From Parity and Payoff Games
to Linear Programming

Sven Schewe

University of Liverpool
sven.schewe@liverpool.ac.uk

Abstract. This paper establishes a surprising reduction from parity and
mean payoff games to linear programming problems. While such a con-
nection is trivial for solitary games, it is surprising for two player games,
because the players have opposing objectives, whose natural translations
into an optimisation problem are minimisation and maximisation, re-
spectively. Our reduction to linear programming circumvents the need
for concurrent minimisation and maximisation by replacing one of them,
the maximisation, by approximation. The resulting optimisation problem
can be translated to a linear programme by a simple space transforma-
tion, which is inexpensive in the unit cost model, but results in an ex-
ponential growth of the coefficients. The discovered connection opens up
unexpected applications — like p-calculus model checking — of linear pro-
gramming in the unit cost model, and thus turns the intriguing academic
problem of finding a polynomial time algorithm for linear programming
in this model of computation (and subsequently a strongly polynomial
algorithm) into a problem of paramount practical importance: All ad-
vancements in this area can immediately be applied to accelerate solving
parity and payoff games, or to improve their complexity analysis.

1 Introduction

This paper links two intriguing open complexity problems, solving parity and
payoff games and solving linear programming problems in the unit cost model.

Linear programming [1-7], the problem of maximising ¢’ x under the side
conditions Ax < b and x > 0, is one of the most researched problems in com-
puter science and discrete mathematics. The interest in linear programming has
two sources: It has a significant practical impact, because a wide range of opti-
misation problems in economy and operations research can be approached with
linear programming, and it is the source of a range of challenges that remained
unresolved for years.

The most prominent open challenge is Smale’s 9** problem [8], which asks if
linear programming has a polynomial time solution in the unit cost model. In
the unit cost model, we assume that all arithmetic operations have an identical
unit cost. This model is inspired by the desire of mathematicians to use real
numbers instead of rationals, but it can also be applied to handle large numbers,

whose representation in binary led to an exponential (or higher) blow-up in the
size of the problem description.

Dantzig’s simplex algorithm addresses both complexity models alike. While
highly efficient in practice [1], Klee and Minty [2] showed that the worst case
running time of the simplex algorithm is exponential in the size of the linear
programme. Their original proof referred to a particular Pivot rule, but it has
proven to be very flexible with respect to the chosen Pivot rule, and could be
extended to every suggested deterministic Pivot rule that does not depend on
the history of previous updates. The proof is also independent of the chosen cost
model, because the path constructed by the Pivot rule has exponential length.

While the complexity for the unit cost model is still open, polynomial time
algorithms for the Turing model like Kachian’s ellipsoid method [3] and interior
point methods such as Karmarkar’s algorithm [4] are known for decades. Unfor-
tunately, these algorithms depend on the size of the binary representation of the
numbers, and do not provide any insight for the unit cost model. Apart from the
mathematical interest in determining the unit cost complexity of solving linear
programmes, such an algorithm is a prerequisite of finding a strongly polynomial
time algorithm. The requirement for an algorithm to be strongly polynomial
is slightly higher: It also requires that the intermediate arithmetic operations
can be performed in polynomial time, which usually depends on the representa-
tion of the numbers. Thus, a polynomial time algorithm in the unit cost model
will usually provide a polynomial time algorithm for some representation of the
numbers different from the usual binary representation.

Current attempts to finding a strongly polynomial time algorithm focus on
the Simplex algorithms. Randomised update strategies, for example, have been
suggested early on for the simplex technique, but their complexity has not yet
been analysed successfully. For the simplest of these techniques, which uses a
random edge Pivot rule that chooses a profitable base change uniformly at ran-
dom, the number of arithmetic steps needed on non-degenerated simplices is
merely known to be at least quadratic in the size of the constraint system [5].
Shadow vertex techniques [6, 7] for exploring the simplex allowed for randomised
polynomial time procedures for the approximation [6] and computation [7] of the
solution to linear programmes.

Parity and Payoff Games are finite two player zero sum games of infinite
duration. They are played on labelled directed graphs, whose vertices are parti-
tioned into two sets of vertices owned by two players with opposing objectives.
Intuitively, they are played by placing a pebble on the game graph. In each step,
the owner of a vertex chooses a successor vertex of the digraph. This way, an
infinite run of the game is constructed, where the objectives of the players is to
minimise and maximise the average payoff of the moves in mean payoff games,
or to enforce parity or imparity of the highest colour occurring infinitely many
times in parity games, respectively. These games play a central role in model
checking [9-13], satisfiability checking [11,9,14,15], and synthesis [16,17], and
numerous algorithms for solving them have been studied [9, 18-34]. Mean payoff
games [34-36] have further applications in economic game theory.

The complexity of solving parity games is equivalent to the complexity of
p-calculus model checking [9]. The complexity of solving parity and mean payoff
games is known to be in the intersection of UP and coUP [22], but its mem-
bership in P is still open. Up to a recent complexity analysis by Friedman [37],
strategy improvement algorithms [25-29] have been considered candidates for a
polynomial running time. To the best of my knowledge, all algorithms proposed
so far for solving parity or mean payoff games are now known not to be in P.

The Reduction proposed in this paper reduces testing if there are states in a
mean payoff game with value > 0 to solving a linear programming problem. It
is simple to extend this non-emptiness test to finding the 0 mean partition of a
mean payoff game and hence to solving parity and mean payoff games.

Our reduction goes through an intermediate representation of the non-
emptiness problem to a non-standard optimisation problem that treats minimi-
sation and maximisation quite differently: While minimisation is represented
in a standard way — replacing minimisation v = min{t,ts,...,t,} over n
terms by n inequalities v < t; and maximising over the possible outcome —
maximisation is replaced by an approximation within small margins. We use
v = log, (b** 4+ b'2 + b'*) instead of v = max{t1,ts,...,t,}, which keeps the error
of the operation sufficiently small if the basis b is big enough:

max{ti,t2,...,t,} <log, (b +b" +b'™) <log,n + max{ti,ta,...,tn}.

From there it is a small step to building a linear programme that computes the
exponent of the solution to this non-standard optimisation problem.

Starting from parity games or from mean payoff games with a binary repre-
sentation of the edge weights, this linear programme is cheap to compute in the
unit cost model (bi-linear in the number of vertices and edges and linear in the
size of the representation), but the constants are exponential in the edge weights
of the mean payoff game, and doubly exponential in the number of colours for
parity games.

The benefit of the proposed reduction for game solving is therefore not imme-
diate, but depends on future results in linear programming. There has, however,
been recent progress in the quest for polynomial time algorithms in the unit cost
model, or even strongly polynomial algorithms. Shadow vertex techniques [6, 7],
for example, seem to be promising candidates; Kelner and Spielman [7] use this
quest as the main motivation for their randomised polynomial time algorithm.

But the benefit of the reduction is bi-directional. While solving finite games
of infinite duration automatically profits from future progress in the theory of
linear programming, linear programming profits from the problem: The proposed
reduction contributes an important natural problem class that can be reduced to
linear programming, but requires a polynomial time algorithm in the unit cost
model, because the constants are too large for efficient binary representation.
Opening up a range of model checking problems to linear programming, the
proposed reduction lifts the problem of finding such algorithms from a problem
of mere academic interest to one of practical importance. Furthermore, it is

unintuitive that the complexity of inherently discrete combinatorial problems
like p-calculus model checking or solving parity games should depend on the
cost model of arithmetic operations. Provided a polynomial time algorithm for
solving linear programming problems in the unit cost model is found, it thus
seems likely that a polynomial time algorithm for solving parity games can be
inferred.

2 Finite Games of Infinite Duration

Finite games of infinite duration (w-games) are played by two players, a Max-
imiser and a Minimiser, with opposing objectives. w-games are composed of a
finite arena and an evaluation function.

Arenas. A finite arena is a triple A = (Vinax, Vinin, £) consisting of

— aset V = VipaxUVinin of vertices that is partitioned into two disjoint sets Vinax
and Viin, called the vertices owned by the Mazimiser and Minimiser, re-
spectively, and

— aset E CV xV of edges, such that (V, E) is a directed graph without sinks.

Plays. Intuitively, a game is played by placing a token on a vertex of the arena. If
the token is on a vertex v € Vipax, the Maximiser chooses an edge e = (v,v') € E
originating in v to a vertex v’ € V and moves the token to v'. Symmetrically,
the Minimiser chooses a successor in the same manner if the token is on one of
her vertices v € V. In this way, they successively construct an infinite play
Y= VoV1V2V3 ... € Ve,

Strategies. For a finite arena A = (Vipax, Vinin, £), @ (memoryless) strategy for
the Maximiser is a function f : Viyax — V that maps every vertex v € Viax of
the Maximiser to a vertex v € V' such that there is an edge (v,v') € E from
v to v'. A play is called f-conform if every decision of the Maximiser in the
play is in accordance with f. For a strategy f of the Maximiser, we denote with
Af = (Vimax, Vinin, Ef) the arena obtained from A by deleting the transitions
from vertices of the Maximiser that are not in accordance with f. The analogous
definitions are made for the Minimiser.

Mean Payoff Games. A mean payoff game is a game M = (Vinax, Vinin, E, w)
with arena A = (Vinax, Vinin, E) and a weight function w : E — Z from the edges
of the mean payoff game to the integers. Each play ¥ = vyvivs ... of a mean
payoff game is evaluated to value(¥) = linrgigf Ly w((viey,).

As a variant, we can allow for real valued weight functions w : £ — R. We
then refer explicitly to a real valued mean payoff game.

The objective of the Maximiser and Minimiser are to maximise and minimise
this value, respectively. For single player games where all vertices are owned by
one player (or, likewise, all vertices owned by the other player have exactly one

successor), the optimal strategy for this player from some vertex v is to proceed
to a cycle with maximal or minimal average weight a and henceforth follow it.
The outcome value(v) = a of this game when started in v is called the value of
v. Mean payoff games are memoryless determined:

Proposition 1. [3/-36] For every real valued mean payoff game M, there are
Minimiser and Mazimiser strategies f and g, respectively, such that the value of
every vertex in My equals the value of every vertex in M,. O

The 0 mean partition M>o = {v € V' | value(v) > 0} of a mean payoff game
is thus well-defined. We say that a vertex v is winning for the Maximiser if it is
in Mo, and winning for the Minimiser otherwise.

Corollary 1. [8/-36] The 0 mean partition is well-defined, and both players
have winning strategies for their respective winning region M>o and V' \ M>o.
O

Solving a mean payoff game can be reduced to finding the 0 mean partition of
a number of games played on sub-arenas with a slightly adjusted weight function,
because the average weight of a cycle is a multiple of % for some n < |V, and
it hence suffices to know that the value is within an interval [-%, 5[for some
integer ¢ € Z.

Corollary 2. A mean payoff game with n vertices and maximal absolute edge
weight a can be solved in time O(n log(a + n)) when using an oracle for the
construction of 0 mean partitions. a

Parity Games. A parity game is a game P = (Vinax, Vinin, B, @) with arena
A = (Vinax, Vimnin, E) and a colouring function « : V' — C C N that maps each
vertex of P to a natural number. C denotes the finite set of colours.

Each play is evaluated by the highest colour that occurs infinitely often.
The Maximiser wins a play ¢ = wvovivavs ... if the highest colour occurring
infinitely often in the sequence a(¥) = a(vo)a(vi)a(va)a(vs)... is even, while
the Minimiser wins if the highest colour occurring infinitely often in a(d) is
odd. Without loss of generality, we assume that the highest occurring colour is
bounded by the number of vertices in the arena. It is simple to reduce solving
parity games to finding the 0 mean partition of a mean payoff game: One can
simply translate a colour ¢ to the weight |V | [34].

Corollary 3. [3/] Parity games are memoryless determined, and solving them
can be reduced in time O(mn) to solving the 0 mean partition problem of a mean
payoff game with the same arena, such that the Minimiser and Mazimiser have
the same winning regions and winning strategies. g

3 Reduction

In this section, we describe a reduction from finding the 0 mean partition of a
mean payoff game, to which solving parity and payoff games can be reduced in

polynomial time by Corollaries 2 and 3, to solving a linear programming problem.
We first focus on the slightly simpler problem of testing A > for emptiness, and
reduce this question to a linear programming problem.

The first important observation for our reduction is that membership in M>g
is invariant under increasing the weight function slightly: If every edge weight
in a mean payoff game with n vertices is increased by some value in [0, %[, then
the weight of every cycle is increased by a value in [0, 1[, and hence non-negative
if, and only if, the original integer valued weight of the cycle is non-negative.

Lemma 1. If we increase the weight function of an (integer valued) mean payoff
game M = (Viax, Viin, E, w) with n = |V| vertices for every edge by some non-
negative value < %, then the same cycles as before have non-negative weight in
the resulting real valued mean payoff game, and the 0 mean partition does not
change. O

This observation is used to replace maximisation in a natural representation
of the objectives of both players in a mean payoff game (Subsection 3.1) by a
logarithmic expression in Subsection 3.2, which is subsequently translated into
a boundedness test for a linear programming problem in Subsection 3.3. In Sub-
section 3.4, we show how this boundedness test, which refers to a non-emptiness
test of M>o, can be adjusted to a bounded optimisation problem that provides
Mg, and discuss the complexity of the transformations in Subsection 3.5. An
example that illustrates these transformations is provided in Section 4.

3.1 Basic Inequations

We now devise a set of inequalities that have a non-trivial solution if, and only if,
M is non-empty. For our reduction, we extend addition from R to R U {—o0}
in the usual way by choosing a + (—00) = —co = —oco +a for all a € RU {—o0}.
This motivates the definition of a family of basic inequalities for a mean payoff
game M = (Vinax, Vinin, E, w) that contains one inequality

v <w((v,v")) +v'

for every edge (v,v') originating from a Minimiser vertex v € Vin, and one
inequality

v <max {w((v,v")) | V' € suc(v)} + ¢,

for every Maximiser vertex v € Viyax, where suc(v) denotes the set of successor
vertices of v, and each ¢, € [0, ﬁ[can be any sufficiently small slip value (cf.
Lemma 1).

Every such system of inequalities has a trivial solution that assigns —oo to
every vertex; but it also has a real valued solution for all vertices in M.

Lemma 2. For every such system of inequalities for a mean payoff game M =
(Vinax, Vinin, E,w), a vertex v € V has a real valued solution if, and only if, v is
mn Mzo.

Proof. ‘<=:" Let us fix an optimal strategy for the Maximiser in the mean payoff
game and consider the system of inequalities that contain one equation v <
w(e)+v' for every edge of the resulting singleton game. (A solution to this set of
inequalities is obviously a solution to the original set of inequalities.) This set of
inequalities has obviously a solution that is real valued for every vertex v € Mx
(and sets v = —oo for every vertex v not in Mxq)*.

‘=’ A real valued solution for a vertex v defines a strategy for the Maximiser
that witnesses value(v) > 0: If v < max {w((v,v")) | v' € suc(v)} + ¢, holds
true, then v < w((v,v')) + v’ + ¢, holds for some v’ € suc(v) in particular, and
we choose a Maximiser strategy that fixes such a successor for every Maximiser
vertex. By a simple inductive argument, every vertex u reachable from v in the
resulting singleton game is real valued, and, for every cycle reachable from v,
the sum of the edge weights and vertex slips is non-negative. As the sum of the
vertex slips is strictly smaller than 1 in every cycle, the sum of the edge weights
is strictly greater than —1, and hence non-negative. O

Naturally, having one real valued solution implies having unbounded solu-
tions, because adding the same value r € R to every value of a solution provides
a new solution.

3.2 Logarithmic Inequations

These observations set the ground for a reduction to linear programming:
For a sufficiently large basis b > 1, 108, >, ue(v) pe((vv)) pv" equals

max {w((v,v")) +v' | v' € suc(v)} + ¢, for some slip value ¢, € [0, 2], because

v’gsﬁv){w((v’v/))+v/} <log, Z b)) g < og, |suc(v)|+v,g3§(v){w((v,v'))+v/}
v'Esuc(v)

holds true. (For the extension to RU {—o0o0} we use the usual convention b~ =
0 and log, 0 = —o0.) Choosing a basis b > Nout! V! that is greater than the
|V|-th power of the maximal out-degree n,,; of Maximiser vertices guarantees
log, i < %, and hence that the small error caused by moving from minimisation
to the logarithm of the sum of the exponents is within the margins allowed for
by Lemma 1.

Corollary 4. The system of inequalities consisting of the Minimiser inequalities
and the adjusted Maximiser inequalities have a real valued solution for a vertex
v €V if, and only if, v € M>o. O

! Starting with the digraph with states Ms>o and the respective edges defined by
the fixed Maximiser strategy, we can apply the following algorithm until values are
assigned to all vertices in M>o: (1) pick a vertex v in a leaf component of the digraph
that is the minimum of the weighted distance to plus the value assigned to any vertex
v’ that is already removed from the graph (or an arbitrary value if no such vertex
exists), and then (2) remove v from the graph.

Note that the reduction uses estimation from below (through the inequality)
as well as estimations from above (through the slip) at the same time, which is
sound only because the slip values are within the small margins allowed for by
Lemma 1.

3.3 Linear Inequations

The resulting optimisation problem can be translated into a standard linear
programming problem by a simple space transformation: As the exponential
function v — b? is a strictly monotone ascending mapping from RU {—o0} onto
R=°, we can simply replace the Minimiser inequalities by

by < bw((v,v')) . bv"

for every edge (v,v') originating from a Minimiser vertex v € Vp,, and the
adjusted Maximiser inequalities by

pY < Z bw((v,v')) bv'

v’ Esuc(v)

for every vertex v € Vinax owned by the Maximiser, and require b > 0 for all
vertices v € V of the game.
Reading the bV as variables, this provides us with a linear constraint system

Ax <0, subject to x > 0,

and Corollary 4 implies that this constraint system has a solution different from
x = 0 if, and only if, M>(is non-empty for the defining mean payoff game. As
every positive multiple of a solution to Ax < 0 and x > 0 is again a solution,
this implies the following corollary:

Corollary 5. The resulting linear programme maximise 17x for Ax < 0 and
x > 0 is unbounded if Mxq is non-empty, and the constraint system has x = 0
as the only solution if M>o =0 is empty. O

3.4 From Qualitative to Quantitative Solutions

While solving the linear programme introduced in the previous subsection an-
swers only the qualitative question of whether the linear programming problem
is bounded, and hence if M>¢ is non-empty, it is simple to extend the approach
to a qualitative solution that provides us with M>¢ and a strategy for the Max-
imiser that witnesses this. To achieve this, it suffices to bound the value of every
vertex from above, for example, by adding a constraint x < 1, or any other con-
straint x < d for some constant vector d > 0. (Where > for the vector requires
> for every row.)

Proposition 2. For every constant vector d > 0, the solution to the linear
programming problem maximise ¢x for Ax < 0, x < d, and x > 0 assigns a
value # 0 to a variable if, and only if, it is in M>o. A witnessing strategy for the
Mazimiser in the defining mean payoff game can be inferred from the solution.

Proof. For the solution of the linear programming problem it holds that if a
Maximiser vertex v has some successor with non-zero value, or if a Minimiser
vertex v has only non-zero successors, than the value bV assigned to v by the
solution is also non-zero. (Otherwise we could increase it, and hence 17x, without
changing any other value.) Hence, the logarithms of the solution define a solution
to the system of logarithmic inequalities from the previous subsection, and we
can infer a witnessing strategy for the Maximiser as described in the proof of
Lemma 2.

Now consider a solution to the new linear programming problem defined by
the sub-game of the mean payoff game that contains only the vertices with 0
values. If it had a solution different to 0, we could increase the solution of the
linear programming problem we started with by € times the solution of the new
liner programming problem for a sufficiently small € > 0. Hence 0 is the only
solution to the new problem, and therefore there is no real valued solution for
the basic or logarithmic inequalities defined by this sub-game. By Corollary 1
the Minimiser has thus a witnessing strategy for the 0 mean partition in the
sub-game, which is also a witnessing strategy in the full game. O

3.5 Translation Complexity

The proposed translation of a given mean payoff game to a linear programming
problem is cheap in the unit cost model:

Proposition 3. A mean payoff game M with n vertices and m edges, and edge
weights represented in binary can be translated in time O(|JM|+nm) in the unit
cost model. (Where | M| denotes the length of the representation of M.)

Proof. We have to compute the linear constraint Ax < 0, which requires the
computation of the non-zero constants of A, and filling up A with 0s. As the rows
of A refer to Maximiser vertices or edges originating from Minimiser vertices,
and the columns refer to vertices, the latter requires O(nm) steps.

Each edge refers to exactly one non-zero constant in A, and we need to trans-
late the edge weight w(e) to b*(¢). We compute by = b (computing b is well within
O(nm)), and then b; = b®) = b2 | for all i < log, max{|w(e)| | e € E}. b*(©)
can then be expressed as a product of the respective b; if w(e) > 0 is positive,
as its reciprocal if w(e) < 0 is negative, and by 1 if w(e) = 0. The required time
for the computation of 4”(¢) is therefore linear in the binary representation of
w(e), and computing all constants b*(¢) requires O(|M|) operations. a

The translation of parity games to mean payoff games [34] discussed in Sec-
tion 2 implies a likewise bound for parity games.

[®

©,
(a) (b)

Fig. 1. Figure 1(a) shows a small example parity game. The vertices of the player
with the objective to ensure parity are depicted as squares, while the positions of her
opponent are depicted as circles. The vertices of the parity game are decorated with
their respective colour. The parity game of Figure 1(a) is translated into the mean
payoff game M of Figure 1(b). The edges of M are decorated with their weights, and
the vertices with their name.

Corollary 6. A parity game P with n vertices and m edges can be translated
in time O(nm) in the unit cost model. a

Note that this also implies a polynomial bound on the cost of translating a
mean payoff game whose edge weights are represented in unary — and hence
of parity games with a bounded number of colours — in the Turing model of
computation.

Corollary 7. For parity games with a bounded number of colours and mean
payoff games where the edge weights are represented in unary, the reduction
results in a linear programme in binary representation that can be constructed
in polynomial time. O

As a result, the known polynomial bounds [3,4] for solving linear program-
ming problems in the Turing model of computation imply a polynomial bound
for these sub-problems.

Corollary 8. Parity games with a bounded number of colours and mean payoff
games whose edge weights are represented unary can be solved in polynomial
time. a

Remark 1. If the algorithm requires non-degenerated linear programmes, then
we can first apply the strongly polynomial standard e-perturbation technique
[38].

While the bounds provided by Corollary 8 are not new, they can be consid-
ered as a sanity check for new techniques: Besides its potential for parity and
mean payoff games in general, the reduction is good enough to infer the relevant
known polynomial bounds.

4 Example

This section contains an example reduction from solving the small parity game
from Figure 1(a) to a linear programming problem.

10

Finding the winning region for the player that wins when the highest colour
occurring infinitely many times is even can be reduced to finding the 0 mean
partition of the mean payoff game from Figure 1(b). By Lemma 2, finding this
0 mean partition reduces to determining which variables can have a real value
in a solution to any set

vy <max{vs — 1, va — 1} + ¢y, vy < vy vy <wvy—1
ve < max{vy, vs+4, va —1} + ¢y, vg3 <wg—1 vy < vz +4

of inequations, where ¢, , ¢y, < i can be any non-negative constant smaller than
the reciprocal of the size of the game.

The maximal out-degree of a Maximiser vertex is 3, and choosing a basis
b big enough to provide log, 3 < %, which holds for all b > 3%, we can seek a
solution to the inequations

v < IOgb(bvz_l + bv4—1) v3 < U1 vy <wp—1
vy < IOgb(bvl + brstt 4 bv4_1) vy <wg —1 vy <wg+4

instead by Corollary 4, because log; (b*? + b"*~') = max{vs, vy — 1} + ¢,, and
logy (bv+ % + bvsT4 4+ b¥4) = max{v; — 1, v3 + 4, vy} + ¢,, holds for some ¢,, <
log, 2 < i and c¢,, <log, 3 < %, respectively.

This system of inequations on the domain [—oo, 0o[can be rewritten as the
system

bUr < bl bz 4 b e bUs < b bUs < bl e
bU2 < bV b bYe 4 b s bUs < bt - bvs bUs < bt bvs

of inequations. Finally, the individual b”¢ can be treated as variables after adding
the constraints 0 < bv, b"2, bV, b¥4.

For finding a witnessing strategy for the Maximiser—and hence a winning
strategy for the player that wants to ensure parity in the game from Figure 1(a)—
it suffices to add the additional constraint b¥*, b2, b3, bV < 1 and maximise
bUt + V2 4 b3 + b4,

Note that the constraints in the linear programming problem reach b* =
45212176 for b = 82 even in this tiny example.

5 Discussion

The introduced reduction from solving parity and mean payoff games to linear
programming opens up the well developed class of linear programming techniques
to the analysis of these classes of w-games. It also links their complexity to the
complexity of linear programming in the unit cost model.

As the unit cost complexity of linear programming is not known, there is
no immediate practical benefit attached to this reduction, but the drawn con-
nections between linear programmes and finite games of infinite durations link
two intriguing open problems. The potential benefit for the two areas are quite
different in nature: The linear programming community gains a natural and im-
portant class of problems that would benefit from a polynomial time algorithm

11

for linear programming, while the game solving community will automatically
profit from future developments of polynomial time algorithms.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Smale, S.: On the average number of steps of the simplex method of linear pro-

gramming. Mathematical Programming 27 (1983) 241-262

Klee, F., Minty, G.J.: How good is the simplex algorithm? Inequalities III (1972)
159-175

Khachian, L.G.: A polynomial algorithm in linear programming. Doklady Akademii
Nauk SSSR 244 (1979) 1093-1096

. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In:

Proceedings of STOC ’'84. ACM Press (1984) 302-311

Gartner, B., Henk, M., Ziegler, G.M.: Randomized simplex algorithms on Klee-
Minty cubes. Combinatorica 18 (1994) 502-510

Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM 51 (2004) 385-463
Kelner, J.A., Spielman, D.A.: A randomized polynomial-time simplex algorithm
for linear programming. In: Proceedings of STOC ’'06. ACM Press (2006) 51-60
Smale, S.: Mathematical problems for the next century. The Mathematical In-
teligencer 20 (1998) 7-15

Kozen, D.: Results on the propositional p-calculus. Theoretical Computer Science
27 (1983) 333-354

Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of p-
calculus. In: Proceedings of CAV ’93. Volume 2725 of Lecture Notes in Computer
Science, Springer-Verlag (1993) 385-396

Wilke, T.: Alternating tree automata, parity games, and modal u-calculus. Bulletin
of the Belgian Mathematical Society 8 (2001)

de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dy-
namic programs for omega-regular objectives. In: Proceedings of LICS '01. IEEE
Computer Society Press (2001) 279-290

Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49 (2002) 672-713

Vardi, M.Y.: Reasoning about the past with two-way automata. In: Proceedings of
ICALP ’98. Volume 1443 of Lecture Notes in Computer Science, Springer-Verlag
(1998) 628—641

Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time p-calculus. In: Proceedings of CSL ’06. Volume 4207 of Lecture
Notes in Computer Science, Springer-Verlag (2006) 591-605

Piterman, N.: From nondeterministic Biichi and Streett automata to deterministic
parity automata. Journal of Logical Methods in Computer Science 3 (2007)
Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Proceedings of
LOPSTR ’06. Volume 4407 of Lecture Notes in Computer Science, Springer-Verlag
(2006) 127-142

Emerson, E.A., Lei, C.: Efficient model checking in fragments of the propositional
p-calculus. In: Proceedings of LICS ’'86. IEEE Computer Society Press (1986)
267-278

Emerson, E.A., Jutla, C.S.: Tree automata, p-calculus and determinacy. In: Pro-
ceedings of FOCS ’91. IEEE Computer Society Press (1991) 368-377

12

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and
Applied Logic 65 (1993) 149-184

Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.: An improved algo-
rithm for the evaluation of fixpoint expressions. Theoretical Computer Science 178
(1997) 237-255

Jurdzinski, M.: Deciding the winner in parity games is in UP N co-UP. Information
Processing Letters 68 (1998) 119-124

Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200 (1998) 135-183
Jurdziniski, M.: Small progress measures for solving parity games. In: Proceedings
of STACS ’00. Volume 1770 of Lecture Notes in Computer Science, Springer-Verlag
(2000) 290-301

Ludwig, W.: A subexponential randomized algorithm for the simple stochastic
game problem. Information and Computation 117 (1995) 151-155

Puri, A.: Theory of hybrid systems and discrete event systems. PhD thesis, Com-
puter Science Department, University of California, Berkeley (1995)

Voge, J., Jurdziniski, M.: A discrete strategy improvement algorithm for solving
parity games. In: Proceedings of CAV ’00. Volume 1855 of Lecture Notes in Com-
puter Science, Springer-Verlag (2000) 202-215

Bjorklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Applied Mathematics
155 (2007) 210229

Schewe, S.: An optimal strategy improvement algorithm for solving parity and pay-
off games. In: Proceedings of CSL ’08. Volume 5213 of Lecture Notes in Computer
Science, Springer-Verlag (2008) 368-383

Obdrzélek, J.: Fast p-calculus model checking when tree-width is bounded. In:
Proceedings of CAV ’03. Volume 2725 of Lecture Notes in Computer Science,
Springer-Verlag (2003) 80-92

Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games.
In: Proceedings of STACS ’06. Volume 3884 of Lecture Notes in Computer Science,
Springer-Verlag (2006) 524-436

Schewe, S.: Solving parity games in big steps. In: Proceedings of FSTTCS ’07.
Volume 4805 of Lecture Notes in Computer Science, Springer-Verlag (2007) 449—
460

Jurdziniski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM Journal of Computing 38 (2008) 1519-1532
Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. The-
oretical Computer Science 158 (1996) 343-359

Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
national Journal of Game Theory 2 (1979) 109-113

Gurvich, V.A., Karzanov, A.V., Khachivan, L.G.: Cyclic games and an algorithm to
find minimax cycle means in directed graphs. USSR Computational Mathematics
and Mathematical Physics 28 (1988) 85-91

Friedmann, O.: A super-polynomial lower bound for the parity game strategy
improvement algorithm as we know it. In: Proceedings of LICS 2009

Megiddo, N., Chandrasekaran, R.: On the e-perturbation method for avoiding
degeneracy. Operations Research Letters 8 (1989) 305-308

13

