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Background: Basic concepts in matrix algebra Vectors

Vectors

A k-dimensional vector v is an ordered collection of k real numbers
v1, v2, . . . , vk and is written as

v =


v1

v2
...
vp

 .

The numbers vj , for j = 1, 2, . . . , k, are called the components of
vector v.

Example:


1
−2
0
5

 is a four-dimensional vector. Its first component is 1,

its second component is -2, its third component is 0, and its fourth
component is 5.
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Background: Basic concepts in matrix algebra Vectors

Vectors
Scalar multiplication and vector addition

Scalar multiplication of a k-dimensional vector y and a scalar c is
defined to be a new k-dimensional vector z, written z = cy or z = yc ,
whose components are given by zj = cyj .

Vector addition of two k-dimensional vectors x and y is defined as a
new k-dimensional vector z, denoted z = x + y, with components
given by zj = xj + yj .

Note: y and x must have the same dimensions for vector addition.
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Background: Basic concepts in matrix algebra Vectors

Vectors
Scalar multiplication and vector addition

Examples:

4


1
−2
0
5

 =


4
−8
0

20




2
−1
6
0

+


−2
−1
5
4

 =


0
−2
11
4


 4

3
0

+

[
−1
5

]
is not defined .
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Background: Basic concepts in matrix algebra Matrices

Matrices

A matrix is defined to be a rectangular array of numbers

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


whose dimension is m by n (denoted m × n).

A is called square if m = n.

The numbers aij are the elements of A.

Two matrices A and B are said to be equal, written A = B, if they
have the same dimension and their corresponding elements are equal,
i.e., aij = bij for all i and j .
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Background: Basic concepts in matrix algebra Matrices

Vectors as special cases of matrices

Sometimes it is convenient to think of vectors as merely being special
cases of matrices:

A k × 1 matrix is called a column vector.

An 1× k matrix is called a row vector.

The coefficients in row i of the matrix A determine a row vector

Ai =
[
ai1 ai2 · · · ain

]
.

The coefficients in column j of the matrix A determine a column
vector

Aj =


a1j

a2j
...

amj

 .
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Background: Basic concepts in matrix algebra Matrix algebra

Matrices
Scalar multiplication and addition

Scalar multiplication of a matrix A and a real number c is defined to
be a new matrix B, written B = cA or B = Ac , whose elements bij
are given by bij = caij .
Example:

3

[
0 1 −2
4 −1 3

]
=

[
0 3 −6

12 −3 9

]
.

Addition of two matrices A and B, both with dimension m × n, is
defined as a new matrix C , written C = A + B, whose elements cij
are given by cij = aij + bij .
Example:[

7 −1 12
0 6 −3

]
+

[
2 1 −8
4 6 0

]
=

[
9 0 4
4 12 −3

]
.

If A and B do not have the same dimension, then A + B is undefined.
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Background: Basic concepts in matrix algebra Matrix algebra

Matrices
Product of matrices

The product of an m× p matrix A and a p × n matrix B is defined to be a
new m × n matrix C , written C = AB, whose elements cij are given by

cij =

p∑
k=1

aikbkj .

Example:

[
2 6 −3
1 4 0

] 1 2
0 −3
3 1

 =

[
2 · 1 + 6 · 0− 3 · 3 2 · 2− 6 · 3− 3 · 1
1 · 1 + 4 · 0 + 0 · 3 1 · 2− 4 · 3 + 0 · 1

]

=

[
−7 −17
1 −10

]
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Background: Basic concepts in matrix algebra Matrix algebra

Matrices
Product of matrices

If the number of columns of A does not equal the number of rows of
B, then AB is undefined.

If x is an m-dimensional row vector and y is an m-dimensional column
vector, then the special case

xy =
m∑
i=1

xiyi

is referred to as the inner product of x and y.

In these terms, the elements cij of matrix C = AB are found by taking
the inner product of the ith row of A with the jth column of B.
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Background: Basic concepts in matrix algebra Matrix algebra

Matrices
Transpose of a matrix

The transpose of an m × n matrix A, denoted AT , is the n ×m matrix
formed by interchanging the rows and columns of A.
Example 1: [

2 6 −3
1 4 0

]T
=

 2 1
6 4
−3 0


Example 2: The transpose of a column vector is a row vector (and vice
versa):  1

−3
5

T

=
[

1 −3 5
]
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Background: Basic concepts in matrix algebra Matrix algebra

Matrices
Properties

A + B = B + A

(A + B) + C = A + (B + C )

A(BC ) = (AB)C

A(B + C ) = AB + AC

(AT )T = A

(AB)T = BTAT

A square (n × n) matrix A is symmetric if A = AT , or, equivalently, if
aij = aji for all i = 1, . . . , n and j = 1, . . . , n. Examples:

[
1 2
2 1

]  1 −3 5
−3 0 7
5 7 4
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Background: Basic concepts in matrix algebra Matrix algebra

Matrix algebra: examples

Let x =

[
2
1

]
, y =

 −1
0
3

 , A =

[
4 0 1
1 2 −2

]

Then xTA =
[

2 1
] [ 4 0 1

1 2 −2

]
=
[

9 2 0
]

Ay =

[
4 0 1
1 2 −2

] −1
0
3

 =

[
−1
−7

]

and xTAy = (xTA)y =
[

9 2 0
]  −1

0
3

 = −9

or xTAy = xT (Ay) =
[

2 1
] [ −1
−7

]
= −9
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Background: Basic concepts in matrix algebra Matrix algebra

Matrix algebra: a general example

Let x be an m-dimensional vector and y be an n-dimensional vector.

Let A be an m × n matrix.

Then Ay is an m-dimensional vector and ATx is an n-dimensional
vector.

We denote the ith component of Ay by (Ay)i (similarly for ATx).

Then we have:

(Ay)i =
n∑

j=1

aijyj

(ATx)j =
m∑
i=1

aijxi

xTAy =
m∑
i=1

xi (Ay)i =
m∑
i=1

n∑
j=1

aijxiyj
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Background: Basic concepts in matrix algebra Matrix algebra

Matrix algebra: a general example

Note that xTAy is a scalar, so

xTAy = (xTAy)T = (Ay)T (xT )T = yTATx =
n∑

j=1

m∑
i=1

aijxiyj

and

xTAy = (ATx)Ty = (yTATx)T = yTATx =
n∑

j=1

m∑
i=1

aijxiyj .

Also,

yTATx =
n∑

j=1

yj(A
Tx)j =

n∑
j=1

m∑
i=1

aijxiyj .
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Strategies and payoffs What is a bimatrix game?

Bimatrix games

Recall that a finite, noncooperative strategic game
Γ = 〈N, (Si )i∈N , (ui )i∈N〉 consists of

1 a finite set of players N,

2 a nonempty finite set of pure strategies Si for each player i ∈ N and

3 a payoff function ui : ×i∈NSi → R for each player i ∈ N, mapping
every combination of strategies (one for each player) to a real number.

Bimatrix games are a special case of 2-player games:

|N| = 2

the payoff functions can be described by two real m × n matrices A
and B, where m = |S1| and n = |S2|.
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Strategies and payoffs What is a bimatrix game?

Bimatrix games
An example

Consider the rock-scissors-paper game:

Two children simultaneously choose one of three options: rock,
paper, or scissors.

Rock beats scissors, scissors beats paper, and paper beats rock.

When both play the same, the game is drawn.

We will formulate this game as a bimatrix game.

We denote the rock, scissors, paper options by R, S , P, respectively.

The payoff for a win is +1, for losing −1, and for a draw 0.
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Strategies and payoffs What is a bimatrix game?

Bimatrix games
An example

The game can be fully described by the following payoff table:

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

The rows represent the choices of the first player.

The columns represent the choices of the second player.

In each entry, the first number represents the payoff of the first player
and the second number represents the payoff of the second player.

E.g., when the first player chooses R and the second player chooses P,
then the former gets a payoff of −1 and the latter gets a payoff of 1.
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Strategies and payoffs What is a bimatrix game?

Bimatrix games
An example

The game is called a bimatrix game because the payoff table is actually
the combination of two matrices:

A =

 0 1 −1
−1 0 1
1 −1 0

 B =

 0 −1 1
1 0 −1
−1 1 0


Each row of each matrix corresponds to a pure strategy (a choice) of
the first player.

Each column of each matrix corresponds to a pure strategy of the
second player.

Each element aij of matrix A is the payoff to player 1 if she plays her
ith strategy and the opponent plays her jth strategy.

Each element bij of matrix B is the payoff to player 2 if she plays her
jth strategy and the opponent plays her ith strategy.
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Strategies and payoffs What is a bimatrix game?

Bimatrix games
Definition

A bimatrix game is denoted by a pair of matrices, i.e., Γ = (A,B), in
which:

The m rows of A and B represent the pure strategies of the first
player (the row player).

The n columns A and B represent the pure strategies of the second
player (the column player).

Then, when the row player chooses strategy i and the column player
chooses strategy j , the former gets payoff aij while the latter gets
payoff bij .
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Strategies and payoffs Pure and mixed strategies

(Mixed) strategies

Recall that a mixed strategy is a probability distribution over the available
pure strategies of a player. Given a bimatrix game (A,B) with m × n
payoff matrices A and B:

A mixed strategy (or simply strategy) for the row player is an
m-dimensional vector x with nonnegative components that sum to 1:

x =


x1

x2
...
xm

 ,

m∑
i=1

xi = 1 , xi ≥ 0 ∀i = 1, · · · ,m .

A mixed strategy for the column player is such a vector y:

y =


y1

y2
...
yn

 ,

n∑
j=1

yj = 1 , yj ≥ 0 ∀j = 1, · · · , n .
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Strategies and payoffs Pure and mixed strategies

Pure strategies

A pure strategy for the row player can be seen as a special case of a
mixed strategy that assigns probability 1 to a single row.

A pure strategy for the column player can be seen as a special case of
a mixed strategy that assigns probability 1 to a single column.

Hence the pure strategy profile (i , j) can be denoted by the pair of
vectors (x, y) for which

xi = yj = 1 , xt = 0 ∀t 6= i , yk = 0 ∀k 6= j .
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Strategies and payoffs Pure and mixed strategies

Support of a strategy

The support of a mixed strategy is the set of pure strategies that are
assigned positive probability.

Hence, the support of strategy x of the row player in m × n bimatrix
game Γ = (A,B) is

Support1(x) = {i ∈ {1, 2, . . . ,m} : xi > 0} .

and the support of strategy y of the column player is

Support2(y) = {i ∈ {1, 2, . . . , n} : yj > 0} .
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Strategies and payoffs Pure and mixed strategies

Strategies in bimatrix games: an example

Consider again the rock-scissors-paper game:

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

Assume that the row player plays rock with probability 1/4 and paper
with probability 3/4, and the column player simply plays paper.

The strategies of the row and the column players are, respectively,

x =

 1/4
0

3/4

 , y =

 0
0
1

 .

The support of the row player is {1, 3} (i.e., rows 1 and 3
corresponding to rock and paper) and the support of the column
player is the singleton {3}.
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Strategies and payoffs Expected payoffs

Expected payoff

When the row player chooses mixed strategy x and the column player
chooses y, then

the row player gets expected payoff

m∑
i=1

n∑
j=1

xiyjaij = xTAy

and

the column player gets expected payoff

m∑
i=1

n∑
j=1

xiyjbij = xTBy .
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Strategies and payoffs Expected payoffs

Expected payoffs: an example

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

Assume that the row player plays rock with probability 1/4 and paper with
probability 3/4, and the column player plays rock with probability 1/6,
scissors with probability 1/3 and paper with probability 1/2:

x =

 1/4
0

3/4

 , y =

 1/6
1/3
1/2

 .
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Strategies and payoffs Expected payoffs

Expected payoffs: an example

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

The expected payoff for the row player for the strategy profile (x, y) is

xTAy =
[

1/4 0 3/4
]  0 1 −1
−1 0 1
1 −1 0

 1/6
1/3
1/2


=

3∑
i=1

3∑
j=1

aijxiyj

=
1

4
· 1

6
· 0 +

1

4
· 1

3
· 1 +

1

4
· 1

2
· (−1) +

3

4
· 1

6
· 1 +

3

4
· 1

3
· (−1) +

3

4
· 1

2
· 0

= −1

6
.
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Strategies and payoffs Expected payoffs

Expected payoffs: an example

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

The expected payoff for the column player for the strategy profile (x, y) is

xTBy =
[

1/4 0 3/4
]  0 −1 1

1 0 −1
−1 1 0

 1/3
1/3
1/3


=

3∑
i=1

3∑
j=1

aijxiyj

=
1

4
· 1

6
· 0 +

1

4
· 1

3
· (−1) +

1

4
· 1

2
· 1 +

3

4
· 1

6
· (−1) +

3

4
· 1

3
· 1 +

3

4
· 1

2
· 0

=
1

6
.
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Strategies and payoffs Expected payoffs

Expected payoffs: an example

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

The expected payoff for the row player if she chooses row 2 (scissors)
and the column player plays y is

(ATy)2 =
3∑

k=1

a2kyk = (−1) · 1

6
+ 0 · 1

3
+ 1 · 1

2
=

1

3
.

The expected payoff for the column player if she chooses column 1
(rock) and the row player plays x is

(BTx)1 =
3∑

t=1

bt1xt = 0 · 3

4
+ 1 · 0 + (−1) · 1

4
= −1

4
.
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Strategies and payoffs Symmetric bimatrix games

Symmetric bimatrix games

A 2-player strategic game is symmetric if

1 the players’ sets of pure strategies are the same and

2 the players’ payoff functions u1 and u2 are such that

u1(s1, s2) = u2(s2, s1) .

That is, a symmetric game does not change when the players change roles.
Using the notation of bimatrix games, an m× n bimatrix game Γ = (A,B)
is symmetric if

1 m = n and

2 aij = bji for all i , j ∈ {1, . . . , n}, or equivalently B = AT .
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Strategies and payoffs Symmetric bimatrix games

Symmetric bimatrix games
Examples

Observe that the rock-scissors-paper game is symmetric:

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

For example, if the row player plays scissors and the column player
plays rock, then the row player gets -1 and the column player gets 1.

If the players change roles, so that the row player plays rock and the
column player plays scissors, then the payoffs change respectively, so
that now the row player gets 1 and the column player gets -1.
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Strategies and payoffs Symmetric bimatrix games

Symmetric bimatrix games
Counterexamples

The following games are not symmetric:

L M R

L 0, 1 1, -1 -1, 1

M -1, 1 0, 0 1, -1

R 1, -1 -1, 1 0, 0

L M R

L 0, 0 1, -1 -1, 1

M 1, 0 0, 0 1, -1

R 1, 0 -1, 1 0, 0

L M

L 0, 0 1, -1

M -1, 1 0, 0

R 1, -1 -1, 1

L M

L 0, 0 1, 2

M 1, 2 0, 0
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Equilibria Nash equilibria

Nash equilibrium

A Nash equilibrium for a game Γ is a combination of (pure or mixed)
strategies, one for each player, such that no player could increase her
payoff by unilaterally changing her strategy.
Formally:

Definition

A pair of strategies (x̃, ỹ) is a Nash equilibrium for the bimatrix game
Γ = (A,B) if

(i) For every (mixed) strategy x of the row player, xTAỹ ≤ x̃TAỹ and

(ii) For every (mixed) strategy y of the column player, x̃TBy ≤ x̃TB ỹ.
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Equilibria Nash equilibria

Best responses

A best response for a player is a strategy that maximizes her payoff, given
the strategy chosen by the other player.
Formally, given a strategy profile (x, y) for the m × n bimatrix game
Γ = (A,B):

Strategy x̃ is a best response for the row player if

x̃TAy ≥ x′
T
Ay ∀x′ .

Strategy ỹ is a best response for the column player if

xTB ỹ ≥ xTBy′ ∀y′ .

Therefore:

Definition

The strategy profile (x, y) is a Nash equilibrium for the bimatrix game
Γ = (A,B) if x is a best response of the row player to y and y is a best
response of the column player to x.
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Equilibria Nash equilibria

Best responses
A useful characterization

Best responses are characterized by the following combinatorial condition:

Theorem (Nash, 1951)

Let x and y be mixed strategies of the row and the column player,
respectively. Then x is a best response to y if and only if all strategies in
the support of x are (pure) best responses to y.

Proof:

Let (Ay)i be the ith component of Ay, which is the expected payoff
to the row player when playing row i .

Let u = maxk(Ay)k . Then

xTAy =
∑
i

xi (Ay)i = u −
∑
i

xi (u − (Ay)i ) .
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Equilibria Nash equilibria

Best responses
A useful characterization

Proof (continued):

So xTAy = u −
∑

i xi (u − (Ay)i ).

The sum
∑

i xi (u(Ay)i ) is nonnegative, hence xTAy ≥ u.

The expected payoff xTAy achieves the maximum u if and only if
that sum is zero.

That is, if xi > 0 implies (Ay)i = u = maxk(Ay)k , as claimed.

Clearly, the same holds for the column player:

Theorem

y is a best response to x if and only if all strategies in the support of y are
(pure) best responses to x.
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Equilibria Nash equilibria

Best responses
Regret

Given a strategy profile (x, y) of the bimatrix game Γ = (A,B)

row player’s regret is maxi (Ay)i − xTAy;

column player’s regret is maxj(B
Tx)j − xTBy.

So

x is a best response to y if row player’s regret is 0;

y is a best response to x if column player’s regret is 0.

(x, y) is a Nash equilibrium if each player’s regret is 0.
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Equilibria Nash equilibria

Nash equilibria
Useful characterizations

Based on the characterization of best responses described previously:

Definition

The strategy profile (x, y) is a Nash equilibrium for the m × n bimatrix
game Γ = (A,B) if

xTAy = max
i=1,...,m

(Ay)i and

xTBy = max
j=1,...,n

(BTx)j
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Equilibria Nash equilibria

Nash equilibria
Useful characterizations

And equivalently:

Definition

The strategy profile (x, y) is a Nash equilibrium for the m × n bimatrix
game Γ = (A,B) if

xi > 0 =⇒ (Ay)i = max
t=1,...,m

(Ay)t ∀i = 1, . . . ,m and

yj > 0 =⇒ (BTx)j = max
k=1,...,n

(BTy)k ∀j = 1, . . . , n .
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Pure Nash equilibria

Given an m × n bimatrix game, checking whether a pure Nash
equilibrium exists or not can be done efficiently.

Given the column chosen by the column player, the row player should
have no incentive to deviate, i.e., she should choose a row that
maximizes her payoff.

Similarly, given the row chosen by the row player, the row player
should choose a row that maximizes her payoff.

The procedure is as follows:

For each row i = 1, . . . ,m and for each column j = 1, . . . n, we check
whether aij = maxt atj and bij = maxk bik .

If both conditions hold, then (i , j) is a pure Nash equilibrium.

We have m · n pure strategy profiles to check.
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Pure Nash equilibria

Example: Let us find all the pure Nash equilibria (PNE) of the game

L M R

U 5, 3 2, 7 0, 4

D 5, 5 5, -1 -4, -2

1 (U, L) is not a PNE because, given U, player 2 prefers M to L (7 > 3).

2 (U,M) is not a PNE because, given M, player 1 prefers D to U (5 > 2).

3 (U,R) is not a PNE because, given U, player 2 prefers M to R (7 > 4).

4 (D, L) is a PNE because no player has an incentive to deviate (5 ≥ 5 and
5 > −1, 5 > −2).

5 (D,M) is not a PNE because, given D, player 2 prefers L to M (5 > −1).

6 (D,R) is not a PNE because, given U, player 1 prefers L to R (5 > −2).
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Pure Nash equilibria

Example: Does the rock-scissors-paper game possess a pure Nash
equilibrium?

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

We can easily see that the answer is no.
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

To find the mixed Nash equilibria of an m × n bimatrix game (A,B), we
use the following characterization we have already proved:

Definition

(x, y) is a Nash equilibrium if

xi > 0 =⇒ (Ay)i = max
t=1,...,m

(Ay)t ∀i = 1, . . . ,m and

yj > 0 =⇒ (BTx)j = max
k=1,...,n

(BTy)k ∀j = 1, . . . , n .

This states that, in a Nash equilibrium, each player assigns positive
probability only to her pure strategies that maximize her payoff.

So, the expected payoffs for all pure strategies in the support of a
player must be equal and maximal (given the mixed strategy of the
other player).
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Thus the procedure to find all Nash equilibria is as follows:

For each possible support of player 1 and for each possible support of
player 2, check if there is solution to the system of equations of the
definition above.

If such a solution exists and corresponds to probabilities (i.e., all xk ’s
are non-negative and sum up to 1, and so are all yk ’s, then an
equilibrium is found.

We have (2m − 1)(2n − 1) possible cases to consider, since there are
2m − 1 possible supports for the row player and 2n − 1 possible
supports for the column player.
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Example

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

Let us check if there exists a Nash equilibrium with supports {U,D} and

{L,M}. So let x =
[
x1 x2

]T
and y =

[
y1 y2 0

]T
.

(x, y) is a Nash equilibrium iff all the following conditions hold:

(Ay)1 = (Ay)2

(BTx)1 = (BTx)2 ≥ (BTx)3

x1 + x2 = 1

y1 + y2 = 1

x1, x2, y1, y2 ≥ 0 .
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Example (continued)

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

We have, equivalently,

(Ay)1 = (Ay)2

6 · y1 + 1 · y2 = 1 · y1 + 6 · y2

y1 = y2 = 1/2

and

(BTx)1 = (BTx)2

1 · x1 + 6 · x2 = 6 · x1 + 1 · x2

x1 = x2 = 1/2 .
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Example (continued)

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

But then

(BTx)1 = (BTx)2 =
1

2
· 1 +

1

2
· 6 =

7

2

and

(BTx)3 =
1

2
· 5 +

1

2
· 4 =

9

2
>

7

2
= (BTx)1

so (x, y) is not a Nash equilibrium.
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Example (continued)

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

Now let us check supports {U,D} and {M,R}. So let x =
[
x1 x2

]T
and y =

[
0 y2 y3

]T
.

(x, y) is a Nash equilibrium iff all the following conditions hold:

(Ay)1 = (Ay)2

(BTx)2 = (BTx)3 ≥ (BTx)1

x1 + x2 = 1

y2 + y3 = 1

x1, x2, y2, y3 ≥ 0 .
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Example (continued)

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

We have, equivalently,

(BTx)2 = (BTx)3

6 · x1 + 1 · x2 = 5 · x1 + 4 · x2

6x1 + 1(1− x1) = 5x1 + 4(1− x1)

x1 = −1/4

which is not an acceptable solution (negative probability is impossible), so
(x, y) is not an equilibrium.
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Example (continued)

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

Now let us check supports {U,D} and {L,R}. So let x =
[
x1 x2

]T
and y =

[
y1 0 y3

]T
.

(x, y) is a Nash equilibrium iff all the following conditions hold:

(Ay)1 = (Ay)2

(BTx)1 = (BTx)3 ≥ (BTx)2

x1 + x2 = 1

y1 + y3 = 1

x1, x2, y1, y3 ≥ 0 .
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Example (continued)

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

We have, equivalently,

(Ay)1 = (Ay)3

6 · y1 + 2 · y3 = 1 · y1 + 3 · y3

6y1 + 2(1− y1) = y1 + 3(1− y1)

y1 = 1/6

y3 = 5/6 .
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Computing Nash equilibria
Mixed Nash equilibria

Example (continued)

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

Also, for the column player:

(BTx)1 = (BTx)3

1 · x1 + 6 · x2 = 5 · x1 + 4 · x2

x1 + 6(1− x1) = 5x1 + 4(1− x1)

x1 = 1/3

x2 = 2/3 .
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

Example (continued)

L M R

U 6, 1 1, 6 2, 5

D 1, 6 6, 1 3, 4

Then

(BTx)1 = (BTx)3 = 1 · 1

3
+ 6 · 2

3
=

13

3

and

(BTx)2 = 6 · 1

3
+ 1 · 1

3
=

7

3
<

13

3
= (BTx)1

so in this case the solution (x, y) is a Nash equilibrium.
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

The rock-scissors-paper game

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

Let us consider full supports, i.e., {R, S ,P} for both players.

So let x =
[
x1 x2 x3

]T
and y =

[
y1 y2 y3

]T
.

(x, y) is a Nash equilibrium iff all the following conditions hold:

(Ay)1 = (Ay)2 = (Ay)3

(BTx)1 = (BTx)2 = (BTx)3

x1 + x2 + x3 = 1

y1 + y2 + y3 = 1

x1, x2, x3, y1, y2, y3 ≥ 0 .
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Equilibria Computing Nash equilibria

Computing Nash equilibria
Mixed Nash equilibria

The rock-scissors-paper game

R S P

R 0, 0 1, -1 -1, 1

S -1, 1 0, 0 1, -1

P 1, -1 -1, 1 0, 0

For the row player we get the system of equations:

0 · y1 + 1 · y2 + (−1) · y3 = (−1) · y1 + 0 · y2 + (−1) · y3

(−1) · y1 + 0 · y2 + (−1) · y3 = 1 · y1 + (−1) · y2 + 0 · y3

y1 + y2 + y3 = 1 ,

whose solution is y1 = y2 = y3 = 1/3.
Similarly, we can show that x1 = x2 = x3 = 1/3.
Note: It can be shown that this is the unique equilibrium of the game.
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Equilibria Existence of Nash equilibrium

Existence of Nash equilibrium

Nash’s Theorem

Every game with finite number of players and finite number of pure
strategies for each player has at least one Nash equilibrium (involving pure
or mixed strategies).

A general proof of Nash’s theorem relies on the use of a fixed point
theorem (e.g., Brouwer’s or Kakutani’s). Roughly:

For some compact set S and a map f : S→ S that satisfies various
conditions, the map has a fixed point p ∈ S, i.e., such that f (p) = p.

The proof of Nash’s theorem follows by showing that the best
response map satisfies the necessary conditions for it to have a fixed
point.
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Equilibria Existence of Nash equilibrium

Existence of Nash equilibrium
2 × 2 bimatrix games

We will provide a self-contained proof of Nash’s theorem for 2× 2 bimatrix
games. Consider a 2× 2 bimatrix game with arbitrary payoffs:

L R

U a, b c , d

D e, f g , h

First we consider pure Nash equlibria:

1 If a ≥ e and b ≥ d then (U, L) is a Nash equilibrium.

2 If e ≥ a and f ≥ h then (D, L) is a Nash equilibrium.

3 If c ≥ g and d ≥ b then (U,R) is a Nash equilibrium.

4 If g ≥ c and h ≥ f then (D,R) is a Nash equilibrium.
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Equilibria Existence of Nash equilibrium

Existence of Nash equilibrium
2 × 2 bimatrix games

L R

U a, b c , d

D e, f g , h

There is no pure Nash equilibrium if either

1 a < e and f < h and g < c and d < b, or

2 a > e and f > h and g > c and d > b.

In these cases we look for a mixed Nash equilibrium.

Let x =

[
p

1− p

]
, y =

[
q

1− q

]
.

(x, y) is a Nash equilibrium if and only if

(Ay)1 = (Ay)2 and (BTx)1 = (BTx)2 .
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Equilibria Existence of Nash equilibrium

Existence of Nash equilibrium
2 × 2 bimatrix games

L R

U a, b c , d

D e, f g , h

We have:

Ay =

[
a c
e g

] [
q

1− q

]
=

[
aq + c(1− q)
eq + g(1− q)

]
BTx =

[
b f
d h

] [
p

1− p

]
=

[
bp + f (1− p)
dp + h(1− p)

]
,

and (x, y) is a Nash equilibrium if and only if

aq + c(1− q) = eq + g(1− q) and bp + f (1− p) = dp + h(1− p) .
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Equilibria Existence of Nash equilibrium

Existence of Nash equilibrium
2 × 2 bimatrix games

Equivalently:

q =
c − g

c − g + e − a

and

p =
h − f

h − f + b − d
.

Recall the two cases where there is no pure Nash equilibrium:

1 a < e and f < h and g < c and d < b, or

2 a > e and f > h and g > c and d > b.

In both cases, 0 < p, q < 1 as required for a mixed Nash equilibrium.
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Equilibria Existence of Nash equilibrium

Existence of symmetric Nash equilibrium

We now will prove that every symmetric 2× 2 bimatrix game has at least
one symmetric Nash equilibrium, i.e., an equilibrium of the form (x, x).
Consider a 2× 2 symmetric bimatrix game with arbitrary payoffs:

S T

S a, a b, c

T c , b d , d

First we consider pure Nash equilibria:

1 If a ≥ c then (S ,S) is a symmetric Nash equilibrium.

2 If d ≥ b then (T ,T ) is a symmetric Nash equilibrium.

3 If a < c and d < b then there is no symmetric pure Nash equilibrium,
so we will look for a mixed strategy Nash equilibrium.
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Equilibria Existence of Nash equilibrium

Existence of symmetric Nash equilibrium

S T

S a, a b, c

T c , b d , d

Let x =

[
p

1− p

]
, A =

[
a b
c d

]
.

(x, x) is a symmetric Nash equilibrium if and only if

(Ax)1 = (Ax)2 .

We have:

Ax =

[
a b
c d

] [
p

1− p

]
=

[
ap + b(1− p)
cp + d(1− p)

]
,
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Equilibria Existence of Nash equilibrium

Existence of symmetric Nash equilibrium

Hence (x, x) is a symmetric Nash equilibrium if and only if

ap + b(1− p) = cp + d(1− p)

p =
b − d

c − a + b − d

Recall that, if there is no pure symmetric Nash equilibrium, then
a < c and d < b:

So 0 < p < 1 as required for a mixed Nash equilibrium.
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Approximate equilibria

1 Background: Basic concepts in matrix algebra

2 Strategies and payoffs

3 Equilibria

4 Approximate equilibria
Definitions
3/4-approximate Nash equilibrium
1/2-approximate Nash equilibrium
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Approximate equilibria Definitions

The emergence of Nash equilibrium approximations

(Chen and Deng; 2006) Computing a Nash equilibrium is
PPAD-complete, even for bimatrix games.

Hence, we seek for ε-approximate Nash equilibria, in which no player
can improve her payoff by more than ε by deviating.

(Chen, Deng and Teng; 2006) Computing a 1
nΘ(1) -approximate Nash

equilibrium is PPAD-complete.

(Lipton, Markakis and Mehta; 2004) It is conjectured that it is
unlikely that finding an ε-approximate Nash equilibrium is
PPAD-complete when ε is an absolute constant.
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Approximate equilibria Definitions

Approximate equilibria

Recall: Given a bimatrix game Γ = (A,B) and a strategy profile (x, y),

Row player’s regret is maxi (Ay)i − xTAy.

Column player’s regret is maxj(B
Txj)− xTBy.

Then,

(x, y) is a Nash equilibrium if and only if both players have regret 0.

In an approximate Nash equilibrium, the above condition is relaxed:

(x, y) is an ε-approximate Nash equilibrium if and only if both players have
regret at most ε.
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Approximate equilibria Definitions

Approximate equilibria
Definition

Equivalently:

Definition

(x, y) is an ε-approximate Nash equilibrium of the m × n bimatrix game
Γ = (A,B) if and only if

xTAy ≥ (Ay)i − ε ∀i = 1, . . . ,m and

xTBy ≥ (BTx)j − ε ∀j = 1, . . . , n .

Note: This is an additive approximation.

We consider bimatrix games with positively normalized matrices: each
element (payoff) is in the range [0, 1].
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Approximate equilibria Definitions

Positively normalized games

We will show that every pair of equilibrium strategies of a bimatrix game
does not change upon multiplying all the entries of a payoff matrix by a
constant, and upon adding the same constant to each entry.

Consider the n ×m bimatrix game Γ = (A,B) and let c , d be two
arbitrary positive real constants.

Suppose that (x̃, ỹ) is a Nash equilibrium for Γ

Let x and y be any strategy of the row and column player respectively.

Now consider the game Γ′ = (cA, dB). Then it holds that

xT (cA)ỹ = cxTAỹ ≤ c x̃TAỹ = x̃T (cA)ỹ

and, similarly,
x̃T (dB)y ≤ x̃T (dB)ỹ .
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Approximate equilibria Definitions

Positively normalized games

Now suppose that (x̂, ŷ) is an ε-approximate Nash equilibrium for Γ.

Then
xT (cA)ŷ ≤ x̂T (cA)ŷ + cε

and
x̂T (dB)y ≤ x̂T (dB)ŷ + dε .

Hence Γ and Γ′ have precisely the same set of Nash equilibria;
furthermore, any ε-Nash equilibrium for Γ is a `ε-Nash equilibrium for
Γ′ (where ` = max{c , d}) and vice versa.
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Approximate equilibria Definitions

Positively normalized games

Now let C be an n ×m matrix such that, for all columns j , cij = cj
for all i .

Similarly, let D be an n ×m matrix such that, for all rows i , dij = di
for all j .

Note that, for every pair of strategies x, y,

xTCy =
n∑

j=1

m∑
i=1

cijxiyj =
n∑

j=1

yj

m∑
i=1

cjxi =
n∑

j=1

cjyj

and

xTDy =
m∑
i=1

n∑
j=1

dijxiyj =
m∑
i=1

xi

n∑
j=1

diyj =
m∑
i=1

dixi .

Consider now the game Γ′′ = (C + A,D + B).
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Approximate equilibria Definitions

Positively normalized games

Then, for all x,

xT (C + A)ỹ = xTC ỹ + xTAỹ ≤
n∑

j=1

cj ỹj + x̃TAỹ = x̃T (C + A)ỹ

and similarly, for all y,

x̃T (D + B)y ≤ x̃T (D + B)ỹ .

Also, for all x it holds that

xT (C +A)ŷ = xTC ŷ + xTAŷ ≤
n∑

j=1

cj ŷj + x̂TAŷ + ε = x̂T (C +A)ŷ + ε

and similarly, for all y,

x̂T (D + B)y ≤ x̂T (D + B)ŷ + ε .

Thus Γ and Γ′′ are equivalent as regards their sets of Nash equilibria,
as well as their sets of ε-Nash equilibria.
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Basic idea: Given an m × n bimatrix game Γ = (A,B):
1 Take the maximum element ai1,j1 of the row player’s payoff matrix A.
2 Take the maximum element bi2,j2 of the column player’s payoff matrix

B.
3 The row player plays rows i1 and i2 with probability 1/2 each, and the

column player plays columns j1 and j2 with probability 1/2 each.
4 Then the resulting strategy profile (x̂, ŷ), for which

x̂i1 = x̂i2 =
1

2
x̂t = 0 ∀t 6= i1, i2

ŷj1 = ŷj2 =
1

2
ŷt = 0 ∀t 6= j1, j2 ,

is a 3/4-approximate Nash equilibrium for Γ.
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Illustration:
1, 1/2 0, 1 0, 0

1, 0 0, 1/2 1, 1

0, 1 1, 0 0, 1

Consider the bimatrix game above.
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Illustration:
1, 1/2 0, 1 0, 0

1, 0 0, 1/2 1, 1

0, 1 1, 0 0, 1

Consider the bimatrix game above.

Find an entry that maximizes the payoff of the row player.
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Illustration:
1, 1/2 0, 1 0, 0

1, 0 0, 1/2 1, 1

0, 1 1, 0 0, 1

Consider the bimatrix game above.

Find an entry that maximizes the payoff of the row player.

Find an entry that maximizes the payoff of the column player.
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Illustration:
1, 1/2 0, 1 0, 0

1, 0 0, 1/2 1, 1

0, 1 1, 0 0, 1

Consider the bimatrix game above.

Find an entry that maximizes the payoff of the row player.

Find an entry that maximizes the payoff of the column player.

The row player chooses the highlighted rows with probability 1/2
each.

The column player chooses the highlighted columns with probability
1/2 each.
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Illustration (continued):

1, 1/2 0, 1 0, 0

1, 0 0, 1/2 1, 1

0, 1 1, 0 0, 1

Using bimatrix games notation:

A =

 1 0 0
1 0 1
0 1 0

 , B =

 1/2 1 0
0 1/2 1
1 0 1

 ,

x =

 1/2
0

1/2

 , y =

 1/2
0

1/2

 .
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Illustration (continued): We have:

Ay =

 1 0 0
1 0 1
0 1 0

 1/2
0

1/2

 =

 1/2
1
0


BTx =

 1/2 0 1
1 1/2 0
0 1 1

 1/2
0

1/2

 =

 3/4
1/2
1/2


xTAy =

[
1/2 0 1/2

]  1/2
1
0

 =
1

4

xTBy = (BTx)Ty =
[

3/4 1/2 1/2
]  1/2

0
1/2

 =
5

8
.
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Illustration (continued): Therefore

max
i

(Ay)i − xTAy = 1− 1

4
=

3

4

and

max
j

(BTx)j − xTBy =
3

4
− 5

8
=

1

8
.

So (x, y) is a 3/4-approximate Nash equilibrium.
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Formally:

Lemma

Consider an m × n bimatrix game Γ = (A,B) and let

ai1,j1 = max
i ,j

ai ,j

bi2,j2 = max
i ,j

bi ,j .

Then the pair of strategies (x̂, ŷ) where

x̂i1 = x̂i2 = ŷj1 = ŷj2 =
1

2

is a 3
4 -Nash equilibrium for Γ.

Paul G. Spirakis (U. Liverpool) Bimatrix Games 80 / 91



Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Proof: First observe that

x̂TAŷ =
m∑
i=1

n∑
j=1

x̂i ŷjaij

= x̂i1 ŷj1ai1,j1 + x̂i1 ŷj2ai1,j2 + x̂i2 ŷj1ai2,j1 + x̂j1 ŷj1ai2,j2

=
1

4
(ai1,j1 + ai1,j2 + ai2,j1 + ai2,j2) ≥ 1

4
ai1,j1 ,

x̂TB ŷ =
m∑
i=1

n∑
j=1

x̂i ŷjbij

= x̂i1 ŷj1bi1,j1 + x̂i1 ŷj2bi1,j2 + x̂i2 ŷj1bi2,j1 + x̂j1 ŷj1bi2,j2

=
1

4
(bi1,j1 + bi1,j2 + bi2,j1 + bi2,j2) ≥ 1

4
bi2,j2 .
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Approximate equilibria 3/4-approximate Nash equilibrium

How to find a 3/4-approximate Nash equilibrium
Kontogiannis, Panagopoulou, & Spirakis, 2006

Proof (continued): Now observe that, for any (mixed) strategies x and y
of the row and column player respectively,

xTAŷ ≤ ai1,j1 and x̂TBy ≤ bi2,j2

and recall that aij , bij ∈ [0, 1] for all i , j . Hence

xTAŷ ≤ ai1,j1 =
1

4
ai1,j1 +

3

4
ai1,j1 ≤ x̂TAŷ +

3

4

and

x̂TBy ≤ bi2,j2 =
1

4
bi2,j2 +

3

4
bi2,j2 ≤ x̂TB ŷ +

3

4
.

Thus (x̂, ŷ) is a 3
4 -Nash equilibrium for Γ.
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Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Basic idea: Given an m × n bimatrix game Γ = (A,B):
1 Choose an arbitrary pure strategy for the row player (say row i).
2 Take a best-response pure strategy to i for the column player (say

column j).
3 Take a best-response pure strategy to j for the row player (say row k).
4 The row player plays rows i and k with probability 1/2 each, and the

column player plays column j with probability 1.
5 Then the resulting strategy profile (x̂, ŷ), for which

x̂i = x̂k =
1

2
x̂t = 0 ∀t 6= i , k

ŷj = 1

ŷt = 0 ∀t 6= j ,

is an 1/2-approximate Nash equilibrium for Γ.
Paul G. Spirakis (U. Liverpool) Bimatrix Games 83 / 91



Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Illustration:
1/2, 1/2 0, 1 1, 0

1, 0 1/2, 1/2 0, 1

0, 1 1, 0 1/2, 1/2

Consider the bimatrix game above.
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How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Illustration:
1/2, 1/2 0, 1 1, 0

1, 0 1/2, 1/2 0, 1

0, 1 1, 0 1/2, 1/2

Consider the bimatrix game above.

Choose an arbitrary row.
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Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Illustration:
1/2, 1/2 0, 1 1, 0

1, 0 1/2, 1/2 0, 1

0, 1 1, 0 1/2, 1/2

Consider the bimatrix game above.

Choose an arbitrary row.

Take a best response for the column player.
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How to find an 1/2-approximate Nash equilibrium
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Illustration:
1/2, 1/2 0, 1 1, 0

1, 0 1/2, 1/2 0, 1

0, 1 1, 0 1/2, 1/2

Consider the bimatrix game above.

Choose an arbitrary row.

Take a best response for the column player.

Take a best response for the row player.

Paul G. Spirakis (U. Liverpool) Bimatrix Games 84 / 91



Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Illustration:
1/2, 1/2 0, 1 1, 0

1, 0 1/2, 1/2 0, 1

0, 1 1, 0 1/2, 1/2

Consider the bimatrix game above.

Choose an arbitrary row.

Take a best response for the column player.

Take a best response for the row player.

The row player chooses the highlighted rows with probability 1/2
each.

The column player chooses the highlighted column with probability 1.
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Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Illustration (continued):

1/2, 1/2 0, 1 1, 0

1, 0 1/2, 1/2 0, 1

0, 1 1, 0 1/2, 1/2

Using bimatrix games notation:

A =

 1/2 0 1
1 1/2 0
0 1 1/2

 , B =

 1/2 0 1
1 1/2 0
0 1 1/2

 ,

x =

 1/2
0

1/2

 , y =

 0
1
0

 .
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Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Illustration (continued): We have:

Ay =

 1/2 0 1
1 1/2 0
0 1 1/2

 0
1
0

 =

 0
1/2

0


BTx =

 1/2 0 1
1 1/2 0
0 1 1/2

 1/2
0

1/2

 =

 3/4
1/2
1/2


xTAy =

[
1/2 0 1/2

]  0
1/2

0

 = 0

xTBy = (BTx)Ty =
[

3/4 1/2 1/2
]  0

1
0

 =
1

2
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Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Illustration (continued): Therefore

max
i

(Ay)i − xTAy =
1

2
− 0 =

1

2

and

max
j

(BTx)j − xTBy =
3

4
− 1

2
=

1

4
.

So (x, y) is an 1/2-approximate Nash equilibrium.
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Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Formal proof:

Recall: i is an arbitrary row, j is a best-response column to j , and k is
a best-response row to j , and x̂i = x̂k = 1/2 and ŷj = 1.

The row player’s payoff under (x̂, ŷ) is

x̂TAŷ =
m∑
t=1

n∑
r=1

x̂t ŷrart =
1

2
aij +

1

2
akj .

By construction, one of her best responses to ŷ is to play the pure
strategy on row k , which gives a payoff of akj .

Hence her regret (incentive to defect) is equal to the difference:

akj −
(

1

2
aij +

1

2
akj

)
=

1

2
akj −

1

2
aij ≤

1

2
akj ≤

1

2
.
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Approximate equilibria 1/2-approximate Nash equilibrium

How to find an 1/2-approximate Nash equilibrium
Daskalakis, Mehta, & Papadimitriou, 2006

Proof (continued):

The column player’s payoff under (x̂, ŷ) is

x̂TB ŷ =
m∑
t=1

n∑
r=1

x̂t ŷrbrt =
1

2
bij +

1

2
bkj .

Let j ′ be a best-response pure strategy (column) to x̂, giving her a
payoff of 1

2bij ′ + 1
2bkj ′ .

Hence the regret of the column player is equal to the difference:(
1

2
bij ′ +

1

2
bkj ′

)
−
(

1

2
bij +

1

2
bkj

)
=

1

2

(
bij ′ − bij

)
+

1

2

(
bkj ′ − bkj

)
≤ 0 +

1

2

(
bkj ′ − bkj

)
≤ 1

2
.

(The first inequality follows from the fact that column j was a best
response to row i , by the first step of the construction.)
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Approximate equilibria 1/2-approximate Nash equilibrium

Some other results on approximate Nash equilibria

(Chen, Deng and Teng, 2006) Computing a 1
nΘ(1) -Nash equilibrium is

PPAD-complete.

(Lipton, Markakis and Mehta, 2004) For any constant ε > 0, there
exists an ε-Nash equilibrium that can be computed in
quasi-polynomial (nO(ln n)) time.

It is conjectured that it is unlikely that finding an ε-Nash equilibrium
is PPAD-complete when ε is an absolute constant.

The best known polynomial-time constant approximation achieves
ε = 0.3393 (Tsaknakis and Spirakis, 2008).
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Further reading

J. N. Webb: Game Theory: Desicions, Interaction and Evolution.
Springer, 2007.

M. J. Osborne: An Introduction to Game Theory. Oxford University
Press, 2004.

R. B. Myerson: Game Theory: Analysis of Conflict. Harvard
University Press, 1991.

S. C. Kontogiannis, P. N. Panagopoulou, P. G. Spirakis: Polynomial
algorithms for approximating Nash equilibria of bimatrix games.
WINE 2006, pp. 286–296.

C. Daskalakis, A. Mehta, C. H. Papadimitriou: A note on
approximate Nash equilibria. WINE 2006, pp. 297–306.

R. J. Lipton, E. Markakis, A. Mehta: Playing large games using
simple strategies. EC 2003, pp. 36–41.

H. Tsaknakis, P. G. Spirakis: An optimization approach for
approximate Nash equilibria. WINE 2007, pp: 42–56.
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