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ON EQUIVALENCE BETWEEN POLYNOMIAL CONSTRUCTIVITY OF
MARKOV'S PRINCIPLE AND P=NP

V. YwSazonov

Abstract

The theory of polynomial computability, in the ferm of a weak ‘noperponeniial” intEmEOnSLUC
arithmetics of binary words with formal Church’s thesis and Markew's princple, is considered. Unlike
the Heylng arithmetics with these principles, its comstruciivity occurs o be equivalent to P=NP
and the statement of exponential complexity of NP-complete problems is not dervable. In addition
it is demonstrated that even in the popexponential arithmetics ome con develop a partial recursive
function theory along with Kleene's realizability theory. Morzover, here it 5 possible 1o distinguish
between construciive and non-comsimuctive fanite objects.

Kev words ond phraser polynomial computability, provable recursive function, exhaustive sesch
probiem.

This article is a complete and detailed version of [1], which develops [23]. Its main
and basic result can be formulated even in the next seemingly doubtful but correct after
appropriate stipulations form: constructivity of the Markov principle is equivalent to the
equality P = NP . Recall that « P = NP ?» is a known problem of the complexity theory
[4] concerning coincidence of the classes P and NP of predicates which are computable
respectively on deterministic and nondeterministic Turing machines in polynomial time.
(Remark: Tt is assumed that a non-deterministic (and particularly deterministic) Turing
machine computes a predicate Q (r) in polynomial time p(n) if for any input x of the
length n, O(x) is equivalent to the existence of a calculation path of the length p(n) on
which one can obtain the result "Yes".)

Since Markov's principle

M:==3zxe23xa,

for a decidable formula « is known as a legitimate principle of the so called "Russian
constructivism®, it seems that the statement mentioned implies tﬁ solution of the
« P =NP?s problem and, moreover, in an unexpected form of equi . However, we
- shall see that this result, probably, groauds noa-couwsiractivity of the Markov principle in
the case when the potential feasibility abstraction generally accepted in constructive and
also in classic mathematics is declined. As to the P = NP hypothesis, here we only
establish non-provability in a certain weak (in comparison with classical and comstructive
arithmetics) theory of the exponential complexity of NP-complete problems which is close
to this hypothesis (compare with [2, 3]). This is the second basic result of this paper.

If the reader prefers an orderly and formal exposition then he will go directly w0 §2.

Translated from PRIM, 1989, w1 139-145
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§l. PRELIMINARY EXAMINATIONS, MOTIVATIONS AND STATEMENT OF
RESULTS

We will consider the certain constructivity principle laid down only with respect to
some formal theory in the frame of which the principle is formulated. Such theory usually
appears 10 be, at least, the Heyting arithmetics HA containing the complete mathematical
induction scheme (like the classic arithmetics PA) . We will be interested in theories with
a sufficiently weak form of induction so that the realizability of exponential is not provable
in such theories; ie., one cannot derive that a standard Turing machine computing the

exponential 2% stops after a finitely many steps on any input n. So we can add an axiom
that for some natural number n this Turing machine never stops (taking into account the
computational practice and generally accepted negative attitude to exponential complexity,
that i quite appropriate). In other respects these momexrpomerial theories lose not very
much in comparison with some traditional systems like PA or HA and they are suitable
for questions from discrete mathematics. For example, in them one may successfully develop
the Turing machine theory and the partial recursive function theory PRF, prove the universal
PRF theorem, consider the Kleene realizability theory, etc. One of the goals of this paper
is 10 demonstrate the mentioned possibility.

Recently the interest to weak theories, the fragments of Peano arithmetics, etc., has
grown up (see for example [5, 6]). We do not intend here to present a survey or a list
of papers on the topic complete in any sense . We only explain that the approach suggested
here as well as in [1-3, 7-9] is related 1o comprehension of a special role of the notion
and theory of polynomial computability (PC) from the stand of mathematical foundations.

The starting instance here is the following variant PA g of the usual Peano arithmetics

PA. First, let us change the axioms of PA concerning the successor operation so that for
some pnatural oumber 0, O+ 1 =0 holds and this number O will be the last number
in the natural row 0,1,2,...,0~1,0, described by this formal theory. There is no
information on the concrete value of the number O in these axioms. So any finite segment
of the usual "standard” natural numbers (or even a non-standard finite segment) can be a
model of this theory. In particular, one cannot prove here 3 = 5. Second step 15 that we
postulate that all possible recursive (and of course all primitive recursive ) functions in
the finite natural row 0,1,...,0 are iu tie i of equaites 7 =T (f), where Ps  are
the functions defined and Ts are arbitrary terms constructed from s and given operations
0,x+1,=, [F-THEN-ELSE. Third, we postulate , like in PA, the induction scheme, in
which the recursive functions defined can participate. Note that, unlike the usual infinite
natural row arithmetics PA, we had to add the recursive functions explicitly. (One can
introduce functional and predicate parameters into the language PA g, passing to the
more general notion of relatively-recursive functions or, more exactly, recursive operators
and functionals in the finite natural row.)

We may consider the theory obtained, PA 03 35 the pohmomial computability theory,
since in [7,10] it was shown that (relatively) recursive functions in the finite row
0,1,...,0 with the changeable upper bound O are exactly all the functions on this
natural row that are computable on a Turing machine (with respect 1o functional
parameters) in polynomial time of the value O.(In [10] it was also proved that the primitive
recursion (unlike the general recursion meant above) in the finite natural row corresponds



to the computability notion with the logarithmic memory. Mote that Mostowsky seems (o
be the first to consider the primitive recursion in the finite patural row [11]. Analogous
results were obtained in [12-14] in connection with the relational data base theory.)

The essence of this characterization of polynomial computability is that the theory
PA [y, corresponding to it, thanks to the finiteness of the natural row that it describes,

does not use the potential feasibility abstraction (i.e. the abstraction from the resource
bounds existence itself). As a matter of a fact, this well founds the relation of the polynomial
computability 10 the foundations of mathematics (see also [2, 7-9], where analogy of the
Church thesis for polynomial computability is formulated in detail).

One can also examine an analognus variant PA [ of the second-order arithmetics
with quantifiers on functional and predicate variables. (In [2, p.573] similar arithmetics was
described as UBA.) Because of the known result [15] on the Ij-representation of the

class NP2 P in finite ordered models, it is not necessary to consider all recursive functions
in the finite natural row as initial.

Mote that such parametric finiteness of the natural row is not an obstacle for
development on its basis a discrete mathematics and, moreover, even some nonstandard
variant of the infinitesimal analysis. The latter, for emample, is convincingly demonstrated
in [16].

Unlike the usual arithmetics, the first order quantifiers in the finite natural row do
not lead to the effects similar to arithmetical undecidability. So, there is no sense to
consider an intuitionistic variant H4 o of the arithmetics P4 o. Things are not completely

like this with the second order quantifiers which may lead out of the polynomial
computability (i.e, recursively in the finite natural row). By force of mentioned

T |-representation of the class NP, this sentence is equivalent to the hypothesis P = NP,
It is even intuitively clear, that a quantifier over unary predicates on 0,1,...,0 leads

to the exhaustive search of the very large exponential number 2 O+1 o sul:h:pmdit:al.:&.
Thus, it makes sense to pass 10 a constructive variant HAE of the theory PA mso if, for

example, a formula WP3 O (P,Q) is derivable, then the predicate O is recursive
relatively to P and therefore it is computable with respect to P in a polynomial, rather
than exponential time.

Note that constructivity of the appropriate variant of the Markov principle
= =3Pp(P)2>3Pyp(P), where ¢ is a (polynomially decidable) first order formula in
the finite natwural row, is doubtful, because its usual constructive explanation or “realisation”
turns into complete exponential exhaustive search of all predicates P until we find the
predicate needed Sc it fn.mot oo rurprisine that constructivity of such Markov principle
may turn out to be equivalent to P = NP,

By the way, a fundamental question arises here: what should be the order of the
exhaustive search through predicates P to realize such Markov principle? Is there another
reasonable order different from lexicographic one? It turns out that among all the methods
there is a polmomially opimal exhaustive searching method (see 4 and[Z]), and it will
play an essential role in the further comstruction. '

However, this optimal exhaustive searching method is defined in terms of the binary

words {0,1} " having arbitrary length rather than in terms of the finite natural row. Just
the same one can say about the Kleene realizability notion [17, 18] which we intend (0
use in studving the constructivity of the Markov principle and polynomis! computability
theory. S50 we consider these questions in a more traditional way (ft iy different but



essentially similar) based on the (potentiaily) infinite set of binary words. (In the case of
HA q the Godel interpretation [19] of finite functionals of the finite type over finite

natural row or FORMULAE-AS-TYPES [20] technique application should be natural.)
S0, consider the gquantifier-free theory T, of pohmomial compurability over the set

{0,1}" of all finite binary words. More exactly, let T, be the set of (for convenience
all) true quantifier-free formulae constructed of polynomial computable functions PCF and

predicates over the set {0,1} " plus the classic first order logic. By analogy, let T be

(all) true in {0,1}* formulae in this language with bounded guannfiers Wx<r,
dx<t, where < is the (polynomially computable) lexicographic linear order on
{0,11°%

It is clear that such bounded quantifiers play a role of the second order quantifiers
in the finite natural row so far as a restriction of the binary word length being accepted
as a finite predicate, is essential here. If we require a variable r to run over unary words
in {1}, then they will correspond to the first order quantifiers of the arithmetics
PA . It is easy to understand that such unary bounded quantifiers, unlike the bounded
quantifiers Yx <r, and 3x <, over binary words, are expressible in T, by quantifier-free
formulae, since they maintain a polynomial computability.

Finally, denote intuitionistic variant of the theory T, by HT, (ie, HT,=
non-logical axioms of T, + intuitionistic logic). Note that only non-logical axioms of the
theories T, and HT, are quantifier-free formulae. Unbounded quantifiers usage over the

whole infinite universe of binary words is allowed in proofs and formulations.

As we shall see later on, it is possible to define the notion of a partial recursive
function PRF and the Kleene notation {e} (x) for the result of application of the algorithm
¢ 1o the binary word x in these theories. Note that here the exponential is a PRF and
its totality is not provable in T. Moreover, in HT ,, T, and T the class of provable
recursive funcrions (ie. such fufg&m that can be proved to be total) is exactly the elass of
funcrions compurable in polmomial rime.

The Kleene-Church Thesis ECT (ECT,) is, as usual, the axiom scheme

Yr(wE)23yp(x,y) 2 3eVr(plx) D! {e} () Ap(x, (e} (X)),

where (1o aveid & cooadiciion) b omaccidves v and 3 in ¢ apply only w0
quantifier-free subformulae (in the case ECT, quantifiers 3 in ¢ are of the form

Ive {1} * ).
Define now rwo variants of the Markov principle

M:==3xa(x)23xa(x),
Myi==3xe{1} a3z {l} "a(x,

where @ is an arbitrary quantifier-free formula.
A formal theory is said 1o be comstrucnive if for an arbitrary sentence of the kind

VI(xE) 2 3yex,y))

where x is a U-Harrop formula (see the beginning of Section 3) its derivability implies
that of the sentence
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VI(E) DHE AeE )
for some partial recursive term £ (z). The theory is said to be 3-constructive if the previous
is valid without ¥ or when y = TRUE. If, moreover, ¢ (r) is the PCF; then the theory is
said to be J-constructive.

Now we can formulate the basic results of the article:

|. The theories HT,,HT,+ M, HT,+ ECT,, HT,+ ECT, + M, are construcrive
and, moreover, polynomially Jconsrucrive (see 7.4(b) and 6.5(b]).

2 The theory HT,+ECT,+M(= HT,+ECT+M,=HT,+ECT+M) &

Sy-consirucrive if and only if P =NP. The same is mue also for the theory
HT ,+ ECT (see 6.7).

i The theory HT,+ECT+M is a conservative exension of T, and HT, with
respect to Tl-sentences. In particular, the class of all its provable-recursive functions is exacily
PCE, and realizability of exponential is not provable in i (see 6.7) ).

4 HT,+ ECT+ 3eSA(e), where SA(e)= «¢ ir r determinisric algorithm for
searching a satisfying tuple for satisfable propositional formuiae » (see 2.1{a))

5. In particular by the sentences 3 and 4 it follows thar all nommonotonic superpolynomial
upper bounds for a search fime of such search algorithms (see 6.8) are not provable in the
theory HT ,+ ECT + M (and alse in T, [2]).

6. The following theories are comstrucrive:

HT,+ 5A(e), HT ,+SA(e)+M=HT +SA () + M,
HT,+ 5A(e) + ECT = HT , + SA (&) + ECT,
HT ,+ SA (¢) + ECT + M,

where ¢ is @ new constant which denotes some certain (unknown) search algorithm (se¢ 7.4
(a) and 65 (a)). However after replacing SA(e) by 3eSA(e) in all these theories,
constructivity of each of them is equivalent 1o P = NP(see (3.2)).

7. The theory HT, + M is pohmomially 3-constructive (se¢ 7.6).

8. Constructivity (without « w1 ) of the theory HT y+ M &5 equivalent (o the equality
P = NP (se¢ 7.5).

Thus, we see that only "unary” variants ECT, and M, of the Church thesis and
vz Markov orincinls can be considered as constructive (and even polynomially
J-constructive) in our framework without any reserve. To prove constructivity of ECT
and M, the statement P = NP which appears to be equivalent to constructivity of ECT
and M, or the hypothetical search algorithm (compare with the notes in the end of §13),
or the exponential feasibility axiom, which obviously guarantees existence of such search
algorithm, is to be involved

Subjectively ECT,, differs from ECT by a rather technical but imporiant refinement,
and it is difficult 1o connect a certain concrete senseé with it right away. The role of this
refinement one can make more precise in the process of the prool The difference berween
M, and M from our point of view is rather principal and intuitively justified: in the first
case we mean the unary words exhaustive search and in the second - the binmary words
exhaustive search (in some order that is not specified in the Markov principle ).

In the proof of most results mentioned, the usual Kleene realizability notion adapted
to nonexponential theories is essential. To make all the springs visible we have 10 give an
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account of the well-known theory (following, basically, [17, 18]).There are too many items
o refer, 50 we restrict ourselves to a general reference. It is connected with a number of
details that are lumped together by the traditional view of the exponential as a feasible
arithmetic operation. For example, one can speak strictly enough about such notions as
long, short, constructive, and non-construcrive binary words, though these notions seem to
be non-formalizable. (See §4 and §1 of Appendix about connections with the Kolmogorov
complexity. ) .

Note that not in every nonexponential theory (based on HT, or T,) the result on
non provability of the lower exponential bound for the time of work of a search algorithm
(like in the p.3) can be obtained (compare with [21]), though nonexponentiality plays an
essential role here (sce also a discussion on independency for « P = NP 7?s. [2]). The
cxamples are T (see correction to [2] in [3, p.490]), T,+ A=Coll (see 2.3, 2.4 an 4.7
and also [2]), HT, + ECT + M + bounded induction (see § of Appendix). Finally =
a—sipgle Of the theories considered M&e‘pm the more strong result on non
provability of the lower exponential bound for deterministic algorithms that recognize
certain NP-complete set.

Thus, for weak non-exponential theories proving independency of problems, which
are close to «P=NP?w», becomes a slightly easier task, and "slightly" means that the
concrete sense remains actually the same in the context of the theories involved.

However, it may seem that if, nevertheless, these problems are resolvable (in ZF 7
then, by limiting mathematics 1o its non-exponential scope, one misses the goal, since
resolvability may be lost. But reasoning in such a way against the limitation of the traditional
mathematics, one may finally postulate (ad hoc) as strong principles as possible; for example
large cardinals axiom, the continuum hypothesis ( or, may be, its negation?); determinacy
axiom, etc. Most probably, in the case considered these axioms, as well as the exponential
feasibility axiom, do not concern the matter. So we prefer not to introduce them withou
special need. Note that the limitation of the theory leads to an extension of the class of
its interpretations and that of the notions that are comprehensible within it

We see now that the non-exponential approach proposed here is based on reconsidering
such basic mathematic notions as natural numbers and binary words. It also can be
characterized as a look at the complexity theory through the prism given by foundations
of mathematics. In connection with this the following analogy between the «P = NP 7
problem and the continuum hypothesis seems 0 be useful: in the former case binary words
and bouwnded quantifiers over them are considered, and in the latter- infinite binary words,
and it appears that in both cases the notion of the constructive binary word plays an
important role. As also for the continuum of infinite binary words we can, for example,
pose the following non-formal questions: To what extent the practically infinite set of
binary words, which have the length equal, say, to one thousand, is definite? Can we mean
its arbitrary element to be the result of a random coin toss? How to formulate this
mathematically? Recall that the solution of the continuum problem given by K.Godel and
P.Cohen consists in the search for reasonable answers to such questions in the infinite
case. This comprehension of complexity of the finite objects structure in the terms of
foundations of mathematics (not just in those of the algorithm theory) could probably
result in a solution of the «P=NP?» problem (as well as other complexity theory
problems).
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§2. POLYNOMIAL COMPLEXITY THEORY AND PARTIAL RECURSIVE FUNCTIONS

Denote the set of all binary words by {0,1} " Unary words {1} " & {0,1 1 are
identified with natural numbers. Let p,.p,,... be all functions and predicates over

{0,1}" which are computable {on a deterministic Turing maching) in the polynomial
time of length of an argument. List some of them:

r=y the equality of binary words;

@ - the empty word (0-ary function);

o, (), o,(x) - operations, adjoining 0 and 1 t0 the word;

Un(x) = «x is a unary word =

l#], J£]* - the length and the length squared of the word x  (thus, we have
Un(|z|) and Un(lz] %)

my (or @ + y-concatenation);

x| the word x repeated |y| times,

', x =y the ledcographic successor function and order (P<0<1<00<01 <
<10=11=<...),

B (i) = B; = i-th binary word in the lexicographic ordering,

{"the result of replacing of each occurrence of the symbol 4 € {0,1} in the word
x for &4,

<X, V> :'-;m}r and «f,j» = B"(r:H,—,B];}j - the binary and unary coding of
pairs of binary and unary words respectively (having polynomially computable projections},

exp (z,y)- the predicate 27l < |y],

x[y] - the statement about truth of the “propositional formula® {coded by the word)
x on the "argument® y, ’

H(e,m) - "the algorithm, more exacily, the iniial Tunng machine ¢ stops after
= |n| steps" (here we consider ¢ as a pair e = <u,v >, where u is a binary code of
the usual Turing machine and v is a binary word wrillen on its tape),

M (e ,n) - the result of the algorithm e (i, contents of the output tape) at |n|-th
step (we mean that a certain binary word in the alphabet {0,1} to be written on the
output tape of the Turing machine at any step),

gex - an algorithm ¢ along with additional initial information x ({ formally, for
e=<u,v> wepul <u,v>er= <U, SV I>> X

Note that any PCF f(x) is termally expressible only over operations &, @,

o, |- |* M and = more exactly, as f(x) =M (e*x, lz|* + ¢}, where terms ¢ and ¢ are
constructed from @, o, and o, ; k-th degree |x|* - from x and |- |? (for k of the
kind 2™).

Let P be a model <{0,1}%; p,.Pys-.. > of the signature p,,p,,... and Ty
be the set of all quantifier-free formulae of this signature true in P. Analogously let To

be the set of allformulae true in P (possibly, with free variables) with bounded quantifiers
Wre<t, 3r<r, where a (signature) term ¢ does not contain the variable x.

Of course, instead of (classical) theories T, and T, it would be more natral to
consider some of their subtheories defined by a finite set 2f wxiom schemes with a finite
number of symbols for polynomially computable funct.ors and predicates p . But 1o the

rest of the presentation it bears no serious importance. Denote by HT, an intuitionistic
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variant of the theory T, i.e. non logical axioms of Ty noted above + the intuitionistic
logic (with equality). Unlike the intuitionistic aruthmetics HA, the theory HT , does not
contain {explicitly) a (lexicographic) induction adiom

p@) AV <y(p)2px)NSel).

Here we are interested only in rather weak versions of the induction a:i-.::m, more exactly,
in the quantifier-free induction (p has no quantifiers) and the bounded inducrnion I:y? has
only bounded quantifiers ¥x < ¢, 3x <, wherex does not occurs in the term r.) Obviously,
the bounded induction is simply contained in the theory T as an axiom scheme.

By analogy, the following is true for HT ;

Proposition 2.1 (cf. [Z 3, p.450]).

(a) The quantifier-free lexicographical induction is provable in HT .

(b) The quantifier-free and lexicographical induction schemata are equivalent in an
appropriate finite fragment of the theory HT, to quantifer-free and bounded linear inducrion
anoms:

e (@) A¥x(p () 2p(le, @D)2 Ve (lx]),
where the formula ¢ s quantifier-free or bounded respecrively.
Proof. (a) Using polynomial computability of the predicate  (x), one can compute

in a polynomial time by the dichotomy method a certain value x =f(y) <y such that the
following formula

[¢ (@) A=) 20 () A =e{fY) )] A L) <]

is true in the model P. ‘

The induction axiom on the formula ¢ follows from this and the next quantifier-fres
formulae = =@ (¥) D ¢ (v), which are axioms of the theory HT ,

See the proof of (b) in & p.2

We point out another (equivalent) variant of the linear induction:

P@)AVI(pE)Dp ) Apx1)) D Ve (x).

Unsolved questions. 1. Js the bounded induction provable in T, 7 Note that
the negative answer (which seems o0 be more likely) would imply P = NP.

2 Is the ledcographically least word principle for quantifier-free ¢

pE)2Iysxp) AVI<y-p)
provable in Ty ?
The answer also seems to be negative. .

Finally note that the class of quantifier-free formulae ¢'s is closed with respect 10
bounded unary quantifiers. We mean that, for example, a formula of the kind
3x <t (Unfx) A (x)), where p is quantifier-free, is equivalent in HT, 1o the
quantifier-free formula g (ux = ¢ (Uniz) A p (1)), where px =(Un(x) Ag(x)) denotes
PCF. The latter yields the least unary word which sausfies x =t A ¢ (z), if this word exists,
and the maximal unary x < otherwise. )

The following two propositions demonstrate adequacy of the theories T, and T with
respect to polynomial computability.
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Proposition 2.2, If T,» Jye @.y) for a quanufier-free Jumula ¢ then HT,+
r ¢ (@,0(@) for some signamure (and, hence, polynomially computable) term t. Particularly
the same I -formulae (Tlgsentences) are provabie in the theories T, and HT, and also
provable thar roral PRF are exactly PCF.

‘ - -
Proof By the Herbrand Theorem we have T,» WV @(¥,f;(%)), and it implies that
=]

T, v (@,1 (@) is valid for some terms ¢,,..., 4, f Since the “tertium non datur® principle
is provable in T, for quantifier-free formulae, the last proof may be transformed into an
intuitionistic one. (An even simpler way of proof is as follows: since a quantifier-free
formula ¢ (¥, #T)) is true in P, it is actually an axiom of HT, ).
Propesition 23 [2, p.573). If a formula 3y (¥,y) s provable in the theory T,
possibly using the principle
A-Coll: ¥x<a3ypD3bVr<ady<by,

where ¢ and y do contain only bounded quantfiers, then for some signature term t the
formula 3y <1 Tip(X.y) is provable in T (without A—Coll).

Proo; ior general case is worked out in [ZA].

An analogous result, but without A—Coll, was obtained in [25]. )

Denote the sentence Wx 3yexp ((r,y) expressing feasibility of exponential by E}:.P-
Mote that in HT , EXP is equivalent to the sentence about standard binary words coding
by unary words feasibility: ¥x 3i € Un (r=B8,). Because of following Corollary 2.4 of

Proposition 2.4, both are unfeasible in these theories (compare with 4.7).
Corollary 2.4. The statements EXP and Wx3i(x = B;) are not provable in the theory

T + A=Coll.

This corollary does in mo way witness the defectivity of the theories T, and T,
though one could have made such a conclusion, taking into account that not all the "truths’,
like EXP, are provable in these theories. First, it is far from being clear what the
mathematical "truths® are. Second, the statement EXP seems to be "false”, rather than
otherwise. However, we are not going to postulate = EXP as a new axiom.

By virtue of Corollary 2.4, it is natural to name “shorr” the binary words r of the
kind B, ie., such words that 3yexp (x,y), (“shor” in the frame of the theory T, or
HT,, T, etc but not in the model P, where EXP is true, and hence, ¥x3i(x =B )).
And also it is consistent to suppose that these are not all the possible words. If the words
x and y are short; then their concatenation x¥ is obviously a short word , but |x| * may
happen to be not short. :

It is reasonable to name small or feasible the natural numbers having a short unary
representation. (The first mathematically riporous and sufficiently satisfactory formalization
of the feasible natural number notion was proposed in [23)) In the theory HT, the
statement, that the value of a signature term without variables is a short word, is provable.
One can verify this for T, by considering, e.g., an arbitrary and, generally speaking, "non
standard® model of the theory T, because in it the "standard® words and numbers, which
are values of such terms, are necessarily short. The completeness theorem for the predicate
logic then provides the required result.

While speaking about standard and nonstandard natural numbers, we us¢ inverted
commas “wce these notions do have an exact sense only with respect 10 a certain im=2 ‘nary
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universe of sets, from which modéls nfhlhc Peano arithmetics and other formal theories
are taken. The Godel theorem on subicent incompleteness of arithmetic adoms and other
known results in the foundations of mathematics and set theory along with considerations
of the non-exponential and even finite natural row lead to the more consequential point
of view that any natural row is nonstandard.

Unluckily, our formal definition ¢f short binary words (as also the one used in [23],)
does not fully reflect the intvitive content of this notion. Thus, the constant signature

numeric term (... {2%°%...) %, obtained, e.g., by tenfold repetition of squaring, defines the

actually unfeasible number 12” which we should, nevertheless, accept as feasible in the
sense of our formal definition.

Strictly speaking, we should construct only proofs of feasible length in the theories
considered. Of course, this would require a total revision of the exposition. Anyway, the
reference to the completeness theorem for predicate logic made above appears 1o be
incorrect in this case

All these informal considerations are adduced here because they correspond to the
essence of this paper. However, for simplicity and because of technical reasons in the basic
text, we keep to traditions in syntax and semantics.

Note that in spite of nonexponentiality, the natural row considered (consisting of
unary words) contains an exponential as a computable partial function defined (or = =)
only for feasible (small) numeric values of argument; but it may assume, in general, also
unfeasible (large) values. Strictly speaking, in mathematics and its applications tolity of
the exponential is not so important as equations it satisfies; mathematical apparatus, in
which it, somehow, participate, etc.

In this article we will see how unfeasibility of the exponential influences the first
clements of recursive function theory and the Kleene realizability theory.

We introduce the following abbreviations:

({e} =y)= 3In(M(e,n)=yAH(e,n)),
"{el} = InHie,n) (= Iy ({e} =), {e} (£} = {eox}, {e} T)= {e=I},
where e™(x,,....x. )= (... ((esx)sx)e...ox,), k= 1.
Obviously, -
'.'.I.','l-'}llui:.'l.'“...,.lk}'-l!'I:H,'::F,I“...,Ik}},

where <x,,.... X, > = < <x,,..., 0, _, > x1,>, k=3,4,....
We give a usual inductive definition of the notion of a partial recursive term (PRT):
1) variables are PRTs;
2) if f is a signature k-ary k=0 function, and ¢,5,,...,5, are PRT; then
f(5ys00,8) and {r}(s,,...,5,) are PRTs.
For every PRT r, the formula (r =z), where z is the variable non occurring in r,
is defined inductively as usual: .
(@ =2)=3uP(t=uAT=PA W} (M=2), (@ =2=3IVF=VAf()=2z).
We define
Y't=3z(1=12), (t=s5)=3(i=zArs5=12),

PEY=TFFT=FAp™)., (f=s)=Vi(i=sz=s=1I).



The first three of these are equivalent to I -formulae in HT,

Proposition 2.5. Given any PRT 1 and (possibly empry) list of variabies x5 one can
effectively construet a signanure term AX .1 that does not contain (free) the variables ¥'s and
such thar HT ;= {AX.1} E) =1,

Mote that the term AT.¢ is a signature term, ie., a PCF of its free variables and
not only primitive recursive as it is usually stated (compare, for example, 10 the Proposition
53 in [17]).

Proposition 2.5 is based on existence of a universal algorithm u , (concrete for any
k=0,1,2,...), for which the following is true:

Proposition 2.6. HT ,» {u} (e, T) = e} (@), T=x,,.... 3

One may take (1o within a little detail) a usual universal Turing machine as u, and
here we have 1o establish a polynomial estimation 5 for the time of modelling, that is,
to convince us that the following is true in P.

Proposition 1.7.

HiewTom) D (Hugs (€0 sp (e, T,m) AM (eeE,m) = M(ge (.0, sx(e.3m)). O

Proposition 2.8. H(ug%(e,¥),n) D H(e+X,n). m]

In a general case Proposition 2.5 may be proved by induction on the complexity of
a term t For example, an algorithm A¥.{r}(ry) 1s constructed from the algorithms
AT.t,, AT.r, and the universal algorithm u ,.

We may (re)define the algorithm AY.7 50 that it would satisfy Proposition 2.5 and
be short with respect to free binary arguments of the term AT .f. It means that if 7,§ form
the list of all variables of the term r, which are not in %, then for some r(T) the following
is valid (in F:) ‘

Condition 29. Un() DAX.t =B ,p+¥.

Indeed, {AT.1} (F) = {AFE,r} (F.%) = {(AFT,f)*F} () and since AFX.r isa PCF
that depends only on unary arguments T, one can use the next proposition (where
p@=Ayr.r and I=FI).

Proposition 2.10. For any PCF p(T) of a unary argument i and for k=0,1,
2 .... there are PCF r(i) and 5,(i,T,n) where T=2,,...,2} are such rthat

(a) HT, » {p (D} E) = {B:{Jj PE (= {Br{:‘}'?} =),

)y P e Hp()+I,n) DH(Eﬂ,-}-E,j{i,I,n]] '

(v F e Mg =2,n) ;J[J{B,.L;}-I'.I{I',I,n}:l.

Proof Let x, be a program for a usual noninitial Turing machine which frst
wransforming an argument <v,Z,,...,Z;> into <p(B7'(¥),z,,...,2x>; and then,
in the case the result is defined, applies the universal program u, to the result. As a
consequence of 2.6, we have that (when v=2B;) {p ()} @ the result of the algorithm
<m,,B;> on the argument I. So we define ry (i) = B~ <x,,B;>. The polynomial
computability of such function r (i) follows from Proposition 2.2, since <z, B;> is
a short word and, hence, the totality of the function r (i) can be proved in HT ). Finally,
the estimation required, 5., follows from 2.2

| Mote that the initiality of the Turing m=:"ine is essential in this proof. Indeed, here
the linear dependency of the initial p~fam <, B;>=x (01 B; with respect 10
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| B;| plays an important role. Thanks 10 it, the word <x,,B;> is short for any L.
In the case of the usual Turing machine we are to consider a nom-initial program
7 (B;) which is obtained from x, by adding additional commands which write down
the word B; at the tape instead of the program < x,,B;>. But these commands require
a non-linear (more exactly quadratic) with respect to |B,| part of the program x; (B )
and so we can not guaraniee a polynomial computability and even totality of the required
function r, ({) such that m,(B) =5, .

Proposition 2.11 (on the unary u-operator). Given any quandfier-free formula (1)
one can construct a PRT s containing the same variables as p and a new variable x such
that HT j+ s=x+=Un{r) Ap A¥yeEUny<xD—p()). O

We denote this term 5 by uxr € Un.p (1)

Proposition 2.11 can be extended to the case of a partial recursive predicate in the
role of ¢ by adding the unary collection principle for quantifier-free & 10 HT, :

Vi<pndja2d23dmVi<nIij<ma,

where i,j,n,m run over unary words. In this case we can guaraniee the upper bound
m existence and it means the finiteness of the total time < n-m of calculation of values
e (@), ¢(1), ¢ (11),... up to any unary argument value n  such that all the previous
values are already defined.

Note that we can not guarantee in HT , the recursiveness of the general (not "unary”)

u-operator g x.p (x), since its (direct) definition is obviously connected with the exponential
exhaustive search of binary words. More exactly, because of non-feasibility of the exponential,
the direct definition of ux.¢ (r) by the exhaustive search B, B,, B, appears 1o be
incorrect. Thus, a natural proposition y = x (xr=y) would be equivalent to the sentence
3i(B; =y), which is equivalent to the feasibility of the exponential.

MNow we prove a proposition on the representation of provably-total I -functions

which strengthens Z.2
Proposition 2.12. Suppose that for a new constant ¢ and some quantifier-free formulae
a(e,x,y), Ble,x,y) and a PRT f(e,x) =, (x) depending only on the variables mennioned

the following formulae _ :
Avale,x v)D!f. 00, f)=yDale,x,y), ¥e!f (x)DVxIyp(e,x,y)

are derivable (classically) in the theory T, + Ax(e), where Ax(¢) are some quarntifier-free
avipms with respect o e.

Then for some superposition t,(x) of the signature funcrions, the PRF f.. and the
constant ¢ there is (an intuitionistic) proof of

HT,+ Ax(e) + ¥x!f, (x) - VxB(ex,, (@)

Proof (a sketch). In the frame of the intuitionistic theory HT , + Ax(e) + Vx!If, (x)
considered we may use f, as if it was a new signature functional symbol which (by
condition of the proposition and because f,(r)=y is a I -formula) intuitionistically
satisfies the sentence Vra(e,r.f,(r)). By condition, in the theory T, + Ax fe) +
+Vrale,x,f,(x)) {wh.oref, isa functional symbol) ¥x!f. x is provable (here [,
is not a functional symbel) and hence Wx3yf(e,x,y) s classically provable. As in
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Proposition 2.2 using the Herbrand theorem, we obtain an intuitionistic proof in the theory
HT ,+ Ax(e) + Vxa(e,x,f (X)) and hence we obtain a proof of the proposition
vxf(e,x,r,(x)) in the theory HT,+ Ax(e) + Vx!f,(x) for some superposition
t,(x) of the type required. O

§3. THE FORMAL KLEENE-CHURCH THESIS AND MARKOWV'S PRINCIPLE IN
THE FRAME OF POLYNOMIAL COMPUTABILITY THEORY

As to the intuitionistic arithmetic HA, the following variants of the formal
Kleene-Church (see [17,18]) thesis may also be added to the theory HT , considered:

CT(p):¥x3ypiz,y) 2 JeVrIy(lelx)=y Ay,
CT(r,p):Vx(x @) D3ppx.y))2TeVxx @23 (led )=y Ay,

where we put some restrictions on y to avoid a contradiction with HT , ( as in the case
of HA [17, p.S1]).

A formula y is said to be negarive (respectively a Harrop formula), if it docs not
contain existential quantifiers (respectively if all its existential quantifiers are situated within
antecedents of implications (Remari: In this definition we assume that in y negation is
expressed by implication and disjunction is expressed by existential quantifier).

A formula ¥ is said to be almost negative (respectively U-negarive) if it contains the
" existential quantifiers only of the wype 3Xa (¥) (respectively 3X € Una (¥), where a is a
quantifier-free subformula). If all the existential quantifiers of other type are not within
antecedents of implications of y, then y is said to be an almost Harrop formula (U-harrop
respectively). We define

ECT (ECT) - all examples CT (¢, ) with an almost negative (respectively almost
Harrop) formula x.

ECT ; (ECT ) - all examples ECT (ECT) with a U-negative (respectively U-Harrop)
formula .

Later on in Corollary 6.9 we prove that the scheme ECT (ECT p) is equivalent 10

the formally more general scheme ECT(ECTy).
We formulate two variants of the Markov principle:

M:==3xa(x,I)23xa(x.I);
My:==3xeUna(x,f)23x€lnax,I);
where « is quantifier-free formula.

Later we prove constructivity (¢f §1 and corollaries 6.5(b),7.4(b)) of the principles
ECTy and M with respect to the theory HT . As for traditional variants of ECT and

M, they will be shown to have a tight connection with the «FP = NP7« problem. Thus,
these principles imply existence of an algorithm, which given any compatible formula finds
values of variables satisfying it (See 3.1, 3.2, 610, 7.5, 7.6).
We call a binary word e 0 be a search algorithm if the following formula is true for
it
SA(e) =V 3yxy]23yet )=y Axp)
or the following ¥ 3-formula which is equivalent to the previous Lo~

Viy3n€Un(xly] D H (e=x,m) Ax[M(e+x,n)]). is true for e
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Recall that x[y] denotes the truth value of the Boolean formula x on the tuple y. The
following two formulae assert the existence of a search algorithm and the existence of a
short search algorithm:

SA = Je.5A(e),
DSA=3i€Un.SA(B)).

Proposition 3.1. (a) HT,+ EST+ SA,
(b) HT,+EST;+ M~ EST A SA,
In Corollary 5.3 (c) we prove that HT ,+ ECT+ My » M.

Proof. (a) The existence of the algorithm required follows from the next example of
ECT:
V@yx]23yx¥]) 2 3eVxEx[v] 2x[{e} (x)]),

since its antecedent is a logical axiom ¢ D .

(b) By M, ECT=CT (x,y) is reduced wo ECT y by replacing the quantifiers 3 in
by = =3 iny and then by =V =. Mow apply (a).

Corollary 3.2. Ler a theory § in the language T, have the same Il -theorems as T,
If § is consmructive and has a form of HT ,+ M + ... or § is 3-constructive and has a form
HT,+SA+... oo HT,+ECT+...; then P=NP.

As we could see later (see 6.7) if HT ,C S C HT ,+ EST + M then the theory §
has the same [T ,-theorems as T,

Froaf. It is sufficient now 1o prove derivability of a IT ,-sentence SA (e ) in the calculus
5§ for a certain concrete binary word e, It implies derivability in T, since it entails
existence (in P) of a polynomial search algorithm e, which is equivalent to P = NP
because of 2.2

In the case of S=HT,+M+... one can, by the Markov principle, prove
=¥y—x[y] C3yx[v], which because of constructivity of § implies provability of
= ¥y=x[y] Dx[{e,}(x)] for a certain concrete £, and, hence, derivability of 5A (e ).

In the case of S=HT,+SA+ ... or =HT,+ECT +... the derivability of
SA (e, follows from 3.1 (a) and 3-constructivity of 5. '

Proposition 3.3, P = NP implies equivaicuce in HT, of priaciples M and M, and
also ECT and ECT g

Proof. If e is a quantifier-free formula, then

dxa(x,Z)«3In€lnIx<na(x,N)+3IncUna,(n,)

for some polynomially computable predicate «,, which exists by P = NP. Thus, M and
ECT are reduced to partial cases My and ECT .

In Corollaries 7.4(b) and 6.5(b) we shall prove constructivity of the theories
HT,, HT;+ My, HT ,+ ECT; and HT,+ ECT ; + M. So 3.2 and 3.3 imply that
cach of the theories HT,+M, HT,+ ECT, HT,+EST+ M and (=)HT,+
+ECTy +M=HT,+ECT+M is constructive if and only if P = NP. Moreover, the
equality P = NP is equivalent !~ provability of IT -sentence SA (e ) for certain concrete
search algorithm e, in amy of the theories mentioned above (se¢ the beginning of the
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proof of Corollasy 3.2). Note, that this resull seems 10 contradict the fact below (after
Theorem 5.2) that there is constructed a rather concrete *search algorithm” ¢ is constructed
which is optimal among all the search algorithms in P. The matter is that its optumality
and the sentence SA(¢) itself one can prove omly in the theory HT ,+ EXP or
HT,+ DET (the axiom DET is defined in § 4).

In § 5 we shall see that search algorithms are of more wide importance than it
follows immediately from the definition, and also that they can transformed into a canonical
form. This will be used o prove the basic results. But first we have to consider coding
of binary words by the means of unary words.

§ 4. POLYNOMIALLY OPTIMAL CODING OF FINITE BINARY WORDS BY
UNARY WORDS

As it was already noted above in the theories for which one can not prove the
feasibility of the exponential, the binary words can not be enumerated by the means of
the usual coding x = B (i) , because of exponential complexity and even partiality of the
inverse function { =B ~'(x) {if it is total). The words of the form B; in these theories
are very short and so they can not pretend to be even an approximation 10 the set i all
binary words which are subsumed 1o be in these theory. Mevertheless, it is possible to find
a coding of a rather wide set of binary words, which as we shall see later, may be assumed
without contradiction to be the set of all binary words and this coding is nonexponential
in a certain sense.

So we can take a coding {B,} instead of the coding B ; (=the result of the algorithm
B; if it is defined) . Binary words x of wpe x={B;} will be called construcnive oOf
simple. Nonconstructive words (if they do exist) are patural to be called random oOr
complicated. (see also subsection 1 of Appendix). It is not hard to prove that in HT,
binary words, for example, are constructive.

Further on we consider the following axioms:

Axioms 4.1. DET = ¥x3i(@={5;}),

DET = Vx3i(r={B;}{e),

RDET = 3¢ DET®.

These axioms assert that all finite binary words are comstructive or respectively
constructive (with respect to some single binary word e).
Axioms SA  ano L5A are wedker fuins of the adom DET om coastructiviiy ol
binary words (see § 5).
A shortcoming of {B;} is its partiality because the algorithm B; can "get into a
loop". So we consider the polynomial computable coding &, for the class of constructive
words which is defined by the unary coding of unary pairs j = «i,n» (see § 2).
Definition 4.2 §_; ,. = M(B;,n).
More generally, define E:}" for a tuple y of binary words.
Definition 4.3. &7, .. = M(B;*7,n).
One can easily reformulate the axioms DET and DET® in HT, in terms of this
coding by usifig 2.9 (with the e ty list T):
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§T=18,)*T =1B,(;} .
DET-V¥x3j({x=¢§),

DET, «¥x3j(x=£9.

In [2] similar equivalences were adopted by definition. The following theorem partially
implies constructivity of unary and short binary words. The class of constructive words is
closed under PCF. Words which are constructive with respect to a constructive word are
constructive too and DET « DET?. Thus (relatively) constructive words form a definable
in T, interpretation of the quantifier-free theory T, It is a pity that it can not be proved
for the theory T or T,+ the bounded induction (see ir this the conmection [2] and
particularly correction to [2] in [3,p.490]). The axiom DET (respectively RDET) is obviously
valid in the same interpretation .

Theorem 4.4. A seguence E:, j=2,1,11,111,... is a polmomially optimal in the
sense that the following facts are provable in the theory HT , (for a unary T):
(a) p () =‘£r{l’j ¥
®) paE=§"
O

(€) (e} @0 = &gt 1,1,

here t (¢ ,T,X)= pz € UnH (e «(T,X),I) and p,q,r are polynomially compurable functions,
and p is arbirary; r depends on p, and g i an appropriate funciiomn

In such a way the polynomially optimal sequence E¥ determines the "most rapid” up
to polynomials exhaustive search of binary words’. It "catches up® with every other computable
(partial) sequence {e } ({ ,¥), i=&,1,11,111, if the corresponding time for computation
of f(e,i,X) is taken into account

Froaf. (b) evidently implies its subcase (a); (c) also follows from (b):

{E} F,I]IH{E'E.E] [:t TI’J} $.I'I:_T e, 1.0, 'frI:l

Thus we have to prove [h] At first let us prove (b) for a sequence E which is defined

g t-:.rtheaquahtye eniiite = M(B,=(,D),1) LetB, be an arbitrary program
for thc computation of p (i ,X) 2nd ¢, (i.X} 5 a (pehmomial) ime of work for this program
when started with i ,¥. Then

g |

PED)=M(B, « (.00, (, ?}J-i.,, D = S i
(Remark: Regrettably the unary number ny of B, can appear practically unattainable, in
contrast .10 B, . Nevertheless in the view of the traditional approach to finite, the number

ny s “standard® and in su:]:. sense is also concrete.)
Thus the se.qucnm .i’ is polynomially optimal. Our sequence E is also such while

(by 2.10 (c)) J,-‘ is p-:}l}rnumlaﬂy reducible to it:

X =MBen o) m ) Mo T.s (.00 =

= 0 I

.
'{ﬂf?r{ﬂ*fil“
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It is also easy to produce a one-to-one (unary with the :argum-:m n) polynomially
optimal sequence i:i: IF EiE{;i | m<n} THEN fn ELSE the first B; &

E{E: | m<n}.Itis evident that here j sn and for some PCF s(n,¥) =n in P we

have equality 51" = ;fl:“.n, from which the polynomial optimality of the different-valued

sequence ;i follows.

Propasition 4.5. HT ,+ EXP » DET, P& DET (i.e. the feasibility of the exponential
implies the possibility of optimal coding of all binary words via unary ones).

Proof follows from the equivalence EXPe¥x3i(x=B;) and optimality of
EJ'I‘B:' =E’_{‘_-}-

But the contrary conjecture is false: )

Theorem 4.6. [2] EXP can not be proved in the theory T, + DET. All provably-recursive
functions from unary argument in T ,+ DET are PCFs.

Proof. Define v (x) the PRF i€ Un(r=£) taking unary values which are inverse -
wf; Thusx=§ v (2) and v (¢ ;) = i. The function a (i) = » (£;) is evidently polynomially
computable. Because of DET the function v is everywhere defined. From the cardinality
argument it is clear that this function has an exponential growth for some n;gflm:nts and
thus is not computable in a polynomial time. Nevertheless, every superposition t(n) of
signature functions and of the function v from only one unary variable n gives FCE. Indeed,
the function v can be eliminated from ¢(n) on the basis of polynomial optimality of J,-“
vip(n)) =v (& omy ) = @ (r(n), where pin) is an arbitrary PCF. Hence as in Proposition
2.2 and Corollary 2.4 we use the Herbrand theorem to obtain the result needed O.

In contrast to Theorem 4.6 and Corollary 2.4 we have

Proposition 4.7 [2, p.574]. T, + A-Coll + RDET+» EXP.

Proof. A = Coll and DET give

‘HuEm'ﬂ':ﬁnEj-:m{.::.E;].
But this leads 10 EXP, because in T, an (evidently true) implication
‘u’rsnﬂj-:m{::.f:_] Sm=2"t'=-1
is deducible. Indeed , its contraposition follows from the quantifier-free formula
m<2"*'=12Vj<m (X (m)»§ A X (m)=n,

which holds in P, where X‘{m}:Bﬁuismqumiﬂjn.ﬁ]}maPﬂF from m and e.
Open Problem. Is it true that T+ a limited induction + DET- EXP 7 (See
also the correction to [2] in [3, p.490]).

For axioms RDET and DET® which are weaker than DET (e is a new constant) it
is possible to strengthen Theorem 4.6 in the following way.

Theorem 4.8, Theories T ,+ RDET and T+ DET® expand conservanively the theory
T, relaavely to I1 -formulae not contgining the constans e.

Proof. We see first ‘hat words of the form §©, where i runs through unary words
{and ¢ is fixed), are forming an interpretation of =+ weory T,+ DET® in the theory
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T, (cf. the hint before Theorem 4.4). Thus, if T,+DET"» Vx3ya(e,x,y) for

quantifier-free a; then T = YiJja (e .E: .Efj, where the constant ¢ now plays the role
of a variable. We get T +» Yx3ye(x,x,y) from above and from the fact that every

word x is evidently representable in the form x = f:_' for some i. Thus in particular the
conservativeness relatively to the IT,-formulae ¥x 3ya (xr,y) without constant e is proved.
O

§ 5. GENERAL CANONICAL SEARCH ALGORITHMS

Let us look back at search algorithms. On the basis of the polynomially optimal
exhaustive search & F” of binary words one evidently can produce a (relatively) short search
algorithm if the m;rﬁpunding axiom on (relative) constructivity of all binary words holds.
Thus in HT, we have implications

DSA

| E}-'.P—-DET/ \s.a.
\RDET/

In particular from the implication RDET - SA and Theorem 4.8 we have

Theorem 5.1. The theory T+ SA (e) epands conservarively the theory T, relatively
te I1 -formulae (without e) O .

From this or from Theorem 4.6 and from the implication DET -+ SA we find
underivability in T, of the lower exponential bound of the time of work for search
algorithms (cf. [2] and also the exact form of the proposition on the lower valuation in
Corollary 6.8).

Apart from the formula x[y] , which is involved in the definition of a search algorithm,
we will be also interested in arbitrary quantifier-free formulae a(x,y) playing similar roles.

Theorem 52 (on canonical search algorithms). For every quantifier-free formula
a(x,y) the following formulae are deducible in HT ;

(a) 3jSA f.s:;p A3yalx,y) D Jialk, {7,

(b) DSA A ayq(;,;.r):sfa(r.ef},

(c) DET A3ya(x,y) 2 3iax,t;).

Note that, by Proposition 2.10 (a), DSA « 3jSA (& i

The point (a) of Theorem 5.2 means that for every binary word e containing
information on some search algorithm &' = £ for propositional formulae, one can produce
a (unified in its essence) search algorithm for all quantifier-free formulae e(x,y), which
is based on the exhaustive search e:“.f-;a.l.u. 111,..., ; namely, the algorithm

Ea(e) = Ax.E" (i€ Una(x,t ).

If this starting information ¢ is a short one then in accordance with (a) or (b) a
similar search algorithm ¢ (for a(x,y) = i[y]) based on exhaustive search ._5’: will not depend
on e. It is obvious that DSA w SA (¢). Moreover, the algorithm ¢ is pohmomially oprimal
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among all short search algorithms and even among all search algorithms of the form §;
in the following sense: for every satisfiable propositional formula x the time of computation
{e} {x) can appear longer than that for {§;} () in no morc than polynomial times, with
such a polynomial, of course, being dependent on j. This assertion can be obtained through
use of Theorem 4.4(c) and (b) with e=£. It is also possible at first to deduce in HT,

the formula
Wxjn3m (x[M(E;x, m) AH(Ejex,n) Sx[Mesx,m)] AH(e+x,m))

on the basis of the polynomial optimality of { and of definition of the algorithm ¢ and
then to make use of Proposition 2.2. The existence of the polynomially optimal search
algorithm (in the "standard® universe of finite objects) was asserted in [24], but without
revealing of the very algorithm and also without determining of the optimal exhaustive
search of binary words on which our search algorithms are based (were introduced in [2]).
It is evident that the lexicographic exhaustive search is utterly ineffective as a search
algorithm.

Proof of Theorem 5.1 (c) is evident and (b) follows from (2) and from the polynomial
optimality of §. The proof of (a) is evidemly reducible to the case of a bounded 3y
quantifier, i.e. of the form 3y = n, where n is a new variable. Because of the well-known
polynomial reducibility of the problem of finding of y = n such that e(zr,y) is true to the
problem of satisfiability of appropriate propositional formula (ie., because of the 1o
NP-completeness of the problem of satisfiability of propositional formulae, [3]); it is possible
to rebuild (in a polynomial time) a given search algorithm e = E:' satisfying SA (¢") into
a search algorithm s(e") for a(r,y):

HT,+ 3y snalx,y) 23yl ={s(e)} () Ay =n Aalx,y)).
But in accordance with Theorem 4.4 {c}.‘{b] and the equality ' = 5: we have

- {"-:} (). T {:b] £,X
y=1is(e :’]' () = Eq{:{:'}.:.!(!(ﬂ")-ll}l - rﬁ,f,:_:,ll:.l'.f..r}f

Thus y has the form E:’:. The theorem is proved. O

Corollary 53. (a) HT ,+ 5A + ECT j,+» ECT,

() HT,+SA+My+r M,

(¢) HT,+ECT+My+ M. .

Frouj. By Theorem 5.2(z) and Proposition 3.1(a), it follows from SA 2nd ECT that
formula of the form 3ye(y,T) is equivalent to the formula 3i€ Un a{E:'I,I} with

unary 3, where « is quantifier-free and ¢ denotes the search algorithm whose existence is
asserted by SA. '
Using this scheme, we reduce ECT and M to ECT jy and M ;; correspondingly. O

Let us define PRFs "inverse® to canonical search algorithms introduced in Theorem
5.2 :

vix)=pi€Un(x=4;,) (see the proof of Theorem 4.6),

vi(e.y) = ui€Un ] Ox[§ D),
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v e x. )= pi€Un@l] 2x[§57]).
Let us introduce the notation
SAS= Wxylv'(e,x, ) (=Vryl] 23ix[ED).
Because of Theorem 5.2 and the polynomial optimality of § we have
Proposition 5.4. Following equivalencies are deducible in HT , ,
SAw3jSAE ),

Wrylwlir,y)=DSA,
¥rlv(r)=DET. O
Notice that if some concrete search algorithm e, works (in P) in a polynomial time,
ie if P=NP: then T, » A (e A DSA and thus by 54 Ty» SASvnvwrylv'(x, ) and
by Proposition 2.2 functions v * (¢ ,,x,¥) and v (z, ) appear to be pelynomially computable

(in P). More exactly, we have
Proposition 5.5, The existence in P of a concrete word €, , for which the function

v (e, x,y) is polynomially computable, is equivalent to polynomial computability of the
funcrion v* (x,y); and is equivalent to P=NP. O
Recall that the function v (r) is certainly uncomputable in a polynomial time.

§ 6. KLEENE'S REALIZABILITY AND CONSTRUCTIVITY OF THEORIES
CONTAINING ECTy

Let us now define the Kleene realizability; i.e., let us put in correspondence 1o every
formula ¢ another one xr, all free variables of which are exactly those of the formula
¢ plus the variable x. Additionally we make it in such a manner that formula xmp appears
to be not only almost megative (as in [17, p.51]) but U-negative; i.e., it doesn’t contain
quantifiers 3 on unary words only (this is needed for the proof of Proposition 6.1). Let,
by induction,

mp=y¢ il pis an atomic formula,
<x,y>ria Ay)= 1Ty ATy,
<r,y,z>rpvy)=@E=02ymp)Ax=03zry),
<x,y>r3ywly) = myly),
mwpod29)=VyympDIzeUnH ey, z))AVyz(yre AHx sy, Z) DM (xey,2)ry);

a¥yp(y) = Vy3zeUnH(rey,2) AVyz (H(xey,z) DM (x =y, 2)ry(y)-

Define also rp = Jx(xrre).

Proposition 6.1. In the theory HT , the scheme p e rp i deducible from the scheme
ECT ¢

It follows from Theorem 6.3(c) that these schel es are in fact equivalent
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Proof is by induction on the construction of ¢. Let, for example, ¢ = y = 5. Using
the assumption of induction we get
(w 2 ) o (3x (xry) D Iy (yry)) = Vx ryD Fy ().

From this and from ECT ;; (taking into account that formula xry is almost negative with
unary 3) it follows that

eV (my D3y ({ek(x) =y Aymm});

ie., r{y>n). Conversely, let us show that er(y Dn) implies y 2 ie., let us deduce
n from er(y D) and y. By the inductive assumption we have rry for some x. Then
{e} (x)rm and again by assumption we get 5. Notice that in the case p = ¥yy instead of
ECT; it is possible to use its particular case CT. O

In the absence of the formal Church thesis such a link of truthfulness of formulae
with their realizability can be guarantied only for formulae of a special form. Let us define
for every almost Harrop formula y its potenrial realization - the FRT 7, ], where parameter

¢ denotss a binarv word containing information on some search algorithm: ie., suppose
SA® to hold (see 5.4). Let inductively

1, [atom] = &;
tole rvl= <t lpliT V]
t,Javp]= < IFe THEN O ELSE 1, 7.[a],7.[f] =
1. n2y]= Axrt,[v](x is a new variable);
t.[=7]= Axr@;

T [y )] = Axr [y
1. [3x€eUnalx))= <@, pxrelnalx)>;

. Bra@I)= <@, T (uic€Una@",2)>;
where ¢,y are almost Harrop; a,f are quantifier-free; n is an arbitrary formula. If the
almost Harrop formula y in fact is a Harrop one, then 1 _[y] is the signature term ( which

is everywhere defined and polynomially computable).
Lemma 6.2 If x (€) i5 almost Harrep and € (&) &0 almos: neganve, then the theory

HT , + SA® following equivalencies are derivable:

!t . klAar [x]rx,
refaelc [6] Ar, [0]rd.

In addition in the case of the U-negative formula § and the U-Harrop formula y the axiom
SA® is not used and & is not present in 1 [6] and T [x).

Proof . Let us proceed by induction on the construction of formulae x and & Theorem
5.2 on canonical search algorithms is used in the case y ,# = 3xa. In fact, for & implications
r@>6fand 827, [BlArc, [B]rd are 0 2 proved O .

Now we can formulate and prove .h¢ main theorem on r-realizability.
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Theorem 6.3. (a) For each logical rule Piro-aPp/P, n 20 of the theory HT, and
PRTs t,,...,1, (possibly with new constanis) one can construer a PRT r such thar

HT +V A (lt, At;mp )= 't A g,

f = F

where ¥ denotes the universal closure on al free varigbles.

(b) For all mon-logical (quantifier-free) arioms 8 of the theory HT, we have
HT v 18] 8, where 1 [6] is a signarure term,

(€) For each of examples ECT, ECTy, M and M it is possible to construct
corresponding realizing signarure terms (e}t (e) and £yyq such thar

HT,» t 4, rECT,
HT,+S5A® » 1(eyrECT,
HT,+ ECT~ rECT,

HT +Myr tyypyrMy,
HT,+5A  + M+ LyfereM,
HT ,+ECTy+ M+ rM A rECT,

() There exsts PRT 15 (e) such thar HT , + SA® » lrg(e) Atg(e)rSA® ArSA,

Notice that from the formulation of the theorem one cannot prove existence of the
PRT r such that HT ,+ SA+ rrSA or HT,+ ECT » rECT.

FProof. (a) See, e.g, [17, p.5 4-55]. (b) follows from Lemma 6.2: HT  + 8=t [6] 6.
(€) As a realizability of ECT ;; and ECT,
Vi . D23y .y, D)2 3fVx(y x,0)D3n (H(fox,n) A
Aplx.M{fex,n),n),
one can take the PRT t= Av <R (v,D), F(v,T) =, where
Fvony = Ax({ho}e (.20, t(, D =1, [p (x.7)]

is the potential realization from Lemma 6.2 ( without participation of £ and e in the case
of ECT ;) of an almost Harrop formula y and

R(v.D)= Amw. < < 0,5(v,r,7)> M{v,2,7) > (w is a new "fictitious* mﬁahlej
S22y = ({vHOHr ((x, D)), and N (v,x,7) = un € Un H(F(v,X)sx,n)
Indeed, let us show that from
veV(y(x) O Iyp(x,y) (1)
it follows
ROV (v, ) D3n(HF(W,7) ox,n) A p(x, M (F(v,T) »x,n),2)))
or, equivalently, '
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¥ aw(wrp(x) D L N(v 2, ) AL S(v 2 Drple MF(v, T) ox N(v, 2,20, 300 (2)

In accordance with Lemma 6.2, !t(x,Xnp(x D) follows from SA Y and wrp(x,I) in the
case of ECT. Thus by the assumption (1) we have !{{v}{x)}r(x,D)r Sypelr,y. I Le.,

HF(v, I} (1), (3

1Siv . x, Dirplx, (F(v, D} ) (4)

But (3) i equivalent to !N(v,x,T) and from (4) and {F(v,I)}(x) = Mi{Fiv,D)»x,
N{v,x,T)) we also obtain the second conjunciive member of the implication (I).
The statement HT, + ECT + rECT now follows by Proposition 3.1(a).

As a realizability of the Markov principle {M, = = 3xe(x) 2 Sxa(r) and its special
case Mp with a@@)=x€Unaa’(x) we can lake the signature term fyle) =

= Ay.r(3zxa(x)). Indeed, == 3 xa(x) follows from yr = = Sxa(r) in HT, and so we deduce
Sxe(r) using M or My, correspondingly. Hence using Lemma 6.2 (and SA® in the case
of M ) we get !r[2--/1)] # | 3xrax)] rIxsx), as required.
The statement HT, + ECTy + M~ M 4 rECT now follows from Proposittun 3.1(b).
(d) As the formula SA® is almost negative with unary 3, we get HT,+
4 SAY = 1 7[SAYJrSAT by Lemma 6.2 and thus it is possible to put r(e) = T[SAT].
Corollary 6.4. If HT, + SA® + M + ECT = p(e X), where ¢ is a new consiani, then
for some PRT t(e X} we have

HT, + SA"+ M = l1(e, ) Ar(e,Dirple, T}

Also if the first proof was produced in the theory HT,(+My) + ECTy, then the second
one can be produced in HT,(+ My) and the term e ,X) = #T) can be chosen to be a
signamre one (by Proposition L.I).

In accordance to Proposition 212 and definitions of v and SA® at the end of §5
here one can take the term (e, ) to be a superposition of signature functions, of functions
v*{e,x,y) from x and y and, the constant & and also that HT, + SA"+ !1(e,X). In this

sense and taking into account Corollary 6.5 and the definition of constructivity of the

theory from §1, it is possible w0 state that the degree of constructivity for the theory
T +SA%4 ECT+ M ( and for some of its weakenings) is characterized by the

raag o=

computational complexity of the function v'(e,x,y) from x and y.
Corollary 6.5 (on constructivity). (a) The theory

HT, + SAS( + M) + ECTy
is consmuctive. In fact if the implication y (e ,¥)D 3yp(e,X,y) with the almost Harrop
premise y is deducible in it, then in this theory with ECT instead of ECTy the implicarion
¥ (e, )2 efe,X) Aple X, 0(e X)) alto can be deduced for some PRT (e ,X). If the premuse
y is absent, then t(e %) is the superposition of signamre functions, of funcrion vi(e,x,y) and

of constant &
) The theory HT, + ECTy( + My} s construcrive and even polynomially 3-constructive

(see §1.)
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Remark. Regrettably, ¢ or, equivalently, SA® cannot be omitted here.

FProof. (a) By Corollary 6.4 we get in HT, + SA®( + M) a proof of a formula of the
form wry(e,X) 2 rp(e X, {t (e,T)} (w)). Further, Lemma 6.2 provides the wvalidity of
ry(e.X) D rple, T, {r(e,X)} (v, [x(e,X)])) . Hence if we put r = {1} (r,fx]) and use Proposition
6.1, then we get the result needed. In the absence of y we have - !t and appeal
Proposition .12

(b) The statement follows from the proof of (a) when the second part of Corollary
6.4 is taken into account together with the U-Harrop form of the formula y which is
required in the definition of constructivity of a theory , and Lemma 6.2; as a result the
axiom SAS is not used (and r is a signature term) O

Corollary 6.6. The theory HT, + SA" ( + M) + ECT epands conservarively the theory

HT, + SA®( + M) relatively 1o almost megarive formulae. Analogously the same holds for
HT{ +M;) + ECT; and U-neganve formulae.
Proof consists of the use ¢. _urcliony 5.4 ( and Theorem 6.3) and Lemma 62 O
From this combined with Theorem 3.1 we have
Corollary 6.7. the theory HT, + ECT + M conservanively expands theories T, and HT,

relarively 1o Tl-formulae. Hence its provably-recursive funcrions are exactly the polmomially
computable funcrions.

In particular in this theory EXP can not be proved, but SA can be, and the following
takes place.. O

Corollary 6.8. In the theory HT, + ECT + M (as in T, [2]) the statement on existence

of a lower exponential bound for the time of work of an algorithm, ie. the formula
SAle) D Ve >z3n(H(esx ) AVm <n—~Hiesx,m)aexpiz,n))

cannot be proved O

From Theorem 6.3 (c) and Proposition 6.1 we also pet

Corollary 69. HT, + ECT » ECT,HT, + ECT;;» ECTy.

Theorem 6.10. Consrrucrivity of the theory HT, + ECT( + M) is equivalent to s
(pobynomial) S~construcrivity and is equivalent 1o the equaliry P=NP.

Proof. We shall show that from 3-constructivity of this theory follows P=NP from
which, in turn, its (polynomial 3)-constructivity follows. Indeed from 3J-constructivity of
this theory and from Pronosition 31 we obain desivebility of the formula SA(e™) in ir,
or, equivalently, of the formula

VodneUn(xly] DH (g,sx,n) ax[M(e,+x,n)])

for some concrete search algorithm e, Bul in such a case by Corollary 6.7 and Proposition
2.2 the search algorithm e, works (in P) polynomial time which is known to imply P=NP.

Next P=NP ensures (polynomial 3-) constructivity of the theory under consideration.
The proof follows from Proposition 3.3 and Corollary 6.5(b).

§ 7. CONSTRUCTIVITY OF THEORIES WITHOUT ECTy

In absence of the scheme ECT;; we can not use Proposition 6.1 on the derivability

of equivalence perp for the proof of constructivity of the theory in question (see
Corollary 6.5). For this reason we somewhat modifv the nction o realizability. Namely



define formula xq (see [18, p.178]) by inductica on the construction of ¢ similar o the
definition of xrp, changing only three points:

<u,v,w>q(pvy)=[u=02(vgp) Ap] A fu= 0D (wap) Av],
<x,y>q3pp(y) = (xqe O A v (),
xq(pDy) = ¥Yrae) Ap D! h () A HY)ar).
Now the formula rgp in general is not almost negative.
Lemma 7.1. Claims of Lemma 6.2 are completely fulfilled also for q-reafizability with
addition of HT, + SA®+ y D!, [x]lax (for an almost Harrop formula y and without SAS

for an U-Harrop formula x). O
Theorem 7.2. All claims of Theorem 6.3 apart from statemenis o realizability of
schemes ECT and ECT), are fulfilled also for q realizability with the same rerms.

In the proof of this theorem Lemma 7.1 is used only for Z,- and M.-formulae & by

the proof of g-realizability of M and SA®. O

Corollary 7.3, If HT, + SAY + M)+~ ¢(e %), where e is a new consiank, then
't (e, D)qple X) is derivable in the same theory for some superposition ¢ of Signamre Junctions,
the PRF +'(e,z,y) and the constants e. Alo if the first deduction was produced in
HT, ( + M yj), then the second one is the same, and the term t can be raken ro be a signature

one in this case. O

Corollary 7.4 (on constructivity).

(a) If the implication y (¢ ,X) 2 3yp(e X, y) with an almost Harrop premise is derivable
in the theory HT ,+ SA®(+ M), then in the same theory is derivable the implicanon
¥(e, 1) D (e, X) A (e, X, t(e,X)) for some PRT ¢ of form same to that in Corollary 6.5.

(b) Theories HT, and HT, + My; are (polynomially 3 }-constructive.

Proof. (a) On the basis of Corollary 7.3 we get a deduction in HT, + SA"(+ M) }
of formulae of the form

wgy (e, D) Ax{e D) 2qeie.X, {tfe, )} (w)) A ple T, {f"r;.-.- I (w)).

Hence Lemma 7.1 gives the needed yie .X) 2y (€, T, {te )} (x [xle . D)) .

(b) The proof is similar to (b) from Corollary 6.5.

Theorems 7.5 and 7.6 below show that the problem on (polynomial 3)-constructivity
of the theory HT,+ M has a solution which is, however, somewhat different to that , for
cxampie, foi the theory HT, + ECTy + M = HT, + ECT + M; constructivity properties of
the last theory are equivalent to that of its 3-construetivity (and also to P=NP; see Theorem

6.10).
Theorem 7.5. Constructivity of the theory HT, + M is equivalent to the equality P=NP.

Proof. From the constructivity of the theory HT, + M which contains a special case
of the Markov principle =¥y —~x[y] 2 3y.x[y] follows the derivability in the same theory
and hence in the theory T, of the formula of the form x[y] D ! #(x) A x[r(x)], where the
PRT t(x) is dependable only on the variable x . By Proposition 2.2 the time of computation
of the value r(zx) can be assumed to be polynomial. This trivially leads 1o P=NP.
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Conversely, from equality P=NP by Proposition 3.3 it follows that the principle M
is reducible 10 the principle My, and so by Corollary 7.4(b) we get the constructivity of
HT,+ M

Theorem 7.6. The theory HT, + M is polynomially 3-construcnve.

Let us first formulate a natera! generalization of the theorem on eliminarion of cuts
[222] , the proof of which coincides in many points with the proof of its ordinary
ungeneralized variant (see [25] for example); instead of LK- or Ll-proofs containing the
single cut one should consider regular [25] proof containing a unigue “bad” cut; also 1o
the block 2.1.2 from the proof in [25] an non-trivial case of the cut J, is added). (Notice
that in the author's review [26] of [22] (but not in [2,22]) a false (too strong) formulation
of the generalized theorem on cuts elimination is previded.)

Theorem 7.7. From every proof in the Genizen propositional calculi LK or L enriched
by some collection of inirial sequences (apart from ordinary ones of the form ¢ = p) closed
under pperafions of substirurion of ter—< instzad o variables, ir is possible 1o elimirate all
cuts except for possibly cuts on formuige encountered in new ininal sequences. Ihe proof
construcied can be considered as a regular one.

Froof of Theorem 7.6. In accordance to the peneralized theorem on the elimination
of cuts every proof in the theory HT, + M based on the intuitionistic propositional calculus
LJ [25], where M is presented in sequential form = = 3xa = 3xa, can be reconstructed
into the proof without "bad” cuts; i€, with cuts only on formulae of the form «, xx
or = =3xx with a quantifier-free @ Thus let us suppose that the sequence
=3 we(y) is derivable in HT, + M without use of bad cuts, where the list [ consists

of formulae @, Jxz or = =3Ixa with a quantifier-free . We shall use induction on
proof to show that then the sequence of the form I = p(f) is also derivable, where ¢ is
a signature term and I is comstructed from I by elimination of all quantifiers 3 and
= = 3. (Thus the list " consists of quantifier-free formulae only).
If I'=3wp(y) is an initial sequence , ie. a special case of the Markov principle
— = dyp = Iy (with a quantifier-free ), then we can take y for ¢ by trivial derivability
of the sequence ¢ - . Otherwise, I~ I wo(y) is obtained by one of the following rules
- [ = p(r)
(=3) T=Jpe) -
Here the sequence required is I == (r). It is proved (using a cut) from the premise and
from trivial sequences of the form a(r) = Jza(r), afr) = — — Jxa(x) conclusions of
which are in [
|

{I'Igh[ WEAI:II:II;IIIE} T]-I:EF[}—J .
In this case (as well as in the case (- 3)) the sequence [ - is derivable just as in the
previous case and 50 is the sequence I' = p(r); for arbitrary ¢

) [l =+ (= ~) 3xax)(= =) 3xa(x) , A =+ 3pp(y)

IL A =3yl )

Here I'=1II, A and by the inductive assumption we can suppose that a(x), A' -
= p(r(x)) is derivable for some term r(x). As the theory HT, + M forms the fragment of
the classical theory (namely of Tg) and the sequence IT° = Jxa(r), with quantifier-free
formulae IT", o is classically derivable in it, we can use the Herbrand theorem to justify
the derivability of the sequence II'=ais)v...vais) and thus of the sequence

I’ = =(s) for some terms 5,,...,5,,5. Hence with the help of a cut on a(s) and substituting




5 instead of x into the sequence a(r), A’ —=@(r(x)) being derived, we get the proof of the
sequence I1°, A" = @(r(s)) and put r= r{5).
@ =) afx), =3w(l
: Jxaix), I =3 )

In this case the proof of the sequence «(x), [ = p(r), which exists by the inductive
assumption, 15 the one needed.
i- &, &, Iy = I ely)
a Ja,, I, Ly=3pely) ’
Here the term ¢, which exists by inductive assumption for the right premise, also suits
the conclusion and the proof of the sequence @, D&, [, ", = p(r) is constructed from
proofs ', = a, and &,, I, = y(r) by use of the same rule (2 -+

@y, [+ 3pely)
a, Aa, [ =3pply)

(==)

(A =)

This is similar to the above.
a,, [=3pply)a,, = 3ve(y)
(v =) | .
a, ¥V a, | =3yl
By the inductive assumption there exst corres;  ''ng terms £, and f, for upper sequences
As both «, and a, are quantifier-free here, we can take the term [F a, THEN r, ELSE
t, for r. Remaining cases of transposition and reduction weakening rules are even simpler.

§ 8 APPENDIX

1. Connection with the Kolmogorov complexity theory

The partition of finite objects into constructive and non-constructive and simple and
complex ones which is considered in this. article was introduced in [2] on the basis of the
polynomially optimal unary coding & It was shown above that we are led to such 3
partition by the partially recursive coding {B;}. Such definitions are connected with the
notion of the Kolmogorov complexity of finite objects in the following way.

At first notice that we define the PRF {x} in such a way that it should be (Kolmogorov)
additively optimal. This means that every other partially recursive coding {e} (x) is reducible
to the given coding {x} with the code length growth for x of no more then on (additive)
constant: {e} (x) = {e¢ »x}, where Jesx| s |z| +const,, (= |x]| + 2[e[).

We call a binary word y Kolmogorov simple, if it has a description x by an additively
optimal algorithm which is substantially shorter than that for the word y itself; ie.
y={r} and |z| << |y| using a kind of informal notation. Notice that in the framewur k
of traditional perception of finite such definition is not rigorous and it is not clear how
it could be improved to be independent from the slight variations of additively optimal
coding and so on , while still really partitioning sets of binary words into two classes. Of
course, the Kolmogorov approach is somewhat different, mathematically correct and
"machine-independent”. But it is based on the transition to infinity, i.e. on asympiotic lerms.

In the case of the exponential-free mathematics (e.g., in theories T,, T, HT,, and 50
on) it appears possible to make this very definition more precise . For example, constructive
words of the form £ or {B;} <an be characterized in a natural way as Kolmogorov
logarithmically simple because lengths of codes B; of such words (in addiuvely optimal
coding) are logarithms from all possible lengths in "cxponential-free eniverse® of finite
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objects. It is also possible to define the Kolmogorov simplicity of the word v in another
corie if it has a code x,y = {x} such that the integral part of the fraction |y| / 2] 8
2 long wnary word; ie., doesn’t have a form |8;|. Notice that here definitions have precise
(and non-degenerate ) meaning while in our theories words of the form |5;| are penerally

not all possible unary words.
2. Proof of Proposition 2.1(b)

Al first the linear induction is derived from the lexicographical one as from
v oa(lx]) 2 (lx1])) it follows vx(p(lz]) 2eix'])) by the quantifier-fre¢ 2a0m
Ir =lx|vI|e]l= |1| and the rule of the excluded middle for quantifier- frec formulae.
. . versely; the lexicographical induction is derived from the linear one in the quantifier-free
5 in the proof of Proposition 2.1(a). In the case of the limited induction formula

.. represent the lexicographical induction in the form

ATy Dp(x ) 2 mYn =m Yr,ys 1Ml =m=nnlcel=nte ATy 2 evd)

w ey i a limited formula and variables m.n Ul through unary words (notice that

. inequality p= 17 is trivially equivalent to |y| = m). Let us derive the conclusion of
tt  implication from the premise with the help of the limited induction on the unary
4 ment n The cise n =@ is trivial. Let us prove the inductive step from n to n + 1.
 si=men—1 |rl=n+1, m00" . We need to show that @{w) holds for each
W v of the length n + L.

9y the inductive assumption for each z of the length n we have pr) and #(017)
in  ricular. Passing to the lexicographically next word, we gel #(y10™). Again by the
in. uve assumption, we have piylz) for each z of the length n. Thus we have proved
(b or each w( =0z or =1z of the length n+ 1 we have p(wv). QED.

One can see that in this proof we have used only finite npumber of axiom schemes
af . iheory HT, When the appropriate finite basis for polynomially computable functions
ar predicates and fnite number of corresponding quantifier-free axioms of the theory
H  which are defining inductively basic functions and predicates) are chosen, such schemes

fo  w irom one scheme of the limited linear induction.
b d
3. On realizability of Hmited induction

Regrettably, one can not strengthen basic results of this paper ( for example, on
ur  wability of the lower exponential bound for search algorithms) substituting HT, for
H~ - a limited induction, for example, in the form of

p(@) AV ilp() D pli + 1)) 2V ip(D),
wh - ¢ contains only limited quantifiers and i is a variable on unary words (natural
nur  :rs). For this purpose, one should have constructed a realization e, of this scheme
an¢ ove that e, is indeed a realization using only limited induction. The only thing that
cov oo done is 1o take an ordinary realization of a total induction scheme as €. i.e.. with
a fi.  arbitrary induction formula . Such realization e is independent oi ¢ and is defined
by * - svstem of eguations

{{e} (< x,y =)} (0) mx,
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{le} (=x.¥y =) (i + 1y = {{yHD} (e <z, y =)D,

i.e. essentially with the help of primisive recursion. Tao assure that e will really be a realization
one should prove that the operator ¢ on realizations

{{eb (<x,y =) (i + Dym (O} ({led (<2, y =) (D)

and y gives everywhere defined function on £, This, however, can be done only for theories
in which the primitive recursion operator is legitimate and thus the exponential, the iteration
of exponential, and other similar primitive-recursive functions are feasible.
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