
Translating Structural Process Properties to Petri Net Markings

Sven Linker
Department of Computing Science
Carl von Ossietzky Universität

Oldenburg, Germany
Email: sven.linker@informatik.uni-oldenburg.de

Abstract—We introduce a spatio-temporal logic
PSTL defined on Pi-Calculus processes. This logic is
especially suited to formulate properties in relation
to the structural semantics of the Pi-Calculus due to
Meyer, a representation of processes as Petri nets. To
allow for the use of well-researched verification tech-
niques, we present a translation of a subset of PSTL
to LTL on Petri nets. We further prove soundness of
our translation.
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I. Introduction

The structure of computer systems has drastically
changed from single computing devices to small, commu-
nicating components in the last years. Hence verification
of structural properties such as stability of connections
between processes is of growing interest, e.g. to ensure
reliability in cases of emergency.
Meyer has shown that a large class of concurrent sys-

tems can be translated into place/transition Petri nets
[1], [2]. Using this translation, standard Petri net veri-
fication techniques may be employed. At the moment,
verification properties have to be directly formulated
as LTL formulae on Petri nets, i.e. after translating a
process into its Petri net semantics, the user has to
manually inspect the translation. Since this approach is
error-prone as well as unintuitive, we propose the use of
a structural logic on processes inspired by the approach
of Caires and Cardelli [3] to formulate properties.
We present a structural-temporal logic on π-Calculus

processes called PSTL (π-Calculus structural temporal
logic), where temporal modalities may not occur within
the scope of structural modalities. I.e., we use the struc-
tural connectives to describe processes and the temporal
operators to relate these descriptions along the evolution
of processes. This approach is an application of Finger
and Gabbay’s technique of temporalising logics [4].
For this logic we present a sound translation to LTL

on Petri nets with respect to a process P . That is, we
translate a formula ϕ on processes into a formula ϕ′

describing the evolution of markings in the structural
semantics corresponding to the processes reachable from
P satisfying ϕ. The translation is possible for the rather

large set of structurally stationary processes. This set
contains, e.g., recursion-free, bounded [5] and restriction-
free [6] processes as shown by Meyer [1], [2].
The organisation of the paper is as follows. After

establishing the necessary preliminaries in the next sec-
tion, we give the translation of the structural part of
PSTL to LTL in Sect. III. In Sect. IV we define the
full logic PSTL and lift the translation accordingly.
Section V concludes the paper. For reviewing purposes,
we add an appendix.

II. Preliminaries

Definition 1 (Place/Transition Petri Net). A
place/transition Petri net is a tuple N = (S, T,W,M0),
where S and T are disjoint sets of places,
respectively transitions. The weight function
W : (S × T ) ∪ (T × S) → N defines the number of
arcs between places and transitions. The initial marking
M0 : S → N gives the number of tokens on each place. A
Petri net is finite if both S and T are finite.

A transition t is enabled under a marking M : S → N,
if M(s) ≥ W (s, t) for all s ∈ S. The transition relation
_ is defined by M _ M ′ iff there is a transition t, such
that t is enabled underM and M ′(s) =M(s)−W (s, t)+
W (t, s) for all s ∈ S.
Let ω = M0M1M2 . . . be an infinite sequence of

markings, where M0 is the initial marking of a Petri
net N and Mi _ Mi+1 for each Mi 6= Mi+1. If there
is some k such that Mk has no successor, we define
Mi =Mk for all i > k. We call ω an occurrence sequence
of N . The notation ωi refers to the subsequence of ω
starting at the i-th marking. The initial marking of ω is
denoted by Mω. The support of a marking M is the set
supp(M) = {p pM(p) > 0}.

The π-Calculus is a process algebra capable of de-
scribing dynamically reconfigurable systems [7], [8]. Its
main concept is sharing and hiding of names between
processes. We assume a countably infinite set A of names
and will abbreviate a sequence of names m0m1m2 . . .mn

by m̃. Names can be used as channels by which the
processes communicate, but also as the content of a
message. By this mechanism, previously unconnected



processes may establish new communication channels.
Prefixes π define possible communications of processes.
A prefix is of one of the following forms: m〈n〉 expresses
the ability to send the name n over the channel m, m(x)
gives the process the possibility to receive a name over
channel m and replacing x with the received name. The
prefix τ represents an internal action, while the matching
prefix [x = y] only allows the process to proceed, if x
and y are equal. Matching prefixes must be followed by
another prefix, i.e. a process with a matching prefix is of
the form [x = y].π.P .

Definition 2 (Processes). Processes P are constructed
according to the following EBNF, where m is a name and
m̃ a name sequence.

M := 0 p π.P pM1 +M2

P :=M p K ⌊m̃⌋ p P1 |P2 p νm.P1

The process 0 denotes the process which possesses no
behaviour. The operators are choice (+) and parallel
composition ( | ). That a certain namem is only known to
a certain set of processes is expressed by restriction (ν)
on a process. A process call is denoted by K ⌊m̃⌋, if there
is a process equation K (x̃) := PK . In the following, we
will use the notation

∏
i∈I Pi for the process P1 | . . . |Pn,

where I = {1, . . . , n}. If I = ∅, we set
∏

i∈I Pi = 0. If
P ≡ P1 ≡ P2 ≡ . . . ≡ Pn, we also write

∏n
P .

The set of free names of a process P , denoted fn(P ),
is the collection of all names occurring in P , which are
not bound by a restriction or an input action. Similarly,
the set of bound names of P is the collection of names
occurring in P under a restriction or bound by an input
action. Definitions of the π-Calculus normally require
that fn(PK) ⊆ x̃ for process equations. For brevity, we
will violate this condition in the examples, and silently
assume all parameter lists to be completed accordingly.

Definition 3 (Structural Congruence). The structural
congruence ≡ is the smallest congruence relation on
processes allowing for alpha-conversion of bound names,
where + and | are commutative and associative operators
with 0 as the neutral element. The quantifier ν is com-
mutative and absorbed by 0. The matching prefix may be
absorbed, if the compared names are equal. In addition ≡
has to fulfil the following law, called scope extrusion.

νa.(P |Q) ≡ P |νa.Q where a 6∈ fn(P )

We will denote the equivalence class of a process P with
respect to structural congruence by [P ] and the set of
equivalence classes of a set S by S/≡.

The substitution of a name a by another name m is
denoted by P{m/a}. Furthermore we denote the direct
substitution of name sequences by P{m̃/ã}. Reactions
define the behaviour of processes.

Definition 4 (Reaction). The reaction relation → is
defined as follows.

(Tau) τ.P +M → P

(React) (x(y).P +M) | (x〈z〉.Q+N)→ P{z/y} |Q

(Const) K ⌊ã⌋ → P{ã/x̃}, if K (x̃) := P

P → P ′
(Par)

P |Q→ P ′ |Q
P → P ′

(Res)
νa.P → νa.P ′

Q ≡ P P → P ′ P ′ ≡ Q′

(Struct)
Q→ Q′

We will denote the set of all reachable processes from P
by Reach(P ).

Example 1. As a running example, we use a part
of the specification taken from Orava and Parrow [9],
which formally defines a handover procedure of the GSM
protocol. The full specification is, e.g., available as an
example provided by the tool Petruchio [10].

The system consists of four agents. Two base stations,
a passive one BSp and an active one BSa , a mobile
station MS and a mobile switching centre MSC . The
mobile station is connected to the active base station by
a private link m. The mobile switching centre serves two
purposes. It connects the base stations over the channels
fa and fp and coordinates the handover of the mobile
station from the active base station to the passive station.
The mobile station is able to either receive data or to act
according to the handover procedure. To distinguish both
behaviours, the base station sends the one of the names
data and ho cmd on the shared channel m.

MS (m) := m(x). ([x = data].m(v).out〈v〉.MS⌊m⌋

+ [x = ho cmd].m(mnew).

(mnew〈ho acc〉.MS⌊mnew⌋

+m〈ho fail〉.MS⌊m⌋))

If the received name is data, the mobile station may
receive the value on the shared channel and then outputs
it on the channel out. If otherwise the handover procedure
is initiated, the station receives a new channel mnew.
This channel shall be used to communicate with the new
base station. Now the station may either complete the
handover by sending ho acc on this new channel or it
may cancel the handover and proceed to communicate
on the channel m. For the definitions of BSp , BSa
and MSC, we refer to the paper of Orava and Parrow
[9] and the appendix. To allow for the sending of data
values to the mobile station, we also employ the processes
S := νv.in〈v〉.S and R := out(d).R.

The full system is defined by the following process



definitions.

P(fa, fp) := νm.(MSC ⌊fa, fp,m⌋ |BSp⌊fp,m⌋)

Q(fa) := νm.(BSa⌊fa,m⌋ |MS⌊m⌋)

System := νfa, fp.(P⌊fa, fp⌋ |Q⌊fa⌋ |S |R)

The process P models the connection of the passive base
station to the mobile switching centre, while Q defines
that the mobile station is only connected to the active
base station. Note that both processes define a restriction
on a name m. These occurrences of m denote distinct
names, since they are included in the scopes of different
restrictions.

The structural semantics of Meyer [1] is a mapping
from π-Calculus processes to place/transition Petri nets
respecting the internal structure of the process, i.e. struc-
tural congruence. Its main features are full retrievability
and full abstraction. Full retrievability means that the
transition systems of a process P and its structural
semantics are isomorphic, as well as the fact that every
reachable process from P can be retrieved from a reach-
able marking of its structural semantics. Full abstraction
denotes the property that for every two processes P and
Q the structural semantics yields structurally similar
Petri nets, if and only if P and Q are structurally
congruent.
The mapping heavily relies on a syntactic normal form

of processes, the restricted form of a process. In the
restricted form of a process, the scope of restrictions ν
is as small as possible, building fragments, where every
process under a restriction on a name m contains m as
a free name.

Definition 5 (Fragments and Restricted Form). A frag-
ment is a process constructed according to the following
definition.

F :=M1 +M2 p K ⌊ã⌋ p νm.(F1 | . . . |Fn),

where m ∈ fn(Fi) for all i ∈ {1, . . . , n} and M1 +M2 is
a summation not structurally equivalent to 0. A process
P rf in restricted form consists of a parallel composition
of fragments, i.e. P rf =

∏
i∈I Fi. We denote the set of

all fragments by PF and the set of fragments of P rf by
fg(P rf ).

Meyer characterised the function rf , computing the
restricted form of a process, syntactically [1]. Intuitively,
the application of rf shrinks the scope of all restrictions
in P as much as possible and removes processes congru-
ent to 0. For the definition of the structural semantics of
a process P , we need a function to count the occurrences
of fragments in its restricted form.

Definition 6 (Decomposition). Let P rf = rf (P ) be a
process in restricted form and IF = {G ∈ fg(P rf ) p G ≡

F }. We associate a function dec(P rf ) : PF
/≡ → N with

P rf such that dec(P rf )([F ]) = |IF |.

Lemma 1. Consider two processes P and Q. Then the
following properties hold.

1) dec(rf (P |Q)) = dec(rf (P )) + dec(rf (Q))
2) P ≡ Q if and only if dec(rf (P )) = dec(rf (Q))

With these preliminaries established, we are able to
define the structural semantics N JP K of a process P .
The places of N JP K are exactly the congruence classes of
reachable fragments of P . A transition models reactions
between two fragments F1 and F2 to a new process
Q, which may again consist of several fragments, or a
reaction within one fragment F to a process Q.

Definition 7 (Structural Semantics). The structural
semantics maps a process P to a Petri net N JP K =
(S, T,W,M0), where S is the set of places, T the set
of transitions and M0 the initial marking given by the
following definitions.

S = fg(rf (Reach(P )))/≡

T = { ([F ], [Q]) ⊆ S × P/≡ p F → Q }

∪ { ([F1 |F2], [Q]) ⊆ P/≡ × P/≡

p [F1], [F2] ∈ S and F1 |F2 → Q }

M0 = dec(rf (P ))

For [G] ∈ S and transitions ([F ], [Q]), ([F1 |F2], [Q]) ∈ T ,
the weight function is defined by

W ([G], ([F ], [Q])) = dec(F )([G])

W ([G], ([F1 |F2], [Q])) = dec(F1 |F2)([G])

W (([F ], [Q]), [G]) = dec(rf (Q))([G])

W (([F1 |F2], [Q]), [G]) = dec(rf (Q))([G])

Remark 1. As shown by Meyer, the transition systems
of a process and its structural semantics are isomorphic.
That is, the evolution of markings of the structural
semantics of P exactly reflects the reduction sequences
of P .

Example 2. Consider Example 1. If we shrink the scopes
of the restrictions in the definition of System, we get

System := νfa.(νfp.(P⌊fa, fp⌋) |Q⌊fa⌋) |S |R,

which is a process in restricted form consisting of the
three fragments S, R and νfa.(νfp.(P⌊fa, fp⌋) |Q⌊fa⌋).
On the whole, 223 structurally incongruent fragments are
reachable from System. Two of these fragments are

F ≡ νm, fp.
(
BSp⌊fp,m⌋

| νl.
(
HC ⌊l,m⌋ | νfa.(CC ⌊fa, fp, l⌋

| νm.(BSa⌊fa,m⌋ | νd.out〈d〉.MS⌊m⌋))
))



and G ≡ out(v).R. The calls to the process definitions
CC and HC are parts the mobile switching centreMSC.
The set of transitions of the structural semantics contains
([F |G], [F ′|R]), where F ′ is similar to the fragment F ,
in all but the process νd.out〈d〉.MS⌊m⌋, which is replaced
by MS⌊m⌋. The weight function is defined by

W ([F ], ([F |G], [F ′|R])) = 1

W ([G], ([F |G], [F ′|R])) = 1

W (([F |G], [F ′|R]), [F ′]) = 1

W (([F |G], [F ′|R]), [R]) = 1,

and

W ([H], ([F |G], [F ′|R])) =W (([F |G], [F ′|R]), [H]) = 0

for all other fragments H. I.e., the transition may only
fire if the places [F ] and [G] are marked with a token
and puts a token on the places [F ′] and [R]. With this
definition, it models the reduction of the process F |G
to F ′ |R via the communication over the channel out.
The second type of transitions defines reaction within a
fragment, e.g. the expansion of a process definition. For
example,

W ([R], ([R], [out(d).R])) = 1

W (([R], [out(d).R]), [out(d).R]) = 1.

If the set of reachable fragments of a process P is
finite, we call P structurally stationary. By Definition 7,
the structural semantics of P is finite if and only if
P is structurally stationary. Decidable properties of
place/transition Petri nets directly carry over to struc-
turally stationary processes, due to the isomorphic tran-
sition systems of processes and their structural semantics
[1]. Such properties include, e.g., reachability [11] and
coverability [12] of markings.
We briefly recall LTL with the eventually modality on

Petri nets.

Definition 8 (LTL). The syntax is given by the following
EBNF

ϕ := p ≥ c p ¬ϕ p ϕ1 ∧ ϕ2 p ♦ϕ,

where p is the place of a Petri net and c ∈ N. The
semantics of LTL on Petri Nets is defined inductively,
where ω is an occurrence sequence.

ω |= p ≥ c iff Mω(p) ≥ c
ω |= ¬ϕ iff not ω |= ϕ
ω |= ϕ1 ∧ ϕ2 iff ω |= ϕ1 and ω |= ϕ2

ω |= ♦ϕ iff ∃y : ωy |= ϕ

If ω |= ϕ we say that ω satisfies ϕ. A Petri net N satisfies
a formula ϕ, written N |= ϕ, if all occurrence sequences
of N satisfy ϕ.

We also use p = c, which abbreviates p ≥ c ∧ ¬(p ≥
c+ 1), as an atomic formula.

III. Translating Structural Formulae

In the following we define the syntax and semantics of
the structural part of the logic. We refer to a subset of
processes without parallel composition or restriction as
the topmost operator. Furthermore, the process 0 is not
part of this subset. We call this set sequential processes.

In addition to atoms ⊤ and ⊥ denoting true and
false respectively, we use the notions free(b) and ¬free(b)
(b ∈ A) to express that b is either free (not free,
respectively) in the process under consideration. Finally,
every sequential process P seq is allowed as a sequential
atom. Such a formula is satisfied by a process P iff P
is structurally congruent to P seq.

In contrast to the work of Caires and Cardelli [3], we
consider the restriction quantifier res to be a primitive
notion and do not split it into a freshness quantifier
and an operation to reveal hidden names. A process P
satisfying res b ϕ can be decomposed into a restriction
on a process P ′, i.e., P ≡ νm.P ′ and P ′ satisfies ϕ,
where b was substituted by a fresh name m in ϕ. To
mimic the parallel composition of processes we use the
binary parallelism modality ‖ . A process P satisfying
ϕ ‖ ψ can be split into processes Q and R, which satisfy
ϕ and ψ respectively. Note that we do not allow for
Boolean operators on the structural level. Conjunction
and negation will only arise at the level of temporal
formulae. Thus, we avoid ambiguity.

Definition 9 (Syntax of Structural Formulae). The
syntax of structural formulae is defined as follows, where
P seq is a sequential process and b ∈ A.

β ::= ⊥ p ⊤ p free(b) p ¬free(b) p P seq
p β1 ‖ β2 p res b β

We use
∐

i∈I βi to denote the formula β1 ‖ . . . ‖ βn,
where I = {1, . . . , n}. If I = ∅, we set

∐
i∈I βi = ⊥.

The definitions of the sets of free and bound names of
formulae are as usual, i.e. a name is free if it is not
bound by ν, res or an input action. We denote the set
of subformulae of β by sub(β). For 0 ≤ i ≤ n, we
denote by {a0, . . . , an ← m0, . . . ,mn} or {ã ← m̃}
the capture-avoiding substitution σ with σ(ai) = mi

and σ(x) = x for all x 6∈ {a0, . . . , an}. In the rest
of the paper, we assume that the sets of the bound
names of formulae and processes are disjoint. This is
not a loss of generality, since we always may employ
alpha-conversion to achieve this setting. The semantics
captures the intuitive meanings of the operators given
above.

Definition 10 (Semantics of Structural Formulae). Let
P be a process and b ∈ A. The satisfaction relation |= is
given according to the following definition.



P |= ⊥ for no P
P |= ⊤ for all P
P |= free(b) iff b ∈ fn(P )
P |= ¬free(b) iff b 6∈ fn(P )
P |= P seq iff P ≡ P seq

P |= β1 ‖ β2 iff ∃Q,R : P ≡ Q |R such that
Q |= β1 and R |= β2

P |= res b β iff ∃m,Q : P ≡ νm.Q such that
m 6∈ (fn(P ) ∪ fn(β))
and Q |= β{b← m}

Two formulae β1 and β2 are equivalent, denoted by
β1 ≡̂ β2, if and only if for all processes P , P |=
β1 iff P |= β2.

Example 3. This logic is capable of describing structural
properties of processes. Consider Example 1. The formula
β = res y (MS⌊y⌋ ‖ ⊤) denotes the existence of the
process call to the mobile station. Note that a process sat-
isfying β has to contain a process structurally congruent
to MS⌊m⌋, e.g., the process ν m, v.out〈v〉.MS⌊m⌋ does
not satisfy β, but νm.MS⌊m⌋ does.

The parallelism modality is commutative and asso-
ciative. For the translation defined in Section III-A, we
need the following additional equivalences. The proofs
are easy and therefore omitted.

Proposition 1. Let β be a structural formula and b ∈ A.
Then the following equivalences hold.

⊤ ‖ ⊤ ≡̂ ⊤ (1)

free(b) ‖ ⊤ ≡̂ free(b) (2)

¬free(b) ‖ ⊤ ≡̂ ⊤ (3)

res b (β ‖ ⊤) ‖ ⊤ ≡̂ res b (β ‖ ⊤) (4)

A. Translatable Subset

In this section we define the translation of a subset
of structural formulae to propositional formulae on Petri
nets. To examine the truth value of P |= β, we construct
a formula θ(β, P ) which is satisfied by the structural
semantics of P if and only if P satisfies β. Since P
determines the names of places occurring in its structural
semantics, the translation to LTL can only be formulated
with respect to P , i.e., with respect to the reachable
fragments of P .
We will call a translatable formula a restriction for-

mula (cf. Definition 12) since the structure of these
formulae is very similar to the restricted form of pro-
cesses as defined by Meyer [1]. A restriction formula
consists of a parallel composition of one or more fragment
formulae. Like fragments of processes, such a formula
consists of a restriction on a name b around a parallel
composition of other fragment formulae. In contrast to
process fragments, we do not require that all composed
fragment formulae contain b as a free name, but allow
for ⊤ to avoid overspecifications.

The idea of the translation is as follows. For a process
P and a formula β =

∐
i∈I βi we first identify the set

of fragments of P satisfying each βi. Then from these
sets we construct the minimal processes needed for the
satisfaction of β. The minimal processes can be decom-
posed according to the structural semantics into their
fragments, so that we can identify the number of tokens
on the corresponding places in the structural semantics.
The formula associated with a minimal process is then a
conjunction of atoms. Finally, the disjunction of all such
conjunctions is the translated formula ϕ.

For the definition of fragment formulae, observe that
the existence of a free name b in a formula β does not
imply that all processes satisfying β also have b in the
set of their free names. Consider for example the formula
β = ¬free(b). In the standard definition of free names
on formulae, β uses b as a free name, but for every
process P with P |= β, b 6∈ fn(P ). If we consider the
set of free names of a formula to be a commitment of its
satisfying processes, it would be more sensible to say that
¬free(b) does not contain any free names. To take these
considerations into account, we define a set of ensured
free names of a formula.

Definition 11 (Ensured Free Names). In the following,
let P seq be a sequential process, b ∈ A and α, β be
structural formulae. The ensured free names of a
formula are defined as follows.

efn(⊤) = efn(⊥) = ∅ efn(P seq) = fn(P seq)
efn(free(b)) = {b} efn(res b β) = efn(β) \ {b}
efn(¬free(b)) = ∅ efn(α ‖ β) = efn(α) ∪ efn(β)

The following lemma shows that ensured free names
is indeed a reasonable name for this set, since a process
satisfying a formula ϕ uses at least all ensured free names
of ϕ as free names.

Lemma 2. Let P be a process, β be a formula and b ∈ A.
Then P |= β and b ∈ efn(β) implies b ∈ fn(P ).

Proof: By induction on the structure of formulae.

Now we can turn to the definition of translatable
formulae, i.e. fragment and restriction formulae.

Definition 12 (Fragment and Restriction Formulae).
Let b ∈ A. Fragment formulae φ are defined by

φ ::= ⊤ p free(b) p ¬free(b) p P seq
p res b (φ1 ‖ . . . ‖ φn),

where φi = ⊤ or b ∈ efn(φi) for each i ∈ {1, . . . , n} and
there is at least one i ∈ {1, . . . , n} s.t. φi 6= ⊤. Restriction
formulae are defined as ρ ::= φ1 ‖ . . . ‖ φm.

Observe that due to this definition, formulae of the
form ¬free(b) may not appear under any restriction.
Furthermore, the only atoms satisfied by 0 are ⊤ and



¬free(b). Henceforth, we will call these atoms segrega-
tive formulae, as justified by Lemma 4. Proposition 2
shows the reason for calling the formulae φ fragment
formulae. If a process P satisfies a fragment formula φ,
the restricted form of P either contains a fragment F
which already satisfies φ or φ is segregative. The second
part of the proposition states that if P consists of more
fragments than F , φ has to contain certain subformulae,
which are satisfied by (almost) arbitrary processes.

Proposition 2. Let φ be a fragment formula and P a
process with P |= φ. Then

1) there exists an F s.t. P ≡ F |Q and F |= φ where
F ∈ PF or F ≡ 0, and

2) if Q 6≡ 0 then ⊤ ∈ sub(φ), free(b) ∈ sub(φ) or
¬free(b) ∈ sub(φ).

Proof: By induction on the structure of formulae.
The base cases are immediate. In the induction step, the
process has to be divided into fragments Fi satisfying
the subformulae of φ and the remaining parts Qi of the
subprocesses. Let m be the name in the process corre-
sponding to the restricted name b in φ. Then the scope of
the restriction of m is shrunken to exclude all fragments
Fi and processes Qi not containing m free. The process
under this shrink scope is a fragment and is satisfying
φ. The second part of the proposition holds, since the
only formulae allowing certain indeterminate processes
for their satisfaction are ⊤, free(b) and ¬free(b).
We use a function to compute a normal form of the

translatable formulae. This function propagates ⊤ atoms
beneath restrictions to the uppermost parallel composi-
tion, removes redundant ⊤ atoms, and, if both atoms of
the form ¬free(b) and ⊤ occur in the formula, it removes
all occurrences of the former. This normal form allows for
the following. Let P ≡

∏
i∈I Fi be a process in restricted

form, i.e. all Fi are fragments, satisfying a normalised
formula ρ =

∐
j∈J φj . By Proposition 2, we can find a

mapping f from I to J , such that for each i, Fi |= φf(j).
The parallel composition R ≡

∏
i∈Ī Fi, where Ī ⊆ I and

each Fi is needed to satisfy a non-segregative formula
φj , is a minimal satisfying process of ρ with respect to
P (cf. Definition 14). Proposition 3 shows that each P
with P |= ρ consists of a minimal satisfying process in
parallel to some process S. If S 6≡ 0, Proposition 2 yields
the existence of a subformula ⊤, free(b) or ¬free(b).
The normalisation of ρ results in the existence of either
⊤ or ¬free(b), i.e., segregative subformulae. Then all
the fragments of S satisfy segregative subformulae of ρ.
Hence, the occurrences of fragments in R define a lower
bound on their occurrences in all P ′ satisfying ρ, where
P →∗ P ′.

Definition 13 (Normalisation Function). The normal-
isation function nf is defined inductively. Considering

a formula β =
∐

i∈I φi, we use
∐

j∈J ψj to denote∐
i∈I nf (φi). The sets I and J may be different, due

to the creation of new ⊤ atoms by the normalisation.
Then J⊤ is defined by J⊤ = {j p ψj = ⊤} and
J¬ = {j p ψj = ¬free(b) for some name b}.

nf (⊤) = ⊤ nf (¬free(b)) = ¬free(b)
nf (P seq) = P seq nf (free(b)) = free(b) ‖ ⊤

nf (res b (
∐

i∈I

φi)) =





⊤, if
nf (

∐
i∈I φi) = ⊤

⊤ ‖ res b (nf (
∐

i∈I φi)), if
nf (

∐
i∈I φi) contains ⊤

res b (nf (
∐

i∈I φi)), otherwise

nf (
∐

i∈I

φi) =





⊤, if
J⊤ 6= ∅ and J = J⊤ ∪ J¬
⊤ ‖

∐
j∈J\(J⊤∪J¬)ψj, if

J⊤ 6= ∅ and J ⊃ J⊤ ∪ J¬∐
j∈J ψj, otherwise

The normalisation of a formula does not change its
truth value.

Lemma 3. Let ϕ be a fragment or restriction formula.
Then ϕ ≡̂ nf (ϕ).

Proof: The lemma follows by induction on the
structure of fragment and restriction formulae includ-
ing several applications of the equivalences denoted in
Proposition 1. The first equivalence allows for collapsing
several parallel ⊤ atoms to one. The second justifies the
base case of free(b), while the equivalences (3) and (4)
ensure the equivalence, when atoms of both forms ⊤ and
¬free(b) are present.

Example 4. Consider the fragment formula β =
res y (MS⌊y⌋ ‖ ⊤). The normalisation of the parallel
composition in the scope of the restriction yields ⊤ ‖
MS⌊y⌋. Since this formula contains ⊤, the normalisation
of β is nf (β) = ⊤ ‖ res y (⊤ ‖ MS⌊y⌋), which is
equivalent to β by Proposition 1 (4).

Lemma 4. Let ϕ be a normalised fragment or restriction
formula. Then exactly one of the following properties
holds:

• ¬free(b) 6∈ sub(ϕ) for all b, or
• ⊤ 6∈ sub(ϕ) and ¬free(b) ∈ sub(ϕ) for some b.

Proof: The normalisation function never creates
new formulae of the form ¬free(b) for any b, hence if
ϕ does not contain a formulae ¬free(b), neither does
its normalisation. On the other hand, if ϕ contains a
subformula ¬free(b), then it does not occur under any
restriction. Thus, if ϕ contains a subformula ⊤, this
will be propagated to the outermost level. Since the
normalisation function removes occurrences of ¬free(b)
in parallel to ⊤, the normalised formula does not contain



formulae of type ¬free(b). So a normalised formula may
only contain ¬free(b), if it does not contain ⊤.

We now turn to the definition of minimal processes
satisfying a restriction formula ρ with respect to a
process P , denoted by R JρKP . These processes shall be
minimal in the following sense: A minimal process Q
consists only of fragments, which are absolutely needed
for satisfaction, i.e., segregative subformulae of ρ formu-
lae are not considered. For the definition of this set, we
need the satisfying fragments of a fragment formula φ,
denoted by F JφKP .
Definition 14 (Minimal Satisfying Processes). Let P
be a process, φ and ρ =

∐
i∈I φi be normalised fragment

resp. restriction formulae. Furthermore, let I0 = {i p 0 |=
φi} and Ī = I \ I0. The set of satisfying fragments with
respect to P is given by the following definition.

F JφKP = { [F ] p [F ] ∈ fg(rf (Reach(P )))/≡ ∧ F |= φ }

The set of minimal satisfying processes is either
R JρKP = {⊥}, if there is an i ∈ Ī such that F JφiKP = ∅
or otherwise

R JρKP =
{[∏

i∈Ī
Fi

]
p ∀i ∈ Ī : [Fi] ∈ F JφiKP

}
.

Observe that if Ī = ∅, i.e., all subformulae of ρ are
segregative, R JρKP = {[0]}. The following proposition
is crucial for the proof of the well-definition of the struc-
tural translation. Every process satisfying a normalised
restriction formula ρ consists of two parts: A process
contained in the set of minimal satisfying process of ρ
and a process whose fragments all satisfy segregative
formulae, i.e. formulae of the form ⊤ or ¬free(b).

Proposition 3. Let P be a process, Q ∈ Reach(P ) and
ρ = φ1 ‖ . . . ‖ φn a normalised restriction formula. Then
Q |= ρ if and only if there are processes in restricted form
R and S such that rf (Q) ≡ R |S and the following holds:

1) [R] ∈ R Jφ1 ‖ . . . ‖ φnKP .
2) for all F ∈ fg(S), there is a k ∈ {1, . . . , n} with

[F ] ∈ F JφkKP and 0 |= φk.

Proof: If Q |= ρ, we reorder rf (Q) according to
Proposition 2. The fragments F used for the satisfaction
of formulae φi with 0 6|= φi are collected in the process
R , while we accumulate the rest of rf (Q) in S. Then
R |= ρ and hence [R] ∈ R JρKP . By the second part
of Proposition 2, we know that if S 6≡ 0, there are
subformulae of the form ⊤, free(b) or ¬free(b), and since
ρ is normalised, the formulae ⊤ and ¬free(b) occur on
the outermost level of ρ. Hence, for all fragments FS of
S, we can find a suitable φk, such that FS |= φk, i.e.
[FS ] ∈ F JφkKP .
The converse holds by similar arguments.
For the translation function θ, we need a distinction

between fragments that may occur unboundedly often

for the satisfaction of a formula ρ and fragments, whose
occurrences are exactly determined by ρ.

Definition 15 (Fixed and Flexible Fragments). Let ρ =
φ1 ‖ . . . ‖ φn be a normalised restriction formula and
I = { i p 0 |= φi }. Then the set of flexible fragments
is defined by flex(ρ, P ) =

⋃
i∈I F JφiKP . Furthermore, we

call fix(ρ, P ) =
(
fg(rf (Reach(P )))/≡

)
\ flex(ρ, P ) the set

of fixed fragments.

Example 5. Let ρ = nf (β) = ⊤ ‖ res y (⊤ ‖ MS⌊y⌋).
Furthermore let P ≡ System as in Example 1. The set of
minimal satisfying fragments of ⊤ contains all reachable
fragments of P . Since 0 |= ⊤, all these fragments are
flexible.

If ρ = ¬free(out), all fragments not using out as a free
name are contained in F J¬free(out)KP . These fragments
are flexible, while all fragments with a free occurrence of
out are fixed. E.g, [F ′] of Example 2 is flexible, while [F ]
is fixed.

We are now in the position to define the translation
function θ. The idea of translating a restriction formula ρ
to LTL with respect to a process P is as follows. For each
minimal process Q satisfying ρ, we create a conjunction
of atomic LTL formulae αi ranging over the reachable
fragments Fi of P . If F is fixed, αi expresses that F has
to occur exactly as often as in Q, while αi defines a lower
bound on the occurrences of flexible fragments.

Definition 16 (Structural Translation). Let ρ be a
normalised restriction formula and P be a process. The
structural translation of ρ with respect to P is [F ] < 0
for an arbitrary fragment of P , if R JρKP = {⊥},
otherwise it is

θ(ρ, P ) =
∨

[Q]∈RJρKP

( ∧

[F ]∈fix(ρ,P )

[F ] = dec(rf (Q))([F ])

∧
∧

[F ]∈flex(ρ,P )

[F ] ≥ dec(rf (Q))([F ])
)
.

Hence, a structural formula is translated into a LTL
formula which describes its satisfying markings. In par-
ticular, the LTL formula does not contain any temporal
modalities.

Now we can give the main result of this section, the
soundness of the translation. That is, a process P sat-
isfies a restriction formula ρ iff the structural semantics
of P satisfies the structural translation of ρ with respect
to P .

Theorem 1. Let P be a process and ρ a normalised
restriction formula. Furthermore, let ω be an occurrence
of N JP K. Then

P |= ρ iff ω |= θ(ρ, P ).



Proof: We sketch the idea of the proof. If P |= ρ,
then we know by Proposition 3, that we can decompose
P into two processes in restricted form R and S, such
that R is equivalent to a minimal satisfying process of
ρ with respect to P , i.e. [R] ∈ R JρKP . Furthermore,
all fragments of S satisfy segregative subformulae of ρ,
i.e. they are flexible fragments. Recall that the initial
marking of the structural semantics is dec(rf (P )) and by
Lemma 1 we know that dec(rf (P )) = dec(R) + dec(S).
By the definition of θ, there is a disjunct in the trans-
lation, where all atomic formulae are either of the form
[F ] = dec(R)([F ]) for fixed or [F ] ≥ dec(R)([F ]) for
flexible fragments. Hence, these atoms are satisfied by
dec(rf (P )).
For the converse direction, assume that the initial

marking satisfies a disjunct of θ(ρ, P ). Then we can
reconstruct a corresponding process R due to full re-
trievability of the structural semantics by creating cF -
many fragments F for each atom [F ] ∼ cF , where
∼ is = or ≥. By the construction of θ(ρ, P ), this is
a minimal satisfying process of ρ with respect to P .
Let dec(rf (P ))([F ]) = dF . Then consider all fragments
[F ], such that dF − cF > 0. These are all flexible
fragments with which we can create the process S such
that R |S ≡ P . Hence we apply Proposition 3 and get
that P |= ρ.

Example 6. Let P ≡ System as in Example 1 and
ρ = ⊤ ‖ res y (⊤ ‖ MS⌊y⌋). As described in Example 5,
all fragments are flexible with respect to ρ. The set of
minimal satisfying processes contains 77 elements, all of
which are single fragments. Hence the translation of ρ
with respect to P consists of a disjunction of conjunctions
γ of the following type: Let [G] be the minimal satisfying
process under consideration. Then γ = [G] ≥ 1, where
we omit trivially satisfied atomic formulae [Ḡ] ≥ 0. E.g.,
the fragment [F ′] of Example 2 satisfies ρ, since one of
its subprocesses is νm.(BSa⌊fa,m⌋ |MS⌊m⌋). Thus, the
corresponding conjunct is [F ′] ≥ 1. On the whole, the
relatively simple formula res y (MS⌊y⌋ ‖ ⊤) corresponds
to a disjunction of 77 atomic formulae on the structural
semantics with respect to the GSM handover protocol.

IV. Translating Temporal Formulae

In this section we define the π-Calculus structural-
temporal logic (PSTL), which is in essence LTL where
the atomic propositions are formulae of the translatable
subset defined in the last section. That is, we create
PSTL by adding a temporal dimension to translatable
formulae along the lines of Finger and Gabbay [4].

Definition 17 (Syntax). The syntax of structural-
temporal formulae is given by the following EBNF.

ϕ ::= ρ p ¬ϕ1 p ϕ1 ∧ ϕ2 p ♦ϕ1,

where ρ is a restriction formula according to Defini-
tion 12. We denote the set of structural-temporal for-
mulae by PSTL.

The formulae are interpreted on sequences of process
reactions.

Definition 18 (Process Sequence). Let π = P0P1 . . . be
an infinite sequence of processes such that Pi → Pi+1. If
there is some k such that Pk can not react anymore, we
set Pj = Pk for all j ≥ k. Then π is called a process
sequence of P0. We denote the initial process P0 of π by
Pπ. Similar to occurrence sequences, the subsequence of
π starting at k is denoted by πk.

Remark 2. Note that due to the isomorphic transition
systems (see Remark 1), a process sequence of a process
P corresponds to exactly one occurrence sequence of the
structural semantics of P , i.e. we can lift the isomor-
phism of processes and markings to sequences.

Definition 19 (Semantics). Let π be a process sequence.
The semantics of PSTL formulae is defined inductively
as follows.

π |= ρ iff Pπ |= ρ
π |= ¬ϕ iff not π |= ϕ
π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ♦ϕ iff ∃y : πy |= ϕ

If π |= ϕ we say that π satisfies ϕ. A formula ϕ is valid
for a process P , written P |= ϕ, if and only if all process
sequences of P satisfy ϕ.

The set of minimal satisfying processes of a formula
ρ is decreasing monotonically with respect to the reach-
ability of processes. I.e., if the process P ′ is reachable
from P , the minimal satisfying processes with respect to
P ′ are a subset of the minimal satisfying processes with
respect to P .

Lemma 5. Let P and P ′ be processes such that P →∗

P ′ and ρ be a normalised restriction formula. Then
R JρKP ′ ⊆ R JρKP or R JρKP ′ = {⊥}.

Proof: By induction on the structure of restriction
formulae.

Definition 20. The translation of Θ(ϕ, P ) a PSTL for-
mula ϕ with respect to a process P is defined inductively
on the structure of ϕ as follows.

Θ(ρ, P ) = θ(ρ, P )

Θ(¬ϕ, P ) = ¬Θ(ϕ, P )

Θ(ϕ1 ∧ ϕ2, P ) = Θ(ϕ1, P ) ∧Θ(ϕ2, P )

Θ(♦ϕ, P ) = ♦Θ(ϕ, P )

Consider processes P, P ′ such that P →∗ P ′. The
truth of the translation of a formula ρ with respect to the



structural semantics of P ′ is not affected, if we construct
the translation with respect to P . This is due to the fact,
that all minimal satisfying processes with respect to P ′

are contained in the set of minimal satisfying processes
with respect to P , i.e. Lemma 5.

Lemma 6. Let P and P ′ be processes such that P →∗ P ′

and ϕ be a formula of PSTL. Furthermore let ω be an
occurrence sequence of N JP ′K. Then

ω |= Θ(ϕ, P ′) iff ω |= Θ(ϕ, P ).

Proof: By induction on the structure of formulae.
The“if”direction of the base case holds due to Lemma 5,
while the “only if” direction holds, since the initial
marking of ω can only reference places of the structural
semantics of P ′. The induction steps are simple applica-
tions of the induction hypothesis.
The next lemma states that satisfaction of a for-

mula with respect to a state in a process sequence and
satisfaction of the translated formula with respect to
the marking in the associated occurrence sequence is
equivalent.

Lemma 7. Let P be a process, π be a process sequence
of P and g an isomorphism from process sequences to
occurrence sequences (see Remark 2). Then

π |= ϕ iff g(π) |= Θ(ϕ, P )

Proof: Let π |= ϕ. We proceed by induction on
the structure of ϕ. The base case is immediate by an
application of Theorem 1. Most of the induction steps
are immediate consequences of the semantics of LTL
and PSTL as well as the induction hypothesis. The only
interesting case involves the temporal modality. Assume
the lemma holds for ϕ. Then

π |= ♦ϕ⇔ ∃y : πy |= ϕ

{Let π′ = πy} ⇔ π′ |= ϕ

{IH} ⇔ g(π′) |= θ(ϕ, Pπ′)

{Lemma 6} ⇔ g(π′) |= θ(ϕ, Pπ)

{π′ = πy and Pπ = P} ⇔ ∃y : g(πy) |= Θ(ϕ, P )

{Semantics and Definition 20} ⇔ g(π) |= Θ(♦ϕ, P )

The main theorem of this section is a direct conse-
quence of Lemma 7.

Theorem 2. Let P ∈ P and ϕ ∈ PSTL. Then

P |= ϕ iff N JP K |= Θ(ϕ, P ).

Example 7. Consider β and P as in Example 6. Now
let ϕ = �♦β, where � is the dual of ♦. The translation
of ϕ with respect to P is Θ(�♦β, P ) = �♦θ(β, P ). All in
all, ϕ expresses that the mobile station is able to return to
its initial state after all possible reductions of the system.
I.e., the system is deadlock-free.

V. Conclusion

We have shown how structural formulae defined on
π-Calculus processes can be translated into equivalent
propositional formulae on Petri nets with respect to the
structural semantics as defined by Meyer. This gives us
the ability to verify systems and properties defined as
processes, resp. formulae on these processes with the
help of standard Petri net techniques. The application
to the GSM handover protocol exemplifies that simple
structural properties of processes may correspond to
rather large LTL formulae on the structural semantics.
Hence, using PSTL formulae and the presented transla-
tion is much more convenient than manually identifying
all places of interest. The size of the formulae increases
exponentially in the size of the process under consid-
eration, since the structural semantics already grows
exponentially. The translation is sensible for structurally
stationary processes, i.e. processes where the set of
reachable fragments and hence the set of places in the
structural semantics is finite, otherwise the LTL formu-
lae would consist of infinitely many conjunctions.

The translation still relies on directly checking the
satisfaction of formulae by fragments in the computation
of minimal satisfying processes. But this check is much
simpler than checking satisfaction of arbitrary formulae
and processes, since only the structure of processes has
to be taken into account. The current approach has
been prototypically implemented in the Petruchio tool
[10]. If a formula ♦ρ contains ⊤, the minimal satisfying
processes describe an upward closed set, i.e. deciding
whether ♦ρ holds is an instance of the covering problem
for Petri nets [12]. A suitable backward coverability
checker is implemented in Petruchio [13]. In general,
processes can be effectively checked with respect to
PSTL properties.

In the following, we will use the terms structural
and spatial synonymically. Different spatio-temporal log-
ics for process calculi have been proposed. The initial
approach of Caires and Cardelli [3] has been proven
decidable for bounded processes [5]. This set is a subset
of structurally stationary processes [2].

Pattinson and Reus presented a proof system for
linear spatial temporal logic LSTL [14], a combination
of hybrid logic and LTL. They also follow Finger and
Gabbay [4], but add constraints to keep track of names
while processes react. Using hybrid logic enables for
referring to different reachable processes directly.

Conforti et al. have defined the spatial logic BiLog on
bigraphs [15]. BiLog is more expressive than PSTL, since
bigraphs are a general concept for describing structure
and mobility, subsuming e.g. π-Calculus [7], [8], Ambient
Calculus [16] and CSP [17]. Similar to our approach,
BiLog contains constants for bigraphs. In special cases,



satisfaction of these constants coincides with structural
congruence. However, we are not aware of work on
automated verification for bigraphs.
Partial order reductions for spatial properties have

been investigated by Affeldt and Kobayashi [18]. They
define three subsets of spatial logic with increasing ex-
pressiveness, all of which allow for the application of
partial order techniques. However, the subsets lack a
treatment of restrictions on names.
Acciai and Boreale have investigated decidability of

spatial properties using a typing system [19]. In their
work, CCS types abstract π-Calculus processes. Since
CCS processes possess well-structured transition sys-
tems, safety is decidable.

Future Work: The translatable subset of formulae
can be extended in various ways. The atom ¬free(b) may
be extended to sequences of names ¬free(b̃), without
affecting any proofs given in this paper. Such an easy
extension is not possible for the dual atom free(b). For
example, α = free(b, c) does no longer ensure that a
single fragment satisfies α, contradicting Proposition 2.
Consider P ≡ b〈x〉 | c〈y〉. Both fragments are needed for
the satisfaction of α. Interpreting α as a disjunction,
i.e. free(b) ∨ free(c) is not an option either, since we
can no longer ensure that b and c occur free in all
processes satisfying α, as stated in Lemma 2. Further-
more, disjunction distributes always over the parallel
modality, while conjunction does not. Hence, allowing
for arbitrary conjunctions, disjunctions or negations in
the translatable structural set would spawn a more
complicated normal form, if there is any.
Enhancing the structural semantics with the possibil-

ity to track bound names creates the need to reflect such
properties in the structural subset. That is, bound names
in different structural formulae have to be associated.
Techniques developed by Pattinson and Reus [14] may
be useful for further investigation.
The selection of a particular subset of LTL for the

temporal aspect is not of importance for the described
translation. The extension to LTL with the next- or
until-modality is straightforward.
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Appendix

We present both the formal specification of Example 1
as well as full proofs for most results.

A. Full Specification of Example 1

The system consists of four main agents. The active
and passive base stations BSa and BSp , the mobile
station MS and the mobile switching center MSC . The
latter consists of two controllers, the handover controller
HC and the communication controller CC . For a com-
plete description see Orava and Parrow [9].

CC (fa, fp, l) := in(v).fa〈data〉.fa〈v〉.CC ⌊fa, fp, l⌋

+ l(mnew).fa〈ho cmd〉.fa〈mnew〉.(
fp(x).[x = ho cmd]fa〈ch rel〉.

fa(mold).l〈mold〉.CC ⌊fp, fa, l⌋

+fa(x).[x = ho fail].

l〈mnew〉.CC ⌊fa, fp, l⌋
)

HC (l,m) := l〈m〉.l(m).HC ⌊l,m⌋

MSC (fa, fp,m) := νl.(HC ⌊l,m⌋ |CC ⌊fa, fp, l⌋)

BSa(f,m) := m(x).

([x = data].f(v).m〈data〉.m〈v〉.BSa⌊f,m⌋

+ [x = ho cmd].f(v).m〈ho cmd〉.m〈v〉.(
f(w).[w = ch rel].f〈m〉.BSp⌊f,m⌋

+m(w).[w = ho fail].

f〈ho fail〉.BSa⌊f,m⌋
)

BSp(f,m) := m(x).[x = ho acc].

f〈ho com〉.BSa⌊f,m⌋

MS (m) := m(x). ([x = data].m(v).out〈v〉.MS⌊m⌋

+ [x = ho cmd].m(mnew).

(mnew〈ho acc〉.MS⌊mnew⌋

+m〈ho fail〉.MS⌊m⌋))

P(fa, fp) := νm.(MSC ⌊fa, fp,m⌋ |BSp⌊fp,m⌋)

Q(fa) := νm.(BSa⌊fa,m⌋ |MS⌊m⌋)

S := νv.in〈v〉.S

R := out(d).R

System := νfa, fp.(P⌊fa, fp⌋ |Q⌊fa⌋ |S |R)

B. Proposition 2

Let φ be a fragment formula and P a process with P |=
φ. Then

1) there exists an F s.t. P ≡ F |Q and F |= φ where
F ∈ PF or F ≡ 0, and

2) if Q 6≡ 0 then ⊤ ∈ sub(φ) ∨ free(b) ∈ sub(φ) ∨
¬free(b) ∈ sub(φ).

Proof: By induction on the structure of formulae.
If φ = ⊤, the proposition holds trivially. If φ = free(b),
let rf (P ) =

∏
i∈I Fi. Since b ∈ fn(P ), there is a j ∈ I

such that b ∈ fn(Fj). Hence P ≡ Fj |
∏

i∈I\{j} Fi and

Fj ∈ PF and Fj |= φ. Now let φ = ¬free(b) and
rf (P ) =

∏
i∈I Fi. Since b 6∈ fn(P ), there is no j ∈ I

such that b ∈ fn(Fj). Choose an arbitrary j ∈ I, then
P ≡ Fj |

∏
i∈I\{j} Fi and Fj ∈ PF and Fj |= φ. If P ≡ 0,

then 0 |= ¬free(b) and P ≡ 0 |0. In all these three cases,
the second part of the proposition holds. If φ = P seq,
then P ≡ P seq, hence P ∈ PF . Since P ≡ P |0, the
second part holds as well.

For the induction step, let φ = res b (φ1 ‖ . . . ‖ φn).
Then there exist m and P ′ such that P ≡ νm.P ′ with
m 6∈ fn(P ) and m 6∈ (fn(φ1) ∪ · · · ∪ fn(φn)) and P ′ |=
(φ1 ‖ . . . ‖ φn){b← m}.
Hence there are P1 to Pn such that P ′ ≡ P1 | . . . |Pn

and Pi |= φi{b← m}. By the induction hypothesis, Pi ≡
Fi |Qi where Fi ∈ P

F ∨ Fi ≡ 0 and Fi |= φi{b ← m}.
Now let rf (Qi) =

∏
j∈Ji

Ri,j and {1, . . . , n} = I, Im =
{i p m ∈ fn(Fi)} and J

m
i = {j p m ∈ fn(Ri,j)}.

Using this notation, we have

P1 | ... |Pn ≡
∏

i∈I

Fi |
∏

i∈I

∏

j∈Ji

Ri,j

≡
∏

i∈Im

Fi |
∏

i∈I

∏

j∈Jm
i

Ri,j |
∏

i∈I\Im

Fi |
∏

i∈I

∏

j∈Ji\Jm
i

Ri,j .

Observe that the first part of this process contains m as
a free name, while the latter does not. Furthermore, if
i 6∈ Im, we have that m 6∈ fn(Fi), which by Lemma 2
implies m 6∈ efn(φi{b ← m}), hence φi = ⊤. In
addition, we have by the second part of the induction
hypothesis that if there are i and j such that Ri,j 6≡ 0,
then ⊤ ∈ sub(φi) or free(c) ∈ sub(φ) (since ¬free(c)
is not allowed by the syntax). In this case, due to
equivalences (2) and (4) of Proposition 1, we get that
φ1{b ← m} ‖ . . . ‖ φn{b ← m} ≡̂ φ1{b ← m} ‖ . . . ‖
φn{b← m} ‖ ⊤ All in all

∏
i∈Im Fi |

∏
i∈I

∏
i∈Jm

i
Ri,j |=

φ1{b ← m} ‖ . . . ‖ φn{b ← m}, hence also F ′ ≡

νm.
(∏

i∈Im Fi |
∏

i∈I

∏
i∈Jm

i
Ri,j

)
|= res b (φ1 ‖ . . . ‖

φn), where F
′ is a fragment. By scope extrusion P ≡

F ′ |
∏

i∈I\Im Fi |
∏

i∈I

∏
j∈Ji\Jm

i
Ri,j . Observe that if

there is an i ∈ I \ Im or there are i and j such that
j ∈ Ji \ J

m
i , the second part of the proposition holds by

the remarks above.

C. Lemma 3

Let ϕ be a fragment or restriction formula. Then
ϕ ≡̂ nf (ϕ).

Proof: By induction on the structure of formulae.
First we consider fragment formulae, i.e. ϕ = φ. If
φ is either ⊤, ¬free(b) or P seq the statement follows



immediately. If φ = free(b), we have by Proposition 1 (2)
that φ = free(b) ≡̂ free(b) ‖ ⊤ = nf (φ).

For the induction step, assume that for i ∈ I the
statement φi ≡̂ nf (φi) holds. Let φ = res b (

∐
i∈I φi).

By the induction hypothesis,
∐

i∈I φi ≡̂
∐

i∈I nf (φi) =∐
j∈J ψj .

1) If there is no j ∈ J such that ψj = ⊤, then also
nf (

∐
i∈I φi) =

∐
j∈J ψj , i.e.,

nf (res b (
∐

i∈I

φi)) = res b (nf (
∐

i∈I

φi))

= res b (
∐

j∈J

ψj) ≡̂ res b (
∐

i∈I

φi)

2) If there is at least one j ∈ J such that ψj = ⊤,
then nf (

∐
i∈I φi) = ⊤ ‖

∐
j∈J\(J⊤∪J¬) ψj . For each

j′ ∈ J⊤ ∪ J¬, we get by Proposition 1 (1) and
(3) that ψj′ ‖ ⊤ ≡̂ ⊤ and hence

∐
j∈J ψj ≡̂ ⊤ ‖∐

j∈J\(J⊤∪J¬) ψj . That is,

nf (res b (
∐

i∈I

φi)) = res b (⊤ ‖
∐

j∈J\(J⊤∪J¬)

ψj) ‖ ⊤

≡̂ res b (⊤ ‖
∐

j∈J\(J⊤∪J¬)

ψj)

≡̂ res b (
∐

j∈J

ψj) ≡̂ res b (
∐

i∈I

φi),

where the first equivalence is justified by Proposi-
tion 1 (4).
The case nf (res b (

∐
i∈I φi)) = ⊤ is a special case

of the above.

The case of restriction formulae, i.e. ϕ =
∐

i∈I φi, is
treated similar to the previous case.

D. Lemma 4

Let ϕ be a normalised fragment or restriction formula.
Then exactly one of the following properties holds:

• ¬free(b) 6∈ sub(ϕ) for all b, or
• ⊤ 6∈ sub(ϕ) and ¬free(b) ∈ sub(ϕ) for some b.

Proof: If ϕ is an atomic fragment formula, the
lemma follows immediatly. Let ϕ = res c

(∐
i∈I φi

)
.

1) For no i ∈ I can φi be a formula of the form
¬free(b), since this formula possesses an empty set
of ensured free names and hence may not occur
under an restriction. Due to the same argument, no
φi contains such a formula.

2) Let ϕ contain ⊤ or free(b). The application of
nf does not create any formula of the type
¬free(d). Hence nf (ϕ) does not contain a subfor-
mula ¬free(d).

Let ϕ =
∐

i∈I φi. If ϕ possesses ¬free(b) as a subformula,
there is an k ∈ I such that φk = ¬free(b). Now let there
be a l ∈ I such that φl contains ⊤, i.e. there is a ψ, such
that nf (φl) = ψ ‖ ⊤. Consider

∐
i∈I nf (φi) =

∐
j∈J ψj .

The formula φk is still a subformula of this normalised
formula, i.e. there is a k′ such that φk = ψk′ and k′ ∈ J¬.
Furthermore, there is a formula ⊤ in this normalised
formula (the one created due to φl containing ⊤), hence
nf (ϕ) = ⊤ ‖

∐
j∈J\(J⊤∪J¬) ψj . Now all formulae of

the form ¬free(b) have been removed, hence the lemma
holds. Again, nf (ϕ) = ⊤ is a special case.

E. Proposition 3

Let P be a process, Q ∈ Reach(P ) and ρ = φ1 ‖ . . . ‖ φn
a normalised restriction formula. Then Q |= ρ if and only
if there are processes in restricted form R and S such
that rf (Q) ≡ R |S and the following holds:

1) [R] ∈ R Jφ1 ‖ . . . ‖ φnKP .
2) for all F ∈ fg(S), there is a k ∈ {1, . . . , n} with

[F ] ∈ F JφkKP and 0 |= φk.

Proof: Let Q |= φ1 ‖ . . . ‖ φn and I = {1, . . . , n}.
Then Q ≡

∏
i∈I Qi such that Qi |= φi for all i ∈ I.

By Proposition 2 1) we know that for every i there
are processes Fi and Pi, such that Qi ≡ Fi |Pi, where
Fi |= φi and either Fi is a fragment or Fi ≡ 0. Now let
I0 = {i p Fi ≡ 0}. Then for all i ∈ I \ I0, we have [Fi] ∈

F JφiKP and hence
[∏

i∈I\I0
Fi

]
∈ R

r∐
i∈I\I0

φi

z
P
.

Now let [R] =
[∏

i∈I\I0
Fi

]
. Because each φi with i ∈ I0

is satisfied by the deadlock process 0 ≡ Fi, we even have
[R] =

[∏
i∈I Fi

]
∈ R

q∐
i∈I φi

y
P
.

Since parallel composition is commutative, we have
Q ≡ R |S′ with R ≡

∏
i∈I Fi and S′ ≡

∏
i∈I Pi. Now

consider one Pi ≡ rf (Pi) =
∏

j∈J Gj 6≡ 0. Then we still
have Fi |

∏
j∈J Gj |= φi since this process is structurally

congruent to Qi. Hence by Proposition 2 2), we have
⊤ ∈ sub(φi), free(b) ∈ sub(φi) or ¬free(b) ∈ sub(φi) for
some name b.

1) If ⊤ ∈ sub(φi) or free(b) ∈ sub(φi), then due to the
normalisation of

∐
i∈I φi, there is a k ∈ I such that

φk = ⊤. Then for all j ∈ J , we have [Gj ] ∈ F JφkKP .
2) Let ¬free(b) ∈ sub(φi). Due to the syntax of frag-

ment formulae, ¬free(b) may not appear under a
restriction on a name, hence φi = ¬free(b). Since
Qi |= φi also b 6∈ fn(

∏
j∈J Gj). Hence for each j ∈ J ,

Gj |= φi holds, i.e. [Gj ] ∈ F JφiKP .
With S = rf (S′), we have shown that [R] is a minimal
satisfying process class of

∐
i∈I φi and all fragments of

S are used for the satisfaction of fragment formulae φi
with 0 |= φi.
For the converse, assume that there are R and S such

that both conditions of the proposition hold. By the
definition of R J·KP we get that R |=

∐
i∈I φi. Now we

consider an arbitrary F ∈ fg(S). Then there is a formula
φk such that F |= φk and 0 |= φk, i.e. φk = ⊤ or
φk = ¬free(b) for some name a. Note that R has to
be decomposable into R1, . . . , Rn such that Ri |= φi



(n = |I| and 1 ≤ i ≤ n). Now if φk = ⊤ obviously
Rk |F |= φk. The same holds for φk = ¬free(b). Hence

R1 | . . . |Rk |F | . . . |Rn |=
∐

i∈I

φi

This argument holds for all F ∈ fg(S), i.e. all fragments
of S can be composed in parallel to subprocesses of R to
obtain Q′ ≡ R |S such that Q′ |=

∐
i∈I φi. Since Q

′ ≡
R |S ≡ rf (Q) ≡ Q we get Q |=

∐
i∈I φi.

F. Theorem 1

Let P be a process and ρ a normalised restriction
formula. Furthermore, let ω be an occurrence sequence
of N JP K. Then

P |= ρ iff ω |= θ(ρ, P ).

Proof: Let P |= ρ. Then by Proposition 3, there are
R and S in restriction form such that rf (P ) ≡ R |S,
[R] ∈ R JρKP and for all fragments F of S, there is a k ∈
I such that [F ] ∈ F JφkKP and 0 |= φk. For simplicity, we
distinguish the three cases for ρ as implied by Lemma 4.

1) If ρ does not contain ⊤ or ¬free(b), then S ≡ 0, i.e.
P ≡ R. Hence [P ] ∈ R JρKP . Since flex(ρ, P ) = ∅ in
this case, θ(ρ, P ) contains a disjunct ψ, such that
ψ =

∧
[F ]∈fg(rf (Reach(P )))/≡

[F ] = dec(rf (P ))([F ]).

Since the initial marking ofN JP K is defined asM0 =
dec(rf (P )), we have ω |= ψ and hence ω |= θ(ρ, P ).

2) Let ρ contain ⊤. First observe that all reachable
fragments of P are flexible in this case. If S ≡ 0, the
argument is the same as in case 1. Hence let S 6≡ 0.
Again there is a disjunct ψ =

∧
[F ]∈flex(ρ,P )[F ] ≥

dec(rf (R))([F ]). Since all fragments of S are
also reachable fragments of rf (P ), we have by
Lemma 1 dec(rf (P ))([F ]) = dec(rf (R))([F ]) +
dec(rf (S))([F ]) ≥ dec(rf (R))([F ]) for all fragments
F of P . Hence ω |= ψ, and in particular ω |= θ(ρ, P ).

3) As the last case, let ρ contain at least one formula of
type ¬free(b). Then in general neither flex(ρ, P ) = ∅
nor fix(ρ, P ) = ∅. Furthermore let S 6≡ 0 (otherwise
proceed as in case 1). Again, there is a disjunct ψ
such that

ψ =
∧

[F ]∈fix(ρ,P )

[F ] = dec(rf (R))([F ])

∧
∧

[F ]∈flex(ρ,P )

[F ] ≥ dec(rf (R))([F ]).

Observe that ρ does not contain any ⊤, i.e., all
fragments of S must satisfy a formula of the form
¬free(b) for some name b (see Proposition 2. 2)
and Lemma 4). Hence all equivalence classes of
fragments of S are elements of flex(ρ, P ). The ini-
tial marking of N JP K is defined by dec(rf (P )) =
dec(R) + dec(S). That is, for all [F ] 6∈ flex(ρ, P ),

dec(rf (P ))([F ]) = dec(R)([F ]) holds and for all
[F ] ∈ flex(ρ, P ), we have dec(rf (P ))([F ]) =
dec(R)([F ]) + dec(S)([F ]) ≥ dec(R)([F ]). Alto-
gether, ω |= ψ, i.e., ω |= θ(ρ, P ).

Now assume that ω |= θ(ρ, P ). Since θ(ρ, P ) is in
disjunctive normal form, there is a disjunct ψ such that
ω |= ψ. In the following, note that Mω is the initial
marking of ω.

1) Let ρ be a formula without ⊤ and ¬free(b). Then
ψ =

∧
[F ]∈fix(ρ,P )[F ] = cF . That is, Mω([F ]) = cF

for all reachable fragments of P . By construction
of θ(ρ, P ), there has to be a process Q such that
[Q] ∈ R JρKP and dec(rf (Q)) = Mω = dec(rf (P )).
By Lemma 1, Q ≡ P . Hence [P ] ∈ R JρKP and by
Proposition 3 we get P |= ρ.

2) Let ρ contain ⊤, i.e. for ρ =
∐

i∈I φi there
is a k such that φk = ⊤, since ρ is nor-
malised. Furthermore, ψ is of the form ψ =∧

[F ]∈flex(ρ,P )[F ] ≥ cF . By the construction of

θ(ρ, P ), we get
[∏

[F ]∈supp(Mω)

∏cF F
]
∈ R JρKP .

Hence P ≡
∏

[F ]∈supp(Mω)

∏cF
F |

∏

[F ]∈supp(Mω)

∏Mω([F ])−cF
F

= R |S. For each fragment F of S, we can choose k
as above, i.e. [F ] ∈ F JφkKP . Hence by Proposition 3
we have P |= ρ.

3) Now let ρ contain ¬free(b). Then there is a disjunct
ψ =

∧
[F ]∈fix(ρ,P )[F ] = cF ∧

∧
[F ]∈flex(ρ,P )[F ] ≥

cF . We get by the construction of θ(ρ, P ) that

[R] =
[∏

[F ]∈supp(Mω)

∏cF F
]
∈ R JρKP . Like above

we can decompose P into R and S, where S =∏
[F ]∈supp(Mω)

∏Mω([F ])−cF F . All fragments of S
are members of flex(ρ, P ). Hence for all fragments
F of S there is a subformula φ of ρ such that
[F ] ∈ F JφKP . Proposition 3 yields P |= ρ.

G. Lemma 6

Let P and P ′ be processes such that P →∗ P ′ and ϕ be
a formula of PSTL. Furthermore let ω be an occurrence
sequence such that Mω is the initial marking of N JP ′K.
Then ω |= Θ(ϕ, P ′) if and only if ω |= Θ(ϕ, P ).

Proof: By induction on the structure of PSTL for-
mulae.
Let ω |= Θ(ρ, P ′), i.e. ω |= θ(ρ, P ′). By definition, this

is equivalent to Mω |= θ(ρ, P ′). I.e., there is one disjunct
ψ satisfied by Mω, and ψ was constructed due to some
process [Q] ∈ R JρKP ′ . By Lemma 5, [Q] ∈ R JρKP , i.e.
ψ is also a disjunct of θ(ρ, P ). Conversely, if Mω |= ψ
for some disjunct of θ(ρ, P ), all fragments not reachable
from P ′ are not mentioned in θ(ρ, P ) and hence Mω |=
θ(ρ, P ′).



The induction steps for negation and conjunction are
immediate by application of the induction hypothesis. In
the case of the temporal modality, the application of the
hypothesis is more subtle. After expanding the semantics
of ♦, we are left with ∃y : ωy |= Θ(ϕ, P ′). Now, since
the transition systems of a process and its structural
semantics are isomorphic, the process P ′′ corresponding
to Mωy is reachable from P ′, i.e. also P →∗ P ′ →∗ P ′′.
Hence the application of the induction hypothesis is
possible, and we get ωy |= Θ(ϕ, P ), which is by the
definition of the semantics of LTL and of the translation
equivalent to ω |= Θ(♦ϕ, P ).
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