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Introduction What is game theory?

Objective of game theory

Game theory...

...aims to help us understand situations in which decision-makers
interact

...is the study of mathematical models of conflict and cooperation
between rational intelligent decision-makers.

Some applications of game theory:

firms competing for business;

political candidates competing for votes;

animals fighting over prey;

bidders competing in an auction;

the role of threats and punishment in long-term relationships.
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Introduction Game theoretic models

Games and solutions

A game models a situation where two or more individuals (players)
have to take some decisions that will influence one another’s welfare.
I.e., the payoff of each player depends not only on her own decision,
but also on the decisions of (a subset of) the other players.

A game is a description of strategic interaction that includes the
constraints on the actions that the players can take and the players’
interests, but does not specify the actions that the players do take.

A solution is a systematic description of the outcomes that may
emerge in a family of games.
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Introduction Game theoretic models

Game theoretic models

There are four basic groups of game theoretic models:

1 strategic games;

2 extensive games with perfect information;

3 extensive games without perfect information;

4 coalitional games.
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Introduction Game theoretic models

Noncooperative and cooperative games

In strategic and extensive games (with or without perfect
information), the sets of possible actions of individual players are
primitives (noncooperative games).

In coalitional games, the sets of possible joint actions of groups of
players are primitives (cooperative games).
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Introduction Game theoretic models

Strategic games and extensive games

A strategic game is a model of a situation in which each player
chooses her plan of action once and for all, and players’ decisions are
made simultaneously.
When choosing a plan of action, each player is not informed of the
plan of action chosen by any other players.

An extensive game is a model which specifies the possible orders of
events.
Each player can consider her plan of action not only at the beginning
of the game but also whenever she has to make a decision.

Paul G. Spirakis (U. Liverpool) Introduction to Game Theory 8 / 99



Introduction Game theoretic models

Games with perfect and imperfect information

In a game with perfect information the players are fully informed
about each others’ moves.

In a game with imperfect information the players may be imperfectly
informed about each others’ moves.
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Introduction Game theoretic models

Assumptions underlying game theory

In game theory, a player (decision-maker) is assumed to be

1 Rational: she makes decisions consistently in pursuit of her own,
well-defined objectives.

2 Intelligent: she knows everything about the game, can make any
inferences about the situation, and takes into account this knowledge
of other decision-makers’ behavior (she reasons strategically).
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Strategic games The model

Strategic games

A strategic game (or a game in normal form) is defined by

a set of players

for each player, a set of actions

for each player, preferences over the set of action profiles

(an action profile is a combination of actions, one for each player)

Time is absent from the model of strategic games:

each player chooses her action once and for all, and

the players choose their actions “simultaneously”, in the sense that
no player is informed of the action chosen by any other player when
she chooses her action.
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Strategic games The model

Formulation

A strategic game Γ = 〈N, (Si )i∈N , (ui )i∈N〉 is defined by

1 the set N of players

2 the set Si of actions for each player i

3 the payoff function ui : ×i∈NSi → R for each player i , mapping each
action profile into a real number
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Strategic games Examples

Example: The Prisoner’s Dilemma
Setting

Two suspects in a major crime are held in separate cells. There is enough
evidence to convict each of them of a minor offense, but not enough
evidence to convict either of them of the major crime, unless one of them
acts as an informer against the other (finks).

If they both stay quiet, each will be convicted of a minor offense and
spend one year in prison.

If one and only one of them finks, she will be freed and used as a
witness against the other, who will spend four years in prison.

If they both fink, each will spend three years in prison.
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Strategic games Examples

Example: The Prisoner’s Dilemma
Formulation as a strategic game

The situation can be modeled as a strategic game:

The players are the two suspects: N = {1, 2}.
The actions available to each player are to stay quiet or to fink:
S1 = S2 = {Quiet,Fink}.

In order to define the payoff functions of the players, we have to find an
ordering of the action profiles for each player.
There are four action profiles:
(Quiet,Quiet), (Quiet,Fink), (Fink,Quiet), (Fink,Fink).

For player 1, (Fink ,Quiet) is better than (Quiet,Quiet), which is
better than (Fink,Fink), which is better than (Quiet,Fink).

For player 2, (Quiet,Fink) is better than (Quiet,Quiet), which is
better than (Fink,Fink), which is better than (Fink ,Quiet).
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Strategic games Examples

Example: The Prisoner’s Dilemma
Formulation as a strategic game

A simple specification is

u1(Fink ,Quiet) = 3, u1(Quiet,Quiet) = 2, u1(Fink ,Fink) = 1,
u1(Quiet,Fink) = 0

u2(Quiet,Fink) = 3, u2(Quiet,Quiet) = 2, u2(Fink ,Fink) = 1,
u2(Fink ,Quiet) = 0

We can represent the game compactly in a table:

Suspect 2
Quiet Fink

Suspect 1
Quiet (2,2) (0,3)
Fink (3,0) (1,1)
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Strategic games Examples

Example: The Prisoner’s Dilemma
Formulation as a strategic game

Suspect 2
Quiet Fink

Suspect 1
Quiet (2,2) (0,3)
Fink (3,0) (1,1)

The Prisoner’s Dilemma models a situation in which

there are gains from cooperation (each player prefers that both
players choose Quiet than they both choose Fink),

but each player has an incentive to “free ride” (choose Fink)
whatever the other player does.

Paul G. Spirakis (U. Liverpool) Introduction to Game Theory 17 / 99



Strategic games Examples

Example: Games equivalent to the Prisoner’s Dilemma

Consider the following two games:

X Y

X 3, 3 1, 5

Y 5, 1 0, 0

X Y

X 2, 1 0, 5

Y 3, -2 1, -1

Does each of the games differ from the Prisoner’s Dilemma only in the
names of the players’ actions, or does it differ also in one or both of the
players’ preferences?

The game on the left differs from the Prisoner’s Dilemma in both
players’ preferences. Player 1 prefers (Y, X) to (X, X) to (X, Y) to
(Y, Y), for example, which differs from her preference in the
Prisoner’s Dilemma, whether we let X = Fink or X = Quiet.

The game on the right is equivalent to the Prisoner’s Dilemma, by
letting X = Quiet and Y = Fink.
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Strategic games Examples

Example: Matching Pennies
Setting

Two people choose, simultaneously, whether to show the head or the tail
of a coin.

If they show the same side, person 2 pays person 1 $1.

If they show different sides, person 1 pays person 2 $1.

The game is strictly competitive:

In each action profile, each player wins as much as the other player
loses.

The players’ interests are diametrically opposed: player 1 wants to
take the same action as the other player, whereas player 2 wants to
take the opposite action.
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Strategic games Examples

Example: Matching Pennies
Formulation as a strategic game

A strategic game that models this situation, in which the payoffs are equal
to the amounts of money involved:

Person 2
Head Tail

Person 1
Head (1,-1) (-1,1)

Tail (-1,1) (1,-1)
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Strategic games Examples

Example: Bach or Stravinsky?
Setting

Two people wish to go out together.

Two concerts are available: one of music by Bach, and one of music
by Stravinsky.

One person prefers Bach and one person prefers Stravinsky.

If they go to different concerts, each of them is equally unhappy
listening to the music of either composer.

This game is also referred to as the Battle of Sexes.
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Strategic games Examples

Example: Bach or Stravinsky?
Formulation as a strategic game

A strategic game that models this situation:

Person 2
Bach Stravinsky

Person 1
Bach (2,1) (0,0)

Stravinsky (0,0) (1,2)
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Strategic games Symmetric games

Symmetric games

An n-person strategic game is symmetric if

each player has the same set of actions and

each player’s payoff depends only on her action and that of her
opponents, not on whether she is player 1, 2, . . ., or n.

Formally:

Definition

A symmetric strategic game is a game Γ = 〈N, (S)i∈N , (ui )i∈N〉 such that,
for all actions a ∈ S and for all action profiles of n − 1 players s ∈ Sn−1,

ui (a, s) = uj(a, s) ∀i , j ∈ N .

Examples:

Prisoner’s Dilemma is a 2-person symmetric game.

Matching Pennies and Bach or Stravinsky are not symmetric.
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1 Introduction

2 Strategic games

3 Nash equilibria
Pure Nash equilibrium
(Mixed) Nash equilibrium
Dominance and refinements of Nash equilibrium
Illustrations: Models of oligopoly

Paul G. Spirakis (U. Liverpool) Introduction to Game Theory 24 / 99



Nash equilibria Pure Nash equilibrium

Solutions of strategic games

What actions will be chosen by the players in a strategic game?

We wish to assume that each player chooses the best available action.

However, the best action for any given player depends, in general, on
the other players’ actions.

So, when choosing an action, a player must have in mind the actions
the other players will choose.

Based on the above, the main solution concept for a strategic game is the
Nash equilibrium:

Each player chooses the best her available action, given the actions
chosen by all the other players.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Definition

A Nash equilibrium is a combination of actions, one for each player, such
that no player can increase her payoff by unilaterally changing her action:

A pure Nash equilibrium is an action profile s with the property that no
player i can do better by choosing an action different from si , given that
every other player j adheres to sj .

A Nash equilibrium corresponds to a steady state: if every one else adheres
to it, no individual wishes to deviate from it.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Definition

Formally, let

s = (si )i∈N be an action profile

(s ′i , s−i ) be the action profile that results from s when player i ∈ N
switches to her action s ′i ∈ Si , while the rest of the players preserve
their actions.

Then:

Definition

A pure Nash equilibrium of a strategic game Γ = 〈N, (Si )i∈N , (ui )i∈N〉 is
an action profile s = (si )i∈N such that, for all players i ∈ N,

ui (s) ≥ ui (s ′i , s−i ) for all s ′i ∈ Si .
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Existence and uniqueness

Note: The definition implies neither that a strategic game necessarily has
a pure Nash equilibrium, nor that it has at most one.
Examples in the following show that

some games have a single pure Nash equilibrium,

some possess no pure Nash equilibrium, and

others have many pure Nash equilibria.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 1: The Prisoner’s Dilemma

Suspect 2
Quiet Fink

Suspect 1
Quiet (2,2) (0,3)
Fink (3,0) (1,1)

The action pair (Fink, Fink) is a pure Nash equilibrium because

1 given that player 2 chooses Fink, player 1 is better off choosing Fink
than Quiet (looking at the right column of the table we see that Fink
yields player 1 a payoff of 1 whereas Quiet yields her a payoff of 0),
and

2 given that player 1 chooses Fink, player 2 is better off choosing Fink
than Quiet (looking at the bottom row of the table we see that Fink
yields player 2 a payoff of 1 whereas Quiet yields her a payoff of 0).
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 1: The Prisoner’s Dilemma

Suspect 2
Quiet Fink

Suspect 1
Quiet (2,2) (0,3)
Fink (3,0) (1,1)

No other action profile is a Nash equilibrium:

(Quiet, Quiet) is not an equilibrium because when player 2 chooses
Quiet, player 1’s payoff to Fink exceeds her payoff to Quiet.

(Fink, Quiet) is not an equilibrium because when player 1 chooses
Fink, player 2’s payoff to Fink exceeds her payoff to Quiet.

(Quiet, Fink) is not an equilibrium, because when player 2 chooses
Fink, player 1’s payoff to Fink exceeds her payoff to Quiet.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 1: The Prisoner’s Dilemma

Suspect 2
Quiet Fink

Suspect 1
Quiet (2,2) (0,3)
Fink (3,0) (1,1)

In summary, (Fink, Fink) is the only pure Nash equilibrium of the
game.

Actually, action Fink is the best action for each player not only if the
other player chooses her equilibrium action (Fink), but also if she
chooses her other action (Quiet).

In most games however, a player’s Nash equilibrium action does not
satisfy this condition: the action is optimal if the other players choose
their equilibrium actions, but some other action is optimal if the other
players choose nonequilibrium actions.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 2: Matching Pennies

Pure Nash equilibria do not always exist:

Person 2
Head Tail

Person 1
Head (1,-1) (-1,1)

Tail (-1,1) (1,-1)

There is no pure Nash equilibrium.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 3: Bach or Stravinsky?

Multiple pure Nash equilibria may exist:

Person 2
Bach Stravinsky

Person 1
Bach (2,1) (0,0)

Stravinsky (0,0) (1,2)

There are two pure Nash equilibria: (Bach,Bach) and
(Stravinsky ,Stravinsky).
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 4: Guessing two-thirds of the average

Each of three people announces an integer from 1 to K .

If the integers are different, the person whose integer is closest to 2
3

of the average of the three integers wins $1.

If two or more integers are the same, $1 is split equally between those
whose integer is closest to 2

3 of the average integer.

Question 1: Is there any integer k such that the action profile (k , k , k), in
which every person announces the same integer k , is a pure
Nash equilibrium?

Question 2: Is any other profile a pure Nash equilibrium?
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 4: Guessing two-thirds of the average

Question 1: Is there any integer k such that the action profile (k , k , k), in
which every person announces the same integer k , is a pure
Nash equilibrium?

If all three players announce the same integer k ≥ 2 then any one of
them can deviate to k − 1 and obtain $1 (since her number is now
closer to 2

3 of the average than the other two) rather than $ 1
3 . Thus

no such action profile is a Nash equilibrium.

If all three players announce 1, then no player can deviate and
increase her payoff; thus (1, 1, 1) is a Nash equilibrium.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 4: Guessing two-thirds of the average

Question 2: Is any other profile a pure Nash equilibrium?

Consider an action profile in which not all three integers are the same;
denote the highest by k∗.

Suppose only one player names k∗; denote the other integers named
by k1 and k2, with k1 ≥ k2.

The 2
3 of the average of the three integers is 2

9 (k∗ + k1 + k2).

k∗ is further from 2
3 of the average than is k1 (some simple

calculations are needed to see this: consider separately the cases
where k1 ≥ 2

9 (k∗ + k1 + k2) and k1 <
2
9 (k∗ + k1 + k2)).

Hence the player who names k∗ does not win, and is better off
naming k2, in which case she obtains a share of the prize.

Thus no such action profile is a Nash equilibrium.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 4: Guessing two-thirds of the average

Question 2: Is any other profile a pure Nash equilibrium?

Consider an action profile in which not all three integers are the same;
denote the highest by k∗.

Now suppose two player name k∗, and the third player names k < k∗.

The 2
3 of the average of the three integers is 4

9 k∗ + 2
9 k. We have

4
9 k∗ + 2

9 k < 1
2 (k∗ + k), hence k is closer to the 2

3 of the average than
is k∗.

So the player who names k is the sole winner.

Then, either of the other players can switch to k and obtain a share
of the prize.

Thus no such action profile is a Nash equilibrium.

We conclude that (1, 1, 1) is the only pure Nash equilibrium of this game.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 5: Choosing a route

Four people must drive from A to B at the same time. Each of them
must choose a route.

Two routes are available, one via X and one via Y.

The roads from A to X, and from Y to B, are both short and narrow;
in each case, one car takes 6 minutes, and each additional car
increases the travel time per car by 3 minutes.

The roads from A to Y, and from X to B, are long and wide; on A to
Y one car takes 20 minutes, and each additional car increases the
travel time per car by 1 minute; on X to B one car takes 20 minutes,
and each additional car increases the travel time per car by 0.9
minutes.

Paul G. Spirakis (U. Liverpool) Introduction to Game Theory 38 / 99



Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 5: Choosing a route

A

B

X

Y

20/
20.9/
21.8/
22.7

20/
21/
22/
23

6/9/12/15

6/9/12/15

Getting from A to B: the numbers beside each road are the travel
times per car when 1, 2, 3, or 4 cars take that road.

For example, if two cars drive from A to X, then each car takes 9
minutes.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 5: Choosing a route

A

B

X

Y

20/
20.9/
21.8/
22.7

20/
21/
22/
23

6/9/12/15

6/9/12/15

Formulation as a strategic game:

Players: The four people.

Actions: The set of actions of each person is {X, Y} (the route via X
and the route via Y).

Payoffs: Each player’s payoff is the negative of her travel time.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 5: Choosing a route

A

B

X

Y

20/
20.9/
21.8/
22.7

20/
21/
22/
23

6/9/12/15

6/9/12/15

Assume two people take each route. For any such action profile, each
person’s travel time is either 29.9 or 30 minutes (depending on the
route she takes).

If a person taking the route via X switches to the route via Y her
travel time becomes 22 + 12 = 34 minutes; if a person taking the
route via Y switches to the route via X her travel time becomes 12 +
21.8 = 33.8 minutes.

For any other allocation of people to routes, at least one person can
decrease her travel time by switching routes.

Thus the set of Nash equilibria is the set of action profiles in which
two people take the route via X and two people take the route via Y.
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two people take the route via X and two people take the route via Y.
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Nash equilibria Pure Nash equilibrium

Pure Nash equilibrium
Example 5: Choosing a route

A

B

X

Y

20/
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21.8/
22.7

6/9/12/15

6/9/12/15

20/
21/
22/
23

7/
8/
9/
10

Now suppose that a relatively short, wide road is built from Y to X,
giving each person four options to travel from A to B.

Which are the Nash equilibria of this new situation?

Does each person’s travel time improve in the new equilibrium?
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Pure Nash equilibrium
Example 5: Choosing a route

A

B

X
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21/
22/
23
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9/
10

There is no equilibrium in which the new road is not used, because
the only equilibrium before the new road is built has two people
taking each route, resulting in a total travel time for each person of
either 29.9 or 30 minutes.

However, if a person taking A-X-B switches to the new road at X and
then takes Y-B her total travel time becomes 9 + 7 + 12 = 28
minutes.
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In any Nash equilibrium, one person takes A-X-B, two people take
A-X-Y-B, and one person takes A-Y-B.

For this assignment, each person’s travel time is 32 minutes.

No person can change her route and decrease her travel time.
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For every other allocation of people to routes at least one person can
switch routes and reduce her travel time.

Thus in the equilibrium with the new road every person’s travel time
increases, from either 29.9 or 30 minutes to 32 minutes.
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Nash equilibria (Mixed) Nash equilibrium

Strategic games in which players may randomize

Recall that a pure Nash equilibrium does not always exist.

The notion of Mixed Nash equilibrium or simply Nash equilibrium is a
generalization of pure Nash equilibrium that models a stochastic
steady state of a strategic game: we allow each player to choose a
probability distribution over the set of her actions rather than
restricting her to choose a single deterministic action.

Payoff functions are naturally extended to capture expectation.

The idea behind mixed Nash equilibrium is the same as the idea
behind pure Nash equilibrium.

Every strategic game (with finite player and actions sets) possesses at
least one (mixed) Nash equilibrium.
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Nash equilibria (Mixed) Nash equilibrium

(Mixed) Strategies

A strategy pi for player i ∈ N is a probability distribution over the set of
her actions:

pi : Si → [0, 1]∑
si∈Si

pi (si ) = 1

The set of strategies of player i is denoted by ∆(Si ).

A pure strategy is a strategy that poses probability 1 to a specific action
si ∈ Si : (pi (si ) = 1), and is denoted by si for simplicity.
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Nash equilibria (Mixed) Nash equilibrium

Expected payoffs

A strategy profile is a combination of strategies, one for each player:
p = (pi )i∈N

Given a strategy profile p = (pi )i∈N , the expected payoff of player
i ∈ N is the expected value of her payoff function, i.e., the sum, over
all action profiles, of the payoff of i in the action profile times the
probability of the action profile occurring:

ui (p) =
∑
s1∈S1

· · ·
∑
sn∈Sn

n∏
j=1

pj(sj)ui (s1, . . . , sn)
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Nash equilibria (Mixed) Nash equilibrium

Expected payoffs
Example (1/2)

Suspect 2
Q F

Suspect 1
Q (2,2) (0,3)
F (3,0) (1,1)

If Suspect 1 chooses strategy p1(Q) = 3/4, p1(F ) = 1/4 and
if Suspect 2 chooses strategy p2(Q) = 1/3, p2(F ) = 2/3, then

u1(p1, p2) =
3

4
· 1

3
· u1(Q,Q) +

3

4
· 2

3
· u1(Q,F ) +

1

4
· 1

3
· u1(F ,Q) +

1

4
· 2

3
· u1(F ,F )

=
3

4
· 1

3
· 2 +

3

4
· 2

3
· 0 +

1

4
· 1

3
· 3 +

1

4
· 2

3
· 1

=
11

12
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Nash equilibria (Mixed) Nash equilibrium

Expected payoffs
Example (2/2)

Suspect 2
Q F

Suspect 1
Q (2,2) (0,3)
F (3,0) (1,1)

If Suspect 1 chooses strategy p1(Q) = 3/4, p1(F ) = 1/4 and
if Suspect 2 chooses her pure strategy Q, then

u2(p1,Q) =
3

4
· u2(Q,Q) +

1

4
· u2(F ,Q)

=
3

4
· 2 +

1

4
· 0

=
3

2
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Nash equilibria (Mixed) Nash equilibrium

(Mixed) Nash equilibria

Formally, let

p = (pi )i∈N be an strategy profile (determining a strategy for each
player)

(p′i ,p−i ) be the strategy profile that results from p when player i ∈ N
switches to her strategy p′i ∈ ∆(Si ), while the rest of the players
preserve their strategies.

Then:

Definition

A Nash equilibrium is a strategy profile p such that for each player i and
for each strategy p′i of player i , ui (p) ≥ ui (p′i ,p−i ).
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Nash equilibria (Mixed) Nash equilibrium

(Mixed) Nash equilibria

Equivalently:

Definition

A Nash equilibrium is a strategy profile p such that for each player i and
for each action si of player i , ui (p) ≥ ui (si ,p−i ).

The second definition follows from the fact that

max
p′i∈∆(Si )

ui (p′i ,p−i ) = max
s′i ∈Si

ui (s ′i ,p−i ) .
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Nash equilibria (Mixed) Nash equilibrium

A useful characterization of Nash equilibria

A player’s expected payoff to a strategy profile is a weighted average
of her expected payoffs to her pure strategies, where the weight
attached to each pure strategy is the probability assigned to it by the
player. Symbolically:

ui (p) =
∑
si∈Si

pi (si )ui (si ,p−i ) .
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Nash equilibria (Mixed) Nash equilibrium

A useful characterization of Nash equilibria

Now let p be an equilibrium. Then, player i ’s expected payoffs to the
pure strategies to which pi assigns positive probability equal ui (p),
i.e.,the expected payoff of i in the equilibrium p. (If any were smaller,
then the weighted average would be smaller!)

We conclude that:

the expected payoff to each action to which pi assigns positive
probability is ui (p) and

the expected payoff to every other action (to which pi assigns zero
probability) is at most ui (p).
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Nash equilibria (Mixed) Nash equilibrium

A useful characterization of Nash equilibria

Conversely, if these conditions are satisfied for every player i , then p is a
Nash equilibrium. Recall that

ui (p) =
∑
si∈Si

pi (si )ui (si ,p−i ) ,

the expected payoff to pi is ui (p) and

the expected payoff to any other strategy is at most ui (p), because it
is a weighted average of ui (p) and numbers that are at most ui (p).
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Nash equilibria (Mixed) Nash equilibrium

A useful characterization of Nash equilibria
Formulation

The support of strategy pi of player i is the subset of actions of i where pi

poses strictly positive probability:

Support(pi ) = {si ∈ Si : pi (si ) > 0}

Theorem

A strategy profile p is a Nash equilibrium if and only if, for all players i and
for all si ∈ Si ,

si ∈ Support(pi ) =⇒ si ∈ arg max
s∈Si

ui (s,p−i ) .
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Nash equilibria (Mixed) Nash equilibrium

A useful characterization of Nash equilibria
Formulation

Theorem

p = (pi )i∈N is a Nash equilibrium iff, ∀i and ∀si ∈ Si ,

si ∈ Support(pi ) =⇒ si ∈ arg max
s∈Si

ui (s,p−i )

Proof.
( =⇒ ) Assume pi (si ) > 0 and ui (si ,p−i ) < maxs∈Si ui (s,p−i ). Then

ui (p) =
∑
s∈Si

pi (s)ui (s,p−i )

<
∑
s∈Si

pi (s) max
s′∈Si

ui (s ′,p−i )

= max
s′∈Si

ui (s ′,p−i ) contradicting the equilibrium
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Nash equilibria (Mixed) Nash equilibrium

A useful characterization of Nash equilibria
Example: choosing numbers

Players 1 and 2 each choose a positive integer up to K .

If the players choose the same number, then player 2 pays $1 to
player 1.

If the players choose different numbers, no payment is made.

We will show that:

1 the game has a Nash equilibrium in which each player chooses each
positive integer up to K with probability 1/K , and

2 the game has no other Nash equilibria.
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Nash equilibria (Mixed) Nash equilibrium

A useful characterization of Nash equilibria
Example: choosing numbers

To show that the pair of strategies ((1/K , . . . , 1/K ), (1/K , . . . , 1/K ))
is a Nash equilibrium, it suffices to verify the conditions of the
theorem stated previously.

Given that each player’s strategy specifies a positive probability for
every action, it suffices to show that each action of each player yields
the same expected payoff.

Player 1’s expected payoff to each pure strategy is 1/K , because with
probability 1/K player 2 chooses the same number, and with
probability 1− 1/K player 2 chooses a different number.

Similarly, player 2’s expected payoff to each pure strategy is −1/K ,
because with probability 1/K player 1 chooses the same number, and
with probability 1− 1/K player 2 chooses a different number.

Thus the pair of strategies is Nash equilibrium.
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Nash equilibria (Mixed) Nash equilibrium

A useful characterization of Nash equilibria
Example: choosing numbers

Let (p,q) be a Nash equilibrium, where p and q are vectors, the jth
components of which are the probabilities assigned to the integer j by
each player.

Given that player 2 uses strategy q, player 1’s expected payoff if she
chooses the number k is qk . Hence if pk > 0 then we need qk ≥ qj

for all j , so that, in particular, qk > 0 (qj cannot be zero for all j!).

But player 2’s expected payoff if she chooses the number k is −pk ,
so given qk > 0 we need pk ≤ pj for all j , and, in particular,
pk ≤ 1/K (pj cannot exceed 1/K for all j!).

We conclude that any probability pk that is positive must be at most
1/K . The only possibility is that pk = 1/K for all k. A similar
argument implies that qk = 1/K for all k .
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Nash equilibria (Mixed) Nash equilibrium

Best responses

Consider a strategic game Γ = 〈N, (Si )i∈N , (ui )i∈N〉.
Fix some player i ∈ N.

Fix a (partial) strategy profile p−i ∈ ×j 6=i∆(Sj) of the other players.

A best response of player i to p−i is a strategy of i that maximizes
her payoff, given the strategies p−i of the other players.

Formally:

Definition (Best-response function)

The best-response function BRi : ×j 6=i∆(Sj)→ 2Si of player i maps a
strategy profile of all players except i to a subset of actions of player i , so
that

BRi (p−i ) = {si ∈ Si : si ∈ arg max
s∈Si
{ui (s,p−i )}} .
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Nash equilibria (Mixed) Nash equilibrium

Best responses

It is straightforward to see that

1 Any probability distribution on the best-response actions of player i ,
i.e., any pi ∈ ∆(BRi (p−i )), maximizes player i ’s payoff:

ui (pi ,p−i ) ≥ ui (p′,p−i )) ∀p′ ∈ ∆(Si ) .

2 The strategy profile p = (pi )i∈N is a Nash equilibrium of Γ if and only
if, for all players i , if pi (si ) > 0 for some si ∈ Si , then si ∈ BRi (p−i ).

So, in a Nash equilibrium, each player’s strategy is a best response to the
other players’ strategies.
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Nash equilibria (Mixed) Nash equilibrium

Existence and computation of Nash equilibria

Theorem (Nash, 1951)

Every finite game (i.e., a game with a finite number of players and with
finite action sets) has at least one Nash equilibrium.

However:

Theorem (Chen and Deng, 2006)

The problem of computing a Nash equilibrium is PPAD-complete, even for
games involving only two players.

More details next week!
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Nash equilibria (Mixed) Nash equilibrium

Existence and computation of Nash equilibria

Theorem (Nash, 1951)

Every finite game (i.e., a game with a finite number of players and with
finite action sets) has at least one Nash equilibrium.

Note:

This result is of no help in finding equilibria.

The finiteness of the number of actions of each player is only sufficient
for the existence of an equilibrium, not necessary: many games in
which the players have infinitely many actions possess Nash equilibria.

A player’s strategy in a Nash equilibrium may assign probability 1 to a
single action; if every player does so, then the equilibrium corresponds
to a pure Nash equilibrium.
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Nash equilibria (Mixed) Nash equilibrium

Symmetric Nash equilibrium

Definition

A strategy profile p in a symmetric strategic game (in which each player
has the same set of actions) is a symmetric Nash equilibrium if it is a
(pure or mixed) Nash equilibrium and pi is the same for every player i .

Theorem

Every symmetric strategic game in which each player’s set of actions is
finite has a symmetric Nash equilibrium.
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Bargaining

Two players bargain over the division of a pie of size 10.

The players simultaneously make demands; the possible demands are
the non-negative even integers up to 10.

If the demands sum to 10, then each player receives her demand.

If the demands sum to less than 10, then each player receives her
demand plus half of the pie that remains after both demands have
been satisfied.

If the demands sum to more than 10, then neither player receives any
payoff.

We will find all the symmetric Nash equilibria in which each player assigns
positive probability to at most two demands.
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Bargaining
Symmetric equilibria of support size 1 (pure)

The game:

0 2 4 6 8 10

0 5, 5 4, 6 3, 7 2, 8 1, 9 0, 10

2 6, 4 5, 5 4, 6 3, 7 2, 8 0, 0

4 7, 3 6, 4 5, 5 4, 6 0, 0 0, 0

6 8, 2 7, 3 6, 4 0, 0 0, 0 0, 0

8 9, 1 8, 2 0, 0 0, 0 0, 0 0, 0

10 10, 0 0, 0 0, 0 0, 0 0, 0 0, 0

By inspection it has a single symmetric pure strategy Nash equilibrium,
(10, 10).
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Bargaining
Symmetric equilibria of support size 2

Now consider situations in which the common mixed strategy assigns
positive probability to two actions.

Suppose that player 2 assigns positive probability only to 0 and 2.

Then player 1’s payoff to her action 4 exceeds her payoff to either 0
or 2. Thus there is no symmetric equilibrium in which the actions
assigned positive probability are 0 and 2.

By a similar argument we can rule out equilibria in which the actions
assigned positive probability are any pair except 2 and 8, or 4 and 6.
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Bargaining
Symmetric equilibria of support size 2

If the actions to which player 2 assigns positive probability are 2 and
8 then player 1’s expected payoffs to 2 and 8 are the same if the
probability player 2 assigns to 2 is 2

5 (and the probability she assigns
to 8 is 3

5 ).

Given these probabilities, player 1’s expected payoff to her actions 2
and 8 is 16

5 , and her expected payoff to every other action is less than
16
5 .

Thus the pair of mixed strategies in which every player assigns
probability 2

5 to 2 and 3
5 to 8 is a symmetric mixed strategy Nash

equilibrium.

Similarly, the game has a symmetric mixed strategy equilibrium in
which each player assigns probability 4

5 to the demand of 4 and
probability 1

5 to the demand of 6.
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Reporting a crime

A crime is observed by a group of n people.

Each person would like the police to be informed, but prefers that
someone else make the phone call.

Suppose each person attaches the value v to the police being
informed and bears the cost c if she makes the call, where v > c > 0.

Formulation as a strategic game:

Players: the n people.

Actions: Each player’s set of actions is {Call, Don’t call}.
Payoffs: Each player’s payoff function assigns

0 to the profile in which no one calls;
v − c to any profile in which she calls;
v to any profile in which at least one person calls, but
she does not.
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Reporting a crime
Pure Nash equilibria

The game has n pure Nash equilibria, in which exactly one person
calls:

If the person who calls switches to not calling, her payoff falls from
v − c > 0 to 0.
If any other person switches to calling, her payoff falls from v to v − c .

The game has no other pure Nash equilibrium:

If no one calls, then any person can switch to calling and raise her
payoff from 0 to v − c .
If two or more persons call, then any of them can switch to not calling
and raise her payoff from v − c to v .
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Reporting a crime
Symmetric (mixed) Nash equilibrium

The game is symmetric, so it must have a symmetric Nash
equilibrium.

The game has no symmetric pure Nash equilibrium, so it must have a
symmetric mixed Nash equilibrium.

In any such equilibrium, each person’s expected payoff to calling is
equal to her expected payoff to not calling.

Denote p the probability with which each person calls (0 < p < 1) in
a symmetric Nash equilibrium, and let p = (p)i∈N .
Equilibrium condition: For each person i ,

ui (Call,p−i ) = ui (Don’t call,p−i )
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Reporting a crime
Symmetric (mixed) Nash equilibrium

Now:
ui (Call,p−i ) = v − c

and

ui (Don’t call,p−i ) = 0 · Pr{no one else calls}
+v · Pr{at least one else calls}

= v · (1− Pr{no one else calls})

and the equilibrium condition gives

v − c = v · (1− Pr{no one else calls})
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Reporting a crime
Symmetric (mixed) Nash equilibrium

v − c = v · (1− Pr{no one else calls})
c

v
= Pr{no one else calls}

c

v
= (1− p)n−1

p = 1−
(c

v

) 1
n−1 ∈ (0, 1) .
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Nash equilibria (Mixed) Nash equilibrium

Illustration: Reporting a crime
Symmetric (mixed) Nash equilibrium

We conclude that the game has a unique mixed strategy Nash equilibrium,
in which each person calls with probability

p = 1−
(c

v

) 1
n−1

.

Remarks:

As n increases, the probability p that any given person calls decreases.

As n increases, the probability that at least one person calls also
decreases.

The larger the group, the less likely the police are informed of the
crime!
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria

In a Nash equilibrium, if two different actions of player i both have
positive probability, then they must both give her the same expected
payoff, which must be maximum.

Although there are infinitely many mixed strategy profiles, there are
only finitely many subsets of ×i∈NSi that can be supports of
equilibria.

So, we can search for equilibria by sequentially considering various
guesses as to what the support may be and looking for equilibria with
each guessed support.
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria

Let ×i∈NDi be our current guess of the support. If there is an equilibrium
p = (pi )i∈N with support ×i∈NDi , then there must exist numbers (ωi )i∈N
such that:

ui (si ,p−i ) = ωi ∀i ∈ N , ∀si ∈ Di

pi (ei ) = 0 ∀i ∈ N ,∀ei ∈ Si \ Di∑
si∈Si

pi (si ) = 1 ∀i ∈ N

∑
i∈N(|Si |+ 1) equations in the same number of unknowns
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria

Given the guessed support ×i∈NDi , we can find all solutions to the
system.
These solutions do not necessarily give equilibria:

1 No solutions may exist.
2 A solution may fail to be a strategy profile, if some pi (si ) is negative.

So we must require

pi (si ) ≥ 0 ∀i ∈ N ,∀si ∈ Di .

3 A solution may fail to be an equilibrium if some player i has some other
action outside Di that would give her better payoff, so we must require

ωi ≥ ui (ei ,p−i ) ∀i ∈ N ,∀ei ∈ Si \ Di .

If we find a solution (p, ω) that satisfies the above conditions, then p
is a Nash equilibrium.

Nash’s theorem: there is at least one support for which all conditions
will be satisfied!
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (1/6)

L M R

T 7, 2 2, 7 3, 6

B 2, 7 7, 2 4, 5

There are (23 − 1) · (22 − 1) = 21 possible supports:

{T}, {B}, {T ,B} for the row player

{L}, {M}, {R}, {L,M}, {L,R}, {M,R}, {L,M,R} for the column
player
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (2/6)

L M R

T 7, 2 2, 7 3, 6

B 2, 7 7, 2 4, 5

We begin by considering pure strategies (supports of size 1):

If the row player chooses T, then the column player would choose M,
but then the row player would prefer B.

If the row player chooses B, then the column player would choose L,
but then the row player would prefer T.

. . . Similarly for the column player.

Therefore, there is no equilibrium where either player has support of size 1.
So, it suffices to consider the supports

1 {T ,B} for the row player
2 {L,M}, {L,R}, {M,R}, {L,M,R} for the column player
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (3/6)

L M R

T 7, 2 2, 7 3, 6

B 2, 7 7, 2 4, 5

Let us first try the support {T ,B} × {L,M,R}. We need:

ω1 = u1(T , p2) = u1(B, p2)

ω1 = 7p2(L) + 2p2(M) + 3p2(R) = 2p2(L) + 7p2(M) + 5p2(R)

and

ω2 = u2(L, p1) = u2(M, p1) = u2(R, p1)

ω2 = 2p1(T ) + 7p1(B) = 7p1(T ) + 2p1(B) = 6p1(T ) + 5p1(B)

and p1(T ) + p1(B) = 1 = p2(L) + p2(M) + p2(R) No solution!
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Computing all Nash equilibria
An example (3/6)
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (4/6)

L M R

T 7, 2 2, 7 3, 6

B 2, 7 7, 2 4, 5

Let us now try the support {T ,B} × {M,R}. We need:

ω1 = 2p2(M) + 3p2(R) = 7p2(M) + 4p2(R)

and

ω2 = 7p1(T ) + 2p1(B) = 6p1(T ) + 5p1(B)

and p1(T ) + p1(B) = 1 = p2(M) + p2(R)
Solution: p1(T ) = 3/4, p1(B) = 1/4, p2(M) = −1/4, p2(R) = 5/4
Negative solution, so this is not an equilibrium!
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (4/6)
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
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Negative solution, so this is not an equilibrium!
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (4/6)
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (5/6)

L M R

T 7, 2 2, 7 3, 6

B 2, 7 7, 2 4, 5

Let us now try the support {T ,B} × {L,M}. We need:

ω1 = 7p2(L) + 2p2(M) = 2p2(L) + 7p2(M)

and

ω2 = 2p1(T ) + 7p1(B) = 7p1(T ) + 2p1(B)

and p1(T ) + p1(B) = 1 = p2(L) + p2(M)
Solution: p1(T ) = p1(B) = p2(L) = p2(M) = 0.5, ω1 = ω2 = 4.5.
But u2(R, p1) = 6 · 0.5 + 5 · 0.5 = 5.5 > 4.5 = ω2, so this is not an
equilibrium!
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But u2(R, p1) = 6 · 0.5 + 5 · 0.5 = 5.5 > 4.5 = ω2, so this is not an
equilibrium!
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (5/6)
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T 7, 2 2, 7 3, 6
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Nash equilibria (Mixed) Nash equilibrium

Computing all Nash equilibria
An example (6/6)

L M R

T 7, 2 2, 7 3, 6

B 2, 7 7, 2 4, 5

Let us now try the support {T ,B} × {L,R}. We need:

ω1 = 7p2(L) + 3p2(R) = 2p2(L) + 5p2(R)

and

ω2 = 2p1(T ) + 7p1(B) = 6p1(T ) + 5p1(B)

and p1(T ) + p1(B) = 1 = p2(L) + p2(R)
Solution: p1(T ) = 1/3, p1(B) = 2/3, p2(L) = 1/6, p2(R) = 5/6,
ω1 = 11/3, ω2 = 16/3.
Also, u2(M, p1) = 7 · 1/3 + 2 · 2/3 = 11/3 ≤ ω2 = 16/3, so this is an
equilibrium!
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Nash equilibria Dominance and refinements of Nash equilibrium

Strict domination
Definition

In a strategic game, one (pure or mixed) strategy of a player strictly
dominates an action (pure strategy) of that player if it is superior, no
matter what the other players do:

Definition

In a strategic game Γ = 〈N, (Si )i∈N , (ui )i∈N〉, player i ’s strategy pi strictly
dominates her action si ∈ Si if, for every action profile s−i ∈ ×j∈N\{i}Sj of
the other players,

ui (pi , s−i ) > ui (si , s−i ) .

We say that the action si is strictly dominated.

Property

A strictly dominated action is not used with positive probability in any
Nash equilibrium.
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Nash equilibria Dominance and refinements of Nash equilibrium

Strict domination
Examples

Recall Prisoner’s Dilemma:

Suspect 2
Quiet Fink

Suspect 1
Quiet (2,2) (0,3)
Fink (3,0) (1,1)

The action (pure strategy) Fink strictly dominates the action Quiet:
regardless of her opponent’s action, a player prefers the outcome when she
chooses Quiet.
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Nash equilibria Dominance and refinements of Nash equilibrium

Strict domination
Examples

The following matrix gives the payoffs of player 1 (row player) in a
strategic game.

L R

T 1 1

M 4 0

B 0 3

We will find all strategies of player 1 that strictly dominate T :

Denote the probability that player 1 assigns to T by p and the
probability she assigns to M by r (so that the probability she assigns
to B is 1− p − r).

A mixed strategy of player 1 strictly dominates T if and only if
1 · p + 4 · r + 0 · (1− p − r) > 1 and 1 · p + 0 · r + 3 · (1− p − r) > 1.

Equivalently, if and only if 1− 4r < p < 1− 3
2 r .
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Nash equilibria Dominance and refinements of Nash equilibrium

Weak domination
Definition

Definition

In a strategic game Γ = 〈N, (Si )i∈N , (ui )i∈N〉, player i ’s strategy pi weakly
dominates her action si ∈ Si if, for every action profile s−i ∈ ×j∈N\{i}Sj of
the other players,

ui (pi , s−i ) ≥ ui (si , s−i ) ,

and, for some action profile s−i ∈ ×j∈N\{i}Sj of the other players,

ui (pi , s−i ) > ui (si , s−i ) .

We say that the action si is weakly dominated.
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Nash equilibria Dominance and refinements of Nash equilibrium

Weak domination
Properties

Weakly (as well as strictly) dominated actions do not necessarily exist.

Note that, unlike strictly dominated actions,

A weakly dominated action may be used with positive probability in a
Nash equilibrium.

However:

Proposition

Every finite strategic game has a Nash equilibrium in which no player’s
strategy is weakly dominated.
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Nash equilibria Dominance and refinements of Nash equilibrium

Dominant actions
Definition

A dominant strategy occurs when one pure strategy (action) is better than
any other strategy for one player, no matter how that player’s opponents
may play. Formally:

Definition

A pure strategy si ∈ Si is dominant for player i in the strategic game
Γ = 〈N, (Si )i∈N , (ui )i∈N〉 if

ui (si , s−i ) > ui (s ′i , s−i )

for all s ′i 6= si ∈ Si and for all s−i ∈ ×j 6=iSj .

In other words, a dominant action is an action that strictly dominates all
other actions of a player.
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Nash equilibria Dominance and refinements of Nash equilibrium

Dominant actions
Properties

Note:

Dominant strategies do not necessarily exist.

If all players have a dominant action, then their combination is the
unique pure Nash equilibrium.

If a dominant strategy exists for one player in a game, then that player
will play that (pure) strategy in each of the game’s Nash equilibria.
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Nash equilibria Dominance and refinements of Nash equilibrium

Nash equilibrium refinements
Strict Nash equilibrium

The definition of a pure Nash equilibrium requires only that the
outcome of a deviation be no better (rather than worse) for the
deviant than the equilibrium outcome.

An equilibrium is strict if each player’s equilibrium action is better
than all her other actions, given the other players’ actions.

Definition

A strict Nash equilibrium is a pure strategy profile s = (si )i∈N such that
for each player i ,

ui (s) > ui (s ′i , s−i ) ∀s ′i ∈ Si , s ′i 6= si .
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Nash equilibria Dominance and refinements of Nash equilibrium

Nash equilibrium refinements
Strong Nash equilibrium

Definition

A strong Nash equilibrium is a Nash equilibrium such that there is no
nonempty set of players who could all gain by deviating together to some
other combination of strategies that is jointly feasible for them, when the
other players who are not in this set are expected to stay with their
equilibrium strategies.

Paul G. Spirakis (U. Liverpool) Introduction to Game Theory 89 / 99



Nash equilibria Illustrations: Models of oligopoly

Oligopoly

How does the outcome of competition among the firms in an industry
depend on the characteristics of the demand for the firms’ output, the
firms’ cost functions, and the number of firms?

Will the benefits of technological improvements be passed on to
consumers?

Will a reduction in the number of firms generate a less desirable
outcome?

=⇒ We need a model of the interaction between firms competing for the
business of consumers: models of oligopoly (competition between a small
number of sellers).

1 Cournot’s model of oligopoly

2 Bertrand’s model of oligopoly
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Nash equilibria Illustrations: Models of oligopoly

Cournot’s model of oligopoly
General model

A single good is produced by n firms.
The cost to firm i of producing qi units of the good is Ci (qi ), where
Ci is an increasing function (more output is more costly to produce).
All the output is sold at a single price, determined by the demand for
the good and the firms’ total output.
Specifically, if the firms’ total output is Q then the market price is
P(Q); P is called the “inverse demand function”.
Assume that P is a decreasing function when it is positive: if the
firms’ total output increases, then the price decreases (unless it is
already zero).
If the output of each firm i is qi , then the price is P(q1 + · · ·+ qn),
so that firm i ’s revenue is qiP(q1 + · · ·+ qn).
Thus firm i ’s profit, equal to its revenue minus its cost, is

πi (q1, . . . , qn) = qiP(q1 + · · ·+ qn)− Ci (qi ) .
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Nash equilibria Illustrations: Models of oligopoly

Cournot’s oligopoly game

Cournot suggested that the industry be modeled as the following strategic
game:

Players: The firms.

Actions: Each firm’s set of actions is the set of its possible outputs
(nonnegative numbers).

Payoffs: Each firm’s payoff is represented by its profit πi .
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Nash equilibria Illustrations: Models of oligopoly

Cournot’s oligopoly game
Example

Suppose there are two firms (the industry is a duopoly), each firm’s cost
function is Ci (qi ) = cqi for all qi , and the inverse demand function is
linear where it is positive, given by

P(Q) =

{
a− Q if Q ≤ a
0 if Q > a

where a > 0 and c ≥ 0 are constants, and c < a.
Firm 1’s profit is

π1(q1, q2) = q1(P(q1 + q2)− c)

=

{
q1(a− c − q1 − q2) if q1 + q2 ≤ a
−cq1 if q1 + q2 > a
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Nash equilibria Illustrations: Models of oligopoly

Cournot’s oligopoly game
Example

To find the Nash equilibria in this example, we should find the firms’
best response functions.

To find firm 11s best response to any given output q2 of firm 2, we
need to study firm 1’s profit as a function of its output q1 for given
values of q2.

By setting the derivative of firm 1’s profit with respect to q1 equal to
zero and solving for q1, we can find firm 1’s best response to any
given input q2:

b1(q2) =

{
1
2 (a− c − q2) if q2 ≤ a− c
0 if q2 > a− c

.

Because firm 2’s cost function is the same as firm 1’s, its best
response function b2 is also the same: for any number q, we have
b2(q) = b1(q).
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Nash equilibria Illustrations: Models of oligopoly

Cournot’s oligopoly game
Example

A Nash equilibrium is a pair (q∗1 , q
∗
2) of outputs for which q∗1 is a best

response to q∗2 , and q∗2 is a best response to q∗1 :

q∗1 = b1(q∗2) , q∗2 = b2(q∗1) .

(Unique) solution:

q∗1 = q∗2 =
1

3
(a− c) .

The total output in this equilibrium is 2/3(a− c).

The price at which output is sold is P(2/3(a− c)) = 1/3(a + 2c).

As a increases (meaning that consumers are willing to pay more for
the good), the equilibrium price and the output of each firm increases.

As c (the unit cost of production) increases, the output of each firm
falls and the price rises.
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Nash equilibria Illustrations: Models of oligopoly

Bertrand’s model of oligopoly

In Cournot’s game, each firm chooses an output; the price is
determined by the demand for the good in relation to the total output
produced.

In Bertrand’s model of oligopoly, each firm chooses a price, and
produces enough output to meet the demand it faces, given the prices
chosen by all the firms.

Setting:

A single good is produced by n firms; each firm can produce qi units
of the good at a cost of Ci (qi ).

It is convenient to specify demand by giving a demand function D,
rather than an inverse demand function as we did for Cournot’s game.

The interpretation of D is that if the good is available at the price p
then the total amount demanded is D(p).
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Nash equilibria Illustrations: Models of oligopoly

Bertrand’s model of oligopoly

If the firms set different prices then all consumers purchase the good
from the firm with the lowest price, which produces enough output to
meet this demand.

If more than one firm sets the lowest price, all the firms doing so
share the demand at that price equally.

A firm whose price is not the lowest price receives no demand and
produces no output.

Note: a firm does not choose its output strategically; it simply
produces enough to satisfy all the demand it faces, given the prices,
even if its price is below its unit cost, in which case it makes a loss.
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Nash equilibria Illustrations: Models of oligopoly

Bertrand’s oligopoly game

Bertrand’s oligopoly game is the following strategic game:

Players: The firms.

Actions: Firm i ’s set of actions is the set of possible prices
(nonnegative numbers pi ).

Payoffs: If firm i is one of m firms setting the lowest price, its profit
is

piD(pi )

m
− Ci

(
D(pi )

m

)
.

If some firm’s price is lower than pi , firm i ’s profit is zero.
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Further reading

Martin J. Osborne: An Introduction to Game Theory. Oxford
University Press, 2004.

Martin J. Osborne and Ariel Rubinstein: A Course in Game Theory.
The MIT Press, 1994.

Roger B. Myerson: Game Theory: Analysis of Conflict. Harvard
University Press, 1991.
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