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Abstract

Due to the increasing interest in autonomously driving cars, safety issues of such systems
are of utmost importance. Safety in this sense is primarily the absence of collisions, which
is inherently a spatial property. Within computer science, typical models of cars include
specifications of their behaviour, where the space a car needs for operating safely is a
function of time. This complicates proofs of safety properties tremendously.

In this thesis, we present methods to separate reasoning on space from the dynamical
behaviour of cars. To that end, we define an abstract model with an emphasis on
spatial transformations of the situation on the road. Based on this model, we develop
two formalisms: We give the definitions of a modal logic suited to reason about safety
properties of arbitrarily many cars. Furthermore, we present a diagrammatic language
to ease the specification of such properties. We formally prove that no collisions arise
between cars obeying a small set of requirements.
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Zusammenfassung

Durch das steigende Interesse an autonomen Fahrzeugen gewinnt deren Sicherheit immer
stärker an Bedeutung. Hierbei ist Sicherheit gleichbedeutend mit Kollisionsfreiheit, eine
grundsätzlich räumliche Eigenschaft. Fahrzeugmodelle in der Informatik beinhalten
Spezifikationen des dynamischen Verhaltens, so dass der zum sicheren Betrieb nötige
Raum abhängig von der Zeit ist. Dies erschwert Sicherheitsbeweise enorm.

In dieser Arbeit stellen wir Methoden vor, um Schlussfolgerungen über den Raum vom
Fahrzeugverhalten abzutrennen. Hierzu definieren wir ein abstraktes Modell mit dem
Schwerpunkt auf den räumlichen Veränderungen der Straßensituation. Darauf aufbauend
entwickeln wir zwei Formalismen: Wir definieren eine Modallogik, mit der Aussagen über
die Sicherheit von beliebig vielen Fahrzeugen bewiesen werden können. Weiterhin stellen
wir Diagramme zur einfacheren Spezifikation solcher Eigenschaften vor. Wir beweisen
die Kollisionsfreiheit zwischen Fahrzeugen, die wenige Anforderungen erfüllen.
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1
Introduction

The amount of individual traffic is still on the rise, and will probably continue to do so
in the near future. The reduction of accidents in spite of the increase of traffic density is
therefore a main goal of much research involving the development of cars. Advanced driver
assistance systems support the human driver by supplying different kinds of information.
They may, e.g., display warnings whenever the current velocity is higher than allowed.
Furthermore, they often provide visual means to inform the driver whether changing
lanes is possible in a safe way. However, the human element within traffic is still a source
for unsafe situations, e.g., when drivers overestimate the capabilities of their car, or are
exhausted due to a long drive.

To further ensure safety, the development of automated cars capable of driving au-
tonomously has been and is still of strong interest. The PATH project [Hsu+94] was one
of the pioneering projects constructing and analysing the behaviour of fully autonomous
cars. The results of this project led to the identification of several manoeuvres the con-
trollers of such cars have to support. Furthermore, it was possible to derive constraints
ensuring safety, i.e., the prevention of collisions. Several safe controllers for cars have
been presented, e.g., by Lygeros et al. [LGS98] and Jula et al. [JKI99] within this project.

In all of these works, the dominant role in both the specification of the controllers, as
well as in proving their safety, is played by the car dynamics. Safety in these approaches
is always defined as the avoidance of collisions, which is an inherently spatial property. By
using differential equations, the positions and braking distances of cars are only derived
elements of the model, which tremendously increases the complexity of proofs.

Intuitively, safety of traffic is only dependent on the local environment of each car.
Consider for example two cars C and D. If the distance between both is very large, e.g.,
100 kilometres, the behaviour of one should not concern the safety of the other. Instead
of mimicking such a property on a syntactic level, it should be inherent in the model
definition itself to avoid clutter in specifications.

We want to specifically address the problem of safety on freeways with these ideas in
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Spatial Abstraction

Dynamics

Focus of
this thesis

Interface

Figure 1.1: Decomposing Reasoning about Traffic

mind. To that end, we want to reason locally with an emphasis on the spatial properties
of traffic. For that, we want to examine how spatial properties and locality restrictions
can be incorporated into a model of traffic as first-class citizens, and in what way such
a model eases proofs of spatial safety predicates. That is, we decompose the reasoning
process into two levels as shown in Fig. 1.1. On the upper level, the topology of space and
its evolution over time is the main focus of reasoning. That is, the model should reflect
which parts of the freeway are occupied by cars and how these parts change while the
cars drive along their current lane, and when they change lanes. On the lower level, the
dynamics specify the concrete trajectories, how the cars perform these changes. Hence
there has to be an exchange of information between both levels, as indicated by the
arrows in Fig. 1.1. On the one hand, the abstraction has to get information about the
size of the occupied space from the dynamics. On the other hand, mode changes within
the layer of dynamics can be initiated by the upper level. Now assume that we have
specified a protocol for the behaviour of cars on the spatial abstraction and shown that
it prohibits collisions. Then we only have to prove that the dynamic layer respects the
constraints for the behaviour implied by the upper level, and that it provides the spatial
abstraction with the correct information for our protocol to work.

For formal reasoning purposes, the use of logics and especially modal logics has a long
standing tradition within computer science. Logic provides a good trade-off between being
succinct and precise. Furthermore, such a logical approach benefits from meta-theoretical
research, e.g., the development of proof systems or methods to decide satisfiability of
formulas algorithmically. Proof systems allow the user to reason only on formulas and to
disregard the concrete semantic structures, as long as the main properties of the semantics
are captured within axioms and proof rules. They may also be implemented within
interactive or automated theorem provers, thus providing the user with the guarantee to
create a correct proof. Tools checking satisfiability may be used for example to decide
whether a formal syntactic proof should be attempted. For this, the desired property
is negated and then checked for satisfiability. If the algorithm decides that the negated
property can be satisfied, all attempts to formally prove the validity of the property are
futile. Due to these advantages, many approaches to prove safety (or other interesting
properties) of software and hardware devices make extensive use of logical methods and
formulas in general.

2



1.1 Contributions

However, within engineering practice, formulas and mathematical descriptions lack
this acceptance. There, visual languages play a more prominent role. For example,
for software engineering, the Unified Modelling Language (UML) [RJB04; UML12] is
well-established. It incorporates, e.g., Message Sequence Charts (MSCs) [ITU96], which
are used to define the communication between several independent objects, and timing
diagrams [UML12], which are able to express timing relations between events occurring in
chip-designs. Similarly, depictions of electronic circuits are used widely to communicate
about specifications and implementations of computing devices. But most of these
diagrammatic languages lack a precise semantics. For example, within MSCs, it is not
always clear whether a diagram states a possible or a necessary course of events.

Still, several diagrammatic languages have been provided with a formal semantics.
While general mathematical properties may be captured by formal Euler- and Venn-
Diagrams [Shi95; AB96], only few diagrams extensively used in computer science were
formalised in this way. MSCs have been enhanced by a mathematical semantics in the
definition of Life Sequence Charts [DH01], which also extend MSCs with methods to
distinguish universal and existential sequences. Schlör examined timing diagrams formally
[Sch01]. In the context of real-time systems, Kleuker presented a visual specification
language called Constraint Diagrams [Kle00].

1.1 Contributions

With these considerations at hand, the contributions of this work are the following. We
define a model of freeway traffic that clearly distinguishes space from the dynamical
behaviour of cars. This model also emphasises the local environment of a single car, and
by that is a suitable model for the remainder of this thesis. An explicit formalisation of
the sensors provided by the cars on the freeway completes the model.

Using this model as the semantics, we present the extended multi-lane spatial logic
(EMLSL) to reason locally about spatial properties of freeway traffic. While the logic
cannot express concrete properties of the dynamics, it is able to distinguish different
discrete changes in the space on the road. Within the logic, both qualitative aspects, i.e.,
the topological situations on the freeway, as well as quantitative aspects, e.g., the length
of free space ahead of a car or the number of lanes between two different cars, can be
referred to. As a first step towards tool assistance, we present a formal proof system in
the style of natural deduction and derive several useful rules within this system.

To further ease the use of our approach, we define a formal diagrammatic language
called Traffic Diagrams, which uses the abstract model of traffic as a semantics. Similar to
the logic, the diagrams incorporate methods to reason about the existence of transitions
and to measure distances between cars. For a clearly defined syntax, we do not only
define the visual elements used within the diagrams, but give a formal syntactic definition
in terms of hypergraphs. This formal syntax may be used to take advantage of already
existing methods and tool support for diagram parsing.

We compare the expressiveness of Traffic Diagrams and EMLSL. As it will turn out,
the diagrams are not as expressive as the logic. To that end, we present a translation

3
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of diagrams into equivalent formulas. Furthermore, we discuss how the diagrams and
formulas may be used in conjunction to exploit their respective advantages.

Finally, we apply all of these formalisms to specify a small set of requirements restricting
the possible behaviour of cars. In addition, we define a safety predicate, which is expressing
the absence of collisions. We then formally prove the safety predicate to be invariant
along all possible transition sequences of the abstract model of traffic with the help of
the deductive system for the logic.

1.2 Structure of this Thesis

After this introduction, we present definitions and conventions that we will use throughout
this thesis in Chap. 2. Chapter 3 is devoted to the development of the abstract model
of traffic that we use as a semantics. In Chap. 4, we define the logic EMLSL and prove
its undecidability. Furthermore, this chapter contains the proof system together with
several derived rules. Chapter 5 contains the definitions needed for the visual language
of Traffic Diagrams. We present both the concrete and abstract syntax as well as a
formal semantics. In addition, the chapter includes formalisations of certain properties
the abstract model possesses and a sketch for a decidable subset of diagrams. The
combination of EMLSL and Traffic Diagrams is explored in Chap. 6, in which we also
compare the expressiveness of both approaches. Chapter 7 presents the application of
the proof system and the diagrams to a case study, defining the required constraints for
safe behaviour within freeway traffic. Finally, Chap. 8 concludes the thesis.

4



2
Preliminaries

Contents

2.1 Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Temporal Logic and Interval Logic . . . . . . . . . . . . . . . . 7

2.3 Labelled Natural Deduction . . . . . . . . . . . . . . . . . . . . 8

2.4 Graph Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

In this chapter, we present most of the work this thesis is based upon. We first give the
basic notations used throughout the following work in Sect. 2.1. In Sect. 2.2 and Sect. 2.3
we recall the preliminaries for the first part of the thesis, i.e., the concepts and definitions
of different interval logics and labelled natural deduction, respectively. Following that,
we present graph rewriting in Sect. 2.4, which plays a crucial role for the syntax of the
diagrams in this thesis.

2.1 Mathematical Notations

In this section, we introduce general mathematical notation. While the notation itself
follows mathematical standards, we include it for reference purposes.

Sets For a set S, the powerset of S, i.e., the set of all subsets of S, is denoted by P(S).
We use the usual notations ∪, ∩ and \ for the union, intersection and difference of sets.
To denote the disjoint union, we use the symbol ]. The Cartesian product of the sets S
and T , i.e., the set of all ordered tuples (s, t) with elements taken from the sets S and T ,
is denoted by S × T .

We use the standard notations for the different sets of numbers, i.e., N for the positive

5



2 Preliminaries

integers and R for the real numbers. The positive reals are denoted by

R+ = {x ∈ R | x ≥ 0} .

In this thesis, we will make extensive use of intervals over both the positive integers and
the real numbers. We denote closed borders of intervals with brackets and open borders
with parenthesis. Furthermore, we also allow for infinity as a right border. For example,
a typical interval we will use is the interval of all positive reals [0,∞) (= R+). We denote
the set of all real-valued intervals, i.e., intervals over the reals with I. Sometimes, we
want to use variables as the borders of an interval. We will use the notation IVar to refer
to the set of all variable intervals, i.e., where the borders are either variables or real
numbers. Observe that I ⊂ IVar.

Let i ∈ I with the borders a and b, i.e., i = [a, b], i = (a, b], i = [a, b) or i = (a, b). We
call the set i \ {a, b} the interior of i, denoted by I(i).

Relations and Functions If S and T are sets, R ⊆ S × T is a relation between S and
T . The domain of R is the set of all elements of S which are related to an element of T .
Similarly, the range of R is the set of all elements of T which are related to elements of S.
If both the domain and range of R are subsets of the same set S, i.e., R ⊆ S × S, then
we call R a relation on S. We denote the reflexive and transitive closure of a relation R
on a set S by R∗.

A function is a relation f ⊆ S × T , which is functional and total, i.e.,

(s, t1) ∈ f and (s, t2) ∈ f implies t1 = t2 (Functionality),
for all s ∈ S there is a t ∈ T such that (s, t) ∈ f (Totality) .

We denote the function f itself by f : S → T and its elements (s, t) ∈ f by f(s) = t. If a
relation f is only functional, but not total, we call f a partial function. If f : S → T is a
(partial or total) function, the image of S′ ⊆ S is given by

f(S′) = {t ∈ T | ∃s ∈ S′ • f(s) = t} .

Injectivity of a function means, that each element of the range is related to exactly one
element of the function’s domain, i.e.,

(s1, t) ∈ f and (s2, t) ∈ f implies s1 = s2 (Injectivity) .

If f is injective, we denote the preimage of an element t of T by f−1(t) = s, where
f(s) = t. To denote the function modification, we use notation taken from the Z
specification language [Smi00]. That is, for the function f , we use f ⊕{x 7→ y} to denote
the function which coincides with f except for f(x) = y. For two functions f : S → T
and g : T → U , the function g ◦ f : S → U is the composition of g and f , given by
(g ◦ f)(x) = g(f(x)) as long as both f(x) and g(f(x)) are defined.

A sequence is a function f with either the natural numbers or a finite subset of them as
its domain. We will often denote a sequence f with the domain {0, . . . , n} by 〈c0, . . . , cn〉,

6



2.2 Temporal Logic and Interval Logic

where f(i) = ci for all i ∈ {0, . . . , n}. The elements ci are the values of the sequence. If
S is a set, we use the notation S∗ for the set of all finite sequences with values in S. It
will be clear from the context whether we use this notation for sequences or the reflexive
transitive closure of a relation. If we want to apply the function g to all elements of the
sequence 〈c0, . . . , cn〉, we also write g(〈c0, . . . , cn〉) for the sequence 〈g(c0), . . . , g(cn)〉.

2.2 Temporal Logic and Interval Logic

Reasoning about temporal changes by means of logical formulas has a long history. The
first approach to use a temporal logic, i.e., a modal logic to formalise properties of time is
due to Prior [Pri57]. He introduced the modalities G and F with the intended meaning
of “it will always be the case” and “it will be the case”, respectively, as well as H and P ,
which stand for “it has always been the case” and “it was the case”, respectively. Prior
analysed the modalities with respect to a totally ordered linear time scale, i.e., for two
time points x and y, either x was later than y, or y was later than x, or both stood for
the same time point. Such models are models of linear time. For the specification and
verification of computational systems, linear temporal logic (LTL), as presented by Pnueli
[Pnu77], is a typical formalism inspired by Prior’s work. In computer science, logics with
semantics of branching time are also of strong importance, with the most famous example
being computational tree logic (CTL), introduced by Emerson and Clarke [EC82]. Instead
of interpreting time as a linearly ordered domain, they consider a tree of states, each of
which may possess an arbitrary number of children. CTL then provides operators to
reason about paths originating at the current node, and about the occurrence of states
on these paths.

A different approach to describe temporal properties is due to both Moszkowski
[Mos85] and Halpern and Shoham [HS91]. Halpern and Shoham introduced a modal logic,
subsequently called HS, where the modalities correspond to Allen’s interval relations
[All83]. The main application of HS and its extensions lies in the field of artificial
intelligence, where the different relations describe the knowledge about time (or other
domains) an agent may possess. Moszkowski introduced interval temporal logic (ITL) to
specify and verify hardware specifications. The models of both of these approaches are
based on (usually finite) intervals. In the following, we will concentrate on ITL.

Within ITL, intervals can be divided into their subintervals, to describe, e.g., the
beginning or the end of the intervals. For this purpose, Moszkowski introduced the chop
modality a . An interval [a, b] satisfies a formula ϕaψ, if and only if there is a point
c such that a ≤ c ≤ b, where [a, c] satisfies ϕ and [c, b] satisfies ψ. A depiction of this
interpretation is given in Fig. 2.1. The syntax of ITL is basically first-order logic with

ϕ ψ

ϕaψ

a c b

Figure 2.1: Semantics of the chop modality
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the addition of the chop-modality:

ϕ ::= ⊥ | θ1 = θ2 | ϕ1 → ϕ2 | ∀x • ϕ1 | ϕ1aϕ2 ,

where θ1 and θ2 are terms over a given signature. ITL distinguishes between rigid
and flexible terms. The values of the former are given globally by a valuation of the
variables, while the semantics of the latter may change with respect to the interval under
consideration. A typical example of a flexible variable would be the length of an interval.
We will not go further into the details of the semantics of ITL. Both ITL itself as well as
extensions like the Duration Calculus [ZHR91] or Neighbourhood Logic [BRZ99] have
been proven valuable for the specification and verification of real-time systems.

2.3 Labelled Natural Deduction

In his PhD thesis, Gentzen [Gen35] developed the calculus of natural deduction to present
an alternative to axiom-based proof systems. Natural deduction is based on a set of
proof rules and (temporary) assumptions, to give a tighter connection between the way
mathematicians “naturally” prove theorems and the formal proof system. To that end,
the system comprises an introduction and an elimination rule for each operator (with the
possible exception of the falsum proposition ⊥). A derivation within natural deduction
consists of a tree, where the root is the theorem to prove and the leaves are the assumptions
used within the proof. The branches from the root to the assumptions are determined
by the structure of the proof rules. Each rule may possess application conditions, which
restrict the form of the assumptions in the branches above the application of this rule.
These conditions can ensure, e.g., freshness of variables or terms for rules concerning
the quantors in first-order logic. A main feature of natural deduction is that rules
may eliminate assumptions from the derivation. The underlying idea of this method
is that the information of the eliminated assumption is already comprised within the
conclusion of the rule. For example, if we can derive the truth of a formula ψ from
the assumption that the formula ϕ holds, then ϕ→ ψ reflects exactly this information.
Hence, we can eliminate ϕ from the set of assumptions and disregard it in the rest of the
derivation. This mechanism is a formal counterpart to the informal mathematical strategy
to use temporary assumptions within a proof. For example, within case distinctions we
temporarily assume the truth of each case and derive our desired conclusion independently.
Within natural deduction, we would use the elimination rule for the disjunction operator
for such a purpose. A proof in natural deduction is a derivation, where all assumptions
have been eliminated. In derivations, we will mark eliminated assumptions by enclosing
them in square brackets. To identify the application of the rule which was the reason why
this particular assumption was eliminated, we add a unique index to both the assumption
and the application of the rule within the tree.

While this approach is well-suited for classical logic and intuitionistic logic, other non-
classical logics impose problems. For example, to define rules covering general modalities,
application conditions for the rules have to constrain the set of all assumptions, not only
the set of assumptions involved in the formula to prove [Pra06].
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A way to preserve the underlying structure of natural deduction is to augment the
formulas in the proof with information about the semantics. This leads to systems of
labelled natural deduction (LND) [Sim94; BMV98; Vig00]. In labelled natural deduction,
one of the basic entities are labelled formulas w : ϕ, where ϕ is a formula of the logic and
w is a name of a world. Intuitively, the labelled formula w : ϕ means that the formula ϕ
holds at world w. The reachability relation between the worlds R is defined by relational
formulas of the form wRv, where w and v are names for worlds. The formula wRv
expresses that v is reachable from w. By adding suitable rules concerning relational
formulas, different types of reachability relations may be defined. For example, the
addition of the following rules defines, that R is both reflexive and transitive, and hence
is the underlying reachability relation of all S4-frames.

wRw
wRv vRu

wRu

For an operator �, we denote the elimination rule of � by �E. Similarly, we use the
notation �I for the introduction rule of �. The rules concerning classical propositional
and first-order logic operators are similar to standard natural deduction rules. In the
presentation of the rules, we will denote the syntactical substitution of x by a term t
in the formula φ by φ[x 7→ t]. Following the notations of Basin et al.[BMV98], we use
the name ⊥E for reductio ad absurdum. Note that this rule is the only one concerning
falsum.

w : ϕ→ ψ w : ϕ → E
w : ψ

[w : ϕ]

...
w : ψ → I

w : ϕ→ ψ

[w : ¬ϕ]

...
v : ⊥ ⊥Ew : ϕ

w : ϕ ∧ ψ ∧Ew : ϕ

w : ϕ ∧ ψ ∧E
w : ψ

w : ϕ w : ψ ∧I
w : ϕ ∧ ψ

w : ∀x • ϕ ∀E
w : ϕ[x 7→ t]

w : ϕ[x 7→ t]
∀I

w : ∀x • ϕ

The application condition for ∀I is that t may not occur in any assumption w : ϕ[x 7→ t]
depends on. The rule ⊥E allows for a contradiction to be propagated along the reachable
worlds. That is, we take ⊥ to be a global contradiction [Vig00]. A main advantage
of the labelling approach is that the behaviour and intention of the modalities can be
captured by rules which only use the typical mechanisms of natural deduction, i.e.,
application conditions and elimination of assumptions. Furthermore, the introduction
and elimination rules for a box modality can be defined without any further knowledge
about the properties of the reachability relation R:

w : �ϕ wRv�E v : ϕ

[wRv]

...
v : ϕ�I
w : �ϕ

9
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The application condition of the introduction rule �I is that v is different from w and may
not occur free in any assumption v : ϕ depends on, except for wRv. The box elimination
rule states that whenever �ϕ holds on w, and v is reachable from w, then ϕ holds on v.
The introduction rule states that if we can deduce the truth of ϕ on v, where the only
assumption on v is that it is reachable from w, then we know that ϕ holds on all worlds
reachable from w. Hence �ϕ holds on w. This is exactly the intended semantics of a
box-like modality.

We will often use the rules for the derived operators, i.e., ∨, ¬, ↔, ∃ and diamond-like
modalities. To spare the reader the search of these rules in the literature, we include the
rules for these operators.

w : ¬ϕ w : ϕ ¬E
w : ⊥

[w : ϕ]

...
w : ⊥ ¬Iw : ¬ϕ

w : ϕ ∨ ψ

[w : ϕ]

...
v : χ

[w : ψ]

...
v : χ ∨Ev : χ

w : ϕ ∨I
w : ϕ ∨ ψ

w : ψ ∨I
w : ϕ ∨ ψ

[w : ϕ]

...
w : ψ

[w : ψ]

...
w : ϕ ↔ I

w : ϕ↔ ψ

w : ϕ w : ϕ↔ ψ ↔ E
w : ψ

w : ψ w : ϕ↔ ψ ↔ Ew : ϕ

w : ϕ[x 7→ t]
∃I

w : ∃x • ϕ
w : ∃x • ϕ

[w : ϕ]

...
v : χ ∃Ev : χ

v : ϕ wRv ♦I
w : ♦ϕ

w : ♦ϕ

[v : ϕ] [wRv]

...
u : χ ♦Eu : χ

The application condition for ∃E is that x appears free neither in any assumption v : χ
depends on (except for w : ϕ) nor in v : χ itself. Similarly, in the rule ♦E, v has to be
different from both u and w and may not appear in any assumption u : χ depends on,
except for wRv. Usually, the rules for the quantifiers have to assert the existence of
the terms t substituted for the variable x. In this thesis, we will assume constant and
infinite domains of quantification, and therefore the existence of the terms is guaranteed,
allowing us to omit these additional assumptions.

LND has been transferred to interval logics by Rasmussen [Ras01; Ras02]. In his
work, the reachability relation is ternary and labelled formulas are of the form [a, b] : ϕ,
where [a, b] is an interval on which ϕ is true. Rasmussen used a generalised interval logic
called signed interval logic (SIL), where intervals may also have a “negative length”, i.e.,
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he allows for intervals [a, b], where a > b. He defined rules capturing, e.g., the single
decomposition property of intervals [Dut95], and the behaviour of the chop-modalities,
and achieved a sound and complete proof system.

For a well-defined proof system, Rasmussen also needed to express whether a term
or formula is rigid and whether a formula does not contain a chop-modality, i.e., is
chop-free. Since these properties are both of syntactic nature, predicates for rigidity and
for chop-freeness can be straightforwardly defined. Furthermore, Rasmussen extended the
proof system for SIL with suitable axioms and rules to embrace, for example, Duration
Calculus or Neighbourhood logic.

2.4 Graph Rewriting

In this section we present the basic ideas of graph rewriting based on hypergraphs. Even
though we present the formal definitions, we will mostly focus on the intuitive notions.
However, we will give references to complete formalisations of the approaches described
in this section.

The first thing needed for the definition of a graph rewriting system is a notion of
graphs. In this thesis, we will use typed hypergraphs, a generalisation of graphs.

Definition 2.1 (Typed Hypergraph). Let T be a set of types and O a set of labels.
A typed hypergraph G = (V, E , τ, θ, l) over T and O consists of a set of vertices V,
hyperedges (or edges for short) E, an attachment function τ : E → V∗, a type function
θ : E → T and a labelling function l : E → O. In contrast to edges in usual graphs, a
hyperedge e may connect an arbitrary number of vertices, we say it visits the nodes via
its tentacles. We use typed hypergraphs, i.e., the type θ(e) of an edge e determines the
number of vertices e must be visiting. Hence for all edges e of the same type, the sequence
τ(e) is of the same length. We denote the set of all typed hypergraphs by the set G.

Even though, the attachment function of a hypergraph returns sequences, we will
introduce a more mnemonic notation to refer to the elements of the sequence. Since the
length of the sequence for all edges of one type is equal, we will not speak of the index
of a node within the sequence, but refer to it by a short string, e.g., i or at. This will
be used to have a more intuitive way to describe graphs. If we refer to different graphs
G and H, we will sometimes use the notation VG and VH to denote the set of vertices
of the corresponding graph, and similarly for the other elements of the graphs. For the
visualisations of typed hypergraphs, we use small black circles to denote the vertices and
grey rectangles with rounded corners to denote the hyperedges, where the type of the
edge is inscribed in the rectangle. The tentacles of the edges are given by the labelled
connections between the edges and the vertices. Labels are presented as rectangles, which
are connected with the edge they label by a dashed line. For the definition of graph
rewriting systems, we now have to introduce graph homomorphisms.

Definition 2.2 (Graph Homomorphisms). Let G and H be two typed hypergraphs. The
two functions fV : VG → VH and fE : EG → EH form a graph homomorphism, if they are

11
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edge preserving and compatible with the attachment function, as well as the typing and
labelling functions. That is, for all edges e ∈ EG such that τG(e) = 〈v0, . . . , vn〉 we have

τH(fE(e)) = 〈fV(v0), . . . , fV(vn)〉 ,
θH(fE(e)) = θG(e) ,

lH(fE(e)) = lG(e) .

The pair fV and fE will simply be abbreviated by f : G→ H and by abuse of notation, we
will use the name f to denote both functions. In general, we will only consider injective
graph homomorphmisms, i.e., both fV and fE have to be injective functions.

Graph rewriting systems [Roz97] are a generalisation of formal grammars. Where
formal grammars replace occurrences of strings with other strings, graph rewriting systems
allow for the replacement of graphs with other, possibly more complex graphs. Hence
such rewriting systems allow for the creation of a language of graphs. Even though graph
rewriting systems are often defined in terms of category theory, we give a definition
within set theory, following the presentation of Baldan et al.[BKK03]. First, we have to
define what a graph rewriting rule consists of.

Definition 2.3 (Rewriting Rule). A graph rewriting rule (or production) p = 〈L,R, α〉
is defined by its left-hand side (LHS) L and its right-hand side (RHS) R, as well as the
injective function α : VL → VR, which we will usually indicate by labelling corresponding
vertices of L and R by natural numbers.

A rule p is applicable to a graph G, if there exists an injective graph homomorphism
m : L→ G, a match of L in G. Given a match m of L in G, the application of p to G
results in a new graph H, given by

VH = VG ] (VR \ α(VL))

EH = (EG \m(EL)) ] ER
and with the function m̄ : VR → VH given by m̄(v) = m(α−1(v)) if v ∈ α(VL) and
m̄(v) = v otherwise, the attachment, type and labelling function are defined as

e ∈ EG \m(EL)⇒ τH(e) = τG(e), θH(e) = θG(e), lH(e) = lG(e)

e ∈ ER ⇒ τH(e) = m̄(τR(e)), θH(e) = θR(e), lH(e) = lR(e)

We denote the application of a rule p to the graph G resulting in H by G Z⇒p H.

Intuitively, the application of a rule p to a graph G consists of replacing an occurrence
of a subgraph F of G that matches the LHS with the RHS, where vertices are identified
by the function α.

Example 2.1. Consider the rule r shown in Fig. 2.2. The injective function of r is
given by the nodes labelled 1 and 2. The labels determine, which nodes are identified
in the LHS and RHS during the application of the rule. So let us consider the graph G
shown in Fig. 2.3. We can apply r at three different occurrences of the LHS of r to G.
This yields the three graphs shown in Fig. 2.4. Of course, r could be applied to these
graphs again, until no edge of the type S occurs in the results anymore.
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Figure 2.2: Example of a Graph Rewriting Rule
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Figure 2.3: The graph G

A graph rewriting system (or graph transformation system) consists basically of a
set of rewriting rules. In addition, it contains the axiom, denoting the graph where all
derivations of the system have to start at.

Definition 2.4 (Graph Rewriting System). A graph rewriting system G = (T, S, P )
consists of a set of types T , an axiom S, i.e., a typed hypergraph over T , and a set of
rewriting rules P , where all graphs occurring in P are typed hypergraphs over T . If H
is the result of an arbitrary sequence of applications of rules within G to the graph G,
we write G Z⇒∗G H, or simply G Z⇒∗ H, if G is clear from the context. We say that there
exists a derivation of H from G.

Unfortunately, this approach is not expressive enough for our purposes. We need
the possibility to constrain the application of rules more than just through the mere
occurrence of a subgraph. For that, we employ nested conditions [HP09] or rather their
extension HR∗ conditions [HR10; Rad13].

Intuitively, nested conditions allow not only for the statement whether a certain
subgraph matching the left-hand side exists, but also for further conditions on the
environment of this match. For example, it is possible to state that a certain other
subgraph shall not exist, for a rule to be applicable. HR∗ conditions extend this notion
by allowing for variables within the conditions, which have to be instantiated by graphs
that are created by a hyperedge replacement system. A hyperedge replacement system is
a graph rewriting system, where the LHS of each rule may only refer to one hyperedge at
once. For example, the rule r given above is such a rule.
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(c) Replacing the Right Edge

Figure 2.4: Possible Results of Applying r once to G

Definition 2.5 (Graph Substitution). Let X be a set of edge types and R a hyperedge
replacement system. A graph substitution induced by R is a function σ : X → G where
x Z⇒∗R σ(x) for all x ∈ X. We denote the application of a substitution σ to the graph G,
i.e., the simultaneous replacement of all occurrences of edges in the domain of σ within
G by Gσ.

The main syntactic element of HR∗ conditions is ∃(h, c), where h : P → C is a graph
homomorphism and c a graph condition. For a given graph G, this notation shall describe
the existence of a subgraph Cσ within G, i.e., a subgraph described by the application
of a suitable graph substitution σ to C. The subgraph Cσ then has to further satisfy
the condition c. This construction allows us, e.g., to express the existence of a path
of arbitrary length within G. With the condition c, additional constraints on the path
(or even the environment of the path) can be defined. The other crucial element of
the conditions is ∃(P w C, c), where P and C are graphs and c is a graph condition.
This notation gives us the ability to “cut” certain elements from graphs used within the
conditions and only refer to the elements of C subsequently (respectively, the elements of
Cσ for a substitution σ). With this construction, we can circumvent the injectivity of
the underlying graph morphisms.

The full syntax of HR∗ conditions is given by the following definition.

Definition 2.6 (HR∗ Graph Condition). Let R be a hyperedge replacement system and G
be a hypergraph possibly containing hyperedges that can be replaced by R. For a hypergraph
P , the set of HR∗ conditions over P is given inductively as follows:

1. > is a HR∗ condition over P .

2. Let P be a subgraph of C, where h : P → C is the inclusion of P in C and let c be
a HR∗ condition over C, then ∃(h, c) is a HR∗ condition over P .

3. Let C be a graph and c a HR∗ condition over C, then ∃(P w C, c) is a HR∗ condition
over P .
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4. Let c and c′ be HR∗ conditions over P , then both ¬c and c ∧ c′ are HR∗ conditions
over P .

If the domain of the inclusion in the second case of the definition is obvious from the
context, we may omit it. That is, instead of ∃(P → C, c), we would write ∃(C, c).

We now define the semantics of a HR∗ condition based on graph homomorphisms,
to have a clearly defined notion of satisfaction. In the following definition, we use the
notation cσ for a condition c and a substitution σ, do denote the recursive application of
σ to all graphs occurring within c.

Definition 2.7 (Semantics of HR∗ Conditions). Let g : P → G be a graph homomorphism
. Then the satisfaction of c by g, denoted by g |= c is defined as follows.

1. g satisfies >.

2. g satisfies ∃(h, c) iff h : P → C and there is a substitution σ which replaces all
variable edges of C and a graph homomorphism q : Cσ → G with q ◦ hσ = g1 such
that q satisfies cσ

3. g satisfies ∃(P w C, c) iff there is a substitution σ such that Cσ ⊆ P and a graph
homomorphism f : Cσ → G satisfying cσ such that g restricted to Cσ coincides with
f , i.e., g|Cσ = f .

4. g satisfies ¬c iff g does not satisfy c.

5. g satisfies c ∧ c′ iff g satisfies c and g satisfies c′.

If g has the domain ∅, i.e., g : ∅ → G and g satisfies the HR∗ condition c, we also say
that G satisfies c.

We define the abbreviations for the missing Boolean connectives and universal quan-
tification as usual. Furthermore, we will omit any conditions of the form >, e.g., instead
of ∃(C,>), we only write ∃(C). Observe that the substitution σ in the semantics of
the conditions replaces each occurrence of a variable edge by the same graph. This will
be unfortunate for our main purpose, when we want to state the existence of several,
structurally different paths defined by the same hyperedge replacement system. However,
Radke showed that simultaneous replacement of variables by substitutions and replace-
ment of variables with different graphs (which are still derivable by the replacement
system) are equally expressive [Rad13]2. We chose to present the semantics based on
substitutions, since they require less notational overhead, but will use the conditions as if
we defined the semantics based on replacement.

1hσ is the graph homomorphism which coincides with h for all elements of P , but has Cσ as its range.
Observe that all elements of C have a unique counterpart within Cσ, and hence hσ is uniquely
determined.

2The main idea of the proof that substitution is as expressive as replacement is to create a new variable
type for each occurrence of a variable within a condition. The replacement rules for these new types
are then defined to be similar to the original variable type. The other direction is more involved.
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If we want to formally add a HR∗ condition as an application condition to a rule
r = 〈L,R, α〉, we use the following approach. We start with the condition ∃(L w I, c0),
where I is the graph induced by the restriction of α to only the nodes of L, i.e., it consists
of a discrete graph. Then, within the condition c0, we can constrain possible connections
between these nodes, e.g., claim the existence of a path. This extra step is needed, since
we want to “reuse” the elements of the left-hand side within the condition, which is
normally prevented by the injectivity of all homomorphisms involved.

Definition 2.8 (Application of a Rule with a HR∗ condition). Let r = 〈L,R, α〉 be a
rewriting rule enhanced with the HR∗ condition c over L. Then r is applicable to the
graph G, if there exists a match m : L→ G and m |= c. The application of r to G is then
defined as in Definition 2.3.

Visually, we use an abbreviation. If we want to add an application condition ∃(L w I, c)
to a rule r = 〈L,R, α〉, we depict c to the left of the LHS of r and separate c from r with
a white triangle.
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Figure 2.5: The Hyperedge Replacement System R

Example 2.2. As an example, consider the hyperedge replacement system R, consisting
of the rules shown in Fig. 2.5. It replaces the hyperedge P by a path of S edges of an
arbitrary length greater than zero. Using R, we can define a HR∗ condition to restrict the
applications of the rule r of Fig. 2.2. Consider the modification of r as shown in Fig. 2.6.
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Figure 2.6: Example of a Graph Rewriting Rule with an Application Condition

The application condition states that the rule may only be applied, whenever there
is no path of S edges starting at the node labelled 2. That is, the second application
of r as shown in Fig. 2.3 would not be possible anymore. Observe that it prohibits the
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unlabelled node and the node with the label 1 to be identified due to the injectivity of the
homomorphisms involved.

If there are several rules with the same left-hand side, we use a notation similar to the
extended Backus-Naur form to achieve a compact depiction of such rules (see, e.g., the
rules defining the hyperedge replacement system R in Fig. 2.5). Then, if a rule has more
than one alternative, we use the following convention to easily refer to each of these.

Convention 2.1. If there is more than one alternative for a left-hand side of rules, we
will add superscripts 1, 2, 3, . . . to the names of the rules to refer to the first, second,
third, . . . alternative of the right-hand sides of the rule.
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In this chapter we define the model we use to reason about traffic situations. Here we
concentrate on a model of freeway traffic [Hil+11], i.e., we do not consider cars driving in
opposing directions or intersections of streets. A main property we want to maintain in
the model is its independence of the dynamics of the cars. Such a model will enable us
to decompose reasoning about traffic safety into two parts. On the upper level, spatial
arguments allow to show traffic safety properties, e.g., disjointness of space needed for
emergency braking manoeuvres. Then, on the lower level, controllers only need to comply
with the spatial constraints of the model, and safety for the overall system, i.e., the
freeway, will follow. Still, to keep the model descriptive, we will give a simple type of
dynamics, but will also give the required (but still very weak) restrictions on possible car
dynamics. As long as the actual car dynamics adhere to the spatial constraints implied
by our model, the properties proven with the techniques presented in this thesis will hold,
even with more concrete and expressive dynamics.

Figure 3.1 shows an exemplary situation on a freeway. For each car, we have both
indicated its physical size (the small polygon) as well as its braking distance, i.e., the
distance it needs in case of an emergency braking to come to a complete standstill. We
will call the sum of these the safety envelope of the car. Note that already this picture
contains an important abstraction: car A has been depicted as driving on two lanes at
the same time. This notion shall indicate that A is presently engaged in a lane-change
manoeuvre. Hence we already abstracted from the concrete physical position of A. The
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Figure 3.1: Situation on a Freeway at a Single Point in Time

dotted instance of car E denotes that E has currently set its turn signals to indicate its
desire to change to the lane to its right. In the next section, we will formalise situations
similar to this figure and describe the possible behaviour of cars. The dashed rectangle
shall denote the finite part of space that the car E perceives at the moment, as implied
by the sensors implemented in E.

The model of traffic is divided into different sections. First, we will define how all cars
may behave on the street, i.e., we give an abstraction of the freeway and what actions
cars may perform on this abstraction. Afterwards, we will restrict this model to the
part a single car may perceive at a point in time. Then, we will make use of an abstract
function ΩE , which defines the behaviour of the sensors of a car E. Finally, we are able
to define how each car perceives different cars on the freeway: simply as their physical
sizes, or with additional knowledge of their braking distances.

3.1 Abstract Road

We allow for an infinite (but countable) number of cars on the street. Each car is
associated with a unique identifier, which may be thought of, e.g., as its license plate.
The set of such car identifiers is I. We will usually denote elements of I with uppercase
letters, e.g., C,D ∈ I. The road itself comprises an arbitrary but fixed number N > 1 of
lanes, which are given by the set L = {1, . . . , N} ⊂ N. We will make use of addition and
the total order on natural numbers, subsequently.

For simplicity, we assume each lane to be of infinite extension, so that we do not have
to consider start- or endpoints of the road. Hence we take the extension of the freeway
to be the set of real numbers R. Throughout this thesis, we chose to use continuous time,
i.e., the time domain T is fixed to be T = R+.

As shown in Fig. 3.1, we distinguish between two spatial properties for each car. First,
each car reserves a certain amount of space on the freeway. This space is determined
by the actual position on the freeway and the physical size of the car. Furthermore,
depending on the model of the cars sensors, it may include its braking distance. A typical
safety property would include that the reservations of all cars are disjoint during the
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3.1 Abstract Road

whole observation.

In contrast to reservations, the space claimed by a car may be thought of as a test, or
a virtual image of the car, to check whether a lane change manoeuvre is possible. Hence
a claim models that a car sets its turn signals to indicate an upcoming lane change.

In Fig. 3.1, the reservations are drawn solid, while the claim of E is given by a dotted
polygon. We will use this convention throughout this thesis.

Definition 3.1 (Traffic Snapshot). Let L be a fixed, finite set of lanes and I a countably
infinite set of car identifiers. A structure T S = (res, clm, pos, spd , acc), is a traffic
snapshot, where res, clm, pos, spd and acc are functions

• res : I→ P(L) such that res(C) is the set of lanes the car C reserves,

• clm : I→ P(L) such that clm(C) is the set of lanes the car C claims,

• pos : I→ R such that pos(C) is the position of the car C along the lanes,

• spd : I→ R such that spd(C) is the current speed of the car C,

• acc : I→ R such that acc(C) is the current acceleration of the car C.

This model of the freeway is still very broad. To make a tighter connection between
real freeways and this abstract notion, we restrict the model in several ways. First, we
require all cars to reserve at least one, and at most two lanes. A car reserving two lanes at
once is assumed to be in the process of changing from one lane to the other. Furthermore,
a car may only set its turn signals, if it is not already engaging a lane-change. Finally, a
car may only try to change to a lane adjacent to its current lane. These requirements are
captured in the following sanity conditions of traffic snapshots.

Definition 3.2 (Sanity Conditions). A traffic snapshot T S is sane, if the following
conditions hold for all C ∈ I.

1. res(C) ∩ clm(C) = ∅

2. 1 ≤ |res(C)| ≤ 2

3. 0 ≤ |clm(C)| ≤ 1

4. 1 ≤ |res(C)|+ |clm(C)| ≤ 2

5. |res(C)| = 2 implies ∃n ∈ L • res(C) = {n, n+ 1}

6. clm(C) 6= ∅ implies ∃n ∈ L • res(C) ∪ clm(C) = {n, n+ 1}

We denote the set of all sane traffic snapshots by TS.

Example 3.1. We formalise Fig. 3.1 as a traffic snapshot T S = (res, clm, pos, spd , acc).
We will only present the subsets of the functions for the cars visible in the figure. Assuming
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that the set of lanes is L = {1, 2, 3}, where 1 denotes the lower lane and 3 the upper one,
the functions defining the reservations and claims of T S are given by

res(A) = {1, 2} res(B) = {1} res(C) = {3} res(E) = {2}
clm(A) = ∅ clm(B) = ∅ clm(C) = ∅ clm(E) = {1}

For the function pos, we chose arbitrary real values which still satisfy the relative positions
of the cars in the figure. Similarly, we instantiate the function spd such that the safety
envelopes of the cars could match the figure. For example, since the safety envelope of
B is larger than the safety envelope of C, B has to drive with a higher velocity. For
simplicity, we assume that all cars are driving with constant velocity at the moment, i.e.,
for all cars, the function acc returns zero.

pos(A) = 28 pos(B) = 3.5 pos(C) = 2 pos(E) = 14

spd(A) = 8 spd(B) = 14 spd(C) = 4 spd(E) = 11

This traffic snapshot satisfies the sanity conditions.

To allow for changes of spatial situations, we have to define transitions between traffic
snapshots. The possible transitions may be categorised in two different ways. First,
we may distinguish local transitions from global transitions, the former describing, e.g.,
how a single car creates a claim, or mutates its existing claim into a reservation. The
only global transition is the passing of time, in which all cars change their positions and
velocities according to their dynamics.

However, the passing of time does not capture the whole of the dynamics in our
setting, since we allow for instantaneous changes of accelerations, out of simplicity.
The dynamic transitions consist of these discrete changes of accelerations and the time-
passing transitions. The other types of transitions are essentially changes in the spatial
configuration on the freeway, which we call spatial transitions.

Definition 3.3 (Transitions). The following transitions describe the changes that may
occur at a traffic snapshot T S = (res, clm, pos, spd , acc).

T S c(C,n)−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos, spd , acc)

∧ |clm(C)| = 0 ∧ |res(C)| = 1

∧ res(C) ∩ {n+ 1, n− 1} 6= ∅
∧ clm′ = clm⊕ {C 7→ {n}}

T S wd c(C)−−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos, spd , acc)

∧ clm′ = clm⊕ {C 7→ ∅}

T S r(C)−−→T S ′ ⇔ T S ′ = (res′, clm′, pos, spd , acc)

∧ clm′ = clm⊕ {C 7→ ∅}
∧ res′ = res⊕ {C 7→ res(C) ∪ clm(C)}
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3.1 Abstract Road

T S wd r(C,n)−−−−−−→T S ′ ⇔ T S ′ = (res′, clm, pos, spd , acc)

∧ res′ = res⊕ {C 7→ {n}}
∧n ∈ res(C) ∧ |res(C)| = 2

T S t−→T S ′ ⇔ T S ′ = (res, clm, pos ′, spd ′, acc)

∧∀C ∈ I : pos ′(C) = pos(C) + spd(C) · t+ 1
2acc(C) · t2

∧∀C ∈ I : spd ′(C) = spd(C) + acc(C) · t

T S acc(C,a)−−−−−→T S ′ ⇔ T S ′ = (res, clm, pos, spd , acc′)

∧ acc′ = acc ⊕ {C 7→ a}

The spatial transitions are the following. The car C may create a claim on the lane n
via the transition c(C, n), if it does not hold a claim at the moment, and n is adjacent to
its current reservation. It may furthermore withdraw its claim by the transition wd c(C).
The creation of a reservation r(C) merges the current claim of C with its reservation
and removes the claim. If the car C reserves two lanes at once, it may withdraw its
reservation to the lane n via wd r(C, n), provided n is an element of its current reservation.
Observe that neither the creation of a reservation nor the withdrawal of a claim have any
preconditions. Hence these transitions may occur at any time.

The dynamic transitions given above are very specific, which seems to contradict our
aim to abstract from the dynamics of cars. However, these transitions are only given
exemplarily, to have a defined behaviour of cars within this thesis. The results in the
following chapters are independent of the concrete instantiation of the dynamics, as long
as the changes of positions and velocities of cars are continuous. Interesting models
of car dynamics, e.g. given by results of control theory in fact are continuous in this
sense [Bya+09]. Usually the discrete changes allowed by the dynamics define the level of
abstraction, i.e., the point, at which the dynamics no longer accommodate the physical
reality.

Due to these reasons, we also combine passing of time and changes of accelerations to
evolutions.

Definition 3.4 (Evolution). An evolution of duration t starting in T S and ending in
T S ′ is a transition sequence

T S = T S0 t0−→T S1
acc(C0,a0)−−−−−−→ . . .

tn−→T S2n−1
acc(Cn,an)−−−−−−−→T S2n = T S ′,

where t =
∑n

i=0 ti, ai ∈ R and Ci ∈ I for all 0 ≤ i ≤ n. We denote this evolution by

T S t T S ′.

We furthermore need a notion for the occurrence of arbitrary many transitions. For
that, we just collect all behaviour between two different snapshots with the concept of
abstract transitions.
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3 Spatial Model of Traffic

Definition 3.5 (Abstract Transitions). Let T = T S0 λ0−→ . . .
λn−1−−−→T Sn be a transition

sequence, where λi is an arbitrary transition label (for 0 ≤ i < n). Then T S0 =⇒ T Sn is
an abstract transition.

Example 3.2. The following trace shows an exemplary transition sequence starting at
the traffic snapshot defined in Example 3.1. At first, all cars move along their dynamics
for t1 seconds. Then the car C claims lane 2. Afterwards, t2 seconds pass. Subsequently,
C changes its claim to a reservation on lane 2 and after driving for tlc seconds on both
lanes (moving over), it then withdraws all reservations but the one for lane 2.

T S t1−→T S2
c(C,2)−−−−→T S3 t2−→T S4

r(C)−−→T S5 tlc−→T S6
wd r(C,2)−−−−−−→T S7

Furthermore, T S =⇒ T S7.

However, there is no traffic snapshot T S ′ such that T S c(A,3)−−−−→T S ′, since the reservation
of car A already comprises two lanes.

The transitions are well-defined in the sense, that a transition starting in a sane traffic
snapshot, will again result in a sane snapshot. That is, the transitions preserve the sanity
conditions of Def. 3.2.

Lemma 3.1 (Preservation of Sanity). Let T S be a sane traffic snapshot. Then, each
structure T S ′ reachable by a transition is a sane traffic snapshot.

Proof. We proceed by a case distinction. If the transition leading from T S to T S ′ is the
passing of time, or the change of an acceleration, the sanity conditions are still satisfied
in T S ′, since they only concern the amount and place of claims and reservations.

The removal of a claim T S wd c(C)−−−−−→T S ′ sets clm′(C) = ∅. We distinguish two cases. If
clm(C) = ∅, then T S = T S ′ and hence satisfies the conditions trivially. Let clm(C) 6= ∅.
After the transition, condition 1 holds trivially, condition 2 is not affected, condition 3
holds, as does condition 4. While condition 5 is not affected, condition 6 holds trivially.

Now let T S c(C,n)−−−−→T S ′. Then by definition of the transition, res(C) on T S contains
exactly one element, and clm(C) is empty. On T S ′, clm′(C) contains exactly n. Since
{n+ 1, n− 1} ∩ res(C) 6= ∅, n cannot be an element of res′(C). Hence the conditions 1
to 6 are satisfied.

Consider T S wd r(C,n)−−−−−−→T S ′. Since |res(C)| = 2, condition 4 ensures that clm(C) = ∅,
by which condition 1, 3, 4, 5 and 6 hold in T S ′. Condition 2 holds, since we overwrite
res(C) with {n}.

Finally, let T S r(C)−−→T S ′. Again we have to consider two cases. First, if clm(C) = ∅,
then T S = T S ′, and hence the sanity conditions hold. If clm(C) 6= ∅, we get by
condition 3 that clm(C) = {n} for some n ∈ L. By condition 4, |res(C)| = 1, and
by condition 1, we get that after the transition |res(C)| = 2, i.e., condition 2 holds.
Condition 1 and 6 hold now trivially. Condition 3 holds since we reset clm′(C) = ∅ and
similarly for condition 4. Condition 5 holds, since condition 6 holds on T S.

In the rest of this thesis, we will only consider sane traffic snapshots.
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3.2 Bounded Visibility

3.2 Bounded Visibility

An important assumption for our approach is that safety of a manoeuvre on the freeway
should not be dependent on the behaviour of cars in too far distance. Even though such
cars may indirectly influence the spatial situation near a car C, e.g., by performing an
emergency braking, C should be in the position to ensure a safe execution of manoeuvres
by observation of the cars in its proximity. Hence we assume that the information
available to each actor of a manoeuvre is limited to a finite part of the freeway around it.
This idea is formalised in the definition of views.

Definition 3.6 (View). For a given traffic snapshot T S with a set of lanes L, a view V
is defined as a structure V = (L,X,E), where

• L = [l, n] ⊆ L is an interval of lanes that are visible in the view,

• X = [r, t] ⊆ R is the extension that is visible in the view,

• E ∈ I is the identifier of the car under consideration, called owner of the view.

A subview of V is obtained by restricting the lanes and extension we observe. For this
we use sub- and superscript notation: V L′ = (L′, X,E) and VX′ = (L,X ′, E), where L′

and X ′ are subintervals of L and X, respectively.

The maximal view of E should at least comprise the space needed for braking in the
worst possible case, i.e., the distance needed to come to a standstill for the car with the
worst brakes at maximal velocity. This distance is subsequently called horizon of the
system. Furthermore, we assume that in such a maximal view, every car may perceive
all lanes of the freeway within the horizon.

Definition 3.7 (Standard View). For a traffic snapshot T S = (res, clm, pos, spd , acc)
with L as its set of lanes and a car E ∈ I we define the standard view of E to be

Vs(E, T S) = (L, [pos(E)− h, pos(E) + h], E) ,

where the horizon h is chosen such that a car driving at maximum speed can, with lowest
maximal deceleration, come to a standstill within the horizon h.

In our approach we want to emphasise local reasoning with respect to the owner of
a view. If this car moves along the road, i.e., in terms of transitions, whenever time
passes, we have to ensure that the view owned by this car also moves with the same speed.

Formally, if a traffic snapshot T S0 evolves to T S1 in the time t, i.e. T S0 t T S1, the
extension X of a view V = (L,X,E) has to be shifted by the difference of the positions
of E in T S0 and T S1. For this purpose, we introduce the function mv , which, given
two snapshots T S, T S ′ and a view V , computes the view V ′ corresponding to V after
moving from T S to T S ′.
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Definition 3.8 (Moving a View). Let T S and T S ′ be two traffic snapshots with T S =
(res, clm, pos, spd , acc) and T S ′ = (res′, clm′, pos ′, spd ′, acc′). Furthermore, let V =
(L, [r, s], E) be a view. Then the result of moving V from T S to T S ′ is given by
mvT S

′
T S (V ) = (L, [r + x, s+ x], E), where x = pos ′(E)− pos(E).

With the possibility to move a view from one snapshot to another, we abuse the notions
of transitions to connect tuples of traffic snapshots and views. That is, if a transition
exists between traffic snapshots T S and T S ′, it also exists between T S, V and T S ′, V ′,
where V ′ is either equal to V if the transition is spatial, or the result of moving V to
T S ′ if the transition is an evolution. For abstract transitions, we also have to move the
view to the new snapshot, since time may have passed between the traffic snapshots.

Convention 3.1 (Extended Transitions). Let T S be a traffic snapshot, V any suitable
view for T S and ∗ ∈ {r(C),wd r(C, n), c(C, n),wd c(C) | C ∈ I, n ∈ L}. Then we may
also write

T S, V ∗−→T S ′, V for T S ∗−→T S ′ ,

T S, V t T S ′,mvT S
′

T S (V ) for T S t T S ′ ,

T S, V =⇒ T S ′,mvT S
′

T S (V ) for T S =⇒ T S ′ .

The model defined so far is clearly capable of capturing qualitative properties of space
on the freeway. Since we are also interested in quantitative properties, e.g., the distance
between two cars, we introduce two measures on the set of lanes and the extension of the
views. For the extension, this notion coincides with the length measurement of Duration
Calculus (DC) [ZHR91], while the measure on the lanes is simply its cardinality.

Definition 3.9 (Measures). Let IR = [r, t] be a real-valued interval, i.e. r, t ∈ R. The
measure of IR is the norm ‖IR‖ = t− r. Similarly, the measure of a discrete interval ID
is its cardinality |ID|.

The definition of subviews induces a relation between views, which we will formalise
subsequently. Since the set of lanes and the extension of a view are always discrete
and real-valued intervals, respectively, we chose to employ relations as induced by other
interval based logics, like Interval Temporal Logic (ITL) [Mos85] or DC [ZHR91]. That
is, the view V1 = (L, [r, s], E) and V2 = (L, [s, t], E) are in horizontal relation with
V = (L, [r, t], E), where s ∈ [r, t].

For vertical relations, we have to be more careful, since the set of lanes is discrete,
in contrast to the extension of the views. If we would use a similar notion of vertical
relations, i.e., V1 = ([l,m], X,E), V2 = ([m,n], X,E) and V = ([l, n], X,E), two problems
would arise. First, the lane m would be part of both subviews, which clearly contradicts
the idea of separating them.1 Furthermore, we could never achieve a view without lanes.
While this does not seem to be a problem at first, it would complicate the definition of a
modal logic with traffic snapshots and views as semantics (cf. Chap.4). An indication of
this problem we can already describe here is that the measures on the horizontal and

1In the case of continuous intervals, we do not mind that s is part of both subviews, since we are
generally only interested in cars with a size greater than zero.
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vertical dimensions would behave differently. For example, the smallest possible interval
in horizontal direction is [s, s] for an arbitrary s ∈ R. This interval has the measure
‖[s, s]‖ = 0. However, the smallest interval in vertical direction would be [m,m] with
m ∈ N, which has the measure |[m,m]| = 1. To avoid this asymmetry, we give a slightly
more intricate notion of chopping discrete intervals.

Definition 3.10 (Chopping Discrete Intervals). Let I be a discrete interval, i.e., I = [l, n]
for some l, n ∈ L or I = ∅. Then I = I1 	 I2 if and only if I1 ∪ I2 = I, I1 ∩ I2 = ∅, and
either max(I1) + 1 = min(I2) or I1 = ∅ or I2 = ∅.

However, for a symmetric definition, we will also use a corresponding notation for
continuous intervals.

Definition 3.11 (Chopping Continuous Intervals). Let X = [r, t] and s ∈ [r, t]. Further-
more, we denote [r, s] by X1 and [s, t] by X2. Then X = X1 :X2.

We define the following relations on views to have a consistent description of reachable
views in vertical and horizontal direction.

Definition 3.12 (Relations of Views). Let V1, V2 and V = (L,X,E) be views of a
snapshot T S. Then V = V1 	 V2 if and only if L = L1 	 L2, V1 = V L1 and V2 = V L2.
Furthermore, V = V1 : V2 if and only if X = X1 :X2 and V1 = VX1 and V2 = VX2.

Note that views with different owners may never be related to each other.

Example 3.3. Consider again Fig. 3.1. The dashed rectangle indicates the view V =
(L,X,E) we want to define. Inspection of Example 3.1 shows that L = {1, 2}. For
the extension, we only have to choose values such that the relations of the figure are
preserved, i.e., both E and A fit fully into the extension, the safety envelope of B is
partially contained in X, while no part of C overlaps with it. For example, we can choose
X = [12, 42], if we assume that the safety envelope of C is smaller than eight spatial
units and the safety envelope of B is larger than 9.5 spatial units.

3.3 Sensor Models

Subsequently we will use a car dependent sensor function ΩE : I × TS → R+ which,
given a car identifier and a traffic snapshot, provides the length of the corresponding car,
as perceived by E. The idea behind this function is to parameterise the capabilities of
different sensors within the model. For example, in previous work we presented two types
of obtainable knowledge of cars [Hil+11]. The simplest type is called perfect knowledge
and assumes that the sensors return not only the physical size of a car, but in addition the
length it needs for safe braking in case of an emergency. Both lengths together comprise
the safety envelope of the car. For a more realistic scenario, it is sensible to assume that
a car E knows its own safety envelope, but only the physical sizes of the other cars. Such
different assumptions may be defined by instantiating the sensor function appropriately.

Furthermore, the sensor function may be thought of as a link between the abstract
setting presented here and concrete controllers for different car manoeuvres. Controllers
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must on the one hand return correct values according to the sensor function, e.g., while
computing safety envelopes, and on the other hand may only use the type of knowledge
determined by the function.

In this thesis, we will only consider the case of perfect knowledge of every car, to gain
a very symmetrical setting. As shown in previous work, using an asymmetrical model
of knowledge leads to the need of explicit communication between cars [Hil+11]. In
the setting of perfect knowledge however, we can use the implicit communication via
reservations and claims in particular, and still prove collision freedom.

The sensor function together with a view gives rise to the way the space on the freeway
is perceived by the different cars. For a given view V = (L,X,E) and a traffic snapshot
T S = (res, clm, pos, spd , acc) we use the following abbreviations:

resV : I→ P(L) with C 7→ res(C) ∩ L (3.1)

clmV : I→ P(L) with C 7→ clm(C) ∩ L (3.2)

lenV : I→ P(X) with C 7→ [pos(C), pos(C) + ΩE(C, T S)] ∩X (3.3)

The functions (3.1) and (3.2) are restrictions of their counterparts in T S to the sets of
lanes considered in this view. The function (3.3) gives us the part of the view occupied
by a car C. Observe that using this definition without further restrictions, cars may have
a point-like extension. To have a more realistic model, we require the values of the sensor
function to be greater than zero for all cars and traffic snapshots.

Convention 3.2. For all cars C ∈ I, all views V = (L,X,E) and all traffic snapshots
T S, we require ΩE(C, T S) > 0.

Example 3.4. In this example we finish the formalisation of Fig. 3.1 by specifying a
possible instantiation of the sensor function. Compare the values in this example to both
Example 3.1 and 3.3.

ΩE(A, T S) = 11 ΩE(B, T S) = 11.5

ΩE(C, T S) = 7 ΩE(E, T S) = 13

With this sensor definition, the derived functions of T S and V are as follows.

resV (A) = {1, 2} resV (B) = {1} resV (C) = ∅ resV (E) = {2}
clmV (A) = ∅ clmV (B) = ∅ clmV (C) = ∅ clmV (E) = {1}
lenV (A) = [28, 39] lenV (B) = [12, 15] lenV (C) = ∅ lenV (E) = [14, 27]

Observe how the space occupied by B is reduced to fit into the view, and how the reservation
of C is invisible for E, since the view only comprises both lower lanes.

3.4 Related Work

Different models for traffic on freeways have been proposed throughout the past. A main
difference between these approaches, is whether they explicitly define space or only model
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the connection structure between cars. The former approach was taken within the PATH
project by Hsu et al. [Hsu+94; LGS98], where different minimal manoeuvres for cars
partaking in automated traffic have been defined. The behaviour of the cars themselves is
modelled by differential equations. Combining the manoeuvres in this approach allows for
more sophisticated manoeuvres on the freeway, for example the construction of so-called
platoons of several cars to lower the overall fuel-consumption by exploiting the slipstream
of the cars in front.

Platzer defined an extension of dynamic logic allowing for the use of differential
equations within programs [Pla10a]. It has been used by Platzer and Quesel to model
railways [PQ09] and extended to cope with an infinite number of cars changing lanes on
a multi-lane freeway [Pla10b; LPN11]. In contrast to our work, the explicit dynamics of
the cars and the spatial configuration on the road are inherently interwoven. This stems
from the generality of their approach, where the semantics itself is a Kripke model, in
which the states are given by first-order structures. Hence all assumptions and definitions
of freeway traffic have to be given by formulas of their logic. Since we consider a more
restricted and specific semantics, we can omit these definitions. However, there are
striking similarities to our model of freeway traffic. Cars changing lanes are modelled as
using two lanes at once, for example. Furthermore, they use constant domains of the
semantic first-order states, which resembles our assumption of a constant set of cars.

Banach and Butler presented a formalisation of a cruise controller, which keeps the
velocity constant as long as possible [BB13] and a controller which tries to keep the car
at the center of a lane [BB14]. They started with a specification given in pure Event-B
[Abr10] without any hybrid elements and gradually refined events and non-deterministic
behaviour, to finally achieve a verified hybrid formalisation of these controllers. In
contrast to our approach, they explicitly solve the differential equations within their
specifications.

Damm, Hungar and Olderog presented a method to verify safe behaviour within traffic
by using a proof rule [DHO06]. The conditions for safe behaviour are divided into the
premisses of the proof rule and can be verified independently. In that sense, they split the
goals to be analysed, by providing a protocol the cars have to implement. This protocol
requires the cars to enter certain correction modes, whenever the cars are approaching
an unsafe situation. However, they base their model on hybrid automata with explicit
differential equations in the modes.

The interaction between controllers for different purposes, namely keeping a given
target velocity and staying within one lane, has been studied by Damm, Möhlmann and
Rakow [DMR14]. They use hybrid automata for the definition of the controllers and
hence rely strongly on concrete differential equations for the behaviour. Furthermore,
their approach is not directly defined to cope with lane changes, even though the protocol
can be extended to gradually change the lane instead of stabilising to the mid of the
current lane.

None of these models of car traffic distinguish between what we call reservations and
the communication of the intention to change the lane, i.e., a claim. That is, they treat a
lane-change as a manoeuvre of a single car, who does not need to announce its actions.
In contrast, in our model all cars able to perceive a claim can take this information into
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account.
Toben [Tob08] has used the “spotlight principle” [WW07] to verify distributed systems

with a dynamically changing link structure. His running example is based on car platoons.
The spotlight abstraction restricts the set of agents under consideration to a finite number.
Only these distinguished cars are kept explicitly, while the cars outside this “spotlight” are
abstracted to a process with arbitrary behaviour. Our restriction of the road to a finite
view similarly restricts the set of agents visible to a single distinguished car. However,
we do not directly get that the number of cars in the view is finite. Furthermore, cars
outside of a view are not considered at all, since we assume that they are currently not
able to communicate with the owner of this view.

The presented model can be extended to take oncoming traffic into account [HLO13].
The main difference is that the set of cars has to be divided into disjoint subsets I→ and
I← to refer to the direction a car is driving into. Then, most of the definitions in this
chapter can be used without changes, except for the calculation of the perceived length
lenV of a car. There the different directions cause for a slightly altered definition.

A different extension is to get rid of the concrete dynamics introduced in Definition 3.3.
We could introduce a new function called, e.g., dyn : I→ (T→ R) which returns for a
given car its continuous dynamical behaviour. While time passes, all cars would evolve
according to the functions returned by dyn. Instead of changing the acceleration of a
car C, dyn would be updated to reflect the mode change within C. For a more concise
presentation, we refrained from giving this even more abstract definition. However, the
results in this thesis are not affected by this change.
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In this chapter, we present the extended multi-lane spatial logic (EMLSL) which is
explicitly defined to deal with traffic situations described by the model in the previous
chapter. That is, the main focus of reasoning lies on the spatial aspects of traffic, while
most of the dynamics is hidden within the semantics.

This chapter is based on previous work [LH13], but contains a more structured
presentation of the proof system, as well as a more thorough and complete discussion.

4.1 Syntax and Semantics

We employ three sorts of variables. The set of variables ranging over car identifiers is
denoted by CVar, with typical elements c and d. For referring to lengths and quantities
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of lanes, we use the sorts RVar and LVar ranging positive over real numbers and natural
numbers, respectively. The set of all variables is denoted by Var. To refer to the car
owning the current view, we use the special constant ego. Furthermore, we use the
syntax ` for the length of a view, i.e., the length of the extension of the view and ω for
the width, i.e., the number of lanes. For simplicity, we only allow for addition between
correctly sorted terms. However, it is straightforward to augment the definition with
further arithmetic operations.

Definition 4.1 (Terms of EMLSL). We use the following definition of terms.

θ ::= n | r | ego | u | ` | ω | θ1 + θ2,

where n ∈ N, r ∈ R+, u ∈ Var and θi are both of the same sort, and not elements of
CVar ∪ {ego}. We denote the set of terms with Θ.

In addition to the atoms ⊥ denoting a contradiction, = for equality and ≤ for the order
between elements of the dimensions, we use two spatial atoms re(c) and cl(c), which shall
be true, iff the current view consists of one single lane which is completely filled with the
reservation of the car denoted by c (or its claim, respectively). To reason about views
with more lanes and different topological relations between cars, we can chop views either
horizontally with the binary modality a , or vertically which is denoted by stacking
formulas on top of each other. Furthermore, we use unary universal modalities for all of
the possible spatial transitions between traffic snapshots and for evolutions. The modality
for evolutions is metric, i.e., it is possible to constrain the length of the evolutions by
the interval the modality is annotated with. Observe that the spatial modalities use a
car variable in their subscript. This variable will be evaluated like other variables in the
formulas. I.e., the modalities are parameterised by these variables. The modality G is
a universal modality with respect to abstract transitions, i.e., it can be used to define
invariance properties. Finally, EMLSL is closed under all first-order operators.

Definition 4.2 (Syntax of EMLSL). The syntax of formulas of the extended multi-lane
spatial logic EMLSL is given as follows.

φ ::= ⊥ | θ1 = θ2 | θ1 ≤ θ2 | re(c) | cl(c) | φ1 → φ2 | ∀z • φ1 | φ1aφ2 | φ2φ1 |Mφ

where M ∈ {�r(c),�c(c),�wd c(c),�wd r(c),�I ,G }, I ∈ I, c ∈ CVar ∪ {ego}, z ∈ Var,
and θ1, θ2 ∈ Θ are of the same sort. For the atom θ1 ≤ θ2, we also require that θi are not
elements of CVar ∪ {ego}. We denote the set of all EMLSL formulas by Φ.

Definition 4.3 (Valuation and Modification). A valuation is a function
ν : Var ∪ {ego} → I ∪ R+ ∪ N. The function ν ⊕ {x 7→ α} is a modification of ν,
which coincides with ν except possibly for x. We silently assume valuations and their
modifications to respect the sorts of variables. For a view V = (L,X,E), we lift ν to
a function νV evaluating terms, where variables and ego are interpreted as in ν, and
νV (`) = ‖X‖ and νV (ω) = |L|. The function + is interpreted as addition.
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4.1 Syntax and Semantics

Definition 4.4 (Semantics). In the following, let θi be terms of the same sort, I ∈ I,
c ∈ CVar ∪ {ego} and z ∈ Var. The satisfaction of formulas with respect to a traffic
snapshot T S, a view V = (L,X,E) and a valuation ν with ν(ego) = E is defined
inductively as follows:

T S, V, ν 6|= ⊥ for all T S, V, ν
T S, V, ν |= θ1 = θ2 ⇔ νV (θ1) = νV (θ2)

T S, V, ν |= θ1 ≤ θ2 ⇔ νV (θ1) ≤ νV (θ2)

T S, V, ν |= re(c) ⇔ |L| = 1 and ‖X‖ > 0 and

resV (ν(c)) = L and X = lenV (ν(c))

T S, V, ν |= cl(c) ⇔ |L| = 1 and ‖X‖ > 0 and

clmV (ν(c)) = L and X = lenV (ν(c))

T S, V, ν |= φ1 → φ2 ⇔ T S, V, ν |= φ1 implies T S, V, ν |= φ2

T S, V, ν |= ∀z • φ ⇔ ∀α ∈ I ∪ R+ ∪ N • T S, V, ν ⊕ {z 7→ α} |= φ

T S, V, ν |= φ1aφ2 ⇔ ∃V1, V2 • V = V1 : V2 and

T S, V1, ν |= φ1 and T S, V2, ν |= φ2

T S, V, ν |= φ2
φ1

⇔ ∃V1, V2 • V = V1 	 V2 and

T S, V1, ν |= φ1 and T S, V2, ν |= φ2

T S, V, ν |= �r(c)φ ⇔ ∀T S ′ • T S r(ν(c))−−−−→T S ′ implies T S ′, V, ν |= φ

T S, V, ν |= �c(c)φ ⇔ ∀T S ′, n • T S c(ν(c),n)−−−−−→T S ′ implies T S ′, V, ν |= φ

T S, V, ν |= �wd c(c)φ ⇔ ∀T S ′ • T S wd c(ν(c))−−−−−−→T S ′ implies T S ′, V, ν |= φ

T S, V, ν |= �wd r(c)φ ⇔ ∀T S ′, n • T S wd r(ν(c),n)−−−−−−−→T S ′ implies T S ′, V, ν |= φ

T S, V, ν |= �Iφ ⇔ ∀T S ′, t • t ∈ I ∧ T S t T S ′ implies T S ′,mvT S
′

T S (V ), ν |= φ

T S, V, ν |= Gφ ⇔ ∀T S ′ • T S =⇒ T S ′ implies T S ′,mvT S
′

T S (V ), ν |= φ

In addition to the standard abbreviations of the remaining Boolean operators and
the existential quantifier, we use > ≡ ¬⊥. Furthermore, we introduce a set of derived
modalities and abbreviations in the following convention.

Convention 4.1 (Abbreviations). An important derived modality of our previous work
[Hil+11] is the somewhere modality

〈φ〉 ≡ >a



>
φ
>


 a>.

Further, we use its dual operator everywhere. We abbreviate the modality somewhere
along the extension of the view with the operator ♦`, similar to the on some subinterval
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modality of DC. For the metric modality, we allow for two simplifications, if the interval I
is a singleton set and if the bounds are not relevant. We also introduce the dual operator
to the invariance modality.

[φ] ≡ ¬〈¬φ〉 ♦`φ ≡ >aφa> �`φ ≡ ¬♦`¬φ
�τφ ≡ �[0,∞)φ �xφ ≡ �[x,x]φ Fφ ≡ ¬G¬φ

Likewise, abbreviations can be defined to express the modality on some lane. Furthermore,
we define the diamond modalities for the transitions as usual, i.e., ♦∗φ ≡ ¬�∗¬φ, where
∗ ∈ {r(c), c(c),wd r(c),wd c(c), I}.
Example 4.1. We first present some examples ϕi for EMLSL formulas.

ϕ1 ≡ ` = x

ϕ2 ≡ 〈cl(ego)〉
ϕ3 ≡ 〈re(c)〉

ϕ4 ≡ �r(ego)

〈
re(ego)
re(ego)

〉

ϕ5 ≡ ♦c(a)>
ϕ6 ≡

〈
�c(b)cl(b)

〉

For evaluating their semantics, we recall the traffic snapshot T S, the view V and the
sensor function defined in Example 3.1 to 3.4, i.e., the formalisation of Fig. 3.1. We
only repeat the values of the view and of the derived functions resV , clmV and lenV . The
view is given by V = ({1, 2}, [12, 42], E) and the corresponding restrictions of T S are as
follows:

resV (A) = {1, 2} , resV (B) = {1} , resV (C) = ∅ , resV (E) = {2} ,
clmV (A) = ∅ , clmV (B) = ∅ , clmV (C) = ∅ , clmV (E) = {1} ,
lenV (A) = [28, 39] , lenV (B) = [12, 15] , lenV (C) = ∅ , lenV (E) = [14, 27] .

Let ν be defined by ν(x) = 30, ν(a) = A, ν(b) = B, ν(c) = C and ν(ego) = E. Then the
following relations hold:

T S, V, ν |= ϕ1

T S, V, ν |= ϕ2

T S, V, ν 6|= ϕ3

T S, V, ν |= ϕ4

T S, V, ν 6|= ϕ5

T S, V, ν |= ϕ6

The first formula is true, since the length of V is exactly 30 spatial units. The formula ϕ2

is true, since we can find the subview V2 = (L2, X2, E) with L2 = {1} and X2 = [14, 27],
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for which clmV2(E) = L2 and lenV2(E) = X2. The reasoning why T S, V and ν do not
satisfy ϕ3 is similar. For ϕ4, observe that there is only one transition for E mutating
its claim to a reservation. After this transition, resV (E) = {1, 2} holds. Hence, there
is a subview of V , such that ϕ4 is satisfied after all transitions with the label r(E). The
formula ϕ5 is not satisfied by the given model, since there is no transition, where A may
create a new claim (as explained in Example 3.2). Finally, ϕ6 is satisfied, because when
B creates a claim, the only lane the claim can be created on is lane 2. Hence, we can
find a subview V6, which consists of L6 = {2} and X6 = [12, 15]. This view and the
snapshot emerging from the transition satisfy ϕ6. Observe that the presented extensions
for the satisfaction of ϕ2 and ϕ6 are the maximal extensions possible. We could also have
chosen a subinterval of these extensions with a length greater than zero, and still have a
satisfying model.

In the first definition of MLSL, we included the atom free to denote free space on
the road, i.e., space which is neither occupied by a reservation nor by a claim. It was
not possible to derive this atom from the others, since we were unable to express the
existence of exactly one lane and a non-zero extension in the view. However, in the
current presentation, free can be defined within EMLSL.

free ≡ ` > 0 ∧ ω = 1 ∧ ∀c •�`¬(cl(c) ∨ re(c))

Furthermore, we can define ` < r ≡ ¬(` = ra>) and use the superscript φr to
abbreviate the schema φ ∧ ` = r. For reasons of clarity, we will not always use this
abbreviation and write out the formula instead, to emphasise the restriction.

As an example, the following formula defines the behaviour of a distance controller,
i.e., as long as the car starts in a situation with free space in front of it, the formula
demands that after an arbitrary time, there is still free space left.

∀x, y • ♦`




ω = x
re(ego)a free

ω = y


→ �τ


♦`




ω = x
re(ego)a free

ω = y






We have to relate the lane in both the antecedent and the conclusion by the atoms
ω = x and ω = y respectively. If we simply used 〈re(ego)a free〉, it would be possible for
the reservations to be on different lanes, and hence, we would not ensure that free space
is in front of each of ego’s reservations at every point in time. However, the formula does
not constrain how the situations may change, whenever reservations or claims are created
or withdrawn.

Observe that it is crucial to combine acceleration and time transitions into a single
modality �I . Let ego drive on lane m with a velocity of v. If we only allowed for the
passing of time without any changes of accelerations, this formula would require all cars
on m in front of ego to have a velocity vf ≥ v, while all cars behind ego had to drive with
vb ≤ v. Hence the evolutions allow for more complex behaviour in the underlying model.

Like for ITL [Mos85] or DC [ZHR91], we call a term or formula flexible whenever its
satisfaction is dependent on the current traffic snapshot and view. Otherwise the formula
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is rigid. However, since the spatial dimensions of EMLSL are not directly interrelated,
we also distinguish horizontally rigid and vertically rigid formulas. The satisfaction of
the former is independent of the extension of views, while for the latter, the amount of
lanes in a view is of no influence. If a formula is only independent of the current traffic
snapshot, we call it dynamically rigid.

Definition 4.5 (Types of Rigidity). Let φ be a formula of EMLSL. We call φ dynamically
rigid, if it does not contain any spatial atom, i.e., re(c) or cl(c) as a subformula.
Furthermore, we call φ horizontally rigid, if it is dynamically rigid and in addition does
not contain ` as a term. Similarly, φ is vertically rigid, if it is dynamically rigid and does
not contain ω as a term. If φ is both vertically and horizontally rigid, it is simply rigid.

Example 4.2. Each equality constraint between variables c = d is a rigid formula. In
contrast, ` = x is only vertically rigid, and ω = y is only horizontally rigid. Since both
of these formulas are dynamically rigid, so is ` = xaω = y. The formula 〈re(c)〉 is not
rigid in any way.

Lemma 4.1. Let φ, φH and φV be formulas of EMLSL, such that φ is dynamically rigid,
φH is horizontally rigid and φV is vertically rigid. Then for all traffic snapshots T S, T S ′,
views V , V1, V2 and valuations ν,

1. T S, V, ν |= φ iff T S ′, V, ν |= φ

2. Let V = V1 : V2. Then T S, V, ν |= φH iff T S, Vi, ν |= φH (for i ∈ {1, 2}).

3. Let V = V1 	 V2. Then T S, V, ν |= φV iff T S, Vi, ν |= φV (for i ∈ {1, 2}).

Proof. By induction on the structure of EMLSL formulas.

4.2 Proof System

In this section, we define a system of labelled natural deduction [Gab96; BMV98; Vig00]
for the full logic EMLSL. That is, the rules of the deduction system do not operate on
formulas φ, but on labelled formulas w : φ, where w is a term of a labelling algebra and φ is
a formula of EMLSL. They may connect the derivations of formulas and relations between
the terms w to allow for a tighter relationship between both. The labelling algebra is more
involved than for standard modal logics, since EMLSL is in essence a multi-dimensional
logic, where the modalities are not interdefinable. Obviously, the spatial modalities
cannot be defined by the dynamic modalities and vice versa. Furthermore, neither can
the dynamic modalities be defined by each other in general. Consider, e.g., the modalities
�r(c) and �c(c). Both of these modalities rely on different transitions between the models,
which are only indirectly related.

The labels of the algebra consist of tuples ts, v. Similarly to the semantics, ts is
the name of a traffic snapshot and v the name of a view. The algebra contains three
different kinds of relations. The relations of the form v = v1 : v2 and v = v1 	 v2 define
ternary reachability relations between views for the spatial modalities. Relations between
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whole labels, e.g., ts, v
r(c)−−→ts′, v′ describe the behaviour of transitions. The relations

within the labelling algebra for traffic snapshots directly correspond to the dynamic

modalities. For example, we have ts, v
c(c)−−→ts′, v′, whenever there exists an n ∈ N such

that T S c(ν(C),n)−−−−−−→T S ′, where v and v′ denote the same view and ts (ts′) denotes the
snapshot T S (T S ′, respectively). Finally, since we have transitions describing the passing
of time, we need a new type of variables called timing variables t. They may only be

used in formulas related to the passing of time, i.e., ts, v
t−→ts′, v′, and in inequalities of

the form t1 E t2.
We do not give a deduction system for the transitions between snapshots, since

the conditions needed to hold between them are of a very complex nature, i.e., they
are definable only with the power of full first-order logic with functions, identity and
arithmetic. Hence we would not achieve a system with a nice distinction between the
relational deductions and the deductions of labelled formulas [BMV98; Vig00]. Instead,
we simply assume the existence of the relations between snapshots whenever needed.
That is, we will often have, e.g., the existence of a transition in our set of assumptions.
However, we will give rules to describe the behaviour of views and snapshots under spatial
transitions. That is, we can ensure that the views themselves do not change under such
transitions. This is due to the fact that the only possibility for a view to change is during
evolutions and abstract transitions. Only for them the view is moved according to the
differences between the source and target snapshot of the transition. For views, we have a
more sophisticated set of rules. We introduce a new quantifier E, which ranges over views.
We use it to relate views and define the possibilities to chop views both horizontally and
vertically.

Subsequently, we assume that we have countably infinite sets of names for traffic
snapshots TS and names for views V.

Definition 4.6 (Labelled Formulas and Relational Formulas). Let ts be a name for a
traffic snapshot, v a name for a view and φ a formula according to Definition 4.2. Then
ts, v : φ is a labelled formula of EMLSL. Locality formulas are of the form

ρ ::= v = v1 : v2 | v = v1 	 v2 | Ev • ρ

where v, v1, v2 ∈ V. Furthermore, we call ts, v
∗−→ts′, v′ dynamic formulas, where ts, ts′ ∈

TS, v, v′ ∈ V and
∗−→ is a relation of the labelling algebra. Finally, formulas of the form

t1 E t2, are called timing formulas, where t1 and t2 are timing terms, i.e., either elements
of T, timing variables or a sum of timing terms. If we do not need the distinction between
dynamic and locality formulas, we simply write relational formulas.

Observe that we use the same notation for the syntactic constructs of locality formulas,
as well as the chopping operation as their semantic counterpart. In general, the distinction
should be clear from the context.

To have a meaningful soundness result of the calculus, we give the relation of the
semantics of labelled formulas and normal formulas. For that, we have to relate the
names of views and traffic snapshots with their semantic counterparts. That is, we need
valuations for both types of names and extend the valuations of variables to timing terms.
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Definition 4.7 (Snapshot and Locality Valuation). A function σ : TS → TS relating
names of traffic snapshots with traffic snapshots themselves is called a snapshot valuation.
Similarly, a function λ : V → V is called a locality valuation. Modifications of both
snapshot and locality valuations are defined similarly to modifications of normal valuations.
Furthermore, we extend valuations ν to also relate timing variables t to elements of T.
We silently assume that ν(t) = t if t is a constant element of T and lift the valuations to
evaluate timing terms.

The satisfaction of labelled formulas and relational formulas is defined with respect to a
snapshot valuation, a locality valuation and a valuation for variables. The first two types
of valuations map the labels of formulas to a model of EMLSL, such that the labelled
formula can be evaluated by the satisfaction relation of EMLSL. For the satisfaction of
dynamic formulas, recall that we lifted the transitions within the model to relate tuples
of traffic snapshots and views in Convention 3.1.

Definition 4.8 (Satisfaction of Labelled Formulas and Relational Formulas). A valuation
ν, a snapshot valuation σ and a locality valuation λ satisfy a labelled formula ts, v : φ,
written σ, λ, ν |= ts, v : φ if and only if σ(ts), λ(v), ν |= φ. Furthermore,

σ, λ, ν |= ts1, v1
r(c)−−→ts2, v2 ⇔ σ(ts1), λ(v1)

r(ν(c))−−−−→σ(ts2), λ(v2),

σ, λ, ν |= ts1, v1
wd r(c)−−−−→ts2, v2 ⇔ ∃n • σ(ts1), λ(v1)

wd r(ν(c),n)−−−−−−−→σ(ts2), λ(v2),

σ, λ, ν |= ts1, v1
c(c)−−→ts2, , v2 ⇔ ∃n • σ(ts1), λ(v1)

c(ν(c),n)−−−−−→σ(ts2), λ(v2)

σ, λ, ν |= ts1, v1
wd c(c)−−−−→ts2, v2 ⇔ σ(ts1), λ(v1)

wd c(ν(c))−−−−−−→σ(ts2), λ(v2)

σ, λ, ν |= ts1, v1
t−→ts2, v2 ⇔ σ(ts1), λ(v1)

ν(t) σ(ts2), λ(v2)

σ, λ, ν |= ts1, v1 =⇒ ts2, v2 ⇔ σ(ts1), λ(v1) =⇒ σ(ts2), λ(v2)

σ, λ, ν |= t1 E t2 ⇔ ν(t1) ≤ ν(t2)

σ, λ, ν |= v = v1 : v2 ⇔ λ(v) = λ(v1) : λ(v2)

σ, λ, ν |= v = v1 	 v2 ⇔ λ(v) = λ(v1)	 λ(v2)

σ, λ, ν |= Ev • ρ ⇔ ∃V • σ, λ⊕ {v 7→ V }, ν |= ρ

where ρ is a locality formula. We lift the satisfaction relation to sets of formulas. Let Γ
and ∆ be a set of labelled formulas and of relational formulas, respectively. Then

σ, λ, ν |= ∆ ⇔ ∀η ∈ ∆ • σ, λ, ν |= η

σ, λ, ν |= Γ ⇔ ∀ (ts, v : φ) ∈ Γ • σ, λ, ν |= ts, v : φ

σ, λ, ν |= (Γ,∆) ⇔ σ, λ, ν |= Γ and σ, λ, ν |= ∆

(Γ,∆) |= ts, v : φ ⇔ σ, λ, ν |= (Γ,∆) implies σ, λ, ν |= ts, v : φ

for all σ, λ, ν

(Γ,∆) |= η ⇔ σ, λ, ν |= (Γ,∆) implies σ, λ, ν |= η

for all σ, λ, ν ,

where η is a relational formula.
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Definition 4.9 (Derivation). A derivation of a labelled formula ts, v : φ from a set of
labelled formulas Γ and a set of relational formulas ∆ is a tree, where the root is ts, v : φ,
each leaf is an element of Γ or ∆, and each node within the tree is a result of an application
of one of the rules defined subsequently. We denote the existence of such a derivation by
(Γ,∆) ` ts, v : φ.

Following Rasmussen [Ras01], we define predicates for chop-freeness of formulas and
rigidity of terms and formulas. To increase the number of deducible theorems, we
differentiate between vertical and horizontal chop-freeness and rigidity, as well as dynamic
rigidity. These properties are especially important for the correct instantiation of terms,
i.e., for the elimination of universal quantifiers.

Example 4.3. Consider the formula

∀x •
(
` = x
` = x

→ ` = x

)
,

which is a theorem of EMLSL, since the length of a view is not changed by chopping
vertically. If we use classical universal quantifier instantiation and substitute the vertically
flexible term ω for x, then we would get

` = ω
` = ω

→ ` = ω. (4.1)

Now let T S be a traffic snapshot, V a view and ν a valuation satisfying the antecedent
of (4.1). Then V can be vertically chopped into V1 and V2 such that its length equals its
width on both V1 and V2. Now let νV (`) = c. Then also νV1(ω) = c and νV2(ω) = c. Since
V consists of both these subviews, νV (ω) = 2c. But the conclusion of (4.1) states that V
should satisfy ω = ` = c. This is clearly a contradiction. If we require that the term t to
be substituted for x is vertically rigid, we ensure that the value of t is the same for V1, V2
and V . For example, we could substitute x by the vertically rigid term `.

The example shows that have to we examine two things for a substitution of t for x
in a formula ϕ to be allowed: On the one hand, it is important whether ϕ contains any
chops, both vertical and horizontal. On the other hand, whether the term t is vertically
or horizontally flexible determines its suitability for the substitution. Then, if ϕ does
not contain a horizontal chop (i.e., it is horizontally chop-free) and t is vertically rigid,
then we may substitute t for x in ϕ. Similarly, if ϕ is vertically chop-free (i.e., it does
not contain a vertical chop), and t is horizontally rigid, we can substitute t for x in ϕ.
If ϕ does not contain any chop, we can substitute any term t for x. Likewise, if t is
completely rigid, then ϕ may contain chops of any kind.

We denote vertical (horizontal) chop-freeness by the predicate vcf (hcf) and vertical
(horizontal, dynamical) rigidity by vri (hri, dri). If a term or formula θ is completely
rigid, we use the notation ri(θ). The rules for the definition of all these predicates are
straightforward, since both rigidity and chop-freeness are syntactic properties. All atomic
formulas are vertically and horizontally chop-free. For � being a Boolean operator or the
horizontal chop a , the following rules give vertical chop-freeness.
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4 Modal Logic for Freeway Traffic

vcf(φ) vcf(ψ)
vcf � I

vcf(φ� ψ)

vcf(φ� ψ)
vcf � E

vcf(φ)

vcf(φ� ψ)
vcf � E

vcf(ψ)

The rules for quantifiers and the horizontal rules are defined similarly.

For terms, ` is vertically rigid and ω is horizontally rigid. The spatial atoms re(c)
and cl(c) are neither horizontally nor vertically rigid, since they require the view to
possess an extension greater than zero and exactly one lane. Equality is both vertically
and horizontally rigid, as long as both compared terms are rigid. Below, we show some
exemplary rules, where ⊗ is an arbitrary binary operator.

hri(φ) hri(ψ)
hri⊗ I

hri(φ⊗ ψ)

hri(φ⊗ ψ)
hri⊗ E

hri(φ)

hri(φ⊗ ψ)
hri⊗ E

hri(ψ)

The final rules of this section relate rigidity with horizontal and vertical rigidity. For
the introduction of general rigidity, observe that we do not need to take dynamic rigidity
into concern, since both horizontal as well as vertical rigidity imply dynamic rigidity.

hri(φ) vri(φ)
riI

ri(φ)

ri(φ)
riE

hri(φ)

ri(φ)
riE

vri(φ)

4.2.1 Relational Properties

We have different rules for the relations between labels. First, we state that each view V
is decomposable into two subviews. This is true, since we allow for the empty view, i.e.,
the view without lanes or with a point-like extension. We use E to denote existential
quantification over views. To use the relations between views, we have to be able to
instantiate views, i.e., we have to introduce a rule for elimination of existential quantifiers
over views. As a side condition for this elimination rule, we require that ts, v′′ : φ is not
dependent on any assumption including v′ as a label, except for the locality formula ρ.
The rule itself is a straightforward adaptation of the classical rule. Again, we only show
the case for the vertical relations.

V 0Ev′ • v = v′ 	 v
v = v1 	 v2 v2 = v′1 	 v′2

V ComEv′ • v = v′ 	 v′2
Ev′ • ρ

[ρ]

...
ts, v′′ : φ

EE
ts, v′′ : φ

V 0Ev′ • v = v 	 v′
v = v1 	 v2 v1 = v′1 	 v′2

V ComEv′ • v = v′1 	 v′
VDecEv1, v2 • v = v1 	 v2

Now we define rules for the interaction between views and traffic snapshots along
discrete transitions. The first set of rules (EV) describe the equality of views during
discrete transitions. The other set allows for the substitution of subviews for views in the
labels. This is a direct consequence of convention 3.1 and the semantics of dynamic and
locality formulas.
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4.2 Proof System

ts, v
∗−→ts′, v′

EV
ts, v

∗−→ts′, v
ts, v

∗−→ts′, v′
EV

ts, v′ ∗−→ts′, v′

ts, v
∗−→ts′, v v = v1 : v2

SV
ts, v1

∗−→ts′, v1
ts, v

∗−→ts′, v v = v1 : v2
SV

ts, v2
∗−→ts′, v2

ts, v1
∗−→ts′, v1 v = v1 : v2

SV
ts, v

∗−→ts′, v
ts, v2

∗−→ts′, v2 v = v1 : v2
SV

ts, v
∗−→ts′, v

A similar set of rules exists for the vertical relations. In all of these rules, we require
∗ ∈ {r(c), c(c),wd r(c),wd c(c) | c ∈ CVar ∪ {ego}}. We also need a set of rules to use
the invariance of views between discrete transitions to “move” formulas from one view to
another, if these views are connected by a transition. Note that we do not require the
formula to be rigid of any kind, since semantically, the views are the same.

ts, v
∗−→ts′, v′ ts, v′ : φ

IV
ts, v : φ

ts, v
∗−→ts′, v′ ts, v : φ

IV
ts, v′ : φ

ts, v
∗−→ts′, v′ ts′, v′ : φ

IV
ts′, v : φ

ts, v
∗−→ts′, v′ ts′, v : φ

IV
ts′, v′ : φ

A very important difference in the rules IV to the rules in the following section is that
the views v and v′ are related via discrete transitions. That means essentially that the
extension, number of lanes and the owners of these views are the same. Observe that the
snapshot in the labelled formulas is fixed.

The rules relating different types of transitions mostly refer to the evolutions and the
abstract transitions. The labelling for abstract transitions as well as for evolutions is
both reflexive and transitive. Furthermore, we may abstract any given transition to an
abstract transition.

t−→r
ts, v

0−→ts, v
ts1, v1

t1−→ts2, v2 ts2, v2
t2−→ts3, v3 t−→tr

ts1, v1
t1+t2−−−→ts3, v3

=⇒ r
ts, v =⇒ ts, v

ts1, v1 =⇒ ts2, v2 ts2, v2 =⇒ ts3, v3
=⇒ tr

ts1, v1 =⇒ ts3, v3

ts, v
∗−→ts′, v′

abs
ts, v =⇒ ts′, v′

In the rule abs, the asterisk ∗ may be instantiated by any transition type.

Finally, let t, t1, t2 and t3 be either timing variables or constants of T. We then define
rules to let E be a partial order compatible with addition. We also require all timing
variables and constants of T to be at least zero.

E 0
0 E t E r

t E t

t1 E t2 t2 E t3 E tr
t1 E t3

t1 E t2 t2 E t1 E sy
t1 = t2

t1 E t2 E +
t1 + t3 E t2 + t3
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4 Modal Logic for Freeway Traffic

Lemma 4.2. The rules concerning the different types of relational formulas are sound.

Proof. The rules V 0 are sound, since for each locality valuation λ and name of a view
v such that λ(v) = (L,X,E), we can take the view V0 = (∅, X,E) to get λ(v) =
V0 	 λ(v) and λ(v) = λ(v) 	 V0. Similar reasoning yields soundness of VDec. For
V Com, assume we have a locality valuation λ, such that λ(v) = λ(v1) 	 λ(v2) and
λ(v2) = λ(v′1) 	 λ(v′2). Let λ(v) = (L,X,E), λ(v1) = (L1, X,E), λ(v2) = (L2, X,E),
λ(v′1) = (L′1, X,E) and λ(v′2) = (L′2, X,E). Since both L1 ∩ L2 = ∅ and L′1 ∩ L′2 = ∅,
we also know (L1 ∪ L′1) ∩ L′2 = ∅. Furthermore, if the sets of lanes are not empty,
max(L1) + 1 = min(L2) and max(L′1) + 1 = min(L′2) as well as max(L1) < max(L′1).
Hence max(L1 ∪ L′1) + 1 = min(L′2). That is, for V ′ = (L1 ∪ L′1, X,E), we have
λ(v) = V ′ 	 λ(v′2). If some of the sets of lanes are empty, soundness follows similarly.
Soundness of EE is proved like for the standard rule for the elimination of the existential
quantifier. For the rules EV, observe that the during discrete transitions, the view is not
changed. Hence if for a snapshot valuation σ, a locality valuation λ and a valuation ν, we

have, e.g., σ(ts), λ(v)
r(ν(c))−−−−→σ(ts′), λ(v′), then we can deduce λ(v) = λ(v′), i.e., both types

of the rule EV are sound. For the rules SV, we just have to recognise that the existence
of a discrete transition is fully independent of the views at hand, i.e., the semantics of the
dynamic formula is not affected, when the view changes. The proofs for the soundness of
IV are similar. Soundness of the rules and axioms concerning the evolutions and abstract
transitions follows straightforwardly from the semantic definitions of these transitions.
Finally, for the rules concerning the partial order on time, the soundness follows since R+

is an additive ordered group.

4.2.2 Rigidity

The intuition of rigidity is formalised in the following rules. Whenever a formula is
horizontally rigid, the formula holds on all views horizontally reachable from the current
view. The rules for vertically rigidity are similar.

ts, v : φ hri(φ) v = v1 : v2
RHts, v1 : φ

ts, v : φ hri(φ) v = v1 : v2
RHts, v2 : φ

ts, v1 : φ hri(φ) v = v1 : v2
RHts, v : φ

ts, v2 : φ hri(φ) v = v1 : v2
RHts, v : φ

ts, v : φ dri(φ) ts, v
∗−→ts′, v′

RD
ts′, v′ : φ

ts′, v′ : φ dri(φ) ts, v
∗−→ts′, v′

RDts, v : φ

Again, the difference of the rules RD to the rules IV is, that in the former the whole
label is transformed, where in the latter, only the view may change.

Lemma 4.3. The rules concerning the different types of rigidity are sound.

Proof. Immediate by Lemma 4.1.
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4.2 Proof System

4.2.3 First-Order Logic

For the first-order operators, we use the typical definitions of labelled natural deduction
rules [BMV98]. The only difference lies in the rules for quantification. We may instantiate
an universally quantified variable with a horizontally (vertically) rigid, if the formula
is vertically (horizontally) chop-free. If the formula is completely chop-free, we may
instantiate the variable with an arbitrary term. Similarly, rigid terms may instantiate x
in arbitrary formulas. In all cases, a side condition for the instantiation is that s respects
the sort of x.

ts, v : ∀x • φ hcf(φ) vri(s)
∀E

ts, v : φ[x 7→ s]

ts, v : ∀x • φ vcf(φ) hri(s)
∀E

ts, v : φ[x 7→ s]

ts, v : ∀x • φ hcf(φ) vcf(φ)
∀E

ts, v : φ[x 7→ s]

ts, v : ∀x • φ hri(s) vri(s)
∀E

ts, v : φ[x 7→ s]

The introduction rule for the universal quantifier is adapted, such that the variable to be
quantified has to be completely rigid.

[hri(x)] [vri(x)]

...
ts, v : φ ∀I

ts, v : ∀x • φ
The application condition is that x may not occur free in any assumption on which
ts, v : φ depends, except for hri(x) and vri(x).

The rules concerning equality are a direct translation from Rasmussen’s work [Ras01]

Reflts, v : s = s
ts, v : s = t

Sym
ts, v : t = s

ts, v : s = t ts, v : t = u
Transts, v : s = u

ts, v : φ[x 7→ s] ts, v : s = t ri(s) ri(t)
Substri

ts, v : φ[x 7→ t]

ts, v : φ[x 7→ s] ts, v : s = t vcf(φ) hcf(φ)
Substcf

ts, v : φ[x 7→ t]

Lemma 4.4. The rules concerning first-order quantifiers and equality are sound.

Proof. The proof for equality, substitution and the introduction rule of the universal
quantifier is straightforward.

Now consider the case of the elimination of the universal quantifier, where φ is
horizontally chop-free and s is vertically rigid, and let σ be a snapshot valuation, λ
a locality valuation and ν a valuation such that σ, λ, ν |= ts, v : ∀x • φ. Then, the
semantic of the universal quantifier yields that σ, λ, ν ⊕ {x 7→ α} |= ts, v : φ for all α
respecting the sort of x. In particular, since x and s are of the same sort, there is an
α′ such that ν(s) = α′. This valuation is the same for all subviews of λ(v) used for
the evaluation of φ, since φ may at most contain vertical chops and s is vertically rigid.
Hence σ, λ, ν ⊕ {x 7→ α′} |= ts, v : φ is true and equivalent to σ, λ, ν |= ts, v : φ[x 7→ s].
The other cases of the elimination rule are proved similarly.
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4 Modal Logic for Freeway Traffic

4.2.4 Chopping, Decomposition and Transitions

The elimination and introduction rules for the chop modalities are adopted from Ras-
mussen [Ras01], and resemble the rules for existential quantification. We only show the
case for the horizontal chop, the rules for vertical chopping are obtained straightforwardly,
by replacing horizontal modalities and relations by the vertical ones.

ts, v1 : φ ts, v2 : ψ v = v1 : v2 a I
ts, v : φaψ

ts, v : φaψ

[ts, v1 : φ]

[ts, v2 : ψ]

[v = v1 : v2]

...
ts′, v′ : χ aE

ts′, v′ : χ

The application conditions for the chop elimination rules are, that the names v1 and
v2 differ from v and v′ and may not occur free in any assumption on which ts′, v′ : χ
depends, except for ts, v1 : φ, ts, v2 : ψ and v = v1 : v2 (v = v1 	 v2 respectively).

The chopping of intervals is not ambiguous, i.e., there is a unique view of a certain
length at the beginning of a view. This is the single decomposition property [Dut95] of
interval logics and captured in the following rules. When there are two vertical chops of
a view, and the upper parts are of equal width, we can derive that the same formulas
hold on the lower parts and vice versa. Even though we only show the vertical set of
rules, similar rules hold for the horizontal chopping of views. The structure of the rules
follows the presentation of Rasmussen [Ras01].

ts, v1 : φ ts, v2 : ω = s ts, v′2 : ω = s vri(s) v = v1 	 v2 v = v′1 	 v′2
V D

ts, v′1 : φ

ts, v2 : φ ts, v1 : ω = s ts, v′1 : ω = s vri(s) v = v1 	 v2 v = v′1 	 v′2
V D

ts, v′2 : φ

The additivity of length and width can be formalised by the following rules.

ts, v1 : ω = s ts, v2 : ω = t vri(s) vri(t) v = v1 	 v2
V + I

ts, v : ω = s+ t

ts, v : ω = s+ t vri(s) vri(t)

[ts, v1 : ω = s]

[ts, v2 : ω = t]

[v = v1 	 v2]
...

ts′, v′ : φ
V + E

ts′, v′ : φ

Similar to the elimination of chops, the application condition for V + E (H + E,
respectively) is that the names v1 and v2 differ from v and v′ and may not occur free in
any assumption, on which ts′, v′ : φ depends, except for ts, v1 : ω = s, ts, v2 : ω = t and
v = v1 	 v2 (ts, v1 : ` = s, ts, v2 : ` = t and v = v1 : v2, respectively).
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4.2 Proof System

The modalities describing the discrete transitions are defined along the lines of Basin et
al. [BMV98]. If a transition from the current snapshot is known to be possible, the box
modalities may be eliminated. If we can prove that under the assumption of a transition
∗ ∈ {r(d), c(d),wd r(d),wd c(d)}, φ holds on the now reachable snapshot, then also �∗φ
is true. The application condition for �∗I is that neither ts′ nor v′ may occur in any
assumption on which ts′, v′ : φ depends, except for ts, v

∗−→ts′, v′ and that they both differ
from ts and v.

ts, v
∗−→ts′, v′ ts, v : �∗φ �∗E

ts′, v′ : φ

[ts, v
∗−→ts′, v′]
...

ts′, v′ : φ �∗Its, v : �∗φ

For the dynamic transitions, we need to include assertions about the duration t for
which time evolves. That is, we add two more premisses, which state that t stays within
the bounds of the modality.

ts, v
t−→ts′, v′ ts, v : �[a,b]φ a E t t E b

�tE
ts′, v′ : φ

[ts, v
t−→ts′, v′] [a E t] [t E b]

...
ts′, v′ : φ �tIts, v : �[a,b]φ

Similar to the rules �∗I, the application condition for �tI is that ts′ and v′ are different
from ts and v and neither ts′ nor v′ nor t appear in any assumption, on which ts′, v′ : φ
depends, except for ts, v

t−→ts′, v′, a E t, and t E b. Furthermore ts and v have to be
different from ts′ and v′.

Lemma 4.5. The rules concerning chops, the single decomposition property and the
additivity of lengths as well as width of views are sound.

Proof. The proof is a straightforward adaptation of the proofs in the work of Rasmussen
[Ras01], Basin et al. [BMV98] and Viganò [Vig00], respectively.

4.2.5 Specifying the Domains

We need further rules to specify certain properties of our different domains. For example,
`a states that the domain of the extensions is dense, while `0 prohibits negative
extensions.

ts, v : ` > 0
`a

ts, v : ` > 0a ` > 0
`0

ts, v : ` ≥ 0
ω0

ts, v : ω ≥ 0

ts, v : x ≤ x
ts, v : x ≤ y ts, v : y ≤ z

ts, v : x ≤ z
ts, v : x ≤ y

ts, v : x+ z ≤ y + z

In these rules, we silently assume that the terms x, y and z are of the same sort, and
especially are not car variables, i.e., x, y, z 6∈ CVar ∪ {ego} .
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4.2.6 Spatial Properties of Spatial Atoms

In this subsection, we present rules which reflect the connection of reservations and
claims to the spatial domain. On the one hand, we have rules which are straightforward
implications of the intended semantics of the atoms, e.g., that the length of a view which
satisfies re(c) has to be greater than zero and has to consist of exactly one lane. On
the other hand, we have rules which state that reservations and claims are dense in the
extension of views. In comparison with Rasmussen’s presentation of Duration Calculus
[Ras01], these rules seem to be very specific, and one might be tempted to assume that
they are already derivable in the given system. However, since we do not have any type
of term resembling integration, we are, e.g., not yet able to state directly that on a view
V satisfying re(c), each subview also has to satisfy re(c). So these rules are needed due
to the very specific and narrow type of atoms we permit within EMLSL.

ts, v : re(c)
ExtRe

ts, v : ` > 0

ts, v : cl(c)
ExtCl

ts, v : ` > 0

ts, v : re(c)
LaneRe

ts, v : ω = 1

ts, v : cl(c)
LaneClts, v : ω = 1

ts, v : re(c)
dRe

ts, v : re(c)a re(c)

ts, v : cl(c)
dCl

ts, v : cl(c)a cl(c)

ts, v : re(c) ts, v1 : ` > 0 v = v1 : v2
cRe

ts, v1 : re(c)

ts, v : cl(c) ts, v1 : ` > 0 v = v1 : v2
cCl

ts, v1 : cl(c)

ts, v : re(c) ts, v2 : ` > 0 v = v1 : v2
cRe

ts, v2 : re(c)

ts, v : cl(c) ts, v2 : ` > 0 v = v1 : v2
cCl

ts, v2 : cl(c)

Lemma 4.6. The rules concerning the spatial properties of atoms are sound.

Proof. Immediate by the semantics of re(c) and cl(c) and the density of the extension
domain.

4.2.7 Spatial Atoms and Transitions

Finally, we have to define how the spatial atoms behave with respect to occurring
transitions. There are two types of rules in general, stability rules and activity rules.
Stability rules define which atoms stay true after a snapshot changes according to a
certain transition. The activity rules state how the reservations and claims of cars will
change according to the transitions. In all of the rules within this section, the assumed
transition will be shown as the middle premiss, the spatial property to be reasoned about
will be the left premiss, and the relation between the car d responsible for the transition
and the car c, whose property is visible in the view, will be shown on the right.

If a transition occurs, the truth of all reservations and claims of cars not involved in
the transition are unchanged. For the creation of a claim, the following stability rules
show that the reservations and claims of other cars are unchanged. We have similar
stability rules for the other types of transitions.
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4.2 Proof System

ts, v : cl(c) ts, v
c(d)−−→ts′, v′ ts, v : c 6= d

c−→Sts′, v′ : cl(c)

ts, v : re(c) ts, v
c(d)−−→ts′, v′ ts, v : c 6= d

c−→Sts′, v′ : re(c)

There is an additional stability rule for the creation of reservations. It states that the
already existing reservation of a car creating a new reservation is not altered.

ts, v : re(c) ts, v
r(d)−−→ts′, v′ ts, v : c = d

r−→Sts′, v′ : re(c)

The activity rule for c(c) implies two properties. First, a claim may only be created
when only one reservation exists. Second, the newly created claim resides on one side
of the existing reservation. Observe that we require the view under consideration to
comprise both adjacent lanes of the reservation. If we dropped this assumption (i.e.,
removed the subformulas ω = 1), it would be possible for the newly created claim to
reside outside of the view V , and hence the conclusion would not be satisfied.

ts, v :
¬(re(c) ∨ cl(c)) ∧ ω = 1

re(c)
¬(re(c) ∨ cl(c)) ∧ ω = 1

ts, v
c(d)−−→ts′, v′ ts, v : c = d

c−→A

ts′, v′ :
¬(re(c) ∨ cl(c)) ∧ ω = 1

re(c)
cl(c)

∨
cl(c)
re(c)

¬(re(c) ∨ cl(c)) ∧ ω = 1

The rule for the creation of reservations in between traffic snapshots is the following.
It only ensures that if we observed the claim of the car before the transition, we can
perceive its reservation afterwards.

ts, v : cl(c) ts, v
r(d)−−→ts′, v′ ts, v : c = d

r−→Ats′, v′ : re(c)

The following activity rules define the withdrawal of reservations and claims. Observe
that for the withdrawal of a claim, we do not specify the spatial properties of the traffic
snapshot and view the transition originates from. If the claim of a car d was withdrawn,
we can be sure that no claim of d exists at any part of the freeway.

ts, v :
re(c)
re(c)

ts, v
wd r(d)−−−−→ts′, v′ ts, v : c = d

wd r−−−→A
ts′, v′ :

re(c)
¬re(c)

∨ ¬re(c)
re(c)

ts, v
wd c(d)−−−−→ts′, v′ ts, v : c = d

wd c−−−→Ats′, v′ : ¬cl(c)

We also have rules for “backwards” reasoning, i.e., if our current snapshot is reachable
from another, we may draw conclusions about the originating snapshot. Again, we
differentiate between activity and stability rules. The stability rules all follow the same
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schema, where ∗ ∈ {c,wd c,wd r}. Observe that these rules all have the existence of
a reservation at the destination traffic snapshot and view as a premiss. For checking

soundness of these rules intuitively, consider
wd r←−−−S. If after the withdrawal of a reservation,

we can still perceive a reservation at the given part of the freeway, it had to be there
before the withdrawal. Similar reasoning holds for the other backwards stability rules.

ts′, v′ : re(c) ts, v
∗(d)−−→ts′, v′ ts, v : c = d ∗←−Sts, v : re(c)

ts′, v′ : re(c) ts, v
∗(d)−−→ts′, v′ ts, v : c 6= d ∗←−Sts, v : re(c)

ts′, v′ : re(c) ts, v
r(d)−−→ts′, v′ ts, v : c 6= d

r←−Sts, v : re(c)

For the backwards activity rule for the creation of a reservation, we can only ensure
that either a claim or a reservation was perceived before the transition, since we can not
distinguish the newly created reservation.

ts′, v′ : re(c) ts, v
r(d)−−→ts′, v′ ts, v : c = d

r←−Ats, v : re(c) ∨ cl(c)

For the backwards activity rule for creation of claims however, we can be sure that no
claim existed before the transition occurred.

ts′, v′ : cl(c) ts, v
c(d)−−→ts′, v′ ts, v : c = d

c←−Ats, v : ¬cl(c)

If we want to reason backwards along the withdrawal of a reservation, we have to
ensure that the lanes next to the perceived reservation after the transition are contained
in the view. Otherwise we could not state that both reservations were present within the
view before the transition occurred.

ts′, v′ :
ω = 1
re(c)
ω = 1

ts, v
wd r(d)−−−−→ts′, v′ ts, v : c = d

wd r←−−−A

ts, v :
re(c)
re(c)
ω = 1

∨
ω = 1
re(c)
re(c)

Observe that we cannot define a backwards activity rule for the withdrawal of a claim.
If we know that after the withdrawal of the claim of c, we cannot perceive a claim of c,
we can still not be sure whether the claim was visible in our view before the transition
was taken. It could be the case that no part of c was ever visible within the view.

Lemma 4.7. The rules concerning the changes of spatial atoms along transitions are
sound.
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Proof. We only show the proofs for the activity rules. The proofs for the stability rules
are straightforward, since only the reservations and claims of the car taking a transition
may change.

Case 1: Consider an application of
wd r−−−→A. We assume

(Γ1,∆1) |= ts, v :
re(c)
re(c)

and (Γ2,∆2) |= ts, v
wd r(d)−−−−→ts′, v′ and (Γ3,∆3) |= ts, v : c = d .

Now we have to show, that with Γ1 ∪ Γ2 ∪ Γ3 = Γ and ∆1 ∪∆2 ∪∆3 = ∆, we get

(Γ,∆) |= ts′, v′ :
re(c)
¬re(c)

∨ ¬re(c)
re(c)

.

Let σ, λ and ν be suitable valuations such that σ, λ, ν |= (Γ,∆), i.e., σ, λ, ν |= (Γ1,∆1),
σ, λ, ν |= (Γ2,∆2) and σ, λ, ν |= (Γ3,∆3). Hence

σ, λ, ν |= ts, v :
re(c)
re(c)

,

σ, λ, ν |= ts, v
wd r(d)−−−−→ts′, v′ ,

σ, λ, ν |= ts, v : c = d .

Let λ(v) = V1 	 V2, such that σ(ts), V1, ν |= re(c) and σ(ts), V2, ν |= re(c) with Vi =
(Li, X,E). Furthermore, by the semantics of re(c) we get that |Li| = 1. We know that

there is a lane n0, such that σ(ts), λ(v)
wd r(ν(d),n0)−−−−−−−−→σ(ts′), λ(v). Let n0 ∈ L1. Then by

Definition 3.3, and since νλ(v)(c) = νλ(v)(d), we have that res′V2(ν(c)) = res′V2(ν(d)) = ∅,
which means σ(ts′), V2, ν 6|= re(c), that is, σ(ts′), V2, ν |= ¬re(c). Furthermore, we have
n0 ∈ res′V1(ν(d)), i.e., σ(ts′), V1, ν |= re(c). Observe that λ(v) = λ(v′), i.e., we have
λ(v′) = V1 	 V2. By definition of the vertical chop, we get

σ(ts′), λ(v′), ν |= ¬re(c)
re(c)

and hence

σ(ts′), λ(v′), ν |= re(c)
¬re(c)

∨ ¬re(c)
re(c)

.

If n0 ∈ L2, the reasoning is analogous. All in all, we get that

σ, λ, ν |= ts′, v′ :
re(c)
¬re(c)

∨ ¬re(c)
re(c)

.

Case 2: Consider an application of
r−→A. Then let

(Γ1,∆1) |= ts, v : cl(c) and (Γ2,∆2) |= ts, v
r(d)−−→ts′, v′ and (Γ3,∆3) |= ts, v : c = d .
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Now let Γ1 ∪ Γ2 ∪ Γ3 = Γ and ∆1 ∪∆2 ∪∆3 = ∆. Let σ, λ and ν be valuations such that
σ, λ, ν |= (Γ,∆). That is,

σ, λ, ν |= ts, v : cl(c) ,

σ, λ, ν |= ts, v
r(d)−−→ts′), v′ ,

σ, λ, ν |= ts, v : c = d .

We assume σ(ts) = (res, clm, pos, spd , acc) and σ(ts′) = (res′, clm′, pos ′, spd ′, acc′).
Thus, clmλ(v)(ν(c)) = L, where L are the lanes of λ(v) = λ(v′). By Definition 3.3 we get
that res′(ν(d)) = res(ν(d)) ∪ clm(ν(d)) and, since νλ(v)(c) = νλ(v)(d), res′λ(v)(ν(c)) =

clmλ(v)(ν(c)) = L. So σ(ts′), λ(v′), ν |= re(c) and by that σ, λ, ν |= ts′, v′ : re(c).

Case 3: Consider an application of
wd c−−−→A. Let (Γ1,∆1) |= ts, v

wd c(d)−−−−→ts′, v′ and
(Γ2,∆2) |= ts, v : c = d . Furthermore, we let Γ = Γ1 ∪ Γ2 and ∆ = ∆1 ∪∆2. Hence

if σ, λ, ν |= (Γ,∆), then σ(ts), λ(v)
wd c(ν(d))−−−−−−→σ(ts′), λ(v′) is true as well as νλ(v)(c) =

νλ(v)(d). That is, if σ(ts′) = (res′, clm′, pos ′, spd ′, acc′), then clm′(ν(c)) = ∅. Hence,
since λ(v) = λ(v′), we have σ(ts′), λ(v′), ν |= ¬cl(c). Thus σ, λ, ν |= ts′, v′ : ¬cl(c).

Case 4: Consider an application of
c−→A. We assume

(Γ1,∆1) |= ts, v :
¬(re(c) ∨ cl(c)) ∧ ω = 1

re(c)
¬(re(c) ∨ cl(c)) ∧ ω = 1

,

(Γ2,∆2) |= ts, v
c(d)−−→ts′, v′ and (Γ3,∆3) |= ts, v : c = d. Furthermore, let Γ = Γ1 ∪

Γ2 ∪ Γ3, ∆ = ∆1 ∪ ∆2 ∪ ∆3 and σ, λ, ν |= (Γ,∆). That is, for λ(v) = (L,X,E) and
σ(ts) = (res, clm, pos, spd , acc), we know that L contains exactly three elements, say
L = {n1, n2, n3}, where n2 = n1 + 1 and n3 = n2 + 1. Then we get res(ν(c)) = {n2}
and clm(ν(c)) = ∅. Now consider σ(ts′) = (res′, clm′, pos ′, spd ′, acc′). Since σ, λ, ν |=
ts, v

c(d)−−→ts′, v′, we have σ(ts)
c(ν(d),n′)−−−−−−→σ(ts′) for either n′ = n1 or n′ = n3 (by Def. 3.3).

Furthermore, due to νλ(v)(c) = νλ(v)(d) we know that clm′(ν(c)) = {n′}. Say n′ = n1.

Then σ(ts′), λ(v′){n1}, ν |= cl(c). Note that the extension of λ(v′){n1} has to be greater
than zero, since the subview λ(v){n2} already satisfies re(c) and λ(v) = λ(v′). Due to
res = res′, we get

σ(ts′), λ(v′), ν |=
¬(re(c) ∨ cl(c)) ∧ ω = 1

re(c)
cl(c)

⇒ σ, λ, ν |= ts′, v′ :
¬(re(c) ∨ cl(c)) ∧ ω = 1

re(c)
cl(c)

⇒ σ, λ, ν |= ts′, v′ :
¬(re(c) ∨ cl(c)) ∧ ω = 1

re(c)
cl(c)

∨
cl(c)
re(c)

¬(re(c) ∨ cl(c)) ∧ ω = 1
.
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The case where n′ = n3 is similar.

Case 5: Consider an application of
c←−A. Then (Γ1,∆1) |= ts′, v′ : cl(c), (Γ2,∆2) |=

ts, v
c(d)−−→ts′, v′ and (Γ3,∆3) |= ts, v : c = d. We assume σ, λ, ν |= (Γ,∆), i.e., σ, λ, ν |=

(Γ1,∆1), σ, λ, ν |= (Γ2,∆2) and σ, λ, ν |= (Γ3,∆3). Since c = d is dynamically rigid, we
also have σ, λ, ν |= ts′, v′ : c = d by Lemma 4.1. So νλ(v′)(c) = νλ(v′)(d). There can only
be a transition creating a new claim for νλ(v′)(c) from σ(ts) to σ(ts′), if clm(νλ(v′)(c)) = ∅
on σ(ts). Hence, for each view V ′, we have σ(ts), V ′, ν |= ¬cl(c). That is in particular
σ(ts), λ(v), ν |= ¬cl(c), which yields σ, λ, ν |= ts, v : ¬cl(c).

Case 6: Consider an application of
wd r←−−−A and let

(Γ1,∆1) |= ts′, ts′ :
ω = 1
re(c)
ω = 1

,

(Γ2,∆2) |= ts, v
wd r(d)−−−−→ts′, v′ and (Γ3,∆3) |= ts, v : c = d. Furthermore, let Γ = Γ1 ∪

Γ2 ∪ Γ3 and ∆ = ∆1 ∪ ∆2 ∪ ∆3. Now assume σ, λ, ν |= (Γ,∆), and let σ(ts) =
(res, clm, pos, spd , acc) as well as σ(ts′) = (res′, clm′, pos ′, spd ′, acc′). We know that
the set of lanes L of λ(v′) = λ(v) = (L,X,E) contains exactly three elements, say
L = {n1, n2, n3}, where n2 = n1 + 1 and n3 = n2 + 1. By the semantics of the transitions
(see Def. 3.3) and EMLSL (see Def. 4.4), we get res′(ν(c)) = {n2}. The transition exists
only, when |res(ν(c))| = 2 and n2 ∈ res(ν(c)), so there are only two possibilities (due to
the sanity conditions of Def. 3.1): n1 ∈ res(ν(c)) or n3 ∈ res(ν(c)). Say n1 ∈ res(ν(c)).
Then

σ(ts), λ(v), ν |=
ω = 1
re(c)
re(c)

and hence

σ, λ, ν |= ts, v :
re(c)
re(c)
ω = 1

∨
ω = 1
re(c)
re(c)

.

The case for n3 ∈ res(ν(c)) is similar.

Case 7: Consider an application of
r←−A and let (Γ1,∆1) |= ts′, v′ : re(c), (Γ2,∆2) |=

ts, v
r(d)−−→ts′, v′ and (Γ3,∆3) |= ts, v : c = d. Now assume Γ = Γ1 ∪ Γ2 ∪ Γ3, ∆ =

∆1 ∪ ∆2 ∪ ∆3 and σ, λ, ν |= (Γ,∆). Furthermore, let σ(ts) = (res, clm, pos, spd , acc)
and σ(ts′) = (res′, clm′, pos ′, spd ′, acc′). We then know that res′λ(v′)(c) = {n} where

λ(v) = λ(v′) = (L,X,E) with L = {n} and ‖X‖ > 0. By Def. 3.3 and νλ(v)(c) = νλ(v)(d)
we get that res′(ν(c)) = res(ν(c)) ∪ clm(ν(c)). If n ∈ res(ν(c)), we have σ(ts), λ(v), ν |=
re(c), which implies σ(ts), λ(v), ν |= re(c) ∨ cl(c). Similarly, if n ∈ clm(ν(c)), we get
σ(ts), λ(v), ν |= cl(c), which implies σ(ts), λ(v), ν |= re(c) ∨ cl(c). That is, σ, λ, ν |=
ts, v : re(c) ∨ cl(c).
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4.2.8 Invariance

For the introduction of the globally modality G , we employ the rule G I resembling
inductive reasoning. If the current snapshot T S and view V are a model of the formula
φ and we can show that φ is preserved under all possible transitions, then we know that
T S and V satisfy Gφ. Hence we get the most complicated rule of our calculus, G I.

[ts, v =⇒ ts1, v1] [ts, v =⇒ ts2, v2] [ts, v =⇒ ts3, v3] [ts, v =⇒ ts4, v4] [ts, v =⇒ ts5, v5]

[ts1, v1
r(d)−−→ts′1, v′1] [ts2, v2

c(d)−−→ts′2, v′2] [ts3, v3
wd r(d)−−−−→ts′3, v′3] [ts4, v4

wd c(d)−−−−→ts′4, v′4] [ts5, v5
t−→ts′5, v′5]

[ts1, v1 : φ] [ts2, v2 : φ] [ts3, v3 : φ] [ts4, v4 : φ] [ts5, v5 : φ]
...

...
...

...
...

ts, v : φ ts′1, v
′
1 : φ ts′2, v

′
2 : φ ts′3, v

′
3 : φ ts′4, v

′
4 : φ ts′5, v

′
5 : φ

ts, v : Gφ

In the induction rule, the worlds tsi, vi may not occur in any assumption on which
ts′i, v

′
i : φ depends except for the assumptions eliminated in this application. Furthermore,

the worlds ts′i, v
′
i are all different from each other and from the worlds tsi, vi as well as

ts, v. Finally, d and t may not occur free in any assumption the premisses depend on,
except for the assumptions eliminated by the application of this rule.

Observe that we do not impose any additional assumptions on t. We want t to possibly
denote any time in the interval [0,∞). That is, the only constraint on t is 0 E t. But this
timing formula is an axiom of our system (cf. Sect. 4.2.1), which is why we can omit it
from the definition of this rule. The rule is inspired by the work of Manna and Pnueli on
program verification [MP95]. They defined a proof rule for the invariance of a formula ϕ,
where the premisses state that the current state satisfies ϕ, and all transition preserve ϕ.

The elimination rule is much simpler and resembles the elimination rules for box
modalities.

ts, v : Gφ ts, v =⇒ ts′, v′
G E

ts′, v′ : φ

Lemma 4.8. The introduction and elimination rules for G are sound.

Proof. The soundness of G E is straightforward, hence we concentrate on the introduction
rule of the invariance modality.

We assume that (Γ,∆) |= ts, v : φ and (Γi,∆i) |= ts′i, v
′
i : φ for 1 ≤ i ≤ 5. Subsequently,

we let

Γ′ =Γ ∪
⋃

1≤i≤5
(Γi \ {tsi, vi : φ)}

and

∆′ = ∆ ∪ (∆1 \ {ts, v =⇒ ts1, v1, ts1, v1
r(d)−−→ts′1, v′1})

∪ (∆2 \ {ts, v =⇒ ts2, v2, ts2, v2
c(d)−−→ts′2, v′2})

∪ (∆3 \ {ts, v =⇒ ts3, v3, ts3, v3
wd r(d)−−−−→ts′3, v′3})

∪ (∆4 \ {ts, v =⇒ ts4, v4, ts4, v4
wd c(d)−−−−→ts′4, v′4})

∪ (∆5 \ {ts, v =⇒ ts5, v5, ts5, v5
t−→ts′5, v′5})
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We now show that (Γ′,∆′) |= ts, v : Gφ by proving that within the proof context (Γ′,∆′),
all snapshots and views reachable from ts, v satisfy φ. For that, let σ be a snapshot
valuation, λ a locality valuation and ν a valuation such that σ, λ, ν |= (Γ′,∆′). We proceed
by induction on the length of transition sequences of the form σ(ts), λ(v) =⇒ T S, V . The
induction base is immediate, since σ(ts), λ(v) =⇒ σ(ts), λ(v) has the length zero, and
(Γ,∆) |= ts, v : φ by our assumptions. As the induction hypothesis, we assume that for all
transition sequences σ(ts), λ(v) =⇒ σ(ts′), λ(v′) of length n, we have (Γ′,∆′) |= ts′, v′ : φ.

So suppose we have a transition sequence σ(ts), λ(v) =⇒ T S ′′, V ′′ of length n+ 1. That
is, there are ts′, v′ and a sequence σ(ts), λ(v) =⇒ σ(ts′), λ(v′) of length n, such that one
of the following holds:

1. σ(ts′), λ(v′)
r(C)−−→T S ′′, V ′′

2. σ(ts′), λ(v′)
c(C,m)−−−−→T S ′′, V ′′

3. σ(ts′), λ(v′)
wd r(C,m)−−−−−−→T S ′′, V ′′

4. σ(ts′), λ(v′)
wd c(C)−−−−−→T S ′′, V ′′

5. σ(ts′), λ(v′)
t T S ′′, V ′′

for some C, m and t respectively.

We prove the first case, the other ones are similar. Assume σ(ts′), λ(v′)
r(C)−−→T S ′′, V ′′

as well as σ(ts′′) = T S ′′, λ(v′′) = V ′′ and ν(c) = C. Then let

∆′1 =(∆1 \ {ts, v =⇒ ts1, v1, ts1, v1
r(d)−−→ts′1, v′1})

∪ {ts, v =⇒ ts′, v′, ts′, v′
r(c)−−→ts′′, v′′} .

By the induction hypothesis, we know that (Γ′,∆′) |= ts′, v′ : φ. So let

Γ′1 = (Γ1 \ {ts1, v1 : φ}) ∪ {ts′, v′ : φ}.

Since the application conditions ensure that neither ts1 nor v1 is dependent on any other
assumptions and since d does not occur free in any other assumption, we get by our
assumptions that (Γ′1, V

′
1) |= ts′′, v′′ : φ, i.e. σ, λ, ν |= ts′′, v′′ : φ. Furthermore, because σ,

λ and ν were chosen arbitrarily, we get (Γ′, V ′) |= ts′′, v′′ : φ.

Theorem 4.1. The calculus of labelled natural deduction for EMLSL is sound.

Proof. In the preceding sections, we have proven all rules of the calculus to be sound.

Since models of EMLSL are based on the real numbers, we cannot hope for a complete
deduction system.
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4.2.9 Derived Rules

In this section we collect useful derived rules. These rules serve different purposes. On
the one hand, they show that several expected properties are derivable with the presented
proof system. On the other hand, we will employ most of these rules in our case study in
Chap. 7.

We first introduce some generally useful shorthands. The rule following is an adaptation
of previous work [Lin07].

[ts, v : ` = t] [hri(t)] [vri(t)]

...
ts′, v′ : φ

`E
ts′, v′ : φ

The rule `E has the application condition that t may neither occur free in any assumption
on which ts′, v′ : φ depends except for ts, v : ` = t, hri(t) and vri(t) nor may it occur free
in ts′, v′ : φ itself.

Lemma 4.9. The rule `E is a derived rule of the proof system for EMLSL.

Proof. We can replace each occurrence of `E with the following proof tree:

Refl
ts, v : ` = ` ∃I

ts, v : ∃t • ` = t

[ts, v : ` = t] [hri(t)] [vri(t)]

...
ts′, v′ : φ ∃E

ts′, v′ : φ

The application condition is implied by the application of ∃E.

From now on, we will often omit the assertions of rigidity and chop-freeness due to
brevity, since they are easily derivable. The next type of rules concern the removal of
empty views.

ts, v2 : φ ts, v1 : ` = 0 v = v1 : v2
0E

ts, v : φ

ts, v1 : φ ts, v2 : ` = 0 v = v1 : v2
0E

ts, v : φ

ts, v2 : φ ts, v1 : ω = 0 v = v1 	 v2
0E

ts, v : φ

ts, v1 : φ ts, v2 : ω = 0 v = v1 	 v2
0E

ts, v : φ

Lemma 4.10. The rules 0E are derived rules of the proof system for EMLSL.

Proof. All proofs are structurally similar. Hence we only show the case where v1 represents
the empty view, and the view is chopped in horizontal direction.

We can replace each of theses occurrences of 0E with the following proof tree:

V 0Ev′ • v = v′ : v

Π
ts, v′ : ` = 0 ts, v1 : ` = 0 ts, v2 : φ v = v1 : v2 [v = v′ : v]3

HD
ts, v : φ EE3ts, v : φ

`E4ts, v : φ
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where Π is the following proof tree.

Π=

ts, v : x+ y = x

Π>

ts, v : x+ y > x ¬E
ts, v : ⊥ ⊥E1

ts, v′ : ` = 0
`E2

ts, v′ : ` = 0

The proof tree Π= is given as follows.

[ts, v : ` = x]4 [ts, v′ : ` = y]2 [v = v′ : v]3
H + I

ts, v : ` = x+ y [ts, v : ` = x]4
Substcfts, v : x+ y = x

And finally Π> is given by:

[ts, v′ : ` = y]2 [ts, v′ : ` > 0]1
Substcf

ts, v′ : y > 0

ts, v′ : x+ y > x [v = v′ : v]3
RH ts, v : x+ y > x

In this proof we identify ¬(` = 0) with ` > 0 and also implicitly use the validity of
x+ y > x→ ¬(x+ y = x) as well as x = x+ 0.

To give a flavor of how the spatial atoms and the discrete transitions interact, we derive
a variant of the reservation lemma, which we proved informally in our previous work.

Lemma 4.11 (Reservation [Hil+11]). A reservation of a car c observed directly after
c created it, was either already present or is due to a previously existing claim. I.e.,

assuming ts, v
r(d)−−→ts, v′ and c = d, the formula �r(c)re(c)↔ (re(c)∨cl(c)) holds. Formally,

this is the following rule.

ts, v
r(d)−−→ts′, v′ ts, v : c = d

ts, v : �r(c)re(c)↔ (re(c) ∨ cl(c))

Proof. The existence of the transition is of major importance for the elimination of the
box modality in the proof using the backwards reasoning rule. We use two auxiliary
derivations, which allow us to infer the existence of a reservation on the snapshot after
taking a transition.

ΠS: [ts, v : re(c)]1 [ts, v
r(d)−−→ts′, v′]2 ts, v : c = d

r−→Sts′, v′ : re(c)

ΠA: [ts, v : cl(c)]1 [ts, v
r(d)−−→ts′, v′]2 ts, v : c = d

r−→Ats′, v′ : re(c)

Now we present the derivations to get the right hand side of the equivalence from the left
hand side, and vice versa.
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Π→:

ΠS

ts′, v′ : re(c)

ΠA

ts′, v′ : re(c) [ts, v : re(c) ∨ cl(c)]3 ∨E1
ts′, v′ : re(c) �r(d)I2

ts, v : �r(d)re(c) ts, v : c = d
Substri

ts, v : �r(c)re(c)

Π←:

[ts, v : �r(c)re(c)]3 ts, v : c = d
Substri

ts, v : �r(d)re(c) ts, v
r(d)−−→ts′, v′

�r(d)E
ts′, v′ : re(c) ts, v

r(d)−−→ts′, v′ ts, v : c = d
r(d)←−−A ts, v : re(c) ∨ cl(c)

We can use the rule ↔ I to get the desired derivation.

Π→
ts, v : �r(c)re(c)

Π←
ts, v : re(c) ∨ cl(c)

↔ I3
ts, v : �r(c)re(c)↔ (re(c) ∨ cl(c))

From now on, we will often omit the names of the rules used in the proofs. However,
every application of a rule which eliminates some assumptions will be explicitly denoted,
both by its name and with an index to refer to the eliminated assumptions.

As stated in Section 4.1, we use free to denote free space on a lane. To show that the
abbreviation given is well-behaved, we show the soundness of the following rules.

ts, v : free
Extfree

ts, v : ` > 0

ts, v : free
Lanefree

ts, v : ω = 1

ts, v : free
densefree

ts, v : free a free

Lemma 4.12. The rules concerning the spatial properties of free are sound.

Proof. The rules Extfree and Lanefree are a simple application of ∧E. The derivation of
densefree is more involved.

The root of the proof tree is a derivation of the following shape.

ts, v : free

ts, v : ` > 0

ts, v : ` > 0a ` > 0

Π1

ts, v1 : free

Π2

ts, v2 : free [v = v1 : v2]1
ts, v : free a free aE1ts, v : free a free

Now we have to show how to derive ts, vi : free from ts, v1 : ` > 0, ts, v2 : ` > 0 and
v = v1 : v2 for i = 1 and i = 2. Since both proof trees are structurally similar, we only
show the tree for i = 1. The main idea is to assume ts, v1 : ¬free, which we identify
with ts, v1 : ` = 0 ∨ ¬(ω = 1) ∨ ∃c : ((>a (re(c) ∨ cl(c)))a>) and derive a contradiction.
Furthermore, we use the expanded form of �`φ, i.e. ¬((>a¬φ)a>) and, to enhance
the readability of the proof, we merge two applications of ∨E into one ternary application.
So, Π1 will essentially be
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[ts, v1 : ¬free]2

[ts, v1 : ` > 0]1 [ts, v1 : ` = 0]3
ts, v1 : ⊥

Πω
1

ts, v1 : ⊥
Π⊥1

ts, v1 : ⊥ ∨E3ts, v1 : ⊥ ⊥E2ts, v1 : free

where Πω
1 is given as follows.

ts, v : free
ts, v : ω = 1 [v = v1 : v2]1

ts, v1 : ω = 1 [ts, v1 : ¬(ω = 1)]3
ts, v1 : ⊥

The main part lies in the proof tree Π⊥1 , which we still have to split.

[ts, v1 : ∃c • (>a (re(c) ∨ cl(c)))a>]3

[ts, v1 : (>a (re(c) ∨ cl(c)))a>]4

Πa1
ts, v1 : ⊥ aE5ts, v1 : ⊥ ∃E4ts, v1 : ⊥

The proof tree Πa1 is an intermediate step to relate the assumption that a reservation
or a claim exists in the situation on the left view v1 with the major premiss that no
reservation or claim exists on the whole of v.

[v = v1 : v2]1 [v1 = vL : vR]5

Ev′ • v = vL : v′
Πv

1

ts, v : ⊥ EE6ts, v : ⊥
ts, v1 : ⊥

The comparison hinted at in the description of Πa1 is made explicit in Πv
1. On the left

hand side of the proof tree, we join the parts of the views we got in Πa1 to derive, that a
reservation or claim of c exists on the whole view v, which contradicts the assumption
that v satisfies free.

[ts, vL : >a (re(c) ∨ cl(c))]5 ts, v′ : > [v = vL : v′]6
ts, v : (>a (re(c) ∨ cl(c)))a>

ts, v : free

ts, v : ∀c • ¬((>a (re(c) ∨ cl(c)))a>)

ts, v : ¬((>a (re(c) ∨ cl(c)))a>)

ts, v : ⊥

As stated above, the proof tree for the situation at v2 is structurally similar. Finally,
we have created a well-structured proof tree, where all application conditions are satisfied,
and the only open assumption is ts, v : free.

We can also derive rules stating the distributivity of chop over disjunctions.

ts, v : (ϕ ∨ ψ)aχ
Distra

ts, v : (ϕaχ) ∨ (ψaχ)

ts, v : (ϕaχ) ∨ (ψaχ)
Distra

ts, v : (ϕ ∨ ψ)aχ

Lemma 4.13. The rules Distra are derived rules.

Proof. The proof for the left-hand rule is given by the following derivation:
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ts, v : (ϕ ∨ ψ)aχ
[ts, v1 : (ϕ ∨ ψ)]2

[ts, v1 : ϕ]1

[ts, v2 : χ]2

[v = v1 : v2]2
ts, v : ϕaχ

ts, v : ϕaχ ∨ ψaχ

[ts, v1 : ψ]1

[ts, v2 : χ]2

[v = v1 : v2]2
ts, v : ψaχ

ts, v : ϕaχ ∨ ψaχ∨E1 ts, v : ϕaχ ∨ ψaχ aE2ts, v : ϕaχ ∨ ψaχ

The right-hand rule is derived similarly. The end of the proof tree is given as:

ts, v : (ϕaχ) ∨ (ψaχ)

Πϕ

ts, v : (ϕ ∨ ψ)aχ
Πψ

ts, v : (ϕ ∨ ψ)aχ ∨E1
ts, v : (ϕ ∨ ψ)aχ

The proof tree Πϕ is a simple application of ∨I and aE.

[ts, v : ϕaχ]1

[ts, v1 : ϕ]2
ts, v1 : ϕ ∨ ψ [ts, v2 : χ]2 [v = v1 : v2]2

ts, v : (ϕ ∨ ψ)aχ aE2
ts, v : (ϕ ∨ ψ)aχ

The proof tree Πψ is structurally similar, where ts, v1 : ψ is substituted for ts, v1 : ϕ.

Even though the somewhere modality is only defined as an abbreviation, we present
explicit elimination and introduction rules. These are useful shorthands, since in most
practical cases this modality plays an important role (see for example the case study in
Chap. 7).

ts, v : 〈ϕ〉

[v = vL : vm] [vm = v′m : vR] [v′m = vD 	 v′′m] [v′′m = vsub 	 vU ] [ts, vsub : ϕ]

...
ts′, v′ : χ 〈〉E

ts′, v′ : χ

v = vL : vm vm = v′m : vR v′m = vD 	 v′′m v′′m = vsub 	 vU ts, vsub : ϕ 〈〉 I
ts, v : 〈ϕ〉

In the rule 〈〉E, the intermediate views vL, vR, vD, vU ,vm, v′m, v′′m, and vsub may not
occur in any assumption ts′, v′ : χ depends on, except for the assumptions eliminated by
the application of this rule.

Lemma 4.14. The somewhere introduction and elimination rules are derived rules.

Proof. The derivations are straightforward applications of the chop introduction and
elimination rules, respectively.
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4.3 Undecidability of Spatial MLSL

In this section we give an undecidability result for the spatial fragment of EMLSL, i.e., we
do not need the modalities for the discrete state changes of the model or the evolutions.
We will call this fragment spatial MLSL, subsequently. We reduce the halting problem
of two-counter machines, which is known to be undecidable [Min67], to satisfaction of
spatial MLSL formulas.

Intuitively, a two-counter machine executes a branching program which manipulates a
(control) state and increments and decrements two different counters c1 and c2. Formally,
two counter machines consist of a set of states Q = {q0, . . . , qm}, distinguished initial
and final states q0, qfin ∈ Q and a set of instructions I of the form shown in Tab. 4.1 (the
instructions for the counter c2 are analogous). The instructions mutate configurations of
the form s = (qi, c1, c2), where qi ∈ Q and c1, c2 ∈ N into new configurations:

Table 4.1: Instructions for Counter c1 of a Two-Counter Machine

s Instruction s′

(q, c1, c2) q
c+1−→qj (qj , c1 + 1, c2)

(q, 0, c2) q
c−1−→qj , qn (qj , 0, c2)

(q, c+ 1, c2) q
c−1−→qj , qn (qn, c, c2)

A run from the initial configuration of a two-counter machine C = (Q, q0, qfin , I) is a

sequence of configurations (q0, 0, 0)
i0−→ . . .

ip−→(qp+1, cp+1, c
′
p+1), where each ij is an instance

of an instruction within I. If qp+1 = qfin , the run is halting.

We follow the approach of Zhou et al. [ZHS93] for DC. They encode the configurations
in recurring patterns of length 4k (for k ∈ R+), where the first part constitutes the
current state, followed by the contents of the first counter. The third part is filled with a
marker to distinguish the counters, and is finally followed by the contents of the second
counter. Each of these parts is exactly of length k.

Zhou et al. could use distinct observables for the state of the machine, counters and
separating delimiters, since DC allows for the definition of arbitrary many observable
variables. We have to modify this encoding since within spatial MLSL we are restricted
to two predicates for reservations and claims, and the derived predicate for free space,
respectively. Furthermore, due to the constraints on EMLSL models in Def. 3.1, we
cannot use multiple occurrences of reservations of a unique car to stand, e.g., for the
values of one counter. Hence we have to existentially quantify all mentions of reservations
and claims. We will never reach an upper limit of existing cars, since we assume I to be
countably infinite.

The current state of the machine qi is encoded by the number of lanes below the
current configuration, the state of each counter is described by a sequence of reservations,
separated by free space in between. A single claim identifies the border between the
counters. To safely refer to the start of a configuration, we use an additional marker
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consisting of a claim, an adjacent reservation and again a claim. Each part of the
configurations is assumed to have length k. Free space separates the reservations within
one counter from each other and from the delimiters. Intuitively, a configuration is
encoded as follows:

. . . . . .

. . . . . .

5k

0

...
...

...

i

marker free, re cl free, re cl

To enhance the readability of our encoding, we use the abbreviation

marker ≡ ∃c • cl(c)a∃c • re(c)a∃c • cl(c)

to denote the start of a configuration.
Like Zhou et al., we ensure that reservations and claims are mutually exclusive.

mutex ≡ ∀c, d • [cl(c)→ ¬re(d)) ∧ (re(c)→ ¬cl(d)] .

We do not have to consider free, since it is already defined as the absence of both
reservations and claims. Observe that we use the square brackets to denote the everywhere
modality (cf. Sect. 4.1).

The initial marking (q0, 0, 0) is then defined by the following formula.

init ≡




[¬∃c • cl(c)]

markerka freeka (∃c • cl(c))ka freeka (∃c • cl(c))k

ω = 0


 a>

We have to ensure that the configurations occur periodically after every 5k spatial
units. Therefore, we use the following schema Per(D). Observe that we only require
that the lanes surrounding the formula D do not contain claims. This ensures on the
one hand that no configuration lies in parallel with the formula D, since well-defined
configurations have to include claims. On the other hand, it allows for the satisfiability
of the formula, since we do not forbid the occurrence of reservations. These are are
needed for the claims within the configurations, due to the fact that each claim has to be
adjacent to a reservation.

Per(D) ≡






[¬∃c • cl(c)]
D

[¬∃c • cl(c)]
a ` = 5k


→


` = 5ka

[¬∃c • cl(c)]
D

[¬∃c • cl(c)]






Note that we did not constrain on which lane the periodic behaviour occurs. This will
be defined by the encoding of the operations.
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Now we may define the periodicity of the delimiters and the counters. Here we also
have to slightly deviate from Zhou et al.: we are not able to express the statement
“almost everywhere free or re(c) holds” directly. We have to encode it by ensuring that
on every subinterval with a length greater than zero, we can find another subinterval
which satisfies free or re(c). This expresses in particular, that no claim may occur, due
to the mutual exclusion property.

periodic ≡ Per((�`(` > 0→ >a (free ∨ ∃c • re(c))a>) ∧ ω = 1)k)

∧ Per((∃c • cl(c))k) ∧ Per(markerk)

We turn to the encoding of the operation qi
c+1−→ qj , i.e., the machine goes from qi to

qj and increments the first counter by one (the other operations can be defined in an
analogous manner). Similar to Zhou et al., we use encodings of the form ¬(D1a¬D2),
meaning “whenever the beginning of the view satisfies D1, the next part satisfies D2.”

The formula following F1 copies the reservations of counter one of state qi to the
corresponding places in counter one in state qj .

F1 ≡ ¬






>
markerka ` < ka∃c • re(c)a ((∃c • re(c)a>) ∧ ` = 5k)

ω = i


 a

¬




>
` = 0 ∨ (∃c • re(c)a>)

ω = j






We use a similar formula Ffree to copy the free space before the reservations. Observe
that we do no copy the last free part of the counter, since we intend to add another
reservation. Due to space limitations, we use the following abbreviation to identify the
occurrences of free space in front of reservations:

freere = ((free a>) ∧ ¬(free a∃c • cl(c)a>) ∧ ` = 5k) .

On the one hand, the formula ensures that we find an occurrence of free space at the
beginning of the current interval. On the other hand, it prohibits this occurrence to be
the last free space at the end of the counter.

Ffree = ¬






>
markerka ` < ka free a freere

ω = i


 a¬




>
` = 0 ∨ (free a>)

ω = j






The formulas F2 and F3 handle the addition of another reservation to the counter. We
have to distinguish between an empty counter and one already containing reservations.

F2 ≡




>
markerka freeka ` = 5k

ω = i


→




>
>a (free a∃c • re(c)a free)k

ω = j
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F3 ≡




>
markerka ` < ka∃c • re(c)a ((free a∃c • cl(c)a>) ∧ ` = 6k)

ω = i


→




>
>a (free a∃c • re(c)a free a∃c • cl(c))k

ω = j




In addition, we need formulas which copy of contents of the second counter to the new
configuration, similar to F1.

Let IC be the set of the machine’s instructions and F (i) be the conjunction of the
formulas encoding operation i and qfin its final state. Then

halt(C) ≡ init ∧ periodic ∧mutex ∧
∧

i∈IC
�`F (i) ∧ ♦`




>
∃c • cl(c)
ω = fin


 .

If and only if halt(C) is satisfiable, the machine contains a halting run. This holds since
only configurations may contain claims (as defined in the formalisation of periodicity),
and whenever the machine reaches its final state, it halts. Hence the halting problem of
two counter machines with empty initial configuration reduces to satisfiability of spatial
MLSL formulas.

Proposition 4.1. Let C be a two-counter machine. Then C has a halting run if and
only if halt(C) is satisfiable.

Proof. “if”.

Let T S, V, ν |= halt(C), where V = (L,X,E). Observe that all variables occurring in
halt(C) are existentially quantified, and hence we may ignore the values of ν. We divide
X into parts of length 5k, i.e., we have ‖X‖ = s · 5k + r, where 0 ≤ r < 5k, which means

X = [a, b] =

s⋃

d=1

[a+ (d− 1) · 5k, a+ d · 5k] ∪ [a+ s · 5k, b].

We denote
⋃e
d=1[a+ (d− 1) · 5k, a+ d · 5k] by Xe. Let X ′ = [a+ (d′ − 1) · 5k, a+ d′ · 5k]

and X ′′ = [a+ d′ · 5k, a+ (d′ + 1) · 5k] for some 0 < d′ < s. Now assume that at X ′, lane
m contains a configuration, i.e.,

T S, V {m}X′ |= markerka (�`(` > 0→ >a (free ∨ ∃c • re(c))a>) ∧ ω = 1)k

a∃c • cl(c)ka (�`(` > 0→ >a (free ∨ ∃c • re(c))a>) ∧ ω = 1)k

a∃c • cl(c)k
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By interpreting periodic on T S, VX′∪X′′ we get that there is a lane m′ such that

T S, V {m
′}

X′′ |= markerka (�`(` > 0→ >a (free ∨ ∃c • re(c))a>) ∧ ω = 1)k

a∃c • cl(c)ka (�`(` > 0→ >a (free ∨ ∃c • re(c))a>) ∧ ω = 1)k

a∃c • cl(c)k

Furthermore, the formula periodic prevents that there exists a lane different from m′

containing such a situation, since for it to hold, all other lanes are forbidden to contain
claims at X ′′. Hence we have exactly one configuration on all parts [a+(d−1)·5k, a+d·5k].

We can extract a run for C from T S, V from halt(C) by induction on d as follows.
Let d = 1. Then init ensures that on lane 0, there is a configuration with no reservations

between the marker and the first claim and between the first and the second claim. Hence,
we have a run starting and ending with (q0, 0, 0).

As the induction hypothesis, we assume that for 1 ≤ d < s, we can extract a run
R = (q0, 0, 0)−→∗(qi, c1, c2) from T S, VXd . For d+ 1, we know by the arguments above,
that there exists exactly one configuration on [a + d · 5k, a + (d + 1) · 5k]. Since C
is deterministic, for the configuration on lane i, there is at most one set of formulas
applicable. We only show the case for instruction incrementing counter one.

Let F1, F2, F3, Ffree be the applicable formulas, which we will interpret on Xd+1 \Xd−1,
i.e. the interval X+ = [a + (d − 1) · 5k, a + (d + 1) · 5k]. This interval is exactly 10k
long and starts with markerk on lane i. Then F1 states that for each reservation in
the representation of the first counter, i.e., where ` < ka∃c • re(c) holds, we find a
reservation on lane j exactly 5k space units onwards. The outermost negation ensures
that each possible chop point is considered, in particular the chop points arbitrarily close
to the end points of the reservations. Ffree ensures in a similar way, that for each free
space in front of a reservation in this representation, we have free space exactly 5k space
units onwards on lane j. Hence, all reservations and the free space in between is present
on lane j.

Now we consider two cases. When there is no reservation between the marker and
the first single claim, then F2 replaces this free space by a reservation enclosed by free
space, i.e., the end configuration of the run was (qi, 0, c2) and the resulting configuration
is (qj , 1, c2). The second counter was copied like the first.

If there was a reservation before the last free space, then F3 replaces this last free
space similarly by a reservation enclosed by free space on lane j, i.e., the configuration
(qi, c1, c2) is changed to (qj , c1 + 1, c2). Hence, in both cases we defined the increment
of counter 1 together with a state change from qi to qj , which is by construction an
instruction of C, hence R−→(qj , c1, c2) is a valid run of C. The other cases are analogous.

Now if we did extract a run from the satisfying model of halt(C), we have two
possibilities. First, if r = 0, then the configuration at step s is the last of R. Then the
last conjunct of halt(C) ensures, that a final state was reached, hence R is a halting run.

Otherwise, if r > 0, then similarly it is ensured that on this last part of V , the lane
corresponding to the final state has been reached. Since also the last change has to be
initiated by a formula as before, there is an instruction to complete R to a halting run.

“only if”.
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Let R = (q0, 0, 0)−→∗(qfin, c1, c2) be a halting run of C with d+ 1 configurations, i.e.
qd = qfin. We create a model T S, V with V = (L,X,E) with |X| = (d + 1) · 5k and
|L| = |Q|+ 1 as follows. For a configuration (qi, c1, c2) at step d′, we define three cars
Cd′,0, Cd′,1, Cd′,2 with

pos(Cd′,e) = d′ · 5k + e · k/3 for e ∈ {0, 1, 2}
res(Cd′,0) = res(Cd′,2) = {i+ 1}

res(Cd′,1) = {i}
clm(Cd′,0) = clm(Cd′,2) = {i}

clm(Cd′,1) = ∅
ΩE(Cd′,e, T S) = k/3 for e ∈ {0, 1, 2}

These cars satisfy markerk. For the claims marking the end of counter 1 and 2
respectively, we define Cd′,4 and Cd′,6 as follows.

pos(Cd′,4) = d′ · 5k + 2k

pos(Cd′,6) = d′ · 5k + 4k

res(Cd′,4) = res(Cd′,6) = {i+ 1}
clm(Cd′,4) = clm(Cd′,6) = {i}

ΩE(Cd′,4, T S) = ΩE(Cd′,6, T S) = k

For the definition of the first counter, we need the maximum value max of both counters
on the whole run. Then we define a sequence of cars Cd′,3,x, where 1 ≤ x ≤ c1 if c1 > 0.
For each such car we set

pos(Cd′,3,x) = d′ · 5k + 3k +

(
(2x+ 1) · k

1 + 2 ·max

)

res(Cd′,3,x) = {i}
clm(Cd′,3,x) = ∅

ΩE(Cd′,3,x) =
k

1 + 2 ·max

Otherwise, no such sequence is added.
For the second counter, we define a similar sequence Cd′,5,x with 1 ≤ x ≤ c2 if c2 > 0.
If we create such sets of cars for each configuration, the formula halt(C) is satisfied, if

the run is halting.

The main theorem of this section is a corollary of Prop. 4.1.

Theorem 4.2. The satisfiability problem of spatial MLSL is undecidable.

Even though we used the full power of spatial MLSL in the proof, i.e., we used both `
and ω, the proof would be possible without using the latter. For that, we would not be
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able to encode the state of the configuration in the lanes, but by a similar way to the
markers in the formulas. For example, the formula (∃c • cl(c)a∃c • re(c)a∃c • cl(c))k

would denote the state q0, and with another iteration of re(c), it would denote q1 and so
on. If we remove the references to more than one lane in each of the formulas above, the
reservations and claims would already imply that only one lane exists, and hence, the
use of ω within the abbreviation free could be omitted. This shows that spatial MLSL is
already undecidable even if we only use `.

4.4 Related Work

Within this chapter, we concentrated on spatial reasoning with a labelled transition
system of metric spaces as semantics. Another variant of logics which are called “spatial”
are logics for reasoning about structural properties of discrete systems, e.g. process
algebras like the π-calculus [MPW92] or the ambient calculus [CG98], or as a more
general approach graphs.

The spatial logic for concurrency [CC01] is a very expressive language to describe
processes with dynamically changing structures. It contains several spatial modalities to
refer to the structure of processes as well as behavioural modalities to reason about the
possible messages a process may send to the environment and first- and second-order
quantifiers. With this set of operators, fixpoint operators and a validity predicate can
be defined within the logic. The sequent calculus for this logic [CC04] uses a set of
constraints to store assumptions about possible fresh names, which is in a sense similar
to the labels and relational formulas in our proof system.

Baldan et al. presented a logic for verification purposes of graph transformation systems
[BKK03]. Their approach relies on monadic second-order quantification and explicit
predicates referring to the labels of edges and their sources and targets. Even though
the logic is defined to reason about arbitrary graph structures, the set of predicates is
similarly to EMLSL very restricted.

Most related work on spatial logics in the sense of this chapter is focused on purely
qualitative spatial reasoning [APB07], e.g., the expressible properties concern topological
relations [RCC92]. Shao et al. presented a temporal extension of such a qualitative
spatial logic to specify properties of hybrid systems [Sha+13]. They use an approach of
Finger and Gabbay [FG92] to add topological spaces to a linear model of time. However,
how the spaces evolve over time has to be explicitly defined within the systems they
design. This contrasts our definition, where these evolutions are hidden in the model,
and hence not directly accessible by the operators of EMLSL.

Logics expressing quantitative spatial properties are rare, an example is Schäfer’s Shape
Calculus (SC) [Sch05], which is a very general extension of Duration Calculus. On the
one hand the focus of EMLSL lies on a restricted field of application, i.e., freeway traffic,
and hence EMLSL is more restricted than SC. On the other hand, a direct translation
into SC or one of its decidable subset fails, since in SC quantification is only possible
over variables used in length measurements. In EMLSL however, quantification over
cars is allowed, which resembles quantification over spatial properties (e.g., the existence
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of a reservation at a certain point within a view). This would have to be modelled by
quantification on observables in SC. Hence, for identifying a subset of EMLSL where
satisfaction is decidable, restricting the number of cars to be finite seems inevitable.

From a more general point of view, EMLSL is a multi-dimensional multi-modal first-
order logic using three sorts of variables. Marx and Venema have further examined differ-
ent properties of multi-dimensional modal logics [MV97]. For them, multi-dimensionality
stems from the models themselves, i.e., a logic is multi-dimensional, if the models consist
of tupels of elements taken from more basic sets. Our models incorporate many different
types of elements, and hence are multi-dimensional in their sense. But they only consider
homogeneous models, i.e., where all dimensions are similar, while our dimensions behave
very differently. For example, the vertical dimension is discrete, while the horizontal
dimension is dense. The temporal dimensions, i.e., the discrete and continuous tran-
sitions, again behave in very different ways. Furthermore, EMLSL consists of various
different modal operators, which are not interdefinable. However, the modalities are
strongly interconnected, e.g. the creation of a reservation only has an effect, if there
was a preceding creation of a claim for the same car. Due to this interdependence of
the accessibility relations, EMLSL is not simply a fusion [Gab+03] of the corresponding
uni-modal languages.

In the definition of EMLSL, we chose to keep the domains of quantification constant on
all reachable worlds. In a previous presentation [Hil+11], the quantifiers were evaluated
on the set of visible cars within a view. However, for the contents within this chapter,
constant domains ease the definition of the proof system and prohibit certain surprising
special cases. For example, equality could not be guaranteed to be a rigid predicate in
the case of varying domains, since the cars under consideration may be visible in one
view, but not in its subview. Such subtle intricacies are typical for first-order modal
logics with varying domains [FM98].

For cars, the existence predicate of free logic [Ben86] can be emulated, since existence
in our setting corresponds to visibility to the owner of the current view. I.e., we can use
the formula 〈re(c) ∨ cl(c)〉 to relativise our quantors. For example instead of ∀c • ϕ we
would use ∀c • 〈re(c) ∨ cl(c)〉 → ϕ to mimic varying domains. More specifically, we can
emulate decreasing domains with respect to the spatial accessibility relations.

Labelled natural deduction for (multi-)modal logics has been studied intensely recently.
E.g., when the rules for relational formulas can be defined with horn clauses as antecedents,
nice meta-theoretical properties like normalisation of proofs can be established [BMV98;
Vig00]. In intuitionistic modal logic, similar results are obtained, when the relational
theory is defined using only geometric sequents [Sim94]. Unfortunately, even with our
restricted set of rules for view relations, these results do not carry over to our setting,
since we made use of existential quantification on views. In particular, the rule EE merges
relational and logical deductions. The set of rules for dynamic transitions is small and
only concerns the length of passing time and abstract transitions. Rules stating the
possibility of transitions for, e.g., the creation of reservations, need to use spatial atoms
as premisses (in this case the existence of a claim) and relational formulas as conclusions
(the existence of the transition). Hence, proofs would integrate relational and logical
deductions even more.
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Rasga et al. investigated the fibring [CSS05] of labelled deductive systems [Ras+02].
They distinguish between two different types of fibrations. The first type of systems
is generated by treating all operators as unique, i.e., the operators from the different
systems can not interact directly. In particular, if the systems use Boolean operators,
these operators are not immediately equivalent. In the second type of fibrations, operator
types common to all systems may be merged to a single set of operators. E.g., such a
combination is needed, if the fibration should only use one set of Boolean operators and
quantors. We assume that the deduction system of Sec. 4.2 is a fibring of the second type,
where the Boolean operators are shared between all deduction systems involved. A further
classification of EMLSL (or a suitable subset) and its proof system within the framework
of fibring and multi-dimensional logics would be of interest. If we can find subsets of the
deductive systems which possess suited characteristics, e.g., the finite-model property,
we may be able to use preservation results [CSS11]. However, already the definition of
EMLSL within this framework is a laborious challenge.
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During the work on safe lane change controllers, we often used visual depictions of
traffic situations for analysation purposes. Naturally this prevalence of diagrams led to
the question whether we could give these depictions a formal semantics and use them
during proofs. In this chapter we present a formalisation of our intuitive visualisations.
This diagrammatic language of Traffic Diagrams is loosely based on previous work on a
visual language regarding space and time [Lin10].

The intent of Traffic Diagrams is to enable users to visually reason about spatial
and temporal aspects of multi-lane traffic. Therefore, these diagrams are interpreted
on the abstract road model of EMLSL. The diagrams shall denote constraints on the
current model. That is, the elements shown in the diagram are ensured to be present,
while properties not mentioned within a diagram may have arbitrary values. Hence the
diagrams restrict the models in a similar fashion as EMLSL.

An example of a purely spatial traffic diagram is given in Fig. 5.1. The depicted spatial
situation is contained in a dashed rectangle, called a layer. Two adjacent lanes are shown,
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a

ego

c

[2, 5]

[2, 5]

Figure 5.1: Spatial Traffic Diagram

where two cars a and c are driving on the lower lane, and ego is driving on the other.
The parts of a lane not occupied by any car shown in the diagrams are denoting free
space on the road. Constraints on the distances between the cars are shown as distance
arrows, labelled with real-valued intervals i ∈ I. This diagram may, e.g., be part of a
very fine grained specification of a car platooning system. It describes a precondition for
ego to join the platoon built by a and c by changing lanes. In particular, ego has to check
whether the distance to the other two cars is at least two and at most five meters. The
idea of the small distances between the cars is that the system may use the slipstream to
lower the fuel consumption of the platoon on a global level.

Such spatial diagrams can be connected by duration arrows also labelled by intervals
to create spatio-temporal sequences. A duration arrow constrains the time allowed to
pass between the spatial layers, i.e., the freeway situations, it connects. We allow for
negation and conjunction as well as existential quantification on the level of layers and of
connected sequences of diagrams.

Within traffic diagrams, variables may be used in two ways. Depictions of cars may be
labelled with variables, while the bounds of intervals are either variables or real numbers.
The variables allow the user to connect different distances and cars along several parts of
a diagram.

5.1 Concrete Syntax

A major difference between diagrammatic and standard sentential logics is the stronger
distinction of diagrammatic syntax into two levels [How+02; Dau04b; Dau09], the abstract
(or type) and concrete (or token) syntax. The former is typically a formal mathematical
construct, describing the possible relationships between its elements, while the latter
describes the representation of the abstract diagrammatic elements. Howse et al. use a
mathematical definition of both syntactic levels and relate the syntactic levels by suited
homomorphisms [How+02]. In contrast, Dau argues that the concrete syntax does not
benefit from such a rigorous treatment [Dau04b; Dau09]. Instead, he emphasises that
such a definition would lead to unnecessary technicalities. Furthermore, it would still not
solve the problem of relating the mathematical concrete syntax with the drawings on, e.g.,
paper. For the presentation of traffic diagrams, we follow Dau by defining conventions
for drawing the syntactic elements.

We employ a two-sorted set of variables Var, consisting of the sets of car variables CVar
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5.1 Concrete Syntax

and length variables RVar with typical elements c, d ∈ CVar and x, y ∈ RVar, respectively.
Similar to EMLSL, we use a constant ego, to denote the current local car. For temporal
purposes, we use real-valued intervals, i.e., intervals, where both bounds are concrete real
values. The other type of intervals are variable intervals, where we allow the bounds to
be either real numbers or real-valued variables. In both types, ∞ is allowed as a right
bound of an interval. Recall that we denote the set of real-valued intervals by I and the
set of variable intervals by IVar (cf. Sect 2.1). Furthermore, we denote the set of discrete
actions of cars by

A = {r(c), c(c),wd r(c),wd c(c) | c ∈ CVar}.

The basic elements of the concrete syntax of traffic diagrams are given in Tab. 5.1.

Table 5.1: Diagrammatic Elements of Traffic Diagrams (α ∈ I ∪ A and i ∈ IVar)
Diagrammatic Element Name

Sequence

, Full/Partial Layer

Unspecified Space

, Exact/Wide Lane Separation

c
,
c Reservation, Claim

α , Temporal Arrow

i Distance Arrow

D1 D2 Conjunction

D Negation

D

∃ x
Existential Quantification

These elements are arranged according to the following definitions. The spatial situation
on single lanes is captured in topological sequences as given below. These sequences only
describe the qualitative situation, i.e., which cars drive where in relation to other cars on
the lane. A car is represented by a reservation or a claim, denoted by solid and dotted
irregular pentagons, respectively.

Representations of cars may intersect with each other, and their horizontal positions
may coincide. In the latter case, we shift the depiction of the cars against each other
in vertical direction to emphasise the presence of more than one car. Cars have to be
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5 Visual Logic for Freeway Traffic

labelled with variables taken from CVar. Unspecified space is depicted as a shaded part
of a lane, while free space is just white space between cars and/or unspecified space.

Definition 5.1 (Topological Sequence). A topological sequence consists of a horizontally
arranged sequence of reservations, claims, and unspecified space, in the following manner.
All elements have to be of roughly the same height. Reservations and claims may overlap.
If they do, the user is free to shift single reservations and claims vertically, to enhance
the visibility of the overlaps. All reservations and claims have to be labelled by exactly one
variable c ∈ CVar or ego. Adjacent reservations or claims have to be labelled differently.
Unspecified space may not overlap with any reservation or claim. There may be blanks
between the elements of the topological sequence. These blanks are free space.

c d
ego

b

Figure 5.2: Example of a Topological Sequence

This definition implies that a topological sequence can be uniquely divided into
topological situations, i.e., a possible overlap of reservations and claims, unspecified space
or free space. This observation gives us the possibility to treat topological situations one
at a time.

Example 5.1. Consider the topological sequence in Fig. 5.2. It consists of seven different
topological situations (from left to right):

1. the reservation of the car named c,

2. the unspecified space,

3. the claim of the car named d,

4. the free space between the claim of d and the reservation of ego,

5. the reservation of ego,

6. the overlap of the reservation of ego and the claim of b and

7. the claim of the car named b.

Each of these situations as well as their order within the sequence can be uniquely derived
from the depiction in Fig. 5.2.

Since topological sequences describe single lanes, and we want to describe multi-lane
traffic, we have to be able to describe the spatial situations on adjacent lanes at once.
We also want to have the possibility to omit irrelevant lanes from the specification.
We therefore introduce lane separations, which have to be drawn between topological
sequences. Solid separations denote that the lanes are adjacent, while dashed separations
mean that there may be some omitted lanes between the depicted topological sequences.
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5.1 Concrete Syntax

Definition 5.2 (Lane Sequence). A lane sequence consists of one or more topological
sequences arranged vertically, which are separated by wide or exact lane separations.

top. sequence

top. sequence

top. sequence

top. sequence

Figure 5.3: Example of a Lane Sequence

Example 5.2. Consider the abstraction of a lane sequence shown in Fig. 5.3. It consists
of four topological sequences, which we do not define any further, and lane separations in
between. The lowest lane separation is wide, while both of the upper separations are exact.
Note that the sequence does not have lane separations as its upper or lower boundary.

Up to now, only qualitative aspects of space are describable with the given definitions.
Since in the setting of multi-lane traffic quantitative constraints as “within two and three
meters” may be of interest, we introduce methods to measure space between cars (both
reservations and claims). This is done via distance arrows. The limitations given in
the definition may seem arbitrary at the moment, but they allow for a non-ambiguous
definition of abstract types of diagrams in Sect. 5.4.

Definition 5.3 (Distance Arrows). An arrow between borders of reservations and/or
claims is called a distance arrow. Such an arrow has to be drawn horizontally. Distance
arrows may connect reservations and/or claims in different topological sequences. In this
case, we require that the arrow is drawn within one of these sequences and the border of
the reservation/claim in the other sequence is extended by an auxiliary vertical dashed
line to meet the arrow. If the source and target of a distance arrow lie within the same
topological sequence, the source must be to the left of the target. Distance arrows are
always drawn solid and have to be labelled with an interval i ∈ IVar.

c d ego

f[3,4]

[3, x)

Figure 5.4: Example of Distance Arrows
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5 Visual Logic for Freeway Traffic

Example 5.3. Figure 5.4 shows an exemplary lane sequence with two distance arrows.
The upper distance arrow connects the right border of the reservation of the car c with
the left border of f ’s reservation. It is labelled with the closed interval [3, 4]. Note how
the border of the reservation of c is extended by the dashed line.

The other arrow connects the claim of d with the reservation of ego. This arrow is
attached to the left border of both its source and its target. Its label contains the variable
x as the right border of the half-open interval [3, x).

Now we have everything at hand to describe multi-lane traffic situations diagrammat-
ically. For atomic situations, we need a lane sequence, possibly with distance arrows
within the sequence, and surround it with a dashed or solid rectangle. The former
denotes that only a part of the current situation on the road is described, while the latter
enforces that the perceived part of the road is fully compatible with the diagram at hand.
Furthermore, a shaded rectangle without a surrounding border denotes an arbitrary
spatial situation. In addition, we allow for Boolean combinations of such descriptions
and existential quantification on variables occurring in within topological situations or
within labels of distance arrows.

Definition 5.4 (Spatial Diagram). The language of spatial diagrams is given by the
following inductive definition.

• A shaded rectangle is an atomic spatial diagram.

• Let L be a lane sequence together with distance arrows within the sequence. Adding
a solid (or dashed, respectively) rectangle around L yields an atomic spatial diagram,
called a full (or partial, respectively) layer.

• Let S be a spatial diagram. Surrounding S with a hook on its left and top side
results in the spatial diagram S′, the negation of S.

• Let S1 and S2 be spatial diagrams. Juxtaposing S1 and S2 and adding one dashed
vertical line left of S1 and one right of S2 yields a spatial diagram, the conjunction
of S1 and S2.

• Let S be a spatial diagram. Adding a solid rectangle around S with the label ∃x for
a variable x ∈ CVar ∪ RVar on top yields a spatial diagram.

No other diagram is a spatial diagram.

Finally, to describe temporal aspects of traffic, we lift the given definition to sequences
of spatial diagrams. The diagrams are connected by arrows defining the possible time
elapsing or the different spatial transitions happening between the spatial situations. A
solid arrow annotated with a spatial transition denotes that only this transition occurs
between the specified snapshots. If the arrow is labelled with an interval, there has to be
an evolution respecting the given interval between the snapshots. Recall that this means
that no discrete transitions apart from changes in accelerations may happen. For this
reason, solid temporal arrows will also be called precise temporal arrows. Dashed arrows,
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however, may not carry a label. They allow for arbitrary transitions (i.e. an abstract
transition) occurring between the snapshots, which is why they are called faint temporal
arrows. If a solid arrow is annotated with the interval [0,∞), the label may be omitted.
Again, we allow for logical connectives between sequences. This yields the language of
Traffic Diagrams.

Definition 5.5 (Traffic Diagram). The language of Traffic Diagrams is given by the
following inductive definition.

• Each spatial diagram surrounded with a dotted rounded rectangle (a sequence) is an
atomic Traffic Diagram.

• Let S be a spatial diagram and let T be a Traffic Diagram. Aligning S and T
such that S is above T in vertical order and connecting S with T via an unlabelled
dashed arrow or a solid arrow labelled with either a real-valued interval or an
action and surrounding this whole sequence with a dotted rounded rectangle yields
a temporal sequence. The arrow connecting S and T is called a temporal arrow.
More specifically, a solid arrow is called a duration arrow if it is labelled with an
interval and a discrete temporal arrow if it is labelled with an action.

• Let T be a Traffic Diagram. Surrounding T with a hook on its left and top side
results in the Traffic Diagram T ′, the negation of T .

• Let T1 and T2 be Traffic Diagrams. Juxtaposing T1 and T2 and adding a dashed
vertical line left of T1 and right of T2 yields a Traffic Diagram, the conjunction of
T1 and T2.

• Let T be a Traffic Diagram. Adding a solid rectangle around T with the label ∃x
for a variable x ∈ CVar ∪ RVar on top results in the spatial diagram T ′.

• No other diagram is a Traffic Diagram.

We denote the set of all Traffic Diagrams by D

The notations for Boolean operators are inspired by the approach of Stapleton and
Masthoff [SM07]. However, we chose to add two dashed vertical lines to denote conjunction
to have a closer match between the abstract and concrete syntax. To express negation of
an element, we use a line on top and on its left side. While Stapleton and Masthoff use
only a line on top of diagrams, we use this extension to emphasise the difference between
the negation of a single layer and a whole sequence including the connecting arrows. For
an example, see Fig. 5.11. For existential quantification, we use the notation of visual
first-order logic (VFOL) [Sta+05], i.e., the scope of the quantification is denoted by a
rectangle and the quantor together with the quantified variable is inscribed on top of the
scope.
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5 Visual Logic for Freeway Traffic

5.2 Conveniences

In this section, we will remove redundancies and clutter from the formal diagrams, while
still maintaining a mathematically distinct semantics.

S1 S2 S3

(a) Ambiguous Conjunction

S1 S2 S3

(b) First Possibility

S1 S2 S3

(c) Second Possibility

Figure 5.5: Omission of Notation for Conjunction

Typically, conjunction of diagrams would be denoted by juxtaposition, like, e.g. in
visual first-order logic [Sta+05]. We decided to include a notation mimicking parenthesis
to avoid ambiguities between abstract and concrete syntax, which would be created by
omitting a distinguished syntax element for conjunction. In particular, conjunction is
usually a binary operator, while juxtaposition in general is of arbitrary arity. Consider a
diagram D consisting of three juxtaposed sequences Si as in Fig. 5.5a.

This concrete diagram would have two representations in terms of Traffic Diagrams, as
shown in Fig. 5.5b and 5.5c. Similar to rules for the omission of parenthesis for sentential
logics, we assume that such ambiguities are resolved by the first possibility. That is,
conjunction is left-associative. As we will see in Sect. 5.5, the semantics of the diagrams
which are now drawn similarly are in fact the same.

The next simplification involves the notion of sequences. Within the concrete syntax,
the dotted rounded rectangles denoting sequences often seem superfluous. For example,
the sequence around an atomic Traffic Diagram is not needed to identify this case.
However, the sequences are helpful to establish the existence of a unique representation
for each Traffic Diagram in Sect. 5.4.

D1 D2

(a) Sequence as Topmost Operator

D1 D2

(b) Conjunction as Topmost Operator

Figure 5.6: Ambiguities with Sequences

Consider the diagrams in Fig. 5.6a and Fig. 5.6b. Sequences themselves will not add any
restrictions to the semantics, and hence both figures express exactly the same properties.
We will omit the notations of sequences from the concrete depiction of Traffic Diagrams
in the following sections and chapters. For the sake of well-definedness, however, we
assume these diagrams to be defined as in Fig. 5.6a. Finally, we will often denote a
point-like interval, i.e., an interval of the form [x, x] by writing simply x. The context of
this notation will always clarify, whether we mean the variable or such an interval.
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5.3 Formalising Sanity

5.3 Formalising Sanity

In this section, we formalise the sanity conditions of the abstract model with suitable
Traffic Diagrams. We will present the informal semantics of the diagrams, so that the
reader may get accustomed to the concrete syntax. Only afterwards, in Sect. 5.4 and 5.5,
will we start to formalise both the abstract mathematical syntax, as well as the formal
semantics of Traffic Diagrams.

These formalisations show typical forms of Traffic Diagrams. For example, all of these
diagrams state invariance properties for all cars by negating the assertion of the existence
of a car violating this property. Furthermore, some of the diagrams can be directly read
as implications. Consider, e.g., the structure of Fig. 5.7e. Disregard the outer negation for
the moment. Then, the diagram states that there is a situation, where the spatial diagram
to the left holds, but the negated diagram to its right does not. That is, if we negate
the whole diagram again, we get that there is no such situation. Hence, the left spatial
diagram implies the diagram under the inner negation at all reachable traffic snapshots.
These types of diagrams will again arise in Chap. 7, where we use the combination of
EMLSL and Traffic Diagrams to define a specification for a safe lane-change controller.
Furthermore, these diagrams state properties of the domain as a whole, thereby revealing
these properties within the syntax of Traffic Diagrams. Similar formalisations within
EMLSL have been found by Hilscher [Hil14].

The sanity conditions of Def. 3.2 are given for single snapshots only. For the axiomatic
diagrams however, we use a notion corresponding to invariant properties along all possible
transition sequences. That is, the correctness of these diagrams is a direct result of
Lemma 3.1. In this sense, the diagrams are a stronger assertion than the sanity conditions,
since they already incorporate their invariance along the transitions. However, the sanity
conditions are defined for whole snapshots, whereas the diagrams may only state the
conditions for the current view under consideration. Hence we can not use these diagrams
to replace the sanity conditions.

The diagrams depicting the sanity conditions are given in Fig. 5.7. The first set of
diagrams is relatively easy. The fact that the reservations and claims of a single car never
overlap is shown in Fig. 5.7a. Fig. 5.7b and 5.7c define the maximal number of reservations
and claims for a single car in a similar fashion. Note that the relative horizontal positions
of the reservations (and claims) are not constrained, since the topological relations
between cars on different lanes are unspecified. Furthermore, the wide lane separations
allow for an arbitrary number of lanes in between the reservations (and claims). Also
note that we allow for the non-existence of reservations for cars. On a first glance, this
seems to contradict the sanity conditions 2 and 3, which explicitly require all cars to
occupy at least one lane. However, since we interpret the diagrams on a view V , the
reservations of cars outside of V are not visible. Because we interpret the quantifiers over
all existing cars, whether or not they are visible in the current view, we have to allow for
a car to not have any visible reservation.

The diagram depicted in Fig. 5.7d denotes that no claim may exist, whenever a car
already reserves two lanes. Note that within the diagram, the layers have to be satisfied
simultaneously and by the disjointness property of Fig. 5.7a, they may not coincide.
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c
c

∃ c

(a) Disjointness

c

c

c

∃ c

(b) Maximum of Reservations

c

c

∃ c

(c) Maximum of Claims

Figure 5.7: Sanity Conditions as Diagrams (I)

Hence a satisfying model has either less than three lanes, or at most one of the layers
in the diagram can be satisfied. Together with the previous axiomatic diagrams, we get
that either one reservation, one claim, or both one claim and exactly one reservation of
a single car are visible in a view. However, outside of the current view, the car could
posses an arbitrary number of claims and reservations.

The diagrams in Fig. 5.7e and Fig. 5.7f denote that reservations and claims of a single
car have to be on adjacent lanes. Both of these diagrams are essentially implications,
where the parts under an odd number of negations state the premisses and the evenly
diagrams give the conclusion. In Fig. 5.7e, observe that the mere existence of two
reservations of the same car, as indicated by the wide lane separation and the unspecified
space in front and in the back of the reservations, implies that these reservations occur
on adjacent lanes, denoted by the exact lane separation. The horizontal positions of
the reservations are not constrained in any way. The diagram defining the adjacency of
claims and reservations is a bit more complicated, since we have to explicitly define the
vertical possibilities for the claim. On the other hand, the existence of both the claim
and the reservation is simpler by using two separate partial layers. Note that we can not
specify Fig. 5.7e in a similar way, since two partial layers with a single reservation may
refer to the same situation in the traffic snapshot.

In addition to the formalisation of the sanity conditions, we also define two properties
which are only implicitly given by our model. First, we have to ensure that reservations
and claims are connected. That is, for each car, there is at most one reservation on each
lane. In the model, this is implied by the definition of lenV for a view V . For each car C,
this function returns either the empty set, or exactly one interval giving the extension
C occupies on the lanes it reserves. In the diagrams, we can state the existence of two
reservations or claims of one car, where arbitrary space lies in between. Now the diagrams
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c

c

c

∃ c

(d) Maximum of Simultaneous Reservations and Claims

Figure 5.7: Sanity Conditions as Diagrams (II)

c

c

c

c

∃ c

(e) Adjacency of Reservations

c c

c

c

c

c

∃ c

(f) Adjacency of Reservations and Claims

Figure 5.7: Sanity Conditions as Diagrams (III)

in Fig. 5.8 express that whenever we can find such a situation with the length x, we
can also find a connected reservation or claim of this length. Since the quantifiers are
negated, this holds in particular for the maximal possible value for x.

The last property of the models is partially formalised in Fig. 5.9. These diagrams
state, that the start and end points of reservations on different lanes are the same. That
is, the reservations lie directly next to each other and not shifted. Again we use distance
arrows to relate the reservations on different lanes. This time, we do not only relate the
lengths, but also restrict the start and endpoints of the reservations. Consider Fig. 5.9a.
Whenever we find a reservation on the lower lane of length x, we can find a situation,
where the reservation on the upper lane is at least of this length. In particular, if x is
the maximal length of the lower reservation (which is one of the cases for which the
diagram has to hold), then the upper reservation is of length ≥ x (since the reservation
may also extend into the part denoted by the shaded rectangle). In conjunction with
Fig. 5.9b, which states the inverse relationship between the reservations, we get that both
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c cx c x

∃ c, x

(a) Connectedness of Reservations

c cx c x

∃ c, x

(b) Connectedness of Claims

Figure 5.8: Connectedness of Cars

c

c

x
c

c

x

0 0

∃ c, x

(a) Alignment of Reservations

c

c
x

c

c

x

0 0

∃ c, x

(b) Alignment of Reservations

Figure 5.9: Alignment of Cars

reservations are of the same length, and have to start and end at the same points. For
constraining the alignment of claims, we would have to draw a similar set of diagrams for
the case when the claim resides below the reservation and vice versa. I.e., we need four
diagrams, which are structurally similar to the ones presented in Fig. 5.9. We chose to
omit these diagrams, since they are easily constructable from the given ones.

5.4 Abstract Syntax

Following the approach of Minas [Min00], we chose to define our abstract syntax in
terms of graph rewriting systems, due to the generality of the approach and the relative
simplicity of the generated graphs. In particular, the graph transformation system will
create a hypergraph G = (V, E , τ, θ, l) over a set of types T and of labels O, which
represents the concrete syntax of a diagram. Recall that τ assigns to each edge e ∈ E the
sequence of nodes 〈v0 . . . vn〉 (vi ∈ V) e visits, where the length of τ(e) is determined by
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θ(e), the type of e. Finally, recall that l denotes the labelling function of G.

Example 5.4. To familiarise the reader with this notation and its connection with
the visualisations of the graphs in this section, we present the formal hypergraph G =
(V, E , τ, θ, l) consisting of one of the cases shown in Tab. 5.2. Consider the edge represent-
ing an occupied topological situation. We call the vertices of the graph in this depiction
v1 to v4, i.e., V = {v1, v2, v3, v4}. The set of edges is only the singleton set E = {e}.
The type function associates the type cars with this edge, i.e., θ(e) = cars. Furthermore
τ(e) = 〈v1, v2, v3, v4〉. For the relation of the attachment function to the graph, we have
to choose the order the mnemonic names occur in the sequence. Assume that s and t
are the first two elements of the sequence, followed by l and r. That is, the s tentacle
visits v1, the t tentacle v2, the l tentacle visits v3 and v4 is visited by the r tentacle of e.
Finally, the labelling of e is given by l(e) = (R,C).

Within the graph representing the syntax, edges either represent a diagrammatic
element or the way an element is drawn, i.e., dashed or solid. The nodes serve as the
attachment areas of these elements, e.g., an edge denoting an arrow is visiting nodes that
are also visited by its source and target. Labels define the intervals arrows are annotated
with, the labels on lanes, as well as which reservations or claims a car represents.

The set of types is distinguished into two disjoint sets of terminal TT and non-terminal
types TNT . In the following, elements of the former set will be written in sans serif font,
while non-terminal types will be capitalised.

The minimal requirement for a graph G to be eligible as a representation of a diagram,
is that G contains only terminal edges. More specific structural properties for G will be
given in Def. 5.7.

As shown in Tab. 5.2, we employ several terminal types to refer to the diagrammatic
elements. On the one hand, we use sequence, layer, true, lane, cars, free, totrue, tarrow
and sarrow to represent explicit elements within the concrete syntax. Despite the fact
that duration and distance arrows are drawn alike, we distinguish both types on the level
of the abstract syntax already by referring to duration arrows with the type tarrow and
to distance arrows with sarrow. On the other hand, the types partial and full (faint and
precise, wide and exact) define whether a layer (arrow, lane separation, respectively) is
drawn dashed or solid. The Boolean operators are represented by the types ¬ and ∧,
while the existential quantifier is denoted by the type ∃. The different types offer different
tentacles. The p tentacle will be used to refer to the parent of the edge at hand. The
tentacles named o (o1 and o2, respectively) refer to the operands of the logical operators.
Edge types with s and t tentacles, denoting the source and target of the edges, imply an
order on the paths created by these edges of these types. That is, they either represent
a lane sequence, a topological sequence or an arrow. The i tentacle of the types layer
and sequence refers to the interior of the concrete elements the edges represent. The
tentacles with the name ty are used to connect the edges representing layers or temporal
arrows with their diagrammatic types, i.e., whether the layer is full or partial and whether
the temporal arrow is precise or faint. The representation of distance arrows needs an
auxiliary tentacle named c, which represents the layer which contains the arrows. This
tentacle is especially useful for the definition of the semantics (cf. Sect. 5.5).
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Table 5.2: Terminal Types of the Abstract Syntax
(α ∈ I ∪ A, i ∈ IVar and R,C ⊂ Var ∪ {ego})

Terminal Type Name

start
at Root of the Syntax Graph

∧
p o2

o1
Conjunction

¬p o Negation

∃

x
p o Existential Quantification

sequence
p i Sequence

layer
p i

ty
Layer

true
p Unspecified Layer

lane
at i

n
Lane

exact
s t Exact Lane Separation

wide
s t Wide Lane Separation

totrue
s t Unspecified Topological Situation

free
s t Free Topological Situation

cars

(R,C)

s t

l r

Occupied Topological Situation

tarrow
s t

ty
Temporal Arrow

sarrow

i

s t

c

Distance Arrow

full
is

,
partial

is Types for Full/Partial Layers

faint
is

,
precise

α

is Type for Faint/Precise Temporal Arrows
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Figure 5.10 shows the abstract syntax of Fig. 5.1. The graph contains two edges of
type lane representing both lanes of the layer. On each lane, there exists a sequence of
edges of types free and cars, which model the spatial situations. Furthermore, two sarrow
edges define the spatial constraints depicted as distance arrows in the concrete diagram.

start

sequence

layer lane

partial

exact

lane

cars free cars

({a}, ∅) ({c}, ∅)

free cars free

({ego}, ∅)

sarrow[2, 5]

sarrow

[2, 5]

at

p

i

p

ty

i

is

at

i
n

s t s t s t

l

r l

r

s

t

at

n
i s t s t s t

l r

s

t

c

s

t

c

Figure 5.10: Abstract Syntax of Fig. 5.1

One detail of the abstract syntax is the representation of cars on the road. Instead of
associating each car on a lane with a cars edge, we represent each part of a lane occupied
by a different combination of cars on the road by a single edge with an appropriate
label. Such a label consists of a tuple (R,C) of sets of variables. If c is a variable and
c ∈ R (c ∈ C), then the cars edge denotes that the reservation (claim) of c occupies
the corresponding space. Hence, if c and d are elements of R, the edge denotes that
the reservations of c and d coincide at this position. Hence only changes in the spatial
configuration of the lane are reflected by the use of a new edge, either of type cars, totrue
or free. For an example see Fig. 5.11.

Since distance arrows may connect two arbitrary cars on one layer, we must ensure
that there exists a path from the arrow to both nodes visited by its source and target
tentacles, which uses only edges of the following types: lane, wide, exact, totrue, free and
cars. In particular, the path may not contain an edge of type layer, since otherwise the
path would lead to representations of elements outside of the layer containing the arrow
(see Fig. 5.10). Within Sect. 5.4.2, we will examine this requirement in detail.

Definition 5.6 (Abstract Syntax of Traffic Diagrams). The graph transformation system
G = (TNT ] TT , S, P ) defining the abstract syntax of Traffic Diagrams consists of the
axiom S, a single hyperedge without any tentacles and the rules given in Figures 5.12,
5.13, 5.15, 5.18, 5.19, 5.20, 5.21, 5.22 and 5.23.

In the depictions of the rules, we will omit all tentacles which need not be taken into
account for the definition of the rule. For example, we do not show the t tentacles of
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Figure 5.11: Concrete and Abstract Syntax of a Diagram with Duration Arrows

the cars edges in Fig. 5.18. The non-terminal types of G will be described and presented
during the discussion of the rules they are involved in.

To show that the rules of G are sensible, we need to define, what it means for a Traffic
Diagram to be represented by a hypergraph. Then we can show, that the hypergraphs
created by G are representations of Traffic Diagrams, and that for each Traffic Diagram
D, there is a (up to isomorphism) unique hypergraph created by G, which represents D.

Definition 5.7. A graph G = (V, E , τ, θ, l) represents a Traffic Diagram D iff we can
find an injective mapping h from the visual elements of D to G such that

1. each overlap of a set of reservations R and claims C is mapped to an edge e such
that θ(e) = cars and l(e) = (R,C),

2. each occurrence of blank space within a topological sequence is mapped to an edge
with θ(e) = free,

3. each occurrence of undefined space within a topological sequence is mapped to an
edge with θ(e) = totrue,

4. a situation s within a topological sequence is adjacent to the left of a topological
situation s′ if and only if the t tentacle of h(s) and the s tentacle of h(s′) visit the
same node,

5. the s tentacle of the image h(s) of the left-most topological situation s of each
topological sequence and the i tentacle of a unique edge e with θ(e) = lane visit the
same node,

6. each exact (wide) lane separation is mapped to an edge e with θ(e) = exact (θ(e) =
wide),

7. if a topological sequence T1 is drawn directly beneath a topological sequence T2 and
s is the lane separation drawn in between T1 and T2, then the s tentacle of h(s)
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visits the same node as the n tentacle of the lane edge connected to the image of the
left-most topological situation in T1 and the t tentacle of h(s) visits the same node
as the at tentacle of the lane edge connected to the image of the left-most topological
situation in T2,

8. each wholly unspecified space (i.e., a shaded rectangle without a surrounding layer)
is mapped to an edge e with θ(e) = true,

9. each layer l is mapped to an edge e with θ(e) = layer and if l is full (partial), the ty
tentacle of e visits the same node as the is tentacle of an edge e′ with θ(e′) = full
(θ(e′) = partial, respectively),

10. if T is the lowest lane sequence, then the edge e of type lane which is connected to
the representation of T visits a node v via its at tentacle, which is also visited by
the i tentacle of the edge representing the layer T resides in,

11. each spatial arrow A labelled with an interval i is mapped to an edge e with θ(e) =
sarrow and l(e) = i, where

a) the s tentacle of e visits the same node as the l of the image of the topological
situation S where A starts, if A starts at the left border of S,

b) the s tentacle of e visits the same node as the r of the image of the topological
situation S where A starts, if A starts at the right border of S,

and similarly for the t tentacle of e and the end of A,

12. if A is a faint temporal arrow, then h maps A to an edge e with θ(e) = tarrow,
whose ty tentacle visits the same node as the is tentacle of an edge with type faint.

13. if A is a precise temporal arrow labelled with α, then h maps A to an edge e with
θ(e) = tarrow, whose ty tentacle visits the same node as the is tentacle of an edge
e′ with θ(e′) = precise and l(e) = α.

14. if N is symbol for negation denoting the negation of D′ in D, then h maps N to
an edge e with θ(e) = ¬ the o tentacle of e visits the same node as the p tentacle of
the edge representing the topmost element in D′,

15. if A are two vertical dashed lines denoting the conjunction of D1 and D2 in D, then
h maps A to an edge e with θ(e) = ∧ and the oi tentacle of e visits the same node
as the p tentacle of the edge representing the topmost element in Di (for 1 ≤ i ≤ 2),

16. if E is a box with the label ∃x on top around D′, then h maps E to an edge e with
θ(e) = ∃ and l(e) = x and the o tentacle of e visits the same node as the p tentacle
of the edge representing the topmost element in D′,

17. if L is spatial diagram and D′ a diagram such that the temporal arrow A starts at
L and ends at D′, then the s tentacle of h(A) visits the same node as the p tentacle
of the edge representing the topmost element in L and similarly for the t tentacle
of h(A) and the p tentacle of the edge representing the topmost element in D′.
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18. the p tentacle of the representation of the topmost element of the traffic diagram D
visits the same node as the at tentacle of the unique edge of the type start.

By abuse of language, we will also say that, e.g., a topological sequence T is represented
by a graph G if the conditions only concerning topological sequences hold for T and G.

Recall Convention 2.1 for the naming of graph rewriting rules. According to this
convention, the rule creating the representation of a wide lane separation in Fig. 5.12
will, e.g., be denoted by R2

SEP .

5.4.1 Topological Sequences and Lane Sequences
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Figure 5.12: Rule Sets RLS , RSEP , RCH and ROCC : Lane Sequences and Topological
Sequences (R,C ⊂ CVar ∪ {ego})

Similar to the description of the concrete syntax, we start with the representations
of topological and lane sequences. The corresponding graph rewriting rules are shown
in Fig. 5.12. Each lane of a lane sequence is represented by an edge of type lane. The
separations are denoted by wide and exact, depending on whether they are wide or exact
separations. The topological sequences are denoted by cars, free and totrue edges denoting
the spatial situation on each lane. The l and r tentacles of edges of type cars represent
the left and right borders of cars, while the s and t tentacles of cars, free and totrue edges
denote the source and target of the edges, yielding a sequence of cars on a lane.

Lemma 5.1. Let T be a topological sequence and H be a graph of the form H =
({v}, {e}, τ, θ, l) with τ(e) = 〈v〉 and θ(e) = CH and l = ∅. Then there is a graph G such
that H Z⇒∗ G and G represents T . Furthermore, G is unique up to isomorphism.

Proof. We proceed by induction on the length n of T . If n = 1, we can apply the second
alternative for CH and to get a graph consisting of two nodes and a connecting OCC
edge. Depending on whether T is free space, an overlap of reservations and claims or
undefined space, we can choose the suitable rule for OCC to get the right graph G.
Observe that for each of the three possibilities for T , there is exactly one derivation
H Z⇒∗ G, i.e. G is uniquely defined.

Assume that for all topological sequences with length ≤ n the lemma holds. Now we
have to prove the lemma for a topological sequence T of length n+ 1. So T consists of a
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sequence T1 of length n and an additional sequence of length 1. For T1, we know by the
induction hypotheses that there exists a unique representing graph G1 with H Z⇒∗ G1.
Within this derivation, there is exactly one application of the second alternative of RCH ,
i.e. H Z⇒∗ G3 Z⇒R2

CH
G2 Z⇒∗ G1. Now insert an additional application R1

CH to G3 and get

H Z⇒∗ G3 Z⇒R1
CH

G′3 Z⇒R2
CH

G′2. All applications of rules in G2 Z⇒∗ G1 are still possible

starting with G′2, since G2 is a subgraph of G′2, i.e., H Z⇒∗ G3 Z⇒R1
CH

G′3 Z⇒R2
CH

G′2 Z⇒∗ G′1.

Then G′1 is isomorphic to a path of length n+ 1, where the last edge is of the type OCC
and the first n edges represent T1. Similar to the induction base, we can apply exactly
one of the rules RiOCC (1 ≤ i ≤ 3) depending on the type of the last situation in T to
derive graph G representing T .

Lemma 5.2. Let L be a lane sequence and H be a graph H = ({v}, {e}, τ, θ, l) with
τ(e) = 〈v〉 and θ(e) = LS and l = ∅. Then there is a graph G such that H Z⇒∗ G and G
represents L. Furthermore, G is unique up to isomorphism.

Proof. By induction on the length of L and applying Lemma 5.1.

5.4.2 Spatial Diagrams
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Figure 5.13: Rule Sets RBL , RLA, RT and RI : Structure of Spatial Diagrams (x ∈ Var)

The sets of rules in Fig. 5.13 define the abstract syntax for the qualitative parts of
spatial diagrams. The rules for the non-terminal BL describe the structure of the edges
representing first-order connectives between atomic spatial diagrams. The graphs created
by this set of rules are binary trees, where the leaves are non-terminals of the type LA.
Edges of this type can either be replaced by an edge of type true to denote a shaded
rectangle or an edge of type layer to represent a full or partial layer. All edges created by
these sets of rules have a tentacle p, which denotes the parent of the represented element
like in a typical syntax graph. The logical connectives furthermore employ either one
tentacle o or two tentacles o1 and o2 for the connections to their operands. The edges of
type layer in contrast use a tentacles called i to describe the interior of the layer and a
tentacle called ty to denote its type, i.e., whether it describes the whole view or just a
part. The nodes visited by the ty tentacles are then also visited by the single tentacle of
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either an edge of type full or of type partial. The non-terminal I allows for the creation of
arbitrary many non-terminals CS, which will be used for the creation of distance arrows
within one layer.

Lemma 5.3. Let S be a spatial diagram and H be a graph H = ({v}, {e}, τ, θ, l) with
τ(e) = 〈v〉 and θ(e) = BL and l = ∅. Then there is a graph G such that H Z⇒∗ G and
the unique graph resulting from G by removing all edges of the types CS represents S,
with the omission of the distance arrows within S.

Proof. By induction on the structure of spatial diagrams. Let S be a shaded rectangle
denoting unspecified space. Then we can use the following derivation to get a suitable
graph G.

H Z⇒R1
BL

H1 Z⇒R2
LA

G.

In G the only node is visited by the p tentacle of the only edge of type true.
Now let S be a partial layer containing the lane sequence L. Then we use the following

derivation

H Z⇒R1
BL

H1 Z⇒R1
LA

G1 Z⇒R2
T
G2.

By Lemma 5.2, we can derive a graph GL from the edge of type LS such that GL uniquely
represents the lane sequence L. This derivation is applicable to G2, resulting in the
graph G. Now the only remaining non-terminal is of the type I, which we remove by
applying R2

I to get the graph G′ where we can map S to the edge e with θ(e) = layer,
whose ty tentacle visits the same node as the is tentacle of the partial edge. Hence if we
remove all pending edges of the type CS from G′ (which may have been created, before
the application of R2

I), we get the unique graph representing S with the omission of the
distance arrows within S. The case for a full layer is similar.

Now assume that for the spatial diagrams S1 and S2 the lemma holds. Let S be the
negation of S1. Then we use

H Z⇒R2
BL

H1.

Within H1 there exists exactly one edge e of the type BL. Call the subgraph consisting of
this edge and the node it is visiting GH . By the induction hypothesis we know that there
is a suitable derivation GH Z⇒∗ G1 such that G1 represents S1, if we remove all CS edges
from G1. All the derivation steps can be directly applied to H1, i.e., we get a derivation

H Z⇒R2
BL

H1 Z⇒∗ G ,

where G1 is a subgraph of G. In G, the o tentacle of the edge representing the negation
visits the same node as the p tentacle of the representation of the topmost operator in
S1. Since G1 is contained as a subgraph in G, removing all edges of the type CS from G
results in the unique representation of S, with the omission of all distance arrows within
S. The cases for the conjunction of S1 and S2 as well as for the existential quantification
are similar.
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Distance Arrows

Figure 5.15 to Fig. 5.22 contain the most complicated rules, which create the hyperedges
representing distance arrows, i.e., which replace edges of the type CS. In contrast to the
other rules, which replace non-terminal edges in a context-free manner in the sense that
only one hyperedge is replaced by an application of a rule without taking the environment
of the edge into account, these productions employ application conditions. Fig. 5.14
shows the grammar for replacing a non-terminal P by a path between the nodes labelled
as 1 and 2.
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Figure 5.14: Hyperedge Replacement Grammar for the Definition of Paths

The edge P may be replaced in two ways. First, by two edges: the first of type P ′

connecting 1 and an intermediate node i, and the second again of type P , connecting i
and 2. The second possibility is by a single edge of type P ′, connecting 1 and 2. The
edges typed with P ′ may then be replaced by edges of the following terminal types:
cars, free, totrue, lane, exact and wide.

Furthermore, Fig. 5.14 shows the replacement rules for the non-terminal P2, which is
used for defining a path splitting into two at a lane edge (cf. Fig. 5.18 to Fig. 5.22). This
grammar also uses P ′ for the representation of the common part of the paths. Note that
similarly to the grammar for P , P2 allows for the creation of a path of arbitrary length
ending at the s tentacle of P2.
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Figure 5.15: Rule RsingCS : Distance Arrow from the Left to the Right Border of a Single
Topological Situation (i ∈ IVar)

The rules depicted in Fig. 5.18 to Fig. 5.22 define the creation of distance arrows
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Figure 5.16: Different Possibilities for Distance Arrows

between the tentacles of cars edges. For this, we have to distinguish between four cases.
Consider for simplicity the content of a single lane with a single distance arrow like in
Fig. 5.16. The source of the distance arrow is the right border of the part, where only
car a occupies the lane. However, in the abstract syntax, two possibilities could describe
this situation. Both the r node of the leftmost cars edge and the l node of the middle
cars edge refer to the same border. If we allowed for both possibilities, such situations
would not have a unique type. Hence we chose to attach the source tentacle of sarrow
edges to l nodes of cars edges whenever possible. A similar situation comes up for the
target tentacle of distance arrows, which we chose to attach to r nodes. The rules for
these standard cases are given in Fig. 5.15 and Fig. 5.18.

Figure 5.15 can be read as follows. If there is a non-terminal CS visiting the node
labelled 1 and there exists a path from 1 to the representation of a topological situation
representing an occupied topological situation, i.e., an edge of type cars, then CS can be
replaced to represent a distance arrow constraining the length of this situation. This rule
is a special case of the rule depicted in Fig. 5.18. This special case is needed, since we use
injective graph conditions, i.e., the nodes labelled 2 and 3 in Fig. 5.18 have to be distinct.

In the rules we furthermore have to distinguish two cases. The first case is that both
cars edges are part of the same lane sequence. This is captured in the upper rules of
Fig. 5.18 to Fig. 5.20 and Fig. 5.21. The HR∗ condition ensures, that both edges are
reachable via a single path from the node, the non-terminal CS is visiting. In terms
of the concrete syntax, this means that both topological situations are part of a single
topological sequence within one layer.
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Figure 5.17: Application Condition for Distance Arrows between Different Lanes

The second case is that the edges are part of different topological sequences within
the same layer. That is, there is a path from the node the CS edge is visiting to the
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node 1 a lane is visiting with its at tentacle, and from this lane edge, a path to node 2
and another path to node 3. Either the source of the arrow lies on a lower topological
sequence than the target or vice versa. Intuitively, the lane edge represents this lower
topological sequence. One of the paths defined by the P edges then defines the path
to the situation on this sequence, while the other incorporates all lane separations in
addition to all topological situations to the left of the upper topological situation. Due
to its size, we present the corresponding HR∗ condition in Fig. 5.17.
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Figure 5.18: Rules R1
CS and R2

CS : Distance Arrow between Cars (i ∈ IVar)

There are still situations, where we want to attach the target of a distance arrow the
the l node of cars edges however. For example, if the arrow A ends at the left border
of situation, whose left neighbour is blank space, we are forced to allow for such an
attachment, since otherwise there would not exist a type for this situation. This is due
to the fact that in the abstract syntax, there is no other cars edge attached to the source
node of the edge representing the target of A. This case is depicted in Fig. 5.19. Note
how the application condition not only ensures the existence of the according paths, but
also prohibits another cars edge to be attached to the node labelled 3.

A similar situation arises for the sources of distance arrows. However, the standard
attachment of cars edges in this case is the l node. If there is no cars edge to the right of
the target edge, the arrow may also connect to the r node. This is shown in Fig. 5.20.

Finally, we have to consider the case, where both conditions as discussed above apply.
That is, the arrow to be represented starts at the right side of an overlap of reservations
and claims and ends at the left side of such a situation, where neither to the right of the
source, nor to the left of the target there are such topological situations. The rules for
these cases are depicted in Fig. 5.21 and Fig. 5.22.

Lemma 5.4. Let A be a distance arrow within a spatial diagram D, GD the graph, where
removing all edges of the type I and CS results in a graph representing D with omission
of the distance arrows and H be a subgraph of GD of the form H = ({v}, {e}, τ, θ, l)
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Figure 5.19: Rules R3
CS and R4

CS : Distance Arrow attached to the Left Side of the
Target (i ∈ IVar)

with τ(e) = 〈v〉 and θ(e) = CS and l = ∅ where v is visited by the i tentacle of the edge
representing the layer A resides in. Then there is a graph G such that GD Z⇒∗ G and G
represents D together with A, with the omission of all other distance arrows within D.
Furthermore, G is unique up to isomorphism.

Proof. We have to consider several cases, most of which can be handled similarly. Assume
that h is the injective mapping showing that GD is representing D.

First, let A connect the left and right border of a single topological situation S within
the layer L. Let eS be the edge representing S. If eS is the leftmost situation within
its topological sequence, its s tentacle visits the same node as the i tentacle of a unique
edge eLS with θ(eLS) = lane. Otherwise, we know that its s tentacle visits the same
node as the t tentacle of the edge representing its left predecessor situation. So, using
only edges of the type cars, free and totrue, we finally reach the unique edge eLS . Now
again, if the sequence of edges eLS is connected to represents the lowermost topological
sequence, then the at tentacle of eLS visits the node which is also visited by the i tentacle
of the representation of L. Otherwise there is an edge of type exact or wide whose t
tentacle visits this node and whose s tentacle visits the node which is connected to the n
tentacle of another lane edge representing the next topological sequence. That is, in a
similar manner to topological sequences, we finally reach the unique edge representing the
lowermost topological sequence, which is connected to the node visited by the i tentacle
of the representation of L. In other words, we can find a path PS leading from this
node to the node visited by the s tentacle of eS . Now, if we substitute PS for P in the
application condition of RSingCS , the condition is satisfied. That is, we may replace the
non-terminal CS with an edge e with θ(e) = sarrow which visits the nodes visited by the
l and r tentacle in the correct way to be a representation of A. Furthermore we may
choose the label of e to be the interval labelling A. Hence the lemma holds in this case.

Now let A connect the left border of a topological situation S1 with the right border
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Figure 5.20: Rules R5
CS and R6

CS : Distance Arrow attached to the Right Side of the
Source (i ∈ IVar)

of situation S2 where S1 and S2 lie within the same topological sequence T and S1 is to
the left of S2. Furthermore assume that there are topological situations represented by
cars edges both to the right of S1 and to the left of S2. Now by arguments similar to the
first case, since G represents the qualitative aspects of L, we can find a path from the
node 3 visited by the s tentacle of h(S2) to the node 2 visited by the s tentacle of h(S1).
Furthermore, we get that there is a path from 2 to the node 1 visited by the i tentacle of
h(L). That is, we can replace substitute the variables P with these paths and hence get
that the rule R1

CS is applicable. The application of this rule yields an edge representing
A. Observe that none of the rules RiCS for 1 < i ≤ 8 are applicable, since either they
require the path to split at one edge (for i ∈ {2, 4, 6, 8}) or they require the absence of at
least one of the cars edges representing the topological situation to the right of S1 and to
the left of S2.

Now assume that A connects the left border of a topological situation S1 with the
right border of situation S2 where S1 lies in the topological sequence T1 and S2 lies
within T2. Similarly to the previous case, we assume that there are topological situations
represented by cars edges both to the right of S1 and to the left of S2. Without loss of
generality, let T1 be lower than T2. Since GD represents D, we have edges eS1 and eS2

representing S1 and S2 respectively. Furthermore, we find a path Pd from eS1 to a node
v1 visited by the i tentacle of a unique edge eT1 with θ(eT1) = lane and similarly a path
P ′u from eS2 to a node v2 which is visited by the i tentacle of the unique edge eT2 with
θ(eT2) = lane. Since T1 is lower than T2, there is a path P ′′u from v2 to the node visited
by the n tentacle of eT1 . Let Pu be the concatenation of P ′′u and P ′u. Again, like in the
first case, we find a path Ps from eT1 to the node visited by the i tentacle of h(L). Let
both Pd be non-empty, i.e. S1 is not the left-most topological situation of T1 (Pu can not
be empty since P ′′u contains at least one edge). Now consider the application condition
PATHS (Fig. 5.17). If we substitute Pd for the edge of type P connected to the node 2,
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Figure 5.21: Rule R7
CS : Distance Arrow between Cars on the Same Lane attached to the

Right Side of the Source and the Left Side of the Target (i ∈ IVar)
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Figure 5.22: Rule R8
CS : Distance Arrow between Cars on Different Lanes attached to

the Right Side of the Source and the Left Side of the Target (i ∈ IVar)

Pu for the other edge connected to node 3 and Ps for the node of type P2, the application
condition for rule R2

CS is satisfied. Hence we can apply this rule and get a representation
of A. Similar to the case above, none of the other rules in the set RCS is applicable.

The proof for the rest of the cases are similar. Observe that the additional application
conditions restrict the paths created by the HR grammar such that the rules are only
applicable, whenever the representation of the situation right to the source of A is not an
edge of type cars or similarly for the situation left to the target of A or both. Hence the
application conditions for all these rules are mutually exclusive, i.e. for all possibilities
for the source and targets of A, there is exactly one type of rule applicable. By that we
know that the representation of A is uniquely defined.

5.4.3 Temporal Sequences

Finally, the rules creating the representations for Traffic Diagrams as a whole are given
in Fig. 5.23. The rule set RBD is structurally similar to the set RBL with the exception
of R1

BD
, which creates the start of a temporal sequence. The set of rules RL allows for
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S → start BD
at

1
BD → 1

sequence L
p i 1

¬ BD
p o

1
∧

BD

BD
p

o1

o2 1
∃

x

BD
p o

1
L
→

1

BL

tarrow

AT
BD

s t

ty

1

BL

1

AT

→
1

precise

i
is

1

faint
is

Figure 5.23: Rule Sets RS , RBD , RL and RAT : Structure of Traffic Diagrams (i ∈ I ∪A)

the creation of the internal parts of a temporal sequence, i.e. a spatial diagram connected
by a temporal arrow to a new temporal sequence. Similar to the type of layers, the RAT
rules define, whether a temporal arrow is precise or faint. The non-terminal S serves
to have a clearly defined start for the derivation of abstract syntax graph for a Traffic
Diagram.

Lemma 5.5. Let D be a traffic diagram and H be a graph H = ({}, {e}, τ, θ, l) with
τ(e) = 〈〉 and θ(e) = S and l = ∅. Then there is a graph G such that H Z⇒∗ G and G
represents D.

Proof. By structural induction on traffic diagrams. For the induction base, let D be
a spatial diagram D′ surrounded by a rounded dotted rectangle denoting a temporal
sequence. Then we can use the following derivation

H Z⇒RS H1 Z⇒R1
BD

H2 Z⇒R2
L
H3 .

The graph H3 consists of a path starting at the single edge of the type start and ending
at non-terminal edge of the type BL. By Lemma 5.3, we can derive a graph GL from H3

which represents the qualitative aspects of D′. Within this derivation, there is exactly
one application of R2

I , i.e., the rule removing the the single edge of the type I. Without
loss of generality, we can assume, that it was the last rule to be applied., i.e.,

H3 Z⇒∗ G′L Z⇒R2
I
GL .

Consider now two cases for G′L. Let the number m of CS edges within G′L be greater than
the number n of distance arrows within D′. Then the rule R1

I was applied m times within
the derivation. However, all other rule applications within H3 Z⇒∗ G′L are independent of
the existence of these edges. Hence we can simply omit m−n applications of R1

I and still
get a representation of the qualitative aspects of D′, but containing exactly n edges of
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the type CS. Now let the number of CS edges be smaller than n, the number of distance
arrows within D′. We can use the rule R1

I n-times to create n instances of non-terminal
edges of the type CS.

By now we have a representation of D′, where the number of CS edges agrees with
the number of distance arrows within D′. By abuse of notation, we will still call this
concrete representation G′L. By Lemma 5.4, each of the CS edges can be used to derive
a representation of one of the distance arrows of D′,i.e.,

H Z⇒RS H1 Z⇒R1
BD

H2 Z⇒R2
L
H3 Z⇒∗ GL Z⇒n

R1
I
G′L Z⇒R2

I
G′′L Z⇒n

Lem. 5.4 G .

The topmost operator in D is the sequence, which is represented in G by the unique edge
e of type sequence. The p tentacle of e visits the same node as the edge of type start.
Hence, G represents D.

For the induction hypothesis, assume that for the traffic diagrams D1 and D2, the
lemma holds. The cases for the logical operators are similar to the proof of Lemma 5.3.
Hence we proceed with the case, where D consists of a temporal arrow connecting a
spatial diagram DS with the traffic diagram D1. By the induction hypothesis there is a
derivation

H Z⇒∗ G1

such that G1 represents D1. Observe that the first applied rule within this derivation
has to be RS . I.e.,

H Z⇒RS H1 Z⇒∗ G1 .

Now we modify the beginning of the derivation as follows.

H Z⇒RS H1 Z⇒R1
BD

H2 .

Depending on whether the temporal arrow in D is precise or faint, we apply the rule
R1
AT or R2

AT , respectively.

H Z⇒RS H1 Z⇒R1
BD

H2 Z⇒RiAT
H3 .

Observe that H3 contains a subgraph HS of the form as needed for the application of
Lemma 5.3. Similar to the induction base, we find a derivation HS Z⇒∗ GS such that GS
represents DS . The rules used in this derivations are all applicable, consider H3 itself
to get H4. Similarly, the derivation H1 Z⇒∗ G1 is applicable to H4, i.e., to the subgraph
attached to the node visited by the t tentacle of the created tarrow edge e. Hence

H Z⇒RS H1 Z⇒R1
BD

H2 Z⇒RiAT
H3 Z⇒∗ H4 Z⇒∗ G .

Then the s tentacle of e visits the same node as the p tentacle of the representation
of DS , and similarly the t tentacle of e visits the same node as the p tentacle of the
representation of D1. Since the type of the temporal arrow is represented by the edge
visiting the same node as the ty arrow as e, we have found a representation for the
diagram D. The rules to be apply were uniquely defined by the type of the temporal
arrow, hence G is also uniquely defined.

96



5.5 Semantics

5.5 Semantics

Now having a clearly defined mathematical model to describe the syntax of traffic
diagrams, we turn our attention to the definition of their semantics. Similarly to EMLSL,
we use the abstract road model, i.e., traffic snapshots and views, introduced in Chap 3 as
a basis for the semantics. We have to slightly extend the notion of a valuation given in
Chap. 4, Definition 4.3 to also evaluate the variables used within intervals.

Definition 5.8 (Interval Valuation). Let ν be a valuation, i.e., a function ν : Var →
I ∪ R+ ∪ N respecting the sorts of variables. Similar to Definition 4.3, we lift ν to a
function νI evaluating intervals, where variables and ego are interpreted as in ν and for
an interval i = [a, b], we define ν(i) to be [ν(a), ν(b)] and similarly if i is (half-) open.
We use the notation ν ⊕ {v 7→ α} for the modification of ν which is identical to ν for all
variables different from v, and which maps v to α.

Observe that even though the range of ν includes N, the definition of traffic diagrams
does not include any variables whose type needs them to be evaluated to a natural
number. However, this definition slightly eases the combination of EMLSL formulas and
Traffic Diagrams as defined in Chap. 6.

For the definition of the satisfaction relation |=, observe that the abstract syntax of a
diagram up to the level of layers is essentially a tree. Hence we can traverse the abstract
syntax, starting at the single edge of type start, to define |= almost in a standard way.
Like for EMLSL, we define the semantics of a whole diagram with respect to a traffic
snapshot T S, a view V and a valuation ν. To keep track of the position within the tree,
we furthermore have to use a node of the hypergraph. This node will be important for
the semantics of distance arrows. For one of the semantic definitions to be applicable to
a syntax graph G, we require the existence of an embedding of the depicted subgraph
into G at the labelled nodes.

We chose to present the semantics based on the graphical representation of the abstract
syntax for purposes of readability. In this way, the presentation can be directly compared
to the definition of the abstract syntax in the previous section.

In the depictions of the semantics, some of the cases are not immediately mutually
exclusive. Consider for example Fig. 5.27. If a syntax graph contains the representation
of a layer with two lanes connected by an exact lane separation, then both the first and
the second case may be applied. In these cases, we require that the maximal possible
occurrence of a graph has to be chosen.

We distinguish two types of variables in the semantics. First and most important,
all variables occurring in the syntax of diagrams are called explicit variables. Implicit
variables refer to auxiliary variables only occurring in the semantics. (See Fig. 5.28).
These variables are used to refer to the length of topological situations. They give us
the possibility to connect the qualitative semantics of a diagram, i.e., the order and type
of topological situations with the quantitative semantics, i.e., the constraints on these
lengths imposed by the distance arrows. Formally, we use an injective, partial function
mapping all cars, free and totrue edges of an abstract syntax graph to implicit variables.
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T S, V, ν, |= start
x

D
at

iff T S, V, ν, x |= D

T S, V, ν, x |=
x
¬

y
D

op
iff T S, V, ν, y 6|= D

T S, V, ν, x |=
x
∧

y

z

D1

D2

o1

o2

p
iff

T S, V, ν, y |= D1 and
T S, V, ν, z |= D2

T S, V, ν, x |= x
∃

y
D

x

op

iff
there is an α 6= E such that
T S, V, ν ⊕ {x 7→ α}, y |= D

Figure 5.24: Semantics for Logical Connectives

Definition 5.9 (Implicit Variables and Implict Lengths Function). Let G = (V, E , τ, θ, l)
be the abstract syntax graph of a Traffic Diagram D and let VarI ⊂ RVar be an infinite
subset of real-valued variables called implicit variables, which are fresh for D. Then the
implicit lengths function χ : E 9 VarI is an injective partial function given by

χ(e) =

{
ve if θ(e) ∈ {cars, free, totrue}
undef. otherwise

.

Within the semantics, all implicit variables are existentially quantified (see Fig. 5.26),
since we want the values of these variables to be independent of the valuation. They
should reflect the spatial situation, and hence the satisfaction of a diagram should not
depend on whether an implicit variable is given the right value by the valuation. There
are two types of constraints on these variables. On the one hand, the semantics of the
topological situations will ensure that the values of implicit variables reflect the length of
the respective situation. On the other hand the semantics of distance arrows will require
the values of these variables to respect the intervals the arrows are annotated with.

Definition 5.10 (Satisfaction of Traffic Diagrams). The satisfaction relation |= defines
the semantics of Traffic Diagrams as shown in Figures 5.24, 5.25, 5.26, 5.27, 5.28 and
5.29. We say that a traffic snapshot T S, a view V = (L,X,E) and a valuation ν with
ν(ego) = E satisfy a Traffic Diagram D, if T S, V, ν, |= D, denoted by T S, V, ν |= D.

The semantics of the first-order elements of Traffic Diagrams are given in Fig. 5.24.
Most of these definitions are not surprising. The only non-standard aspect lies in the
semantics of the existential quantifier. We require the quantified variables to be different
than the owner of the current view. This is the only possibility to explicitly distinguish
cars with Traffic Diagrams, since we do not have a diagrammatic representation of equality.
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T S, V, ν, x |=

x

sequence

y

D

i

c

iff T S, V, ν, y |= D

T S, V, ν, x |=

x L

tarrow

y

D

faint

s

t

ty

is iff
∃T S ′ • T S =⇒ T S ′ such that
T S, V, ν, x |= L and T S ′,mvT S

′
T S (V ), ν, y |= D

T S, V, ν, x |=

x L

tarrow

y

D

precise

is

t

ty

is iff ∃T S ′, t • T S t T S ′ where t ∈ i and
T S, V, ν, x |= L and T S ′,mvT S

′
T S (V ), ν, y |= D

T S, V, ν, x |=

x L

tarrow

y

D

precise

∗(c)s

t

ty

is iff




∃T S ′ • T S ∗(ν(c))−−−−→T S ′ if ∗ ∈ {r,wd c}
∃n, T S ′ • T S ∗(ν(c),n)−−−−−→T S ′ otherwise

,

T S, V, ν, x |= L and T S ′, V, ν, y |= D

T S, V, ν, x |= x
L iff T S, V, ν, x |= L

Figure 5.25: Semantics of Sequences (where i ∈ I and ∗ ∈ {r, c,wd r,wd c})

Yet, often inequalities are implicit due to restrictions of the positions of reservations and
claims as given by the semantic model (cf. Chap. 3).

Figure 5.25 shows the semantics of sequence, i.e., it describes how the temporal arrows
are evaluated. Faint arrows only require the existence of an abstract transition to the
next traffic snapshot, while precise arrows explicitly restrict the type of transition to be
considered. Similar to the modalities of EMLSL, we abstract from the concrete lanes the
transitions refer to.

In Fig. 5.26, the satisfaction relation is split up into the relations |=S and |=M , defining
the spatial semantics and the metric semantics respectively. The former defines the
topological structure of the snapshot, i.e., in which order the lanes occur, and how the cars
are arranged on each lane. The relative positions between cars on different lanes are not
restricted in any way. The metric semantics constrains space according to distance arrows.
For the distinction between full and partial layers, we use subviews as in Definition 3.6.

Figure 5.27 describes the semantics of lane sequences. This resembles the vertical chop
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T S, V, ν, x |=

x

layer
y

L

full

i

c

ty

is

iff

for all implicit spatial variables
ṽ = v0, . . . , vn of L,
there are α̃ = α0, . . . , αn, such that
T S, V, ν ⊕ {ṽ 7→ α̃}, y |=S L
and T S, V, ν ⊕ {ṽ 7→ α̃}, y |=M L

T S, V, ν, x |=

x

layer
y

L

partial
i

c

ty

is

iff

for all implicit spatial variables
ṽ = v0, . . . , vn of L,
there are α̃ = α0, . . . , αn and
a subview V ′ of V , such that
T S, V ′, ν ⊕ {ṽ 7→ α̃}, y |=S L
and T S, V ′, ν ⊕ {ṽ 7→ α̃}, y |=M L

T S, V, ν, x |=
x

true
is

for all T S, V , ν, x

Figure 5.26: Semantics of Layers

modality of EMLSL. The existence of a lane edge in a layer ensures the existence of at
least one lane in the view, even if the lane is filled with only one edge totrue and the
layer is partial. This differs from the somewhere modality 〈ϕ〉, since 〈>〉 ≡ > does not
require the view to contain a lane. Hence an partial layer denotes a stronger assertion
than 〈ϕ〉. The diagrammatic element corresponding to a single > of MLSL would be the
shaded rectangle.

The difference of wide and exact lane separations is rather simple. While an exact lane
separation divides a view into exactly two parts, one containing a single lane and the
other one containing the rest, a wide lane separation may omit several lanes in between.

The spatial semantics of a single topological sequence as shown in Fig. 5.28 subsumes
the horizontal chop of EMLSL as well as its atoms. On the one hand, the semantics
of all these edges chop the given view along the horizontal extension into two intervals
X1 and X2, where free and cars edges additionally require X1 to have a length greater
than zero. Then, a free edge asserts the absence of any car, while a cars edge needs all
the reservations and claims defined in its label to be present on the interval. Each of
the edges of types free, cars and totrue are associated with their distinguished implicit
variable holding the length of the corresponding interval. These variables will be used
again in the semantics of distance arrows.

In the semantics of the cars edges, we use some abbreviations to enhance readability.
For a set of car variables C and a view V = (L,X,E), these are

RJC, V K ≡ for all c ∈ C • resV (ν(c)) = L and lenV (ν(c)) = X

and

CJC, V K ≡ for all c ∈ C • clmV (ν(c)) = L and lenV (ν(c)) = X.
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T S, V, ν, x |=S
x

lane
y
S

n
iat iff |L| = 1 and T S, V, ν, y |=S S

T S, V, ν, x |=S

x
lane

y
S

exact
z
T

n

iat

s

t

iff
L = L1 	 L2 such that |L1| = 1
and T S, V L1 , ν, y |=S S
and T S, V L2 , ν, z |=S T

T S, V, ν, x |=S

x
lane

y
S

wide
z
T

n

iat

s

t

iff

L = L1 	 Lm and Lm = L′m 	 L2

such that |L1| = 1
and T S, V L1 , ν, y |=S S
and T S, V L2 , ν, z |=S T

Figure 5.27: Semantics of Lane Sequences, where V = (L,X,E)

Like the semantics of EMLSL atoms, these formulas ensure that the interval is filled
completely by the reservations (claims) of each variable. Furthermore, the semantics
only constrains cars referred to in the label. This implies that there may be reservations
or claims of other cars present within the view. Only the edge representing free space
restricts the presence of all cars. Note that in contrast to EMLSL, we are not able to
define free space as an abbreviation. We can neither use negation nor horizontal chops
arbitrarily within the diagrams and hence the abbreviation given in Sect. 4.1 is not
definable as a Traffic Diagram. This comparison will be made more clearly in Sect. 6.1.

Finally, the metric semantics of distance arrows of a layer is shown in Fig. 5.29. For
this, we need an order on cars within a lane. Therefore, we define a precedence relation
≺ on edges.

Definition 5.11 (Order � on Cars). Let c and d be edges of the types cars, free or true.
Then c is the predecessor of d, denoted by c ≺ d, if and only if the s tentacle of d visits
the same node as the t tentacle of c.

Furthermore, for two edges c and d of these types, we write c � d, if and only if there
exists a sequence c0, . . . , cn such that c = c0, cn = d and ci−1 ≺ ci for all i ∈ {1, . . . , n},
or c = d.

The relation � is a partial order on each sequence of edges denoting a single lane. This
partial order will be used to sum up the distance of the left border of a view up to the
cars the distance arrows connects. The difference between these sums is then constrained
to lie within the interval the arrow is labelled with.

Since more than one arrow can be present inside of a single layer, we enumerate these
distance arrows, as shown in the first case of Fig. 5.29, and require the layer to satisfy
each. If an arrow is connected to the left side of a car, only the distance from the border
of the view to the car without the length of the car itself is considered. Otherwise, the
length of the car is included in the sum. For distance arrows connecting the left and
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T S, V, ν, x |=S x iff ‖X‖ = 0

T S, V, ν, x |=S x
free
e y

S
s t

iff

X = X1 :X2 and
ν(χ(e)) = ‖X1‖ > 0 such that
∀C ∈ I • lenV (C) ∩ I(X1) = ∅
∨resV (C) ∪ clmV (C) = ∅ and
T S, VX2 , ν, y |=S S

T S, V, ν, x |=S x
totrue
e y

S
s t

iff

X = X1 :X2 such that
ν(χ(e)) = ‖X1‖ and
T S, VX2 , ν, y |=S S

T S, V, ν, x |=S

x
cars
e y

S

(R,C)

s t iff

X = X1 :X2 such that
ν(χ(e)) = ‖X1‖ > 0 and
RJR, VX1K and CJC, VX1K
and T S, VX2 , ν, y |=S S

Figure 5.28: Semantics of Topological Sequences, where V = (L,X,E)

right borders of a single car, the semantics is defined similarly.

Example 5.5. We briefly recall the traffic snapshot and view defined in Chap. 3 (Ex-
amples 3.1 to 3.4). The view is given by V = ({1, 2}, [12, 42], E) and the corresponding
restrictions of T S are

resV (A) = {1, 2} resV (B) = {1} resV (C) = ∅ resV (E) = {2}
clmV (A) = ∅ clmV (B) = ∅ clmV (C) = ∅ clmV (E) = {1}
lenV (A) = [28, 39] lenV (B) = [12, 15] lenV (C) = ∅ lenV (E) = [14, 27]

Furthermore, let ν be defined by ν(a) = A, ν(b) = B, ν(c) = C and ν(ego) = E.
Now we will examine, whether this model satisfies the diagram shown in Fig. 5.30.

The diagram itself carries no deeper meaning, but still incorporates the main elements of
Traffic Diagrams. Hence it is a suited example to show the calculation of the semantics.
The sequences and the hyperedge denoting the start of the diagram can be safely omitted.
Then, the first question is, whether T S, V and ν satisfy the upper layer in the diagram.
Therefore, we have to find a suitable subview Vsub of V consisting of one lane Let
V sub = ({2}, [16, 20], E). The first part of the semantics of the edge of the type lane is
satisfied, since |{2}| = 1. We then have to check, whether the semantics of the cars edge
is fulfilled. For that, we chop the extension of V sub into [16, 20] = [16, 20] : [20, 20]. We
have ‖[16, 20]‖ = 4 > 0 and both

resV sub
[16,20]

(ν(ego)) = resV sub
[16,20]

(E) = {2}

(lenV sub
[16,20]

(ν(ego)) = [16, 20] .
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T S, V, ν, x |=M
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. . .

sarrow

en

in

cars

cars

c

s

t

a0

b0
c s

t

an

bn

iff

for all 0 ≤ j ≤ n,

T S, V, ν, x |=M x
sarrow
ej

ij

cars

cars

c
s

t

aj

bj

T S, V, ν, x |=M
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sarrow
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iff

∑
e∼be2

ν(χ(e))− ∑
e∼ae1

ν(χ(e)) ∈ ν(`),

where ∼i=
{
≺ , if i = l
� , if i = r

T S, V, ν, x |=M x for all T S, V , ν, x

Figure 5.29: Semantics of Distance Arrows

Since ‖[20, 20]‖ = 0, this subview satisfies the semantics of the whole topological sequence.
Now we have to consider the transitions starting in T S, where ν(a) = A withdraws

one of its reservations. Consider the transition T S wd r(A,2)−−−−−−→T S ′, i.e., in T S ′, we have
res′(A) = {2}, while for the rest of I, res′ coincides with res. Again, we have to find
a suitable subview V sub′ of V which satisfies the topological sequence in the lower layer.
Let V sub′ = ({2}, [16, 30], E). Furthermore, we now have to consider the implicit spatial
variables of the abstract syntax. Let ei be the variable of the i-th edge in the topological
sequence, i.e. e1 belongs to the left cars edge, e2 to the free edge and e3 to the right
cars edge. Similar to the case above, the semantics of the lane edge is satisfied. For the
topological sequence itself, we consider the following chops of the extension:

[16, 30] = [16, 27] : [27, 30]

[27, 30] = [27, 28] : [28, 30]

[28, 30] = [28, 30] : [30, 30]

Similar to the case above, V sub′
[16,27] satisfies the semantics of the first cars edge and V sub′

[28,30]

does the same for the second edge of this type (for that, we let ν(e1) = 3 and ν(e3) = 2.
We can chose these values, since the variables are existentially quantified for the evaluation
of the layer). Consider now V sub′

[27,28] and the free edge. If we examine res′
V sub′
[27,28]

, clm′
V sub′
[27,28]

and len ′
V sub′
[27,28]

, we see that for the cars C and B in the traffic snapshot, both clm′
V sub′
[27,28]

and res′
V sub′
[27,28]

return ∅. For A, we get that len ′
V sub′
[27,28]

(A) = [28, 28], which intersected

with (27, 28) results in the empty set. Similar reasoning holds for E. Hence, if we let
ν(e2) = 1, the semantics of this edge is fulfilled.
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Figure 5.30: Concrete and Abstract Syntax of an Example Diagram

Now we turn to the distance arrow. Since the edge visits the same node as the r tentacle
of its source as well as the l tentacle of its target, we have to check, whether the following
holds:

((ν(e1) + ν(e2))− ν(e1)) ∈ [1, 5)

This is true, since ν(e2) = 1. Hence, T S, V and ν satisfy the diagram.

5.6 Decidability of Spatial Traffic Diagrams

In this section, we sketch a decision procedure for satisfiability of atomic spatial diagrams
according to Def. 5.4. For that, we translate an atomic spatial diagram S into two
independent formulas FX(S) and FL(S): FX(S) is a formula of linear arithmetic over
real numbers which describes the possible relations of the cars along the extension of
views. FL(S) is a formula of Presburger arithmetic which defines the lanes the cars may
occupy, either with their reservations or with their claims. Then, S is satisfiable if and
only if both FX(S) and FL(S) are satisfiable.

a ego

ego

d

b

[2, 5]

Figure 5.31: Example of a Spatial Diagram
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We will not give a formal translation of this procedure, but illustrate the main ideas by
an example. Consider the spatial diagram in Fig. 5.31. To each car c (i.e., each variable
and ego) referenced in the diagram, we associate the following five variables:

1. cl and cr denote the left and right border of the extension of c,

2. c1R and c2R refer to the lanes reserved by c, and

3. cC refers to the lane possibly claimed by c.

In addition to these variables, we introduce four variables describing the view V itself.

1. vl and vr describe the borders of the extension of V .

2. v and v denote the upper and lower lane, respectively.

The formula FX(S) will only refer to variables of the form cl and cr for cars c and to the
corresponding variables vl and vr for the borders of the view. Similarly, FL(S) will use
the variables of the form c1R, c2R and cC for cars as well as the variables v and v for the
lowest and uppermost lanes in the view.

Translating the Relations of Positions of Cars The first part of the translation of
Fig. 5.31 is simply a formalisation of Convention 3.2, i.e., the perceived lengths of the
cars and the extension of the view are non-empty:

conv(S) ≡ al < ar ∧ bl < br ∧ dl < dr ∧ egol < egor ∧ vl < vr .

Then we have to relate the borders of the cars to the extension of the view:

relative(S) ≡ al > vl ∧ ar < vr ∧ bl > vl ∧ br < vr

∧ dl ≤ vl ∧ dr < vr ∧ egol > vl ∧ egor < vr .

Now recall that the relations between cars on different lanes are not constrained at all,
as long as no distance arrows connect such cars. Hence we can treat each lane separately.
The lower lane only contains the car d, i.e., no new constraints arise for this lane. For the
lane in the middle, we have to relate the cars a and ego. By inspection of the semantics
of Traffic Diagrams, we see that the diagram only ensures that an overlap between a and
e exists. It would still be satisfied, if a and ego completely overlap (this is due to the
semantics of the cars edges, which only require the mentioned cars to be present, but do
not prohibit other cars to reside at these parts of the lane). Hence we get the following
translation for the upper lanes:

topo2(S) ≡ al ≤ egol ∧ egor ≥ ar ,
topo3(S) ≡ br < egol .

The distance arrow can be translated by referring to the corresponding borders of the
cars:

dist(S) ≡ 2 ≤ egor − dr ∧ egor − dr ≤ 5 .

So finally, we arrive at the formula FX(S):

FX(S) ≡ conv(S) ∧ relative(S) ∧ topo2(S) ∧ topo3(S) ∧ dist(S) .
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Translating what Lanes are Occupied by Cars We stipulate the following conventions:
The value 0 corresponds to the empty set. That is, we will require the lowest lane of the
view to have at least the value 1. With this convention, the constraints for the lanes of
the view are as follows:

lanes(S) ≡ v ≥ 1 ∧ v = v + 2 .

This ensures, that the view contains exactly three lanes. Now we can encode the properties
that we can derive from the diagram in the formula

discrete(S) ≡ a1R = v + 1 ∧ bC = v ∧ d1R = v ∧ ego2R = v ∧ ego2R = ego1R + 1 .

Note that some of the variables, like for example a2R, are not constrained in any way.
Thus, the formula still allows for many possible valuations of these variables, which do
not correspond to a valid model. To constrain the remaining variables, we translate the
sanity conditions. For all cars c, we use the following formula:

san(c) ≡ c1R 6= c2R → c2R = c1R + 1

∧ c1R 6= c2R → cC = 0

∧ cC 6= 0→ ((cC = c1R + 1 ∨ c1R = cC + 1 ∨ c1R < v ∨ c1R > v) ∧ c1R = c2R) .

So the full formula FL(S) is given by

FL(S) ≡ lanes(S) ∧ discrete(S) ∧ san(a) ∧ san(b) ∧ san(d) ∧ san(e) .

Deciding Satisfiability of Atomic Spatial Diagrams On the one hand, FX(S) is a
formula over the reals, which should be checked for satisfiability in conjunction with the
axioms of an ordered, real closed field, where ≥ is a total order. Furthermore, FX(S) only
defines linear constraints, for which the satisfiability problem is decidable [FR75]. On the
other hand , the formula FL(S) is a formula of integer arithmetic without multiplication.
Satisfiability for these kinds of formulas is also decidable [Coo72].

Hence, to decide the satisfiability of an atomic spatial diagram S, we construct the
formulas FX(S) and FL(S) and check for satisfiability of the formulas independently.
This is possible, since the properties defined in the formulas are not interdependent.

S1 S2

Figure 5.32: Problematic Example for Decidability

However, we cannot extend this approach directly to Boolean combinations of spatial
diagrams. Consider for example the diagram S, consisting of the negation of the two
negated atomic spatial diagrams S1 and S2 (cf. Fig. 5.32). If we use the translation naively,
we would construct FX ≡ ¬(¬FX(S1) ∧ ¬FX(S2)) and FL ≡ ¬(¬FL(S1) ∧ ¬FL(S2)).
Then we would check for satisfiability of each of these formulas on its own and return
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“Satisfiable”, if both are. But the diagram states in effect, that S1 or S2 has to be true,
for the whole diagram to be true. Now assume that FL(S1) is satisfiable, but FX(S1) is
not and vice versa for S2, i.e., FL(S2) is not satisfiable, but FX(S2) is. Then the diagram
is not satisfiable, since neither S1 nor S2 is. But our decision procedure would in effect
decide whether (FX(S1)∨FX(S2))∧ (FL(S1)∨FL(S2)) is satisfiable, which is indeed true.
Hence this naive procedure yields wrong results. For a correct procedure, the connection
between the satisfiability results would have to mimic the Boolean structure between the
atomic diagrams. We will not explore this problem more deeply here.

5.7 Related Work

Even though diagrams have often been used for informal argumentations during mathe-
matical proofs, the formalisation of diagrammatic reasoning has only been carried out
in the recent past. The main focus often lies on very abstract diagrammatic systems,
like Euler and Venn diagrams. Shin defined a sound and complete formal deduction
system for Venn Diagrams [Shi95], which is equally expressive as monadic first-order logic.
The existential graphs of Peirce and their deductions rules have been formalised and
proven to be sound, complete and equivalent to propositional logic by Hammer [Ham96].
Mineshima et al. compared a natural deduction style proof system for Euler diagrams
with a proof system based on resolution for Venn diagrams [MOT10].

Even though these types of diagrams make extensive use of spatial properties in their
presentation, spatial reasoning itself is not the intended application. Most work on spatial
properties and diagrams copes with the representation of arbitrary relations (like set
inclusion) in terms of spatial relations in diagrams. One of the few exceptions is given
by Erwig and Schneider, who presented a diagrammatic system as a query language for
spatio-temporal databases [ES99]. Their approach abstracts from extent, form and exact
location of an object, only topological relations are considered. The movement of objects
is indicated by trajectories in vertical direction.

A B C

8 : 00

8 : 10

8 : 20

8 : 30

8 : 40

RE 123

ICE 2

Figure 5.33: A Time-Distance Diagram for Railways

For the definition and evaluation of railway schedules, diagrams are often used to
visualise the dependencies between occupied tracks and the time a train takes to leave the
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t

x

Figure 5.34: A Time-Space Diagram

track [HP08]. There are different types of diagrams, used for different purposes. In the
following, we will describe diagrams that are used to describe dependencies on the tracks
between stations. Consider the example in Fig. 5.33. The horizontal axis is labelled with
the names of the stations A, B and C, while the vertical axis describes the flow of time.
Trains are denoted by diagonal lines going from one station to another. The slope of the
trains define whether they go from left to right or the other way round. For example, the
train named “RE 123” drives from station A to C, while the train “ICE 2” goes from C to
A. Both the trains stop at station B. Such diagrams allow for the examination whether
a schedule is possible for the single track segments. For example, the lines of both trains
intersect on the segment between B and C. That is, both drive on this segment at the
same time, and hence it has to be a double track. If this is not the case, the schedule has
to be adapted appropriately.

In the context of describing situations of vehicular traffic, diagrams are often used,
but with imprecise or even undefined semantics. E.g., time-space diagrams are used to
analyse the consequences of different timing behaviours of traffic lights [Koo+08]. The
horizontal axis of such a diagram denotes time, while the vertical axis denotes space.
Horizontal blocks of alternating green and red represent the state of traffic lights over
time. Cars driving along a street are denoted by trajectories. For example, in Fig. 5.34 a
single car has to wait at the first intersection at a red light. Afterwards it drives such
that it reaches the next intersection during the green phase. These diagrams may then,
e.g., describe queuing of several cars due to inappropriate choices for the intervals of
traffic lights.

To the best of our knowledge, the only other approach to visually reason explicitly
about traffic situations with formal semantics is due to Kemper and Etzien [KE14]. The
main application of their language is for the specification and simulation of advanced
driver assistance systems (ADAS). Within the visual logic, they depict spatial situations
to define, what situations are considered. The situations are constrained qualitatively by
implying topological relations, i.e., in what order and on which lanes. the cars drive on
the road. For quantitative constraints, they use arrows annotated with intervals. For the
semantics, the spatial situations are translated to linear constraints over the positions of
the cars. Hence the main idea of this part of both the visual language and its semantics
is similar to our approach. However, the diagrams differ in the second part of the visual
language, which is basically a reduced live sequence chart (see below) connecting the
traffic situation with messages passed within the ADAS. They use this visual logic to
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analyse whether runs of a simulation satisfy the logical constraints. Due to the lack of
logical operators, their approach is not suited to reason about safety properties of traffic.

Since we abstract from the hybrid dynamics of cars in our setting, the systems under
consideration may also be regarded as a special kind of real-time systems, i.e., systems
which are required to react within certain time intervals. Due to the broadness of the UML
framework [RJB04], it is not surprising that a subset suited for specifying real-time system
accompanied with tool support [Fab+11] has been developed. While in this approach the
overall structure and discrete behaviour may be defined diagrammatically by using class
diagrams, component diagrams and statecharts [Har88], the preconditions and effects of
method executions are defined in Object-Z [Smi00], while the real-time aspects themselves
are given as Duration Calculus (DC) [ZHR91] formulas. For verification purposes, such a
specification can be translated into a formal specification language [Hoe06].

In contrast, Kleuker introduced Constraint Diagrams (CD) [Kle00] (not to be confused
with the Constraint Diagrams of Kent [Ken97]), which are designed to specify real-time
aspects of systems diagrammatically. Their abstract syntax is not constructed within a
general formalism but as a mathematical structure specific to the peculiarities of CDs.
Constraint Diagrams are given a semantics in terms of Duration Calculus formulas and
hence can be used in conjunction with DC by definition.

Live sequence charts (LSCs) [DH01], both an extension and formalisation of message
sequence charts (MSCs), are capable of describing real-time aspects of different interacting
objects. Objects may synchronise and communicate via messages. The semantics of a
LSC is a symbolic transition system induced by the structure of the diagram. Therefore,
a partial order on the messages sent and received by each object and the events (e.g.
execution of methods) occurring during the existence of an object is defined. As long as
only events occur, i.e., no communication between objects takes place, the order in which
these events occur is only restricted within one object. This resembles the independence
of lanes in traffic diagrams, where the spatial relations between cars on different lanes
are only constrained, if distance arrows imply a certain order.

While all of these approaches to real-time systems are suitable for the specification of
such systems, none are initially capable of taking spatial aspects into account. While
LSCs and the UML diagrams may be augmented with a treatment of space by introducing
suited variables and domains, such approaches will lack in intuition and clarity.

Several different approaches to define the abstract syntax of diagrams have been de-
veloped, but all fall into two distinct categories, ad-hoc approaches, i.e., mathematical
structures which are designed to fit to a specific language, and instances of a general
framework. Both approaches have their own benefits and disadvantages. Ad-hoc defini-
tions are well-suited for a diagrammatic language at hand, but are often initially hard to
grasp and to define. Examples for this type of abstract syntax are Concept Graphs with
negation as defined by Dau [Dau04a] and the Constraint Diagrams of Kleuker [Kle00].

Using a general framework implies on the one hand the need to understand the
framework first, before attempting to understand the abstract syntax. Furthermore, the
generality may cause unaesthetic parts within the syntax, to overcome the quirks of the
framework. On the other hand, defining the syntax within a framework eases relating
the diagrams to other languages given in the same framework. In addition, tools to
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analyse the frameworks may also be used to examine the abstract syntax. Examples
of suited frameworks for the definition of abstract syntax of diagrams are hypergraph
rewriting systems [Min00], triple graph grammars [AER98; RS95] or simply the definition
of relations of diagrammatic elements in terms of logical formulas [Haa98].

We defined Traffic Diagrams in terms of the general framework of hypergraph rewriting
systems. The use of hypergraphs enables us to easily use extensions of rewriting systems
in the form of HR∗ conditions for the more complicated rules.

For parsing purposes, a typical distinction within the syntax of diagrams using a
framework of graph rewriting systems is done between the spatial relations graphs (SRG)
and the abstract relations graph (ARG) [RS95; Min00]. The SRG is a direct abstraction
of the concrete syntax, insofar as its edges directly reflect the form of the elements, and
not their intended use. This part of the syntax is determined by the ARG. That is, the
edges in the SRG are denoting, how elements are depicted (e.g. as circles), while the
edges in the ARG refer to what is meant by the elements (e.g. states of an automaton).

In this presentation, the main focus lies on the definition of the language itself, and
not on general parsing, hence we chose to omit a definition for the spatial relations
graphs. If we wanted to make use of existing parsing approaches, the tool DiaGen [MV95]
based on Minas’ work is the most promising candidate to create a parser and editor for
Traffic Diagrams. It uses hypergraphs as the underlying representation structure of the
diagrams and makes use of hyperedge replacement rules for the creation and analysation
of diagrams. Unfortunately, even though DiaGen can use some application conditions for
the rewriting rules, it is currently not able to cope with the complex conditions we need
for our abstract syntax.

Another example of a language with an abstract syntax defined by graph rewriting
systems on hypergraphs is the graphical security protocol modelling language (GSPML)
[McD05; MA08], intended to specify security protocols. The semantics of GSPML is a
labelled transition system. While the graphical syntax of GSPML incorporates inclusion
of elements as a spatial aspect, this is only used to define the scopes of parallelism
operators. Even though many different production rules are needed for the definition
of the syntax, they only rely on embedding contexts as side conditions. In Traffic
Diagrams, most of the spatial aspects are also very easily defined, like inclusion in layers,
or sequences. However, for the definition of the distance arrows, i.e., the diagrammatic
elements with a distinguished spatial interpretation, we need the more complex conditions.
This highlights the difficulties spatial interpretations of spatial relations impose not only
on the semantics, but also on the abstract syntactic elements and the ways they may
possibly be related.
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In the previous chapters, we defined the logic EMLSL and the diagrammatic language
of Traffic Diagrams, which are both evaluated on the same semantic model. In Sect 6.1,
we will discuss the expressive power of Traffic Diagrams in comparison with EMLSL. As
it turns out, Traffic Diagrams can be translated to equivalent formulas, but there are
properties definable with EMLSL but not with diagrams. We will then sketch in Sect. 6.2
how formulas and diagrams can be used in combination to allow for the exploitation of
the advantages of both. For that, we integrate EMLSL formulas into the abstract syntax
graph of Traffic Diagrams and define, how they are then evaluated semantically.

6.1 Comparison of Expressivity

While the language of traffic diagrams seems very expressive, it is not as expressive as
EMLSL in several ways. Consider for example the formula ` = 3 ∧ free a re(ego), i.e.,
there is a free extension behind the reservation of ego with the length 3. Intuitively, an
equivalent Traffic Diagram should be

ego3
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But this is not a syntactically correct Traffic Diagram, since Definition 5.3 requires
distance arrows to connect borders of reservations or claims, while the arrow in the
diagram above starts at the border of the layer. More generally, Traffic Diagrams are
not able to state properties concerning quantitative properties of the whole view under
consideration. They may only relate the lengths of and space between reservations and
claims.

Figure 6.1: Schema of a Spatial Diagram

Furthermore, the diagrams do not allow for arbitrary chops. Consider the schema of a
spatial diagram S as given in Fig 6.1 consisting of three topological sequences within
a full layer. If we compute the semantics of S with respect to a traffic snapshot T S, a
view V and a valuation ν, we first have to compute the semantics of the lane sequence
within S. That is, V will be vertically chopped two times to V1, V2 and V3 which all
have to consist of exactly one lane. Only afterwards do the Vi get horizontally chopped.
In general, each atomic spatial diagram consists of a sequence of lanes, each of which is
divided horizontally. That is, it is not possible in general to find a corresponding Traffic
Diagram for a formula ϕ, where the horizontal chop is the topmost operator, e.g., if ϕ is
of the form

ϕ =

(
φ1
φ2

)
a
(
ψ1

ψ2

)
.

Another restriction of Traffic Diagrams is the lack of a general equality predicate. It is
not possible to distinguish two cars C and D, which occupy the same space, except if
one of them is the car denoted by ego. Then the definition of existential quantification
ensures that the bound variable is evaluated to a car different from the owner of the
current view. In EMSLS however, we can distinguish between an arbitrary finite number
of cars in every formula.

Translation of Traffic Diagrams to EMLSL. Each diagram can be transformed into
an equivalent EMLSL formula. Similar to the definition of the semantics of diagrams,
we distinguish between the qualitative and the quantitative aspects of layers. For
the former, we define the qualitative transformation function and for the latter the
metric transformation function. These transformations are then combined within the
complete transformation function ·T : D→ Φ. We start with the definition of the metric
transformation.

The metric translation mimics the semantics of distance arrows as given in Sect. 5.5.
It uses the implicit variables of a diagram by making them explicit. As an example,
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c

d

(4, 8]

e11 e12 e13

e21 e22 e23

Figure 6.2: Example for the Metric Transformation

consider the Traffic Diagram in Fig. 6.2. Let A be the distance arrow in that diagram.
The main idea of the translation is to sum up the length left to the source of A and left
of the target of A, and then subtract the former from the latter. Recall that we defined
an order � within topological sequences in Sect. 5.5, Def. 5.11. We will denote the edges
representing the topological sequences in the lower lane by e1i and similarly e2i for the
upper lane as indicated in the figure. Furthermore, let χ be the implicit length function,
i.e., the mapping of edges to implicit variables. Then we want the representation of A to
be

4 < (χ(e21) + χ(e22)− χ(e11)) ∧ (χ(e21) + χ(e22)− χ(e11)) ≤ 8 .

That is, we sum up the implicit variables of all edges preceding the reservation of c (since
A is connected to the left border of this situation) and similarly, we add up the implicit
variables of the edges preceding the reservation of d, but include the topological situation
labelled d (since A is connected to the right border of it). This approach is formalised in
the following definition.

Definition 6.1 (Metric Transformation Function). Let L be the representation of a lane
sequence and S be the set of all hyperedges representing distance arrows within L, i.e.,
∀d ∈ S • θ(d) = sarrow. Furthermore, let χ be the implicit lengths function of the abstract
syntax graph of L and l its labelling function. For an edge d ∈ S, we will refer to the edge
visiting the same node as the s tentacle of d as s(d). Similarly, we use t(d) for the edge
visiting the same node as the t tentacle of d. The metric transformation ·M : D→ Φ is
defined by

LM =
∧

d∈S


il ∼l


 ∑

e∼as(d)
χ(e)−

∑

e∼bt(d)
χ(e)


 ∧


 ∑

e∼as(d)
χ(e)−

∑

e∼bt(d)
χ(e)


 ∼r ir


 ,

where ∼a=≺ if the tentacle incident with the s tentacle of the edge d is labelled with l
and ∼a=� otherwise (and similar for ∼b). Furthermore, let i = l(d) and il (ir) refer to
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the left (right, respectively) border of i. Then ∼l=< if i is left-open, otherwise ∼l=≤ and
similar for ∼r.

We use the following definition of the qualitative transformation function to translate the
qualitative spatial aspects to suitable EMLSL formulas. The lane separations correspond
to vertical chops, either a single one to represent an exact lane separation, or a double
chop with an additional formula > to simulate the semantics of wide lane separations.
The contents of topological sequences are translated one after another and connected
by horizontal chops. Here, the semantics of the atoms, as well as the definition of free
ensures, that the parts where these topological sequences are evaluated are non-empty
intervals. Additionally, the end of a topological sequence constrains the formula to be
evaluated on a single lane.

Definition 6.2 (Qualitative Transformation Function). Let L and L′ be lane sequences,
T a topological sequence. Recall that the abstract syntax graph of a topological sequence is
an ordered sequence of edges of the types cars, free and true. In the translation, the name
of the edge under consideration will be denoted by e. Let the function associating implicit
variables with hyperedges be denoted by χ. The qualitative transformation function
·QD→ Φ is given by the following definition.


T

L


Q

=
LQ

TQ



T

L


Q

=
LQ

>
TQ


cars

s
T

t s

(R,C)




Q

=
((∧

r∈R re(r)
)
∧
(∧

c∈C cl(c)
)
∧ ` = χ(e)

)
aTQ

(
free

s
T

t s
)Q

= (free ∧ ` = χ(e)) aTQ
(

totrue
s

T
t s

)Q
= ` = χ(e)aTQ

(T )Q = ` = 0 ∧ ω = 1, if T is the empty sequence

The complete transformation function is based on the qualitative and metric transfor-
mations for the translation of layers. For the translation of implicit variables, we denote
the set of implicit variables used in a layer L by χ(L) and for a set of variables S, we use
the notation ∃S •ϕ as an abbreviation for the existential quantification of all elements of
S.

Definition 6.3 (Transformation Function). In the following, let D, D1, D2 be spatial or
Traffic Diagrams, S a spatial diagram and L a lane sequence. Furthermore, let χ be the
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implicit lengths function of the abstract syntax. The transformation function ·T : D→ Φ
translating Traffic Diagrams into formulas of EMLSL is given by the following definition.(

D

)T
= ¬(DT )

(
D1 D2

)T
= D1

T ∧D2
T




D

∃ x


T

= ∃x • (x 6= ego ∧DT )

(
L

)T
= ∃χ(L) • (LQ ∧ LM)

( )T
= >

(
L

)T
= ∃χ(L) • (

〈
LQ
〉
∧ LM)




S

D

∗



T

= ST ∧ ♦∗
(
DT
)




S

D



T

= ST ∧ F
(
DT
)

That is, on the Boolean operators the translations acts simply as a homomorphism.
Each precise temporal arrow is translated to the diamond-like modality referring to the
transition the arrow is labelled with. Similarly, a faint arrow corresponds to the use
of the finally modality F . Observe that for quantification, we ensure that the bound
variable has a different value than ego, as the semantics in Sect. 5.5 require. Before we
prove the soundness of the translation, we give a short example.

Example 6.1. In the translation of the following diagram, we denote the i-th edge in
the abstract syntax graph of the j-th topological sequence by eji .




c

d [1, 2]

[2, 3]

∃ c,d



T
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=∃c, d • c 6= ego ∧ d 6= ego ∧ ¬




c

d [1, 2]

[2, 3]




T

=∃c, d • c 6= ego ∧ d 6= ego ∧ ¬



> ∧ ♦[2,3]




c

d [1, 2]




T


=∃c, d • c 6= ego ∧ d 6= ego

∧ ¬
(
> ∧ ♦[2,3]

(〈



c

d [1, 2]




Q

〉

∧ (1 ≤ χ(e21)− χ(e11)) ∧ (χ(e21)− χ(e11) ≤ 2)

))

=∃c, d • c 6= ego ∧ d 6= ego

∧ ¬
(
♦[2,3]

(〈 free ∧ ` = χ(e21)a re(c) ∧ ` = χ(e22)a ` = 0 ∧ ω = 1
>

cl(d) ∧ ` = χ(e11)a free ∧ ` = χ(e12)a ` = 0 ∧ ω = 1

〉

∧ (1 ≤ χ(e21)− χ(e11)) ∧ (χ(e21)− χ(e11) ≤ 2)

))

Now for proving soundness of this translation, we first have to relate the different
valuations for EMLSL and Traffic Diagrams to each other. For that, recall that valuations
for EMLSL also evaluate terms, while valuations for Traffic Diagrams are lifted to intervals
with variables as bounds. But both types of valuations are based on a valuation which
only evaluates variables. Furthermore, full terms do not occur in Traffic Diagrams
and intervals do not occur within EMLSL formulas. Hence we can extend the variable
valuation ν to a valuation for EMLSL as defined in Def. 4.3, as well as a valuation for
Traffic Diagrams as given in Def. 5.8.
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Proposition 6.1. The translation of Traffic Diagrams to EMLSL is sound, i.e., for all
traffic snapshots T S, views V , valuations ν and Traffic Diagrams D,

T S, V, ν |= D if and only if T S, V, ν |= DT .

Before we can prove this proposition, we have to show the equivalence of the qualitative
properties of the diagram and the equivalence of the interpretation of distance arrows. For
proving the equivalence of the qualitative properties, we will employ some intermediate
lemmas, similar to the proofs for the uniqueness of abstract syntax graphs given in
Chap. 5. That is, we first prove the equivalence for a single topological sequence, and
afterwards the equivalence for a lane sequence. Recall that |=S is the consequence relation
for the qualitative aspects of spatial diagrams.

Lemma 6.1. Let T be a topological sequence. Then for all traffic snapshots T S, views
V and valuations ν, we have

T S, V, ν |=S T iff T S, V, ν |= TQ .

Proof. By induction on the length of the topological sequence. Let T be a topological
sequence consisting of one topological situation and let G = (V, E , τ, θ, l) be its represen-
tation. I.e., within G, there is exactly one edge el of the type lane whose i tentacle visits
the same node as the s tentacle of an edge et of the type totrue, free or cars.

1. Let et be of the type totrue. According to the semantics of lane sequences (Fig. 5.27)
and topological sequences (Fig. 5.28), the semantics of G with respect to a traffic
snapshot T S, a view V = (L,X,E) and a valuation ν is

|L| = 1 ∧X = X1 :X2 ∧ ν(χ(et)) = ‖X1‖ ∧ ‖X2‖ = 0 .

On the other hand, the translation of T is

TQ ≡ ` = χ(et)a ` = 0 ∧ ω = 1 .

A brief calculation of the semantics of TQ yields exactly the same conditions for
T S, V and ν.

2. Let et be of the type free. The qualitative transformation of T is given as follows:

TQ ≡ free ∧ ` = χ(et)a ` = 0 ∧ ω = 1 .

Expanding the abbreviation free yields

TQ ≡ ` > 0 ∧ ω = 1 ∧ ∀c •�`¬(cl(c) ∨ re(c)) ∧ ` = χ(et)a ` = 0 ∧ ω = 1 ,

and similarly, expressing �` in terms of horizontal chops and removing the redundant
conjunct ω = 1 gives us

TQ ≡ ` > 0 ∧ ∀c • ¬(>a (cl(c) ∨ re(c))a>) ∧ ` = χ(et)a ` = 0 ∧ ω = 1 .
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Observe that this formula requires a view V = (L,X,E) to be chopped horizontally,
i.e., V = V1 : V2, such that the extension X2 of V2 has the measure 0 and the
extension X1 of V1 both greater than zero and exactly the value of χ(et). Now, the
semantics of G is

|L| = 1 ∧X = X1 :X2 ∧ ν(χ(et)) = ‖X1‖ ∧ ‖X1‖ > 0 ∧ ‖X2‖ = 0

∧ ∀C ∈ I • lenV (C) ∩ I(X1) = ∅ ∨ resV (C) ∪ clmV (C) = ∅ .

Observe that for the extensions of V1 and V2 as well as the set of lanes, this formula
expresses similar restrictions as the translation. Moreover, it also requires the
measure of X1 to have the same value as the value of χ(et).

Hence we only have to show the equivalence between the universally quantified
conjuncts. Let T S be a traffic snapshot, V a view and ν a valuation. Note that
‖X2‖ = 0 implies X = X1. I.e., we will reason about X, to avoid unnecessary
subscripts. Assume that there is a car C such that lenV (C) ∩ I(X) 6= ∅ and
resV (C) ∪ clmV (C) 6= ∅. According to Convention 3.2, lenV (C) cannot be a
singleton set, i.e., the only possible difference between lenV (C) and lenV (C) ∩
I(X) may be the lack of (one or both) borders of the latter. However, within
lenV (C) ∩ I(X) there exists a closed non-empty interval XC . Now let us consider
the subview VC = (XC , L,E) of V , i.e., its restriction to the extension XC . Then
lenVC (C) = XC . Because the set of lanes is shared between V and VC , we also know
resVC (C) ∪ clmVC (C) 6= ∅, i.e., at least one of the sets resVC (C) and clmVC (C) is
non-empty. From these two observations, we get that on the subview VC of V1
either T S, V ′1 , ν ⊕ {c 7→ C} |= re(c) or T S, V ′1 , ν ⊕ {c 7→ C} |= cl(c) holds. Hence
T S, V1, ν |= ¬∀c • ¬(>a (cl(c) ∨ re(c))a>). The other direction is similar.

3. Let et be of the type cars and let l(et) = (R,C). The semantics of G is

|L| = 1 ∧X = X1 :X2 ∧ ν(χ(et)) = ‖X1‖ ∧ ‖X1‖ > 0 ∧ ‖X2‖ = 0

∧ ∀c ∈ R • res(ν(c)) = L ∧ lenV1(ν(c)) = X1

∧ ∀c ∈ C • clm(ν(c)) = L ∧ lenV1(ν(c)) = X1 ,

where V1 = (L,X1, E). The translation of T yields

((∧

r∈R
re(r)

)
∧
(∧

c∈C
cl(c)

)
∧ ` = χ(et)

)
a ` = 0 ∧ ω = 1 .

This formula ensures that V can be chopped into two subviews, where the second
one is of length 0. Since ω = 1 is horizontally rigid, both views have to consist of
exactly one lane, i.e. V also satisfies |L| = 1. Furthermore, the atoms re(c) and
cl(c) both require the view V1 to have a non-empty extension, i.e. ‖X1‖ > 0, and
the length constraint ensures ‖X1‖ = ν(χ(et)). The remaining constraints are also
part of the semantics of the atoms.
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Now assume that for all sequences Ts with a length smaller or equal to n, we have

T S, V, ν |=S Ts iff T S, V, ν |= Ts
Q .

Consider a topological sequence T of length n+ 1 such that T S, V, ν |=S T . Let et be
the last edge of T . Removing et yields a sequence Ts, of length n. The semantics of
each of the edges within a topological sequence needs the view under consideration to be
chopped horizontally into two subviews, i.e., we get that there have to be two views V1
and V2 such that V = V1 : V2 and T S, V1, ν |=S Ts and T S, V2, ν |=S et.

By the induction hypothesis, we know that T S, V1, ν |= Ts
Q. This formula requires

V1 to consist of exactly one lane, and hence implies that also V and V2 consist of this
lane. Now similar to the induction base, we can calculate the value of the transformation
function for et and compare this formula to the semantics of et to get the equivalence.

Lemma 6.2. Let L be a lane sequence. Then for all traffic snapshots T S, views V and
valuations ν, we have

T S, V, ν |=S L iff T S, V, ν |= LQ .

Proof. By induction on the length of lane sequences, i.e., the number of topological
situations within the sequence. If L has the length 1, it consists of only one topological
sequence T , for which Lemma 6.1 yields the equivalence. Now assume that for all lane
sequences Ls of lengths smaller or equal to n, the equivalence holds. Consider L of length
n+ 1 such that T S, V, ν |=S L with V = (L,X,E). Then L consists of a lane sequence
Ls of length n, an additional topological sequence Lt and an edge es, which connects Lt
with the last sequence of Ls and represents the lane separation.

1. Let θ(es) = exact. Then by the semantics of L, there are two sets of lanes such that
L = L1 	 L2 and T S, V L1 , ν |=S Ls and T S, V L2 , ν |=S Lt. Since Lt is a single
topological sequence, we get by Lemma 6.1 that T S, V L2 , ν |= Lt

Q. The induction
hypothesis yields T S, V L1 , ν |= Ls

Q. So overall we get that there have to exist L1

and L2 such that L = L1 	 L2, T S, V L1 , ν |= Ls
Q and T S, V L2 , ν |= Lt

Q. That is,
we have that T S, V, ν |=S L is equivalent to

T S, V, ν |= Lt
Q

Ls
Q

which is by definition equivalent to T S, V, ν |= LQ.

2. Let θ(es) = wide. This case is similar to the previous one, with the exception
that we have to have sets of lanes such that L = L1 	 Lm, Lm = L′m 	 L2 with
T S, V L1 , ν |= Ls

Q and T S, V L2 , ν |= Lt
Q. Since all views and snapshots satisfy >,

we then get that T S, V, ν |=S L is equivalent to

T S, V, ν |=
Lt
Q

>
Ls
Q

which is by definition equivalent to T S, V, ν |= LQ.

119



6 Combining Text and Diagrams

Hence in both cases the lemma holds.

Now we can proceed to prove Prop. 6.1. For the qualitative spatial aspects of Traffic
Diagrams we use the preceding lemmas. Then, we mainly need to concentrate on the
metric transformation and the translation of the temporal arrows.

Proof of Prop. 6.1. We proceed by induction on the structure of Traffic Diagrams. In
the induction base we will prove the equivalence of the satisfaction of an atomic spatial
diagram with its translation to EMLSL. First observe that the metric semantics of a
single distance arrow is similar to the metric transformation of just this one arrow. The
only difference is that in the diagram semantics the distance is required to be an element
of the interval defined by the label, while the metric transformation explicitly states the
relations between the borders of the interval and the result of the difference. Hence both
formalisations are equivalent.

Now let S be an atomic spatial diagram. Then S consists of either a full or partial
layer together with its contents, or of a single shaded rectangle. For the last case, the
proposition is easily verified. So we now consider the other cases.

1. Let T S, V, ν |= S, where S consist of a full layer. Furthermore let L be the lane se-
quence within S. Then by the semantics of S, we know that for all implicit variables
ṽ = v0, . . . , vn, of L, there are elements α̃ = α0, . . . , αn, such that T S, V, ν ⊕ {ṽ 7→
α̃} |=S L and T S, V, ν ⊕ {ṽ 7→ α̃} |=M L. By the remark at the beginning of the
proof concerning the metric transformation, we have T S, V, ν ⊕ {ṽ 7→ α̃} |=M L iff
T S, V, ν ⊕ {ṽ 7→ α̃} |= LM and by Lemma 6.2, we have T S, V, ν ⊕ {ṽ 7→ α̃} |= LQ.
So, all in all, we have T S, V, ν ⊕ {ṽ 7→ α̃} |= LQ ∧ LM. By the semantics of
existential quantification, this is equivalent to T S, V, ν |= ∃χ(L)• (LQ∧LM), which
is by definition equivalent to T S, V, ν |= ST .

2. This case is similar to the previous one, except that the semantics of S require
a subview of V to satisfy the metric and qualitative aspects of the lane sequence
L. Observe that the formula LM is rigid. Hence it is not important, whether we
interpret it on V or a subview of V . That LQ is satisfied by a subview V ′ of V
means that we can both vertically and horizontally chop V to get V ′. That is
T S, V ′, ν |= LQ is equivalent to T S, V, ν |=

〈
LQ
〉
. Hence the equivalence holds also

for this case.

For the induction hypothesis, assume that the proposition holds for the Traffic Diagrams
D1 and D2 as well as for the spatial diagram S. In the induction step, the cases for
the Boolean operators and quantification are standard. Let D be the Traffic Diagram
consisting of a precise temporal arrow A connecting S and D1 and assume T S, V, ν |= D.
Let A be a precise arrow labelled with a real-valued interval i. The semantics of D
yields that T S, V, ν |= S and that there exists another snapshot T S ′ and a duration

t ∈ T such that T S t T S ′ with t ∈ i and T S ′, V ′, ν |= D1, where V ′ = mvT S
′

T S (V ). By
the induction hypothesis, we get that T S, V, ν |= ST and T S ′, V ′, ν |= D1

T . That is,
T S, V, ν |= ST ∧♦i(D1

T ), which is by definition equivalent to T S, V, ν |= DT . The cases
for the other types of temporal arrows are similar.
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6.2 Verification Framework

In this section we will describe how the logic and the diagrams defined in Chap. 4 and 5
can be combined to gain a heterogeneous reasoning system. Furthermore, we describe
in what ways we assume this combined system to be helpful to reasoners about traffic
situations.

We base our heterogeneous reasoning system on the concrete and abstract syntax of
Traffic Diagrams defined in Sect. 5.1 and 5.4. Formulas may be written at any place, where
an atomic diagram or a temporal sequence may be drawn according to Definition 5.5.
For the abstract syntax, the set of types Θ gets extended by a new terminal type formula,
which denotes the existence of a formula at this position. Therefore, we require that
for each edge e with θ(e) = formula, the labelling function l returns the corresponding
formula ϕ, i.e., l(e) = ϕ. To achieve that these edges may appear at the correct positions
within the abstract syntax graph, we need a new rewriting rule. Recall that the rules
RBD given in Fig. 5.23 create the logical structure of Traffic Diagrams, where the rule
inserting edges of the type sequence define the place, where either an atomic diagram or
a temporal sequence resides. Hence we introduce a new rule for the replacement of the
non-terminal BD as shown in Fig. 6.3.

1
BD → 1

formula ϕ
p

Figure 6.3: New Rule R5
BD

: Formulas (ϕ ∈ Φ)

The satisfaction relation for Traffic Diagrams as given in Def. 5.10 has to be extended
to cope with edges of this new type. However, the extension is straightforward. A traffic
snapshot T S, a view V and a valuation ν satisfy the graph consisting of the edge e with
θ(e) = formula and l(e) = ϕ iff T S, V, ν |= ϕ.

In this way, we can exploit the advantages of formulas and diagrams alike. While
the diagrams allow for a very intuitive specification of the spatial relations of cars
(quantitative as well as qualitative), formulas let us express more involved properties
as well as assertions about identities of cars. For example, while a constraint for the
endpoints of reservations of cars on different lanes is easily expressible with Traffic
Diagrams, the length of the whole view can be measured with the EMLSL formula ` = x.
Since Traffic Diagrams and formulas may use the same variables, this measurement may
also be used within Traffic Diagrams.

An example combining an EMLSL formula within a Traffic Diagram is given in Fig. 6.4.
The diagrammatic part constrains that one reservation of c lies in front of one reservation
of ego, and the EMLSL formula that no reservation of another car overlaps with c’s
reservation. In general, the main advantage of this combination is due to the equality
constraints of EMLSL, and the arbitrary possibilities to chop and nest the behavioural
modalities.

We now describe the method how the combination of Traffic Diagrams and EMLSL
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6 Combining Text and Diagrams

ego c ∀d • (〈re(c) ∧ re(d)〉 → c = d)

∃ c

Figure 6.4: Example of a Combination of EMLSL and Traffic Diagrams

formulas can and should from our point of view be used. For that, recall that we only
gave a proof system for EMLSL, and no similar system for Traffic Diagrams. Hence, to
explicitly and syntactically proof that a system possesses a certain property, the system
has to be given as formulas of EMLSL.

Our proposed methodology is as follows. First, describe a minimal system S and
prove that this system fulfils the verification property P . Then, augment this system
with suitable Traffic Diagrams and formulas to further constrain the system behaviour,
resulting in the system S′. If P is a safety property, these additional constrains cannot
harm the validity of the proof done in the first step. In this way, the core specification
S can be gradually refined to get the more realistic system S′, while still retaining the
safety of S.

SS′ S′T

`

P

⊇

Figure 6.5: Proving Safety with EMLSL and Traffic Diagrams

Figure 6.5 visualises this method. The wiggly lines denote formulas of EMLSL, while
the boxes, hooks and vertical arrows represent Traffic Diagrams. Observe that the
diagrams in S′ can be translated into equivalent EMLSL formulas. Hence by the addition
of these diagrams, we get a set S′T of EMLSL formulas, which is a superset of the set S
used to derive P . Since provability is monotone with respect to finite sets of assumptions,
we can still find a suitable derivation of P .

6.3 Related Work

The ancestor of all heterogeneous logical systems (i.e., logical systems which use more
than one language) is the Hyperproof system [BE92; BE96], which uses Tarski’s world
as an example for teaching purposes. It integrates first-order logic with predicates over
the spatial relations and properties of the elements within the world with a (possibly
incomplete) diagrammatic representation of a world. The student then has to draw
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conclusions from both the logical statements as well as the graphical representation to
finally give a concrete world which satisfies both specifications. The Openproof system
[Bar+08] is a generalisation of Hyperproof since it is not restricted to a particular
application but allows for using arbitrary textual and diagrammatic representations of
the underlying semantics. Neither of these approaches uses a so-called interlingua, i.e.,
a language into which both representations are translated for reasoning purposes. The
system presented in this chapter is similar, insofar as EMLSL is given in terms of textual
definitions and Traffic Diagrams are based on an abstract syntax of hypergraphs. However,
as shown in Sect. 6.1, we could translate each diagram into EMLSL, which would then
serve as an interlingua. Even though we did not define proof rules for Traffic Diagrams,
this approach would directly enable the user to use the proof system of Sect. 4.2 for the
verification of heterogeneous specifications.

The combination of Traffic Diagrams and EMLSL is not strictly a heterogeneous
reasoning system in the sense of Barwise and Etchemendy [BE96; Shi04], since it lacks
not only proof rules for Traffic Diagrams but also transformation rules, which allow for
the transfer of information from EMLSL to Traffic Diagrams and vice versa. However,
the similar semantical model of both languages make an analysis in the terms of situation
theory, as used by Barwise and Etchemendy [BE90], worthwhile. In their paper, instead of
using a model of truth, they introduced a model of “information” in terms of distributive
lattices to justify the heterogeneous proof rules within Hyperproof. Since they explicitly
refer to partial information, it would be interesting to compare their approach to the
views and different sensor implementations of the abstract model (c.f. Chap. 3).

As discussed in Sect. 4.4, an implementation of this proof system within the context
of Isabelle seems promising. For further integration of Traffic Diagrams into such an
implementation, an examination of Diabelli [UJ12] is worthwhile. Diabelli gives the
possibility to use spider diagrams within Isabelle [Pau94] by providing an integration with
a diagrammatic theorem prover called Speedith [Urb+12]. Urbas and Jamnik further
generalised the approach of Diabelli [UJ14] to almost arbitrary combinations of sentential
and diagrammatic theorem provers. They distinguish between master and slave reasoners.
The master reasoner provides the more meta-theoretical aspects, e.g., the concept of a
proof, while the slave reasoner only has to provide inference rules. For our purposes, using
simple diagrammatic inference rules in combination with a more general implementation
of the proofs system for EMLSL in Isabelle would be probably appropriate.

All these heterogeneous systems concentrate on the derivation of theorems from a set of
assumptions. An heterogeneous proof system defined explicitly for verification purposes
is the system of ribbon proofs [WDP13; Bea06]. The goal of this system is to ensure
program correctness [Hoa69] based on separation logic [Rey02]. While the definition
of ribbon proofs is mainly diagrammatic, the current implementation in Isabelle needs
textual inputs to prove intermediate steps. However, even within the definition, excerpts
describing the current heap structure similar to the notions in separation logic are used,
hence ribbon proofs are more heterogeneous than purely graphical in our opinion. Similar
to Traffic Diagrams, they employ a relatively involved graph structure for syntax, i.e.,
nested hypgergraphs.
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The main motivation for the definition of EMLSL and Traffic Diagrams was the
derivation of a safe protocol to perform lane change manoeuvres. In our previous work,
we presented a specification as an extended timed automaton [Hil+11], where guards
and invariants could also contain formulas of (E)MLSL. However, the semantics of these
automata and the safety proof were only given informally. Only recently, within her
Master’s thesis, Schwammberger took steps towards a completely formal semantics for
these kinds of automata [Sch14].

In this chapter, we take a denotational approach. That is, we give a specification
for controllers as several EMLSL formulas. While the automata mentioned above only
specify the behaviour of a single car, we explicitly require all cars to behave similarly.
Furthermore, our presentation here is much more abstract. We only constrain some of
the possible transitions, in particular the creation of reservations. All other transitions
may occur almost without limitations. The only other constrain we impose is on the
dynamical behaviour. In contrast, a specification using automata would explicitly state
which transitions can be taken by a car according to the current state of the controller.
Hence, the controller specification given in Sect. 7.1 is less restrictive. In Sect. 7.2, we
use the proof system presented in Chap. 4 to derive the desired safety predicate. Finally,
we use the diagrams given in Chap. 5 to present a specification which is closer to possible
implementations. For that we combine the specification of Sect. 7.1 with a set of diagrams
and get a heterogeneous specification in the sense of Chap. 6.
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7.1 Controller Specification

We proceed in three steps. First, we present the safety predicate safe(e), i.e., the
formula whose validity the controllers shall ensure during all possible transition sequences.
Intuitively, it states that there is no car c, whose reservation overlaps anywhere with the
reservation of the car e:

safe(e)
df⇔ ¬∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉 .

The safety predicate used in our previous work was safe(ego), i.e., there we only proved
safety with respect to the special car ego. However, since we assumed all cars to be alike,
we could use an informal symmetry argument to derive the safety predicate for all cars.
In the present form however, we will be more concrete about the invariant. First, we will
show that with the appropriate controllers, G safe(e) holds, i.e., safe(e) is an invariant
along all transition sequences. Since we will not make any additional assumptions on e,
we can then derive that G safe(e) holds for all cars e, i.e., we get ∀e •G safe(e).

In the specification of the controllers, we need to be aware of spatial situations which
may result in unsafe behaviour. In particular, we have to prohibit the cars to mutate their
claims to reservations if these claims already overlap with any parts of other cars. We
call these situations potential collisions, and the following formula pc(c, d) the potential
collision check :

pc(c, d)
df⇔ c 6= d ∧ 〈cl(d) ∧ (re(c) ∨ cl(c))〉 .

The definition of the potential collision check is the same as for the informal safety proof
[Hil+11]. Observe that this definition is a bit more restrictive than needed. We could
omit the disjunction with cl(c), and still get a safe controller specification, due to our use
of interleaving semantics. If the claims of two different cars overlap, one car has to be
first to change its claim to a reservation. Then, the other car could identify the resulting
situation as a potential collision and react appropriately. However, we still chose to use
this slightly more restrictive definition, since it does not complicate the proofs very much,
and will also ensure safety if we assume synchronous creation of reservations.

Now we proceed with the specification of what we call the distance controller. To that
end, recall that �τφ is an abbreviation for �[0,∞)φ (cf. Convention 4.1). This formula
ensures that safe situations will be preserved under all possible evolutions, i.e., as long as
only time passes and accelerations are changed:

DC
df⇔ G∀c, d • c 6= d→ (¬ 〈re(c) ∧ re(d)〉 → �τ¬ 〈re(c) ∧ re(d)〉) .

This definition is a direct formalisation of the very important assumption A2 of the
informal proof:

Assumption A2. [Hil+11] Every car C is equipped with a distance controller that
keeps the safety property invariant under time and acceleration transitions, i.e., for every

transition T S t−→T S ′ and T S acc(C,a)−−−−−→T S ′ if T S is safe also T S ′ is safe.
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The premises of DC state that the traffic snapshot T S is safe. Then, the conclusion
ensures that under all possible evolutions, i.e., transition sequences, where only the
dynamics of cars may change and time may pass in between, the safety property is
preserved. The invariance modality at the front of the formula guarantees that the
distance controller keeps working during all transition sequences. Note that if spatial
transitions occur, DC does not ensure safety of the resulting snapshot.

Finally, the lane change controller restricting the discrete transitions is given by the
following formula LC. We employ the potential collision check to prohibit the creation of
unsafe reservations:

LC
df⇔ G∀d • (∃c • pc(c, d)→ �r(d)⊥) .

This formula defines that whenever the claim of a car denoted by d overlaps with the
claim or reservation of another car, d is not allowed to mutate its claim into a reservation.
For that we use the subformula �r(d)⊥. It states that after for all transitions creating
the reservation of d, the resulting traffic snapshot, view and valuation have to satisfy
⊥. Since no model satisfies ⊥, no such transition is possible. Observe that this formula
neither prohibits any other transitions nor does it enforce the withdrawal of the claim
which is responsible for the potential collision.

7.2 Safety Proof

We want to show that under the right circumstances, the formula ∀e•safe(e) is an invariant
along all transition sequences. In particular, we want that whenever we start with a safe
situation and all cars use a controller implementation respecting the specification shown
in Sec 7.1, ∀e •G safe(e) is true. Using the system of Labelled Natural Deduction (cf.
Sect. 4.2), this means we have to prove

({ts, v : DC, ts, v : LC, ts, v : ∀e • safe(e)}, ∅) ` ts, v : ∀e •G safe(e) .

Since e does not occur free in any element of Γ = {ts, v : DC, ts, v : LC, ts, v : ∀e • safe(e)},
we can proceed to prove

(Γ, ∅) ` ts, v : G safe(e)

and apply ∀I afterwards. To apply the invariance rule, we have to show that safe(e)
is derivable under all possible transitions, i.e., we have to prove the existence of the
following five derivations.
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(Γ ∪ {ts1, v1 : safe(e)}, {ts, v =⇒ ts1, v1, ts1, v1
r(d)−−→ts′1, v′1}) ` ts′1, v′1 : safe(e)

(Γ ∪ {ts2, v2 : safe(e)}, {ts, v =⇒ ts2, v2, ts2, v2
c(d)−−→ts′2, v′2}) ` ts′2, v′2 : safe(e)

(Γ ∪ {ts3, v3 : safe(e)}, {ts, v =⇒ ts3, v3, ts3, v3
wd r(d)−−−−→ts′3, v′3}) ` ts′3, v′3 : safe(e)

(Γ ∪ {ts4, v4 : safe(e)}, {ts, v =⇒ ts4, v4, ts4, v4
wd c(d)−−−−→ts′4, v′4}) ` ts′4, v′4 : safe(e)

(Γ ∪ {ts5, v5 : safe(e)}, {ts, v =⇒ ts5, v5, ts5, v5
t−→ts′5, v′5}) ` ts′5, v′5 : safe(e)

We will now prove these propositions one after the other. The main idea is always
the same: For the i-th proposition, we assume that there is an overlap between two
reservations on the world ts′i, v

′
i and show that this results in a contradiction with the

assumptions. Formally, we assume ts′i, v
′
i : ∃c• c 6= e∧〈re(e) ∧ re(c)〉 and derive ts′i, v

′
i : ⊥.

Then we can use the derived rule ¬I (cf. Sect.2.3) to get ts′i, v
′
i : safe(e).

In all of the following proofs, we will use ∆v′i
as a shorthand for the locality formulas

v′i = v′L : v′m, v′m = v′′m : v′R, v′′m = v′D 	 v′′′m and v′′′m = vsubi 	 v′U . These are needed to
denote the part of vi, where the overlap between cars occurs. Note that no problem arises
by the use of similar names v′L, . . . within the different derivations in the following proofs,
since all these assumptions will be eliminated before we apply the invariance rule.

The following derivation, denoted by Π∗,ji where ∗ ∈ {r(d), c(d),wd r(d),wd c(d)}, is
used as an auxiliary proof tree to relate the world of our assumptions to the subview
where re(e)∧ re(c) holds. This is possible, since the discrete transitions do not change the
view (cf. Sect. 4.2.1). Within the tree, i ∈ {1, . . . , 4} is the index of the traffic snapshots
and views, while j denotes the rule used to eliminate the assumptions.

tsi, vi
∗−→ts′i, v′i

tsi, v
′
i
∗−→ts′i, v′i [v′i = v′L : v′m]j

tsi, v
′
m
∗−→ts′i, v′m [v′m = v′′m : v′R]j

tsi, v
′′
m
∗−→ts′i, v′′m [v′′m = v′D 	 v′′′m]j

tsi, v
′′′
m
∗−→ts′i, v′′′m [v′′′m = vsubi 	 v′U ]j

tsi, v
sub
i
∗−→ts′i, vsubi

Lemma 7.1. The safety predicate is preserved if some car creates a reservation, i.e.,

(Γ ∪ {ts1, v1 : safe(e)}, {ts, v =⇒ ts1, v1, ts1, v1
r(d)−−→ts′1, v′1}) ` ts′1, v′1 : safe(e) .

Proof. We start with the root of the proof tree.

[ts′1, v
′
1 : ∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉]7

[ts′1, v
′
1 : c 6= e ∧ 〈re(e) ∧ re(c)〉]6
ts′1, v

′
1 : 〈re(e) ∧ re(c)〉

Π⊥
ts′1, v

′
1 : ⊥ 〈〉E5

ts′1, v
′
1 : ⊥ ∃E6

ts′1, v
′
1 : ⊥ ¬I7

ts′1, v
′
1 : ¬∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉
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7.2 Safety Proof

For the derivation Π⊥, we make a first case distinction between the cases where d = e and
d 6= e, i.e., whether the car denoted by e is creating the reservation or not. In principle,
both cases are very similar, which is why we concentrate on the first case. That is, we
will not specify the proof tree Πd6=e.

ts1, v
sub
1 : d = e ∨ d 6= e

Π←−
ts′1, v

sub
1 : re(e) ∨ cl(e)

Πre(e)

ts′1, v
′
1 : ⊥

Πcl(e)

ts′1, v
′
1 : ⊥ ∨E3

ts′1, v
′
1 : ⊥

Πd 6=e
ts′1, v

′
1 : ⊥ ∨E4

ts′1, v
′
1 : ⊥

The derivation Π←− is basically an application of the backwards activity rule for the
creation of a reservation.

[ts′1, v
sub
1 : re(e) ∧ re(c)]5

ts′1, v
sub
1 : re(e)

Π
r(d),5
1

ts1, v
sub
1

r(d)−−→ts′1, vsub1 [ts1, v
sub
1 : d = e]4

ts′1, v
sub
1 : re(e) ∨ cl(e)

The main part of the proof lies in the derivations Πre(e) and Πcl(e). In both cases, we
have to derive a contradiction. In the former, we will use the assumption ts1, v1 : safe(e),
and in the latter the specification of the lane change controller. We start with Πre(e). The
beginning of this derivation is another case distinction. This time we have to distinguish
the cases d = c and d 6= c. The first case is a contradiction to the assumption that c 6= e.

ts1, v
sub
1 : d = c ∨ d 6= c

Πtrans

ts′1, v
′
1 : c = e

[ts′1, v
′
1 : c 6= e ∧ 〈re(e) ∧ re(c)〉]6

ts′1, v
′
1 : c 6= e

ts′1, v
′
1 : ⊥

Πd6=c
ts′1, v

′
1 : ⊥ ∨E1

ts′1, v
′
1 : ⊥

In the tree Πtrans, we derive c = e by transitivity, symmetry and rigidity of equality.

[ts′1, v
sub
1 : d = c]1

ts′1, v
sub
1 : c = d [ts′1, v

sub
1 : d = e]4

ts′1, v
sub
1 : c = e

ts′1, v
′
1 : c = e

Now we proceed with the case that d 6= c, i.e., Πd6=c.

ts1, v1 : safe(e)

ts1, v1
r(d)−−→ts′1, v′1

Π〈re(e)〉
ts1, v

′
1 : 〈re(e) ∧ re(c)〉

ts1, v1 : 〈re(e) ∧ re(c)〉

[ts′1, v
′
1 : c 6= e ∧ 〈re(e) ∧ re(c)〉]6

ts′1, v
′
1 : c 6= e

ts1, v1 : c 6= e

ts1, v1 : c 6= e ∧ 〈re(e) ∧ re(c)〉
ts1, v1 : ∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉

ts1, v1 : ⊥
ts′1, v

′
1 : ⊥

We can derive the existence of an overlap by using the backwards stability rule for the
creation of a reservation, since we know that c is not the car creating the reservation.

129



7 Case study

[∆v′1
]5

[ts1, v
sub
1 : re(e)]3

[ts′1, v
sub
1 : re(e) ∧ re(c)]5

ts′1, v
sub
1 : re(c)

Π
r(d),5
1

ts1, v
sub
1

r(d)−−→ts′1, vsub1 [ts1, v
sub
1 : d 6= c]1

ts1, v
sub
1 : re(c)

ts1, v
sub
1 : re(e) ∧ re(c)

ts1, v
′
1 : 〈re(e) ∧ re(c)〉

We are now finished with the case where a reservation of e was present on ts1, v
sub
1 and

turn our attention to the presence of a claim at this world, i.e., we create the derivation
Πcl(e). In this part of the derivation, we will finally make use of our lane change controller
specification. Like for the other case, we begin with a case distinction between d = c and
d 6= c. The first case is derived similarly as before, and hence omitted. The idea for the
other case is to derive an overlap between the claim of e and a reservation or claim of c
and employ the controller specification to derive �r(e)⊥. Then we can employ Substri to
replace e with d and get the desired contradiction.

ts1, v
sub
1 : d = c ∨ d 6= c

Πd=c

ts′1, v
′
1 : ⊥

ΠLC

ts1, v1 : �r(e)⊥
[ts′1, v

sub
1 : d = e]4

ts1, v1 : d = e

ts1, v1 : �r(d)⊥ ts1, v1
r(d)−−→ts′1, v′1

ts′1, v
′
1 : ⊥ ∨E2

ts′1, v
′
1 : ⊥

In the derivation ΠLC, we use the controller specification and the fact the we could derive
that the potential collision check pc is satisfied.

Πpcc

ts1, v1 : ∃c • c 6= e ∧ 〈cl(e) ∧ (re(c) ∨ cl(c))〉

ts1, v1 : LC ts, v =⇒ ts1, v1
ts1, v1 : ∀d • (∃c • pc(c, d)→ �r(d)⊥)

ts1, v1 : ∃c • pc(c, e)→ �r(e)⊥
ts1, v1 : �r(e)⊥

Now we can turn our attention to the derivation of the potential collision Πpcc. This is
similar to the case, where a reservation of e resides at the subview vsub1 , i.e., the final goal
is to use the stability rule. But first, we have to introduce the existential quantifier, the
somewhere modality and replace v′1 by v1.

[ts′1, v
′
1 : c 6= e ∧ 〈re(e) ∧ re(c)〉]6

ts′1, v
′
1 : c 6= e

ts1, v1 : c 6= e

[∆v′1
]5

[ts1, v
sub
1 : cl(e)]3

Πc

ts1, v
sub
1 : re(c)

ts1, v
sub
1 : re(c) ∨ cl(c)

ts1, v
sub
1 : cl(e) ∧ (re(c) ∨ cl(c))

ts1, v
′
1 : 〈cl(e) ∧ (re(c) ∨ cl(c))〉 ts1, v1

r(d)−−→ts′1, v′1
ts1, v1 : 〈cl(e) ∧ (re(c) ∨ cl(c))〉

ts1, v1 : c 6= e ∧ 〈cl(e) ∧ (re(c) ∨ cl(c))〉
ts1, v1 : ∃c • c 6= e ∧ 〈cl(e) ∧ (re(c) ∨ cl(c))〉

Finally, we arrive at the application of the stability rule in the derivation Πc.

[ts′1, v
sub
1 : re(e) ∧ re(c)]5

ts′1, v
sub
1 : re(c)

Π
r(d),5
1

ts1, v
sub
1

r(d)−−→ts′1, vsub1 [ts1, v
sub
1 : d 6= c]2

ts1, v
sub
1 : re(c)
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Now we constructed a well formed proof tree, where the only open assumptions are either

elements of Γ or of {ts, v =⇒ ts1, v1, ts1, v1
r(d)−−→ts′1, v′1, ts1, v1 : safe(e)}.

Lemma 7.2. The safety predicate is preserved if some car creates a claim, i.e.,

(Γ ∪ {ts2, v2 : safe(e)}, {ts, v =⇒ ts2, v2, ts2, v2
c(d)−−→ts′2, v′2}) ` ts′2, v′2 : safe(e) .

Proof. We begin like in the proof of Lemma 7.1 by presenting the root of the tree, to
motivate the upper parts of the derivation.

[ts′2, v
′
2 : ∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉]5

[ts′2, v
′
2 : c 6= e ∧ 〈re(e) ∧ re(c)〉]4
ts′2, v

′
2 : 〈re(e) ∧ re(c)〉

Π⊥
ts2, v2 : ⊥
ts′2, v

′
2 : ⊥ 〈〉E3

ts′2, v
′
2 : ⊥ ∃E4

ts′2, v
′
2 : ⊥ ¬I5

ts′2, v
′
2 : ¬∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉

Now we have to show how to derive the contradiction on ts2, v2. This is done in the tree
Π⊥. Note the use of the view invariance over discrete transitions in the rule IV.

ts2, v2 : safe(e)

ts2, v2
c(d)−−→ts′2, v′2

Π〈〉
ts2, v

′
2 : 〈re(e) ∧ re(c)〉

IV
ts2, v2 : 〈re(e) ∧ re(c)〉

[ts′2, v
′
2 : c 6= e ∧ 〈re(e) ∧ re(c)〉]4

ts′2, v
′
2 : c 6= e

ts2, v2 : c 6= e

ts2, v2 : c 6= e ∧ 〈re(e) ∧ re(c)〉
ts2, v2 : ∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉

ts2, v2 : ⊥

The tree Π〈〉 combines the results from the trees Πre(e)6=, Πre(e)= and Πre(c). We will
only show the trees concerning the variable e in detail, since Πre(c) is similar.

ts2, v
sub
2 : d 6= e ∨ d = e

Πre(e)6=

ts′2, v
sub
2 : re(e)

Πre(e)=

ts′2, v
sub
2 : re(e) ∨E1

ts2, v
sub
2 : re(e)

Πre(c)

ts2, v
sub
2 : re(c)

ts2, v
′
2 : re(e) ∧ re(c) [∆v′2

]3

ts2, v
′
2 : 〈re(e) ∧ re(c)〉

The trees Πre(e)6= and Πre(e)= are similar, with the exception that ts2, v
sub
2 : d 6= e has

to be substituted with ts2, v
sub
2 : d = e. The backwards stability rule for the creation of

claims is still applicable, since reservations are not changed while creating claims.

[ts′2, v
sub
2 : re(e) ∧ re(c)]3

ts′2, v
sub
2 : re(e)

Π
c(d),3
2

ts2, v
sub
2

c(d)−−→ts′2, vsub2 [ts2, v
sub
2 : d 6= e]1

ts2, v
sub
2 : re(e)

The derivation tree Πre(c) is similar to the tree consisting of Πre(e)=, Πre(e)6= and the
application of a disjunction elimination ∨E2, where we substitute c for e.
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Lemma 7.3. The safety predicate is preserved if some car withdraws one of its reserva-
tions, i.e.,

(Γ ∪ {ts3, v3 : safe(e)}, {ts, v =⇒ ts3, v3, ts3, v3
wd r(d)−−−−→ts′3, v′3}) ` ts′3, v′3 : safe(e) .

Proof. The proof tree is structurally similar to the proof of Lemma 7.2, except that

all indices are changed to 3, all occurrences of ts2, v2
c(d)−−→ts′2, v′2 are exchanged with

ts3, v3
wd r(d)−−−−→ts′3, v′3 and all applications of

c(d)←−−S are substituted with applications of
wd r(d)←−−−−S.

Lemma 7.4. The safety predicate is preserved if some car withdraws its claim, i.e.,

(Γ ∪ {ts4, v4 : safe(e)}, {ts, v =⇒ ts4, v4, ts4, v4
wd c(d)−−−−→ts′4, v′4}) ` ts′4, v′4 : safe(e) .

Proof. Like the proof for Lemma 7.3, the proof tree is structurally similar to the proof of
Lemma 7.2, with the appropriate changes.

Lemma 7.5. The safety predicate is preserved if time passes and accelerations change,
i.e.,

(Γ ∪ {ts5, v5 : safe(e)}, {ts, v =⇒ ts5, v5, ts5, v5
t−→ts′5, v′5}) ` ts′5, v′5 : safe(e)

Proof. The root of the tree is similar to all the other derivations, i.e. we derive a
contradiction on ts5, v5.

[ts′5, v
′
5 : ∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉]3

Π〈〉
ts5, v5 : 〈re(e) ∧ re(c)〉

[ts′5, v
′
5 : c 6= e ∧ 〈re(e) ∧ re(c)〉]2

ts′5, v
′
5 : c 6= e

ts5, v5 : c 6= e

ts5, v5 : c 6= e ∧ 〈re(e) ∧ re(c)〉
ts5, v5 : ∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉 ts5, v5 : safe(e)

ts5, v5 : ⊥
ts′5, v

′
5 : ⊥ ∃E2

ts′5, v
′
5 : ⊥ ¬I3

ts′5, v
′
5 : ¬∃c • c 6= e ∧ 〈re(e) ∧ re(c)〉

To derive the existence of an overlap on ts5, v5 in the tree Π〈〉, we use the definition of
♦τ .

[ts′5, v
′
5 : c 6= e ∧ 〈re(e) ∧ re(c)〉]2
ts′5, v

′
5 : 〈re(e) ∧ re(c)〉 ts5, v5

t−→ts′5, v′5
ts5, v5 : ♦τ 〈re(e) ∧ re(c)〉 ≡

ts5, v5 : ¬�τ¬ 〈re(e) ∧ re(c)〉
ΠDC

ts5, v5 : �τ¬ 〈re(e) ∧ re(c)〉
ts5, v5 : ⊥ ⊥E1

ts5, v5 : 〈re(e) ∧ re(c)〉
In the following derivation ΠDC, we use the abbreviations

DC′ ≡ c 6= e→ (¬ 〈re(e) ∧ re(c)〉 → �τ¬ 〈re(e) ∧ re(c)〉)
and DC′d for DC′[e 7→ d].
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ts, v : DC ts, v =⇒ ts5, v5

ts5, v5 : ∀c, d • DC′d
ts5, v5 : ∀d • DC′d
ts5, v5 : DC′

[ts′5, v
′
5 : c 6= e ∧ 〈re(e) ∧ re(c)〉]2

ts′5, v
′
5 : c 6= e

ts5, v5 : c 6= e

ts5, v5 : ¬ 〈re(e) ∧ re(c)〉 → �τ¬ 〈re(e) ∧ re(c)〉 [ts5, v5 : ¬ 〈re(e) ∧ re(c)〉]1
ts5, v5 : �τ¬ 〈re(e) ∧ re(c)〉

Now we have constructed a well-formed derivation of the desired form.

We are now in the position to apply the invariance rule to get the desired result, i.e.,
the safety predicate is an invariant under all transitions allowed by our controllers DC
and LC.

Theorem 7.1. The safety predicate is an invariant for all cars using the controller
specification given in Sect. 7.1, i.e.,

({ts, v : DC, ts, v : LC, ts, v : ∀e • safe(e)}, ∅) ` ts, v : ∀e •G safe(e) .

Proof. We can derive

(Γ, ∅) ` ts, v : safe(e)

with a single application of ∀E. Then we can employ Lemma 7.1 to Lemma 7.5, to get
the derivations needed for the application of G I, i.e.,

(Γ, ∅) ` ts, v : G safe(e) .

Observe that all application conditions of G I are satisfied, since each world tsi, vi only
occurs in the derivation of ts′i, v

′
i : safe(e) and d (the car referred to in the dynamic

formulas) does not occur free in any element of Γ. As stated before, since e does not
occur free in any element of Γ, we can use ∀I to derive

(Γ, ∅) ` ts, v : ∀e •G safe(e) .

7.3 Refining the Specification

Now that we defined which rules a safe controller must adhere to, we give several examples
for a more refined controller specification. However, the formulas LC and DC will still be
at the heart of each of these specifications. Our modelling language is the combination
of traffic diagrams and EMLSL as presented in Chap. 6. Still, we will allow for many
non-deterministic choices of an actual controller implementation. In the following, we
assume that the controller specification is a conjunction of both LC and DC as well as
the diagrams presented below.

First, we define several possible positive conditions for the creation of reservations.
Note that the controller specification of Sect. 7.1 only restricts such transitions, but by
no means ensures that any reservation will ever be created.
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ego c[5,∞)

∃ c

r(ego)

(a) Reserving with Car Ahead

ego c

∃ c

r(ego)

(b) Reserving without Car Ahead

Figure 7.1: Positive Conditions for the Creation of Reservations

The diagram in Fig. 7.1a describes that the car ego may create a reservation, whenever
the next car is at least 5 meters ahead. However, this condition will not ensure the
creation of any reservation, when no car c is present. Hence we also introduce the diagram
in Fig. 7.1b, which explicitly states the absence of a car ahead of ego as a precondition.
For reading these diagrams, recall that a diagram of the form

A B

is basically the implication A → B. Furthermore, by definition we know that Fφ ≡
¬G¬φ, i.e., ¬Fφ ≡ G¬φ. So, using this equivalence and thinking of the faint temporal
arrow as an invariance rather than an existence statement, the subdiagrams after the
arrow can be thought of as an implication, where the left diagram implies the right one.
Observe that we do not need to state that there exist no potential collisions for ego. For
if a potential collision existed as well as a situation satisfying e.g. Fig. 7.1a, the formula
LC implies that the creation of a reservation results in a contradiction, i.e., the transition
would still not be allowed.

Figure 7.2 defines a liveness property for the withdrawal of reservations. The overall
structure is similar to the previous figures. However, the conclusion states only that there
will finally be a transition withdrawing one of the reservations. It does not ensure that a
actual lane change happened and it does not require the withdrawal to happen within a
specified time frame.

For an upper bound for the withdrawal of a reservation, we would need a metric
extension of the invariance modality. That is, the modality F [a,b]ϕ would ensure that
there is an abstract transition, in which time between a and b passes and the resulting
snapshot satisfies ϕ. With the existing temporal modality �i or the precise temporal
arrows, we require that no discrete transitions apart from changes of accelerations occur.
Hence we would needlessly (and unjustifiably) restrict the behaviour of all cars on the
freeway.
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ego

ego

wd r(ego)

Figure 7.2: Withdrawal of Reservations

To specify that an actual lane change occurred, we would have to refer to the original
lane of the car. In Fig. 7.2 however, we cannot distinguish anymore between the lane the
car started the lane change on and the target lane. We could try to overcome this problem
by adding a layer denoting, e.g., that the upper lane contained the claim of ego in between
the unspecified space at the beginning of the sequence and the implication. However, the
faint temporal arrows are not expressive enough to state that the described withdrawal is
the first withdrawal of ego after the lane change. Still, the diagram describes a minimal
liveness property every controller should satisfy.

We can also refine the behaviour of the distance controller for specific situations. The
traffic diagrams in Fig. 7.3a and 7.3b describe behaviour of a distance controller which
adds more restrictions on DC. In particular, the diagrams ensure that whenever there is
free space in front of the car ego, this free space is preserved during time transitions. That
is, similar to DC, the specifications of Fig. 7.3 do not restrict situations where overlaps
occur due to the creation of claims or reservations. The specification has to be split into
two diagrams concerning situations outside and during a lane change manoeuvre, since
we cannot distinguish the lanes during such a manoeuvre. If we just used Fig. 7.3a and
dropped the condition that the car is not using two lanes at once, the specification would
still be satisfied if the free space on one lane was consumed, as long as the free space on
the other lane is preserved. Using both diagrams ensures the preservation of space in
both cases. Even though the diagrams seem to define a stronger controller at first sight,
the property they ensure is weaker than DC. For example, if the reservation of a car c
is directly adjacent to the reservation of ego, the diagrams do not guarantee anything,
while DC still implies that the reservations will not overlap after an arbitrary time.

The diagrams given above only concretise the controller implemented in the car ego.
For more concrete controller implementations for the rest of cars, we would have to
repeat all these diagrams, replacing all occurrences of ego with a new variable d and
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ego

ego

ego
ego

(a) Free Space Outside of a Lane Change

ego

ego

ego

ego

(b) Free Space During a Lane Change

Figure 7.3: Distance Controller Preserving Free Space in Front of Cars

quantifying d existentially for the sequences under the outermost negations. To avoid
this duplication, we could change the semantics of the quantifiers and remove the need
for the cars to be different from ego. Such a change would decrease the expressive power
of pure traffic diagrams, since ego could not be distinguished from other cars any more.
However, in the combination with EMLSL, we could simply adjoin the inequality c 6= ego
for each quantification of a variable c.
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In this final chapter, we first summarise the content of the thesis in Sect. 8.1. Afterwards,
in Sect. 8.2, we give several possibilities how the results of this work may be extended.

8.1 Summary

We presented an abstract model of freeway traffic, where space and its occupancy is the
main focus. The dynamics of cars are mostly hidden within the model, and emphasis lies
on the discrete changes cars may perform, in particular setting their turn signals and
changing lanes. Furthermore, we defined how the models are reduced to a finite part of
the freeway, to give a notion of locality as basic parts the models.

Instances of these models serve as the semantic structures for the extended multi-lane
spatial logic EMLSL. This logic takes methods from interval logics and typical modal
logic, to form a many-dimensional multi-modal logic, which may be used to reason about
freeway traffic. Satisfiability of EMLSL formulas was shown to be undecidable, but
nevertheless, we defined a proof system in the style of Natural Deduction, which was
proven to be sound. Several derived rules enhance the usability of the proof system.

To make the approach of this thesis more feasible to end-users, we presented the visual
language of Traffic Diagrams. To give an idea what types of properties are expressible
with Traffic Diagrams, we gave exemplary diagrams which capture prominent features
of the intended semantic model. The underlying structure of the depictions of Traffic
Diagrams was formalised in terms of hypergraphs, which reflect both the diagrammatic
elements, as well as important relations between these elements. We proved that each
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diagram possesses a unique hypergraph as its type. Using these hypergraphs, we defined
a semantics based on the same models as EMLSL. We sketched a possibility to decide
satisfiability of a subclass of Traffic Diagrams.

Since both EMLSL and Traffic Diagrams share the same semantic model, they may be
used in combination to exploit the advantages of each language. We formalised such a
combination by incorporating the formulas into the hypergraphs representing the syntax
of the diagrams. By showing the limits of Traffic Diagrams and defining a translation
into EMLSL, the diagrams were shown to be less expressive than the formulas.

Finally, we used EMLSL to present minimal specifications for two controller. The first
one avoids collisions while time passes, while the second one ensures a safe lane-change.
This specification was proven to ensure safety for all possible transition sequences using
the proof system for EMLSL. We then use different Traffic Diagrams to refine this
specification, e.g., to guarantee a limited form of liveness.

8.2 Future Work

In this section, we describe possibilities to extend the work presented in the thesis. Even
though most of these extensions affect the model itself, e.g., to incorporate notions
of robustness or different topologies, other extensions concern tool support and the
identification of new decidable subsets of the formalisms.

Different Models of Sensors As stated in Chap. 3, we only considered settings where
every car knows both the position and safety envelope of all other cars within its view.
Obviously, such a requirement needs perfect sensors installed in the cars. If we permit
more realistic implementations of sensors, i.e., a situation where each car knows its own
distance needed for an emergency braking and only the physical size of the other cars,
our approach does not ensure safety of traffic anymore. Within such a setting explicit
communication is needed for a safe lane-change protocol, as shown in previous work
[Hil+11]. Hence to reason about safety in such a setting, we need to incorporate means
of describing communications between several agents within our logic. Furthermore, we
probably need methods to relate views of different owners to each other. That is, the
current emphasis on a single, distinguished car has to be more explicit within the logic
itself, with additional syntactic elements to switch views within a single formula.

Robustness Another possibility to increase the realism of our model is to allow for
incorrect sensor values, within certain bounds. That is, instead of the exact satisfaction
relation defined in Chap. 4, a more robust notion allowing for small deviances is needed.
This also leads to the question, into which parts of the model such disturbances should
be introduced. It seems reasonable to at least allow for errors in distances measurements,
since these are dependent on sensor readings. Similarly, no car can possibly ensure to
change its state at a single point in time, which implies that robustness within transitions
may also be considered. In particular, that the discrete transitions of Chap. 3 do not
take any time has to be questioned.
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Synchronous Parallelism Even though traffic on freeways can be thought of as an
inherently parallel system of multiple agents, our model is defined using an interleaving
semantics. That is, no two transitions occur exactly simultaneously. In particular, in
every trace, the order of consecutive discrete transitions is fixed, while the transitions
may stem from different cars. However, in a system of multiple, autonomous agents, a
model of true concurrency is more realistic. Hence the labelled transition system implied
by our model could be replaced by either an event structure or a distributed transition
system [Lod+92], which both allow for the simultaneous occurrence of transitions.

Connecting the Abstract Model with Dynamics We presented only a simple definition
of the dynamics in Chap. 3. For concrete implementations, our approach has to be
connected with more concrete specifications, e.g., in terms of hybrid automata or simply
differential equations. A concrete model of the dynamical behaviour of cars has to fulfil
several constraints. It has to able to return the length needed for a safe emergency
braking to the upper level (i.e., it has to compute the values of the sensor function at
least for the current, distinguished car), and it has to ensure that each car only drives on
the lanes it reserved. Furthermore, the dynamical model has to ensure, that the cars as
well as the values of the sensor function only evolve continuously.

Increasing the Domain of Application To analyse different scenarios, the abstract
model has to be changed severely. Even though, oncoming traffic may be incorporated
rather easily [HLO13], modelling urban traffic scenarios, i.e., crossings, is more of a
challenge. The topology of the model has to be changed drastically to allow for different
streets to cross. However, vastly different topologies may also be of interest to describe
other traffic scenarios, for example airborne traffic, where air planes reserve corridors in
three-dimensional space. Furthermore, lanes which follow certain trajectories may be
useful to reason about shipping traffic.

Decidability As shown in Chap. 4, our main tool of reasoning, the logic EMLSL, is
undecidable in general. It is not directly obvious, what restrictions on the model or the
syntax yield decidable subsets. A promising approach is to restrict the number of cars to
be finite, to get a translation into a decidable subset of Schäfer’s Shape Calculus [Sch07].
Restricting the number and nesting of chops is also sensible to use the “dove-tailing”
approach of Gabbay [Gab98; Gab+03]. The satisfiability problem of atomic spatial
diagrams probably is decidable, as sketched in Chap. 5. However, the procedure still
has to be formally proven correct, and enhanced to cope with a larger subset of Traffic
Diagrams.

Tool Support Several parts of the work in this thesis suggest the implementation of a
tool, or rather a framework incorporating different tools. The proof system presented in
Chap. 4 could be implemented within a general theorem prover. Isabelle [Pau94] seems
like a suitable selection, since it is based on natural deduction, and since several labelled
deductive systems for modal- and interval logics have already been implemented within
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8 Conclusion

Isabelle [BMV98; Ras02; Vig00]. For the diagrammatic system of Chap. 5, a graphical
editor is of inherent importance, to ease the use and creation of diagrams. With such an
editor, an implementation of the translation given in Chap. 6 is sensible to gain a direct
connection between the implementations of both. Then, techniques for heterogeneous
reasoning as implemented in, e.g., the Diabelli system [UJ12] can probably be adapted
to our setting.
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LC, 127
LVar, 32
`, 32
λ, 38

marker, 60
·M, 113
mv , 26
mutex, 60

N, 5

◦, 6
O, 11
�, 101

Per , 60
Π∗,ji , 128
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P, 5
pc, 126
periodic, 61
pos, 21
`, 39

·Q, 114

R+ , 6
resV , 28
R∗, 6
R, 6
res, 21
ρ, 37
re, 32
RVar, 32, 71
ri, 39

[· 7→ ·], 9
safe, 126
〈·〉 (sequence), 6
σ, 38
〈·〉 (modality), 33
spd , 21

t , 23
acc(C,a)−−−−−→ , 23
t−→ , 23
c(C,n)−−−−→ , 22
r(C)−−→ , 22
wd c(C)−−−−−→ , 22
wd r(C,n)−−−−−−→ , 23
T S, 21
TS, 21
T, 20
=⇒, 24, 37
Θ, 32
ts, 37
TS, 37
τ , 11
θ, 32
E, 37
·T , 115

c(c)−−→, 37
r(c)−−→, 37
wd c(c)−−−−→, 37
wd r(c)−−−−→, 37
t−→, 37
θ, 11
T , 11
TT , 81
TNT , 81

V , 25
V L, 25
VX , 25
v, 37
v, 105
v, 105
ν, 32
νI , 97
νV , 32
Var, 32, 70
vcf, 39
V, 11
V, 37
vri, 39
vl, 105
vr, 105

ω, 32

X, 25
χ, 98
⊕{· 7→ ·}, 6

ΩE , 27
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Subject Index

advanced driver assistance system, 108
application (graph rewriting), 12
arithmetic

Presburger, 106
real, 106

assumption elimination, 8
atom

equality, 32
free, 35
spatial, 32

attachment function, 11
axiom (graph rewriting), 13

car
action, 71
braking distance, 19
physical size, 19
safety envelope, 19, 27

chop-free, 11
claim, 21, 72

creation, 23
withdrawal, 23

composition, 6

derivation, 8, 39
derivation (graph rewriting), 13
diagram

spatial, 74
Traffic Diagram, 75

distance arrow, 73
distance controller, 126
domain, 6

edge, 11
EMLSL, 31
expressivity, 111

flexible, 8, 35
formula, 32

dynamic, 37
labelled, 9, 37
locality, 37

relational, 9, 37
timing, 37

function, 6
modification, 6

global contradiction, 9
graph homomorphism, 11
graph rewriting, 13

Traffic Diagrams, 83
graph rewriting rule, 12
graph substitution, 14

HR∗ condition, 13
heterogeneous reasoning, 121
horizon, 25
hyperedge replacement, 13
hypergraph, 11

image, 6
implicit lengths, 98
interlingua, 123
interval, 6, 71

chop, 27
variable, 6, 71

labelled natural deduction, 9
EMLSL, 36

labelling algebra, 36
lane change controller, 127
lane separation, 73
lane sequence, 73
layer, 74

full, 74
partial, 74

left-hand side, 12
logic

computational tree logic (CTL), 7
interval temporal logic (ITL), 7
linear temporal logic (LTL), 7
signed interval logic (SIL), 10
temporal, 7

match, 12
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measure, 26
modality

chop, 7, 32
everywhere, 33
invariance, 32
somewhere, 33

modification, 32

natural deduction, 8
nested condition, 13

potential collision check, 126
precedence, 101
preimage, 6
production, see graph rewriting rule
proof, 8
proof rule, see rule

range, 6
relation, 6
representation, 84
reservation, 20, 72

creation, 23
lemma, 55
withdrawal, 23

right-hand side, 12
rigid, 8, 36

dynamically, 36
horizontally, 36
vertically, 36

rule, 8
activity, 46
backwards activity, 47
backwards stability, 47
elimination, 9
introduction, 9
invariance/induction, 52
stability, 46

run, 59

safety predicate, 126
sane, see sanity conditions
sanity conditions, 21

formalisation, 77
satisfaction

HR∗ condition, 15
EMLSL, 33
labelled formula, 38
relational formula, 38
Traffic Diagram, 98

semantics
HR∗ condition, 15
EMLSL, 33
metric, 99
spatial, 99
Traffic Diagrams, 98

sensor function, 27
sequence, 6
single decomposition, 11
soundness, 53
space

free, 72
unspecified, 72

subview, see view
syntax

abstract (diagrams), 70
concrete (diagrams), 70
EMLSL, 32
substitution, 9

temporal arrow
discrete, 75
duration, 75
faint, 75
precise, 74

temporal sequence, 75
tentacle, 11
term, 32

timing, 37
topological sequence, 72
topological situation, 72
Traffic Diagrams, 69
traffic snapshot, 21
transformation, 115

metric, 113
qualitative, 114

transition, 22
abstract, 24
dynamic, 22
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evolution, 23
global, 22
local, 22
modality, 32
spatial, 22

two-counter machine, 59
type

non-terminal, 81
terminal, 81

type function, 11
typed hypergraph, see hypergraph

valuation, 32
interval, 97
locality, 38
snapshot, 38

variable, 32, 70
car, 31, 70
implicit, 98
lane, 32
length, 32, 71
timing, 37
traffic snapshot, 37
view, 37

vertex, 11
view, 25

extension, 25
lanes, 25
length, 32
moving, 26
owner, 25, 32
standard, 25
subview, 25
width, 32

visiting a vertex, 11
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