation relation is crucial to this approach, and because its com-
putation is in general sufficiently complicated, especially in the case of a dis-
tributed WDB, it is therefore highly important to find a practical way of dealing
with bisimulation, particularly in the extremal distributed case. We suggest to
compute the (global) bisimulation relation by using its local approximations
computed locally. The computation of the global bisimulation is being done in
background time by means of the so called centralised bisimulation engine, which
requests local approximations of the bisimulation relation to compute the global
bisimulation relation. This work to support computation of the bisimulation re-
lation may be a permanent process as the (global) WDB can be locally updated
and this should be repeatedly taken into account. Meanwhile, if a user runs a
query q involving the set theoretic equality x = y, the query system asks the cen-
tralised bisimulation engine whether it already knows the answer to the question
“x=y?”. If not, the query system tries to compute it itself. But as soon as the
engine will get the answer, it will send it to the query system which probably has
not computed it yet. In this way, query evaluation involving equality becomes
more realistic in the distributed case.

Note that there are known some approaches to efficient computing bisimu-
lation relation such as [8–10] which should also be taken into account, although
they do not consider the distributed case as we do. Of course, the distributed
feature is not an innate one or belonging exclusively to the hyperset approach.
But being a natural and in a sense an extreme possibility in general this makes



bisimulation relation—a really inherent to this approach—particularly challeng-
ing implementation task. We intend to show (and this paper and experiments in
[15] are only a first step) that potentially even in this distributed case hyperset
approach could be sufficiently realistic.

2 Hyperset Query Language ∆

The abstract syntax of the hyperset query language ∆ is as follows:

〈∆-term〉 ::= 〈set variable or constant〉 ∅ {l1 : a1, . . . , ln, an}
⋃
a TC(a)

{l : t(x, l) | l : x ∈ a & ϕ(x, l)} Rec p.{l : x ∈ a | ϕ(x, l, p)} Dec(a, b)
〈∆-formula〉 ::= a = b l1 = l2 l1 < l2 l1 R l2 l : a ∈ b ϕ & ψ ϕ ∨ ψ ¬ϕ

∀l : x ∈ a.ϕ(x, l) ∃l : x ∈ a.ϕ(x, l)

Here we denote: a, b, . . . as (set valued) ∆-terms; x, y, z, . . . as set variables; l, li
as label values or variables (depending on the context); l : t(x, l) is any l-labelled
∆-term t possibly involving the label variable l and the set variable x; and ϕ,ψ
as (boolean valued) ∆-formulas. Note that labels li participating in the ∆-term
{l1 :a1, . . . , ln :an} need not be unique, that is, multiple occurrences of labels are
allowed. This means that we consider arbitrary sets of labelled elements rather
than records or tuples of a relational table where li serve as names of fields
(columns). Label and set variables l, x, p of quantifiers, collect, and recursion
constructs (see the descriptions below) should not appear free in the bounding
term a (denoting a finite set). Otherwise, these operators may become actually
unbounded and thus, in general, non-computable in finite time.

More details on the meaning of the above constructs and on the implemented
version of ∆ can be found e.g. in [18, 16, 15, 7]. Many constructs of ∆ should be
quite evident. Here we only mention briefly that

–
⋃

means union of a set of sets,
– TC means transitive closure of a set (elements, elements of elements, etc.),
– the collection operator {l : t(x, l) | l : x ∈ a & ϕ(x, l)} denotes the set of all

labelled elements l : t(x, l) such that l : x ∈ a & ϕ(x, l) holds,
– the recursion operator Rec p.{l : x ∈ a | ϕ(x, l, p)} defines iteratively a set π

satisfying the identity π = π ∪ {l : x ∈ a | ϕ(x, l, π)},
– the decoration operator Dec(g, v) denotes a unique hyperset corresponding

to the vertex v of a graph g. Here g is any set of labelled ordered pairs
l : {fst : x, snd : y} understood as graph edges x l→ y, and v is one of
these x, y participating in such pairs. Note that x, y, v are considered here
as arbitrary hypersets. Dec can also be naturally called plan performance
operator. Given a graphical plan consisting of g and v, it constructs a unique
hyperset Dec(g, v) according to this plan.

– < and R denote alphabetic ordering on labels and, respectively, substring
relation.



2.1 Rough Description of the Operational Semantics of ∆ [18]

Operational semantics of ∆ is required to implement this language. The working
query system is described in detail in [16, 15, 7] where examples of queries can
be found and, in fact, run on the implementation available online.

Consider any set or boolean query q in ∆ which involves no free variables
and whose participating set names (constants) are taken from the given WDB
system of set equations. Resolving q consists in the following two macro steps:

– Extending this system by the new equation res = q with res a fresh (i.e.
unused in WDB) set or boolean name, and

– Simplifying the extended system WDB0 = WDB + (res = q) by some
(quite natural) reduction steps WDB0 � WDB1 � . . .� WDBres until it will
contain only flat bracket expressions as the right-hand sides of the equations
or the truth values true or false (if the left-hand side is boolean name).

After simplification is complete, these set equations will contain no complex
set or boolean queries (like q above). In fact, the resulting version WDBres of
WDB will consist (alongside the old equations of the original WDB) of new set
equations (new, possibly auxiliary set names equated to flat bracket expressions)
and boolean equations (boolean names equated to boolean values, true or false).
We cannot go here into further details, except saying that in the case of a set
query q the simplified version res = {. . .} of the equation res = q will give
the resulting value for q. We only will consider below the case of equality query
x = y (with the value true or false) in terms of the bisimulation relation x ≈ y.

3 Bisimulation

Assume WDB is represented as a system of set equations x̄ = b̄(x̄) where x̄
is a list of set names x1, . . . , xk and b̄(x̄) is the corresponding list of bracket
expressions (for simplicity, “flat” ones). The set of all set names x1, . . . , xk of
the given WDB is also denoted as SNames. Visually equivalent representation
can be done in the form of labelled directed graph, where labelled edges xi

label−→ xj

correspond to the set memberships label :xj ∈ xi meaning that the equation for
xi has the form xi = {. . . , label : xj , . . .}. In this case we also call xj a child
of xi. Note that this particular, concrete usage of the membership symbol ∈ as
relation between set names or graph nodes is non-traditional but very close to
the traditional set theoretic membership relation between abstract (hyper)sets,
hence we decided not to introduce a new kind of membership symbol here. For
the simplicity of our description below labels are ignored as they would not affect
essentially the nature of our considerations.

3.1 Hyperset equality and the problem of efficiency

One of the key points of our approach is the interpretation of WDB-graph nodes
as set names x1, . . . , xk where different nodes xi and xj can, in principle, denote



the same (hyper)set, xi = xj . This particular notion of equality between nodes is
defined by the bisimulation relation denoted also as xi ≈ xj (to emphasise that
set names can be syntactically different, but denote the same set) which can be
computed by the appropriate recursive comparison of child nodes or set names.
Thus, in outline, to check bisimulation of two nodes we need to check bisim-
ulation between some children, grandchildren, and so on, of the given nodes,
i.e. many nodes could be involved. If the WDB is distributed amongst many
WDB files and remote sites then downloading the relevant WDB files might
be necessary in this process and will take significant time. (There is also the
analogous problem with the related transitive closure operator TC whose effi-
cient implementation in the distributed case can require similar considerations.)
So, in practice the equality relation for hypersets seems intractable, although
theoretically it takes polynomial time with respect to the size of WDB. Never-
theless, we consider that the hyperset approach to WDB based on bisimulation
relation is worth implementing because it suggests a very clear and mathemat-
ically well-understood view on semi-structured data and the querying of such
data. Thus, the crucial question is whether the problem of bisimulation can be
resolved in any reasonable and practical way. One approach related with the pos-
sibly distributed nature of WDB and showing that the situation is manageable
in principle is outlined below.

3.2 Computing bisimulation relation ≈ over WDB

Bisimulation relation can be computed (and thereby defined) by deriving nega-
tive (6≈) bisimulation facts by means of the following recursive rule:

x 6≈ y : − ∃x′ ∈ x∀y′ ∈ y(x′ 6≈ y′) ∨ ∃y′ ∈ y∀x′ ∈ x(x′ 6≈ y′) (1)

where initial negative facts can be obtained by the partial case of this tule:

x 6≈ y : − (x = ∅ & y 6= ∅) ∨ (y = ∅ & x 6= ∅).

This means that any set described as empty one is nonbisimilar to any set
described as non-empty in the WDB. The evident dual rule to (1) can also
be used for deriving positive bisimulation facts. However in principle this is
unnecessary as such facts will be obtained, anyway, at the moment of stabilisation
in the derivation process by using only (1) as there are only finitely many of WDB
set names in SNames.

Equivalently, 6≈ is the least relation satisfying (1), and its positive version ≈
is the largest relation satisfying

x ≈ y ⇒ ∀x′ ∈ x∃y′ ∈ y(x′ ≈ y′) & ∀y′ ∈ y∃x′ ∈ x(x′ ≈ y′). (2)

It is well-known known that bisimulation ≈ is an equivalence relation which is
completely coherent with hyperset theory as it is fully described in [3, 4] for the
pure case, and this fact extends easily to the labelled case. It is by this reason
that the bisimulation relation ≈ between set names can be considered as an
equality relation = between corresponding abstract hypersets.



3.3 Local Approximations of ≈

Now, let a non-empty set L ⊆ SNames of “local” vertices (set names) in a graph
WDB (a system of set equations) be given, where SNames is the set of all WDB
vertices (set names). Let us also denote by L′ ⊇ L the set of all “almost local”
set names participating in the set equations for each set name in L both at
left and right-hand sides. Considering the graph as a WDB distributed among
many sites, L plays the role of (local) set names defined by set equations in some
(local) WDB files of one of these sites. Then L′\L consists of non-local set names
which, however, participate in the local WDB files, have defining equations in
other (possibly remote) sites of the given WDB. Non-local (full) set names can
be recognised by their URLs as different from the URL of the given site.

We will consider derivation rules of the form xRy : − . . . R . . . for two more
relations ≈L

− and ≈L
+ over SNames:

≈L
− ⊆ ≈ ⊆ ≈L

+ or, rather, their negations 6≈L
+ ⊆ 6≈ ⊆ 6≈L

− (3)

defined formally on the whole WDB graph (however, we will be mainly interested
in the behaviour of ≈L

− and ≈L
+ on L). We will usually omit the superscript L

as we currently deal mainly with one L, so no ambiguity can arise.

3.4 Defining the Local Upper Approximation ≈L
+ of ≈

Let us define the relation 6≈+ ⊆ SNames2 by derivation rule

x 6≈+ y : − x, y ∈ L & [∃x′ ∈ x∀y′ ∈ y(x′ 6≈+ y′) ∨ . . .]. (4)

Here and below “. . .” represents the evident symmetrical disjunct (or conjunct).
Thus the premise (i.e. the right-hand side) of (4) is a restriction of that of (1).
It follows by induction on the length of derivation of the 6≈+-facts that,

6≈+ ⊆ 6≈, ≈ ⊆ ≈+, (5)
x 6≈+ y ⇒ x, y ∈ L, (6)

Let us also consider another, “more local” version of the rule (4):

x 6≈+ y : − x, y ∈ L & [∃x′ ∈ x∀y′ ∈ y(x′, y′ ∈ L & x′ 6≈+ y′) ∨ . . .]. (7)

It defines the same relation 6≈+ because in both cases (6) holds implying that the
right-hand side of (7) is equivalent to the right-hand side of (4). The advantage
of (4) is its formal simplicity whereas that of (7) is its “local” computational
meaning. From the point of view of distributed WDB with L one of its local
sets of vertices/set names (corresponding to one of the sites of the distributed
WDB), we can derive x 6≈+ y for local x, y via (7) by looking at the content of
local WDB files only. Indeed, participating URLs (full set names) x′ ∈ x and
y′ ∈ y, although likely non-local names (∈ L′ \ L), occur in the locally stored
WDB files with local URLs x and y ∈ L. However, despite the possibility that
x′ and y′ can be in general non-local, we will need to use in (7) the facts of the
kind x′ 6≈+ y′ derived on the previous steps for local x′, y′ ∈ L only. Therefore,



Note 1 (Local computability of x 6≈+ y). For deriving the facts x 6≈+ y for
x, y ∈ L by means of the rule (4) or (7) we will need to use the previously
derived facts x′ 6≈+ y′ for set names x′, y′ from L only, and additionally we will
need to use set names from a wider set L′ (available, in fact, also locally)4. In
this sense, the derivation of all facts x 6≈+ y for x, y ∈ L can be done locally and
does not require downloading of any external WDB files. (In particular, facts of
the form x 6≈+ y or x ≈+ y for set names x or y in L′ \ L present no interest in
such derivations.)

The upper approximation ≈+ (on the whole WDB graph) can be equivalently
characterised as the largest relation satisfying any of the following (equivalent)
implications for all graph vertices x, y:

x ≈+ y ⇒ x 6∈ L ∨ y 6∈ L ∨ [∀x′ ∈ x∃y′ ∈ y(x′ ≈+ y′) & . . .]
x ≈+ y & x, y ∈ L⇒ [∀x′ ∈ x∃y′ ∈ y(x′ ≈+ y′) & . . .] (8)

It is easy to show that the set of relations R ⊆ SNames2 satisfying (8) (in place
of ≈+) (i) contains the identity relation =, (ii) is closed under unions (thus
the largest ≈+ does exist), and (iii) is closed under taking inverse. Evidently,
any ordinary (global) bisimulation relation R ⊆ SNames2 (that is, a relation
satisfying (2)) satisfies (8) as well. For any R ⊆ L2 the converse also holds: if
R satisfies (8) then it is actually a global bisimulation relation (and R ⊆ ≈). It
is also easy to check that (iv) relations R ⊆ L2 satisfying (8) are closed under
compositions. It follows from (i) and (iii) that ≈+ is reflexive and symmetric.
Over L, the relation ≈+ (that is the restriction ≈+� L) is also transitive due to
(iv). Therefore, ≈+ is an equivalence relation on L. (In general, ≈+ cannot be
an equivalence relation on the whole graph due to (6) if L 6= SNames.) Moreover,
any x 6∈ L is ≈+ to all vertices (including itself).

3.5 Defining the local lower approximation ≈L
− of ≈

Consider the derivation rule for the relation 6≈− ⊆ SNames2:

x 6≈− y : − [(x 6∈ L ∨ y 6∈ L) & x 6= y] ∨
[∃x′ ∈ x∀y′ ∈ y(x′ 6≈− y′) ∨ . . .] (9)

which can also be equivalently replaced by two rules:

x 6≈− y : − (x 6∈ L ∨ y 6∈ L) & x 6= y – “a priori knowledge”, (10)
x 6≈− y : − ∃x′ ∈ x∀y′ ∈ y(x′ 6≈− y′) ∨ . . . .

4 This is the case when y = ∅ but there exists according to (7) an x′ in x which can
be possibly in L′ \ L (or similarly for x = ∅). When y = ∅ then, of course, there are
no suitable witnesses y′ ∈ y for which x′ 6≈+ y′ hold. Therefore, only the existence
of some x′ in x plays a role here.



Thus, in contrast to (4), this is a relaxation or an extension of the rule (1) for 6≈.
It follows that

6≈ ⊆ 6≈− (≈− ⊆ ≈).

It is also evident that

any x 6∈ L is 6≈− to all vertices different from x,

x ≈− y & x 6= y ⇒ (x, y ∈ L).

The latter means that ≈− (which is an equivalence relation on SNames and
hence on L as it is shown below) is non-trivial only on the local set names.
Again, like for 6≈+, we can conclude from the above considerations that,

Note 2 (Local computability of x 6≈− y). We can compute the restriction of
6≈− on L locally: to derive x 6≈− y for x, y ∈ L with x 6= y (taking into account
reflexivity of ≈−) by (9) we need to use only x′, y′ ∈ L′ (by x′ ∈ x and y′ ∈ y) and
already derived facts x′ 6≈− y′ for x′, y′ ∈ L, x 6= y, as well as the facts x′ 6≈− y′
for x′ or y′ ∈ L′ \ L, x′ 6= y′ following from the “a priori knowledge” (10).

The lower approximation ≈− can be equivalently characterised as the largest
relation satisfying

x ≈− y ⇒ (x, y ∈ L ∨ x = y) & (∀x′ ∈ x∃y′ ∈ y(x′ ≈− y′) & . . .).

Evidently, = (substituted for ≈−) satisfies this implication. Relations R satisfy-
ing this implication are also closed under unions and taking inverse and compo-
sitions. It follows that ≈− is reflexive, symmetric and transitive, and therefore
an equivalence relation over the whole WDB graph, and hence on its local part L.

Thus, both approximations ≈L
+ and ≈L

− to ≈ are computable “locally”. Each
of them is defined in a trivial way outside of L, and the computation requires
only knowledge at most on the L′-part of the graph. In fact, only edges from L
to L′ are needed, everything being available locally.

3.6 Using local approximations to aid computation of the global
bisimulation

Now, assume that the set SNames of all set names (nodes) of a WDB is disjointly
divided into a family of local sets Li, for each “local” site i ∈ I with local
approximations ≈Li

+ and ≈Li
− to the global bisimulation relation ≈ computed

locally. Now the problem is how to compute the global bisimulation relation ≈
with the help of many its local approximations ≈Li

+ and ≈Li
− in all sites i ∈ I.

Granularity of sites. However, for simplicity of implementation and testing
the above idea and also because this is reasonable in itself we will redefine the
scope of i to a smaller granularity. Instead of taking i to be a site, consisting of
many WDB files, we will consider that each i itself is a name of a single WDB file



filei. More precisely, i is considered as the URL of any such a file. This will not
change the main idea of implementation of the bisimulation Oracle on the basis
of using local information for each i. That is, we reconsider our understanding
of the term local – from being local to a site to local to a file. Then Li is just
the set of all (full versions of) set names defined in file i (left-hand sides of all
set equations in this file). Evidently, so defined sets Li are disjoint and cover the
class SNames of all (full) set names from the WDB considered.

Then the relations ≈Li
+ and ≈Li

− should be automatically computed and main-
tained as the current local approximations for each WDB file i each time this
file is updated. In principle a suitable tool is necessary for editting (and main-
taining) WDB, which would save a WDB file i and thereby generate and save
the approximation relations ≈Li

+ and ≈Li
− automatically.

In general, we can reasonably use even more levels of locality distributing
the workload between many servers of various levels acting in parallel.

Local approximations giving rise to global bisimulation facts. It evi-
dently follows from (3) that

– each positive local fact of the form x ≈Li
− y gives rise to the fact x ≈ y, and

– each negative local fact of the form x 6≈Li
+ y gives rise to the fact x 6≈ y.

Let ≈Li (without subscripts + or −) denote the set of positive and negative facts
for set names in Li on the global bisimulation relation ≈ obtained by these two
clauses. This set of facts ≈Li is called the local simple approximation set to ≈ for
the file (or site) i. Let the local Oracle LOi just answer “Yes” (“x ≈ y”), “No”

(“x 6≈ y”) or “Unknown” to questions x
?
≈ y for x, y ∈ Li according to ≈Li .

In the case of i considered as a site (rather than a file), LOi can have delays
when answering “Yes” (“x ≈ y”) or “No” (“x 6≈ y”) because LOi should rather
compute ≈Li itself and find out in ≈Li answers to the questions asked which
takes time. But, if i is understood just as a file saved together with all the
necessary information on local approximations at the time of its creation then
LOi can submit the required answer and, additionally, all the other facts it knows
at once (to save time on possible future communications).

Therefore, a centralised Internet server (for the given distributed WDB)
working as the (global) Oracle or Bisimulation Engine, which derives positive
and negative (≈ and 6≈) global bisimulation facts, can do this by a natural al-
gorithm based on the derivation rule (1), additionally asking (when required)
various local Oracles LOi concerning ≈Li . That is, the algorithm based on (1)
and extended to exploit local simple approximations ≈Li should, in the case of

the currently considered question x
?
≈ y with x, y ∈ Li from the same site/WDB

file i5, additionally ask the oracle LOi whether it already knows the answer (as
described in the above two items). If the answer is known, the algorithm should
just use it (as it was in fact derived in a local site). Otherwise (if LOi does not
5 x, y ∈ Li iff the full versions of set names x, y have the same URL i.



know the answer or x, y do not belong to one Li – that is, they are “remote”
one from another), the global Oracle should work according to (1) by down-
loading the necessary set equations, making derivation steps, asking the local
Oracles again, etc. Thus, local approximations serve as auxiliary local Oracles
LOi helping the global Oracle.

4 Bisimulation Engine (the Oracle)

The idea is to have a centralised service providing answers to bisimulation ques-
tion which would improve query performance (for those queries exploiting set
equality). This service could be named Bisimulation Engine or just the Oracle.
The goal of such bisimulation engine would consist in:

– Answering bisimulation queries asked by (any of possible copies6 of)
∆-query system via appropriate protocol.

– Computing bisimulation by deriving bisimulation facts in background
time, and strategically prioritising bisimulation questions posed by the ∆-
query systems by temporary changing the fashion of the background time
work in favour of resolving these particular questions.

– Exploiting local approximations ≈Li
− , ≈Li

+ and ≈Li corresponding to
WDB servers/files i of a lower level of locality to assist in the computation
of bisimulation.

– Maintaining cache of set equations downloaded in the previous steps.
These set equations may later prove to be useful in deriving new bisimulation
facts, saving time on downloading of already known equations.

Moreover, it is reasonable to make the query system adopt its own “lazy” priori-
tisation strategy while working on a query q. This strategy consists of sending
bisimulation subqueries of q to the Oracle but not attempting to resolve them
in the case of the Oracle’s answer “Unknown”. Instead of such attempts, the
query system could try to resolve other subqueries of the given query q until the
resolution of the bisimulation question sent to the Oracle is absolutely necessary.
The hope is that before this moment the bisimulation engine will have already
given a definite answer.

However these useful prioritisation features have not yet been implemented.
Moreover, currently we have only a simplified imitation of bisimulation engine
which resolves all possible bisimulation questions for the given WDB in some
predefined standard order without any prioritisation and answers these questions
in a definite way when it has derived the required information. The Oracle,
while doing its main job in background time, should only remember all the pairs
(client, question) for questions asked by clients and send the definite answer to
the corresponding client when it is ready.

More detailed algorithm of such a Bisimulation Engine and some encourag-
ing experiments and artificial examples of a WDBs for these experiments were
described in detail in [15] which we briefly present below. They show the benefit

6 There could be many users running each their own copy of the ∆-query system.



both of background work of this engine and of using local approximations to the
bisimulation relation on the WDB.

Determining the benefit of background work by the bisimulation engine on query
performance. For 51 set names distributed over 10 WDB files, connected in
chains and an isomorphic copy of the same it was shown that querying x ≈
x′ for the root nodes with a delay d (after the Bisimulation Engine started
working) has performance time with exponential decay depending on d. Without
the Bisimulation Engine execution of x ≈ x′ would take about 20 seconds, but
with using it after 5 seconds of delay it takes about 8 seconds, and after 20
seconds of delay it takes 10 milliseconds. As Bisimulation Engine is assumed to
work permanently, the delay time should not count in the overall performance.

Determining the benefit of exploiting local approximations by the Bisimulation
Engine on query performance. For two isomorphic chains x1 → x2 → . . .→ xn

and x′1 → x′2 → . . .→ x′n the bisimulation x1 ≈ x′1 takes 112 and 84 minutes for
n = 70 with the Bisimulation Engine not exploiting local approximations and,
respectively, without using the Bisimulation Engine at all, and it takes 40 seconds
with using it and local approximations to these two chains. The dependence on
n was also experimentally measured. Here we assume d = 0, so the difference
112− 84 = 34 min is the additional expense of ∼ 702 communications with the
Bisimulation Engine instead of getting benefit from two files with ≈L and ≈L′

.

Determining the benefits of background work by the bisimulation engine exploit-
ing local approximations. For three chain files x → x1 → x2 → . . . → x20,
y1 → y2 → . . . → y20, z1 → z2 → . . . → z20 and two additional external edges
x → y1 and x → z1 + an isomorphic copy of the same checking x ≈ x′ shows
that the execution time sharply falls in from about 17 minutes of pure querying
to 180 milliseconds (and then to 10 ms) for the delay d = 5 seconds.

Of course, these are rather oversimplified experiments. We also did not take into
account other works on efficient computation of bisimulation for non-distributed
case [8–10]. But it is evident that the general qualitative picture should remain
the same. Also more realistic large scaled experiments are required.

Note that the current implementation of the hyperset language ∆ [7] does not
use yet any bisimulation engine. These experiments were implemented separately
and only to demonstrate some potential benefits of using such an engine.

Conclusion

While the hyperset approach to semi-structured databases is very natural theo-
retically and even practically as example queries in [7, 15, 16] show, developing
some efficient way of dealing with hyperset equality (bisimulation) is required.
We have demonstrated one such approach based on local approximations to the
global bisimulation relation and on the idea of background time computation
somewhat similar to that of Web search engines. The experiments presented in
[15] and above show that this idea is promising, however further experiments and



improvements should be done to make this approach more realistic. Another im-
portant topic to be considered is the impact of (possibly) dynamic updates of the
WDB on the whole process, and also whether and under which conditions local
updates can have small consequences. More general, the current implementation
of the query language ∆ [7] already working as a demo version and the language
itself should be further improved/extended to make it more efficient and user
friendly.
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