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Brief description

The goal of this Project is to implement reduction rules of set-theoretical Delta-
formulas. Delta-language (∆) is considered as a query language under a set-
theoretic approach to simi-tructured databases. Thus, this project would be a
first step towards reduction-based implementation of a simple, basic fragment
of the language (and possibly of its full version). This would also complement
another already existing [4] experimental implementation of Delta of a different
kind. For a student working on this project this would be a good and challenging
opportunity to apply his/her programming skills and to shed new, more practical
light on this direction of research on semi-structured databases.

More detailed description (cf. also [5, 6, 3, 7])

Usually set theory is formulated on the base of primitives ∈ and = with set vari-
ables as the only terms. We consider set-theoretic languages with a richer class
of terms, because we are interested in explicitly definable operations (queries)
over hereditarily-finite sets (database states).

We call the languages of various Bounded Set Theories (BST’s) by a generic
name ∆ and define a basic fragment of them by the clauses

∆-formulas ::= a = b a ∈ b ϕ & ψ ϕ ∨ ψ ¬ϕ ϕ⇒ ψ ∀x ∈ a.ϕ ∃x ∈ a.ϕ true false

∆-terms ::= set variables x, y, . . . ∅ {a1, . . . , an}
⋃
s {t(x) | x ∈ a & ϕ(x)}

where a, b, t are ∆-terms and ϕ,ψ are ∆-formulas, set-variable x is not free in
a. Only bounded quantifiers are allowed in ∆.

The above clauses define the language of basic = rudimentary operations of
R.O.Gandy [1] and R.B.Jensen [2], respectively. Formulas of a ∆-language in-
volving only atomic ∆-terms (i.e. variables) are known as A.Lévy’s ∆0-formulas.

For simplicity we considered above only so called pure case of sets {a1, . . . , an}
consisting of elements ai which themselves are sets, etc. More generally, for



database applications, it is important labelled case of sets {l1 : a1, . . . , ln : an}
consisting of labelled elements li : ai, e.g., {name:Smith,DOB:1981}.

Consider a reduction relation →→ based on the following rules for ∆-formulas:

¬false→→ true,

¬true→→ false,

ϕ ∨ true→→ true,

true ∨ ϕ→→ true,

false ∨ false→→ false,

ϕ & false→→ false,

false & ϕ→→ false,

true & true→→ true,

ϕ⇒ ψ →→ ¬ϕ ∨ ψ,
s = t→→ ∀x ∈ s.(x ∈ t) & ∀x ∈ t.(x ∈ s),
s ∈ t→→ ∃x ∈ t.(s = x) if s is not an atomic term,
s ∈ ∅ →→ false,

s ∈ {t1, . . . , tn} →→ s = t1 ∨ · · · s = tn,

s ∈
⋃
t→→ ∃x ∈ t.(s ∈ x),

s ∈ {t(x) | x ∈ a & ϕ(x)} →→ ∃x ∈ a.(ϕ(x) & s = t(x)),
∃y ∈ ∅.ψ(y)→→ false

∃y ∈ {t1, . . . tn}.ψ(y)→→ ψ(t1) ∨ · · · ∨ ψ(tn),

∃y ∈
⋃
s.ψ(y)→→ ∃x ∈ s.∃y ∈ x.ψ(y),

∃y ∈ {t(x) | x ∈ a & ϕ(x)}.ψ(y)→→ ∃x ∈ a.(ϕ(x) & ψ(t(x))),
∀y ∈ ∅.ψ(y)→→ true

∀y ∈ {t1, . . . , tn}.ψ(y)→→ ψ(t1) & · · · & ψ(tn),

∀y ∈
⋃
s.ψ(y)→→ ∀x ∈ s.∀y ∈ x.ψ(y),

∀y ∈ {t(x) | x ∈ a & ϕ(x)}.ψ(y)→→ ∀x ∈ a.(ϕ(x)⇒ ψ(t(x))).

Note, that formulas are considered up to renaming closed (local) variables which
allows to avoid collisions between free (global) and closed (local) variables.
Moreover, substitution of ti in ψ(x) for the variable x above may also assume
renaming some closed variables in ψ to avoid collisions with free variables of
substituted terms. Evidently, ϕ →→ ψ implies ϕ ⇔ ψ. Reduction, in a sense,
simplifies (“unravels”) a formula (by eliminating the complex subformulas and
subterms) without changing its meaning.
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As a simple illustration, consider the following reduction terminating by
∆0-formula:⋃
z = {x, y} →→ ∀u ∈

⋃
z.(u ∈ {x, y}) & ∀u ∈ {x, y}.(u ∈

⋃
z)

→→ ∀u ∈
⋃
z.(u = x ∨ u = y) & (x ∈

⋃
z & y ∈

⋃
z)

→→ ∀v ∈ z.∀u ∈ v.(u = x ∨ u = y) & (∃v ∈ z.x ∈ v & ∃v ∈ z.y ∈ v).

Theorem 1 (cf. [6]) Any ∆-formula ϕ is reducible to a unique ∆0-formula ϕ0,
a normal form of ϕ (ϕ0 coincides with ϕ for ϕ in ∆0). In particular, if ϕ has
no free variables, it is reducible to true or false.

Thus, the concrete goal of implementation consists in automated
and machine-human interacting process of reducing any ∆-formula to
∆0-normal form, or just to true or false. The user may choose one of the
suggested parts of a current ∆-formula to reduce. In particular, an appropriate
interface allowing to the user to make this choice could be designed. As an
option the user could decide that the system would make a random choice au-
tomatically, or a particular strategies of making a choice could be opted. More
advanced and interesting goal could be to use these reduction pro-
cess for evaluating ∆-queries to semistructured databases represented
set-theoretically.

Background requirements

Familiarity with elements of logic, simplest set-theoretic concepts, and having
sufficiently advanced programming skills.
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