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t. This paper establishes a surprising redu
tion from parity andmean payo� games to linear programming problems. While su
h a 
on-ne
tion is trivial for solitary games, it is surprising for two player games,be
ause the players have opposing obje
tives, whose natural translationsinto an optimisation problem are minimisation and maximisation, re-spe
tively. Our redu
tion to linear programming 
ir
umvents the needfor 
on
urrent minimisation and maximisation by repla
ing one of them,the maximisation, by approximation. The resulting optimisation problem
an be translated to a linear programme by a simple spa
e transforma-tion, whi
h is inexpensive in the unit 
ost model, but results in an ex-ponential growth of the 
oeÆ
ients. The dis
overed 
onne
tion opens upunexpe
ted appli
ations { like �-
al
ulus model 
he
king { of linear pro-gramming in the unit 
ost model, and thus turns the intriguing a
ademi
problem of �nding a polynomial time algorithm for linear programmingin this model of 
omputation (and subsequently a strongly polynomialalgorithm) into a problem of paramount pra
ti
al importan
e: All ad-van
ements in this area 
an immediately be applied to a

elerate solvingparity and payo� games, or to improve their 
omplexity analysis.1 Introdu
tionThis paper links two intriguing open 
omplexity problems, solving parity andpayo� games and solving linear programming problems in the unit 
ost model.Linear programming [1{7℄, the problem of maximising 
Tx under the side
onditions Ax � b and x � 0, is one of the most resear
hed problems in 
om-puter s
ien
e and dis
rete mathemati
s. The interest in linear programming hastwo sour
es: It has a signi�
ant pra
ti
al impa
t, be
ause a wide range of opti-misation problems in e
onomy and operations resear
h 
an be approa
hed withlinear programming, and it is the sour
e of a range of 
hallenges that remainedunresolved for years.The most prominent open 
hallenge is Smale's 9th problem [8℄, whi
h asks iflinear programming has a polynomial time solution in the unit 
ost model. Inthe unit 
ost model, we assume that all arithmeti
 operations have an identi
alunit 
ost. This model is inspired by the desire of mathemati
ians to use realnumbers instead of rationals, but it 
an also be applied to handle large numbers,



whose representation in binary led to an exponential (or higher) blow-up in thesize of the problem des
ription.Dantzig's simplex algorithm addresses both 
omplexity models alike. Whilehighly eÆ
ient in pra
ti
e [1℄, Klee and Minty [2℄ showed that the worst 
aserunning time of the simplex algorithm is exponential in the size of the linearprogramme. Their original proof referred to a parti
ular Pivot rule, but it hasproven to be very 
exible with respe
t to the 
hosen Pivot rule, and 
ould beextended to every suggested deterministi
 Pivot rule that does not depend onthe history of previous updates. The proof is also independent of the 
hosen 
ostmodel, be
ause the path 
onstru
ted by the Pivot rule has exponential length.While the 
omplexity for the unit 
ost model is still open, polynomial timealgorithms for the Turing model like Ka
hian's ellipsoid method [3℄ and interiorpoint methods su
h as Karmarkar's algorithm [4℄ are known for de
ades. Unfor-tunately, these algorithms depend on the size of the binary representation of thenumbers, and do not provide any insight for the unit 
ost model. Apart from themathemati
al interest in determining the unit 
ost 
omplexity of solving linearprogrammes, su
h an algorithm is a prerequisite of �nding a strongly polynomialtime algorithm. The requirement for an algorithm to be strongly polynomialis slightly higher: It also requires that the intermediate arithmeti
 operations
an be performed in polynomial time, whi
h usually depends on the representa-tion of the numbers. Thus, a polynomial time algorithm in the unit 
ost modelwill usually provide a polynomial time algorithm for some representation of thenumbers di�erent from the usual binary representation.Current attempts to �nding a strongly polynomial time algorithm fo
us onthe Simplex algorithms. Randomised update strategies, for example, have beensuggested early on for the simplex te
hnique, but their 
omplexity has not yetbeen analysed su

essfully. For the simplest of these te
hniques, whi
h uses arandom edge Pivot rule that 
hooses a pro�table base 
hange uniformly at ran-dom, the number of arithmeti
 steps needed on non-degenerated simpli
es ismerely known to be at least quadrati
 in the size of the 
onstraint system [5℄.Shadow vertex te
hniques [6, 7℄ for exploring the simplex allowed for randomisedpolynomial time pro
edures for the approximation [6℄ and 
omputation [7℄ of thesolution to linear programmes.Parity and Payo� Games are �nite two player zero sum games of in�niteduration. They are played on labelled dire
ted graphs, whose verti
es are parti-tioned into two sets of verti
es owned by two players with opposing obje
tives.Intuitively, they are played by pla
ing a pebble on the game graph. In ea
h step,the owner of a vertex 
hooses a su

essor vertex of the digraph. This way, anin�nite run of the game is 
onstru
ted, where the obje
tives of the players is tominimise and maximise the average payo� of the moves in mean payo� games,or to enfor
e parity or imparity of the highest 
olour o

urring in�nitely manytimes in parity games, respe
tively. These games play a 
entral role in model
he
king [9{13℄, satis�ability 
he
king [11, 9, 14, 15℄, and synthesis [16, 17℄, andnumerous algorithms for solving them have been studied [9, 18{34℄. Mean payo�games [34{36℄ have further appli
ations in e
onomi
 game theory.2



The 
omplexity of solving parity games is equivalent to the 
omplexity of�-
al
ulus model 
he
king [9℄. The 
omplexity of solving parity and mean payo�games is known to be in the interse
tion of UP and 
oUP [22℄, but its mem-bership in P is still open. Up to a re
ent 
omplexity analysis by Friedman [37℄,strategy improvement algorithms [25{29℄ have been 
onsidered 
andidates for apolynomial running time. To the best of my knowledge, all algorithms proposedso far for solving parity or mean payo� games are now known not to be in P.The Redu
tion proposed in this paper redu
es testing if there are states in amean payo� game with value � 0 to solving a linear programming problem. Itis simple to extend this non-emptiness test to �nding the 0 mean partition of amean payo� game and hen
e to solving parity and mean payo� games.Our redu
tion goes through an intermediate representation of the non-emptiness problem to a non-standard optimisation problem that treats minimi-sation and maximisation quite di�erently: While minimisation is representedin a standard way | repla
ing minimisation v = minft1; t2; : : : ; tng over nterms by n inequalities v � ti and maximising over the possible out
ome |maximisation is repla
ed by an approximation within small margins. We usev = logb(bt1 + bt2 + btn) instead of v = maxft1; t2; : : : ; tng, whi
h keeps the errorof the operation suÆ
iently small if the basis b is big enough:maxft1; t2; : : : ; tng � logb �bt1 + bt2 + btn� � logb n+maxft1; t2; : : : ; tng:From there it is a small step to building a linear programme that 
omputes theexponent of the solution to this non-standard optimisation problem.Starting from parity games or from mean payo� games with a binary repre-sentation of the edge weights, this linear programme is 
heap to 
ompute in theunit 
ost model (bi-linear in the number of verti
es and edges and linear in thesize of the representation), but the 
onstants are exponential in the edge weightsof the mean payo� game, and doubly exponential in the number of 
olours forparity games.The bene�t of the proposed redu
tion for game solving is therefore not imme-diate, but depends on future results in linear programming. There has, however,been re
ent progress in the quest for polynomial time algorithms in the unit 
ostmodel, or even strongly polynomial algorithms. Shadow vertex te
hniques [6, 7℄,for example, seem to be promising 
andidates; Kelner and Spielman [7℄ use thisquest as the main motivation for their randomised polynomial time algorithm.But the bene�t of the redu
tion is bi-dire
tional. While solving �nite gamesof in�nite duration automati
ally pro�ts from future progress in the theory oflinear programming, linear programming pro�ts from the problem: The proposedredu
tion 
ontributes an important natural problem 
lass that 
an be redu
ed tolinear programming, but requires a polynomial time algorithm in the unit 
ostmodel, be
ause the 
onstants are too large for eÆ
ient binary representation.Opening up a range of model 
he
king problems to linear programming, theproposed redu
tion lifts the problem of �nding su
h algorithms from a problemof mere a
ademi
 interest to one of pra
ti
al importan
e. Furthermore, it is3



unintuitive that the 
omplexity of inherently dis
rete 
ombinatorial problemslike �-
al
ulus model 
he
king or solving parity games should depend on the
ost model of arithmeti
 operations. Provided a polynomial time algorithm forsolving linear programming problems in the unit 
ost model is found, it thusseems likely that a polynomial time algorithm for solving parity games 
an beinferred.2 Finite Games of In�nite DurationFinite games of in�nite duration (!-games) are played by two players, a Max-imiser and a Minimiser, with opposing obje
tives. !-games are 
omposed of a�nite arena and an evaluation fun
tion.Arenas. A �nite arena is a triple A = (Vmax; Vmin; E) 
onsisting of{ a set V = Vmax[Vmin of verti
es that is partitioned into two disjoint sets Vmaxand Vmin, 
alled the verti
es owned by the Maximiser and Minimiser, re-spe
tively, and{ a set E � V �V of edges, su
h that (V;E) is a dire
ted graph without sinks.Plays. Intuitively, a game is played by pla
ing a token on a vertex of the arena. Ifthe token is on a vertex v 2 Vmax, the Maximiser 
hooses an edge e = (v; v0) 2 Eoriginating in v to a vertex v0 2 V and moves the token to v0. Symmetri
ally,the Minimiser 
hooses a su

essor in the same manner if the token is on one ofher verti
es v 2 Vmin. In this way, they su

essively 
onstru
t an in�nite play# = v0v1v2v3 : : : 2 V !.Strategies. For a �nite arena A = (Vmax; Vmin; E), a (memoryless) strategy forthe Maximiser is a fun
tion f : Vmax ! V that maps every vertex v 2 Vmax ofthe Maximiser to a vertex v0 2 V su
h that there is an edge (v; v0) 2 E fromv to v0. A play is 
alled f-
onform if every de
ision of the Maximiser in theplay is in a

ordan
e with f . For a strategy f of the Maximiser, we denote withAf = (Vmax; Vmin; Ef ) the arena obtained from A by deleting the transitionsfrom verti
es of the Maximiser that are not in a

ordan
e with f . The analogousde�nitions are made for the Minimiser.Mean Payo� Games. A mean payo� game is a gameM = (Vmax; Vmin; E; w)with arena A = (Vmax; Vmin; E) and a weight fun
tion w : E ! Z from the edgesof the mean payo� game to the integers. Ea
h play # = v0v1v2 : : : of a meanpayo� game is evaluated to value(#) = lim infn!1 1nPni=1 w�(vi�1; vi)�.As a variant, we 
an allow for real valued weight fun
tions w : E ! R. Wethen refer expli
itly to a real valued mean payo� game.The obje
tive of the Maximiser and Minimiser are to maximise and minimisethis value, respe
tively. For single player games where all verti
es are owned byone player (or, likewise, all verti
es owned by the other player have exa
tly one4



su

essor), the optimal strategy for this player from some vertex v is to pro
eedto a 
y
le with maximal or minimal average weight a and hen
eforth follow it.The out
ome value(v) = a of this game when started in v is 
alled the value ofv. Mean payo� games are memoryless determined:Proposition 1. [34{36℄ For every real valued mean payo� game M, there areMinimiser and Maximiser strategies f and g, respe
tively, su
h that the value ofevery vertex in Mf equals the value of every vertex in Mg. utThe 0 mean partition M�0 = fv 2 V j value(v) � 0g of a mean payo� gameis thus well-de�ned. We say that a vertex v is winning for the Maximiser if it isin M�0, and winning for the Minimiser otherwise.Corollary 1. [34{36℄ The 0 mean partition is well-de�ned, and both playershave winning strategies for their respe
tive winning region M�0 and V nM�0.utSolving a mean payo� game 
an be redu
ed to �nding the 0 mean partition ofa number of games played on sub-arenas with a slightly adjusted weight fun
tion,be
ause the average weight of a 
y
le is a multiple of 1n for some n � jV j, andit hen
e suÆ
es to know that the value is within an interval [ in2 ; i+1n2 [ for someinteger i 2 Z.Corollary 2. A mean payo� game with n verti
es and maximal absolute edgeweight a 
an be solved in time O�n log(a + n)� when using an ora
le for the
onstru
tion of 0 mean partitions. utParity Games. A parity game is a game P = (Vmax; Vmin; E; �) with arenaA = (Vmax; Vmin; E) and a 
olouring fun
tion � : V ! C � N that maps ea
hvertex of P to a natural number. C denotes the �nite set of 
olours.Ea
h play is evaluated by the highest 
olour that o

urs in�nitely often.The Maximiser wins a play # = v0v1v2v3 : : : if the highest 
olour o

urringin�nitely often in the sequen
e �(#) = �(v0)�(v1)�(v2)�(v3) : : : is even, whilethe Minimiser wins if the highest 
olour o

urring in�nitely often in �(#) isodd. Without loss of generality, we assume that the highest o

urring 
olour isbounded by the number of verti
es in the arena. It is simple to redu
e solvingparity games to �nding the 0 mean partition of a mean payo� game: One 
ansimply translate a 
olour 
 to the weight jV j
 [34℄.Corollary 3. [34℄ Parity games are memoryless determined, and solving them
an be redu
ed in time O(mn) to solving the 0 mean partition problem of a meanpayo� game with the same arena, su
h that the Minimiser and Maximiser havethe same winning regions and winning strategies. ut3 Redu
tionIn this se
tion, we des
ribe a redu
tion from �nding the 0 mean partition of amean payo� game, to whi
h solving parity and payo� games 
an be redu
ed in5



polynomial time by Corollaries 2 and 3, to solving a linear programming problem.We �rst fo
us on the slightly simpler problem of testing M�0 for emptiness, andredu
e this question to a linear programming problem.The �rst important observation for our redu
tion is that membership inM�0is invariant under in
reasing the weight fun
tion slightly: If every edge weightin a mean payo� game with n verti
es is in
reased by some value in [0; 1n [, thenthe weight of every 
y
le is in
reased by a value in [0; 1[, and hen
e non-negativeif, and only if, the original integer valued weight of the 
y
le is non-negative.Lemma 1. If we in
rease the weight fun
tion of an (integer valued) mean payo�game M = (Vmax; Vmin; E; w) with n = jV j verti
es for every edge by some non-negative value < 1n , then the same 
y
les as before have non-negative weight inthe resulting real valued mean payo� game, and the 0 mean partition does not
hange. utThis observation is used to repla
e maximisation in a natural representationof the obje
tives of both players in a mean payo� game (Subse
tion 3.1) by alogarithmi
 expression in Subse
tion 3.2, whi
h is subsequently translated intoa boundedness test for a linear programming problem in Subse
tion 3.3. In Sub-se
tion 3.4, we show how this boundedness test, whi
h refers to a non-emptinesstest of M�0, 
an be adjusted to a bounded optimisation problem that providesM�0, and dis
uss the 
omplexity of the transformations in Subse
tion 3.5. Anexample that illustrates these transformations is provided in Se
tion 4.3.1 Basi
 InequationsWe now devise a set of inequalities that have a non-trivial solution if, and only if,M�0 is non-empty. For our redu
tion, we extend addition from R to R [ f�1gin the usual way by 
hoosing a+ (�1) = �1 = �1+ a for all a 2 R [ f�1g.This motivates the de�nition of a family of basi
 inequalities for a mean payo�game M = (Vmax; Vmin; E; w) that 
ontains one inequalityv � w�(v; v0)�+ v0for every edge (v; v0) originating from a Minimiser vertex v 2 Vmin, and oneinequality v � max�w�(v; v0)� j v0 2 su
(v)	+ 
vfor every Maximiser vertex v 2 Vmax, where su
(v) denotes the set of su

essorverti
es of v, and ea
h 
v 2 [0; 1jV j [ 
an be any suÆ
iently small slip value (
f.Lemma 1).Every su
h system of inequalities has a trivial solution that assigns �1 toevery vertex; but it also has a real valued solution for all verti
es in M�0.Lemma 2. For every su
h system of inequalities for a mean payo� game M =(Vmax; Vmin; E; w), a vertex v 2 V has a real valued solution if, and only if, v isin M�0. 6



Proof. `(:' Let us �x an optimal strategy for the Maximiser in the mean payo�game and 
onsider the system of inequalities that 
ontain one equation v �w(e)+v0 for every edge of the resulting singleton game. (A solution to this set ofinequalities is obviously a solution to the original set of inequalities.) This set ofinequalities has obviously a solution that is real valued for every vertex v 2M�0(and sets v = �1 for every vertex v not in M�0)1.`)' A real valued solution for a vertex v de�nes a strategy for the Maximiserthat witnesses value(v) � 0: If v � max�w�(v; v0)� j v0 2 su
(v)	 + 
v holdstrue, then v � w�(v; v0)�+ v0 + 
v holds for some v0 2 su
(v) in parti
ular, andwe 
hoose a Maximiser strategy that �xes su
h a su

essor for every Maximiservertex. By a simple indu
tive argument, every vertex u rea
hable from v in theresulting singleton game is real valued, and, for every 
y
le rea
hable from v,the sum of the edge weights and vertex slips is non-negative. As the sum of thevertex slips is stri
tly smaller than 1 in every 
y
le, the sum of the edge weightsis stri
tly greater than �1, and hen
e non-negative. utNaturally, having one real valued solution implies having unbounded solu-tions, be
ause adding the same value r 2 R to every value of a solution providesa new solution.3.2 Logarithmi
 InequationsThese observations set the ground for a redu
tion to linear programming:For a suÆ
iently large basis b > 1, logbPv02su
(v) bw((v;v0)) bv0 equalsmax�w�(v; v0)�+ v0 j v0 2 su
(v)	 + 
v for some slip value 
v 2 [0; 1n [, be
ausemaxv02su
(v)fw�(v; v0)�+v0g � logb Xv02su
(v)bw((v;v0)) bv0 � logb jsu
(v)j+ maxv02su
(v)fw�(v; v0)�+v0gholds true. (For the extension to R [ f�1g we use the usual 
onvention b�1 =0 and logb 0 = �1.) Choosing a basis b > nout jV j that is greater than thejV j-th power of the maximal out-degree nout of Maximiser verti
es guaranteeslogb i < 1n , and hen
e that the small error 
aused by moving from minimisationto the logarithm of the sum of the exponents is within the margins allowed forby Lemma 1.Corollary 4. The system of inequalities 
onsisting of the Minimiser inequalitiesand the adjusted Maximiser inequalities have a real valued solution for a vertexv 2 V if, and only if, v 2M�0. ut1 Starting with the digraph with states M�0 and the respe
tive edges de�ned bythe �xed Maximiser strategy, we 
an apply the following algorithm until values areassigned to all verti
es inM�0: (1) pi
k a vertex v in a leaf 
omponent of the digraphthat is the minimum of the weighted distan
e to plus the value assigned to any vertexv0 that is already removed from the graph (or an arbitrary value if no su
h vertexexists), and then (2) remove v from the graph.7



Note that the redu
tion uses estimation from below (through the inequality)as well as estimations from above (through the slip) at the same time, whi
h issound only be
ause the slip values are within the small margins allowed for byLemma 1.3.3 Linear InequationsThe resulting optimisation problem 
an be translated into a standard linearprogramming problem by a simple spa
e transformation: As the exponentialfun
tion v 7! bv is a stri
tly monotone as
ending mapping from R [ f�1g ontoR�0 , we 
an simply repla
e the Minimiser inequalities bybv � bw((v;v0)) � bv0 ;for every edge (v; v0) originating from a Minimiser vertex v 2 Vmin, and theadjusted Maximiser inequalities bybv � Xv02su
(v) bw((v;v0)) bv0for every vertex v 2 Vmax owned by the Maximiser, and require bv � 0 for allverti
es v 2 V of the game.Reading the bv as variables, this provides us with a linear 
onstraint systemAx � 0, subje
t to x � 0;and Corollary 4 implies that this 
onstraint system has a solution di�erent fromx = 0 if, and only if, M�0 is non-empty for the de�ning mean payo� game. Asevery positive multiple of a solution to Ax � 0 and x � 0 is again a solution,this implies the following 
orollary:Corollary 5. The resulting linear programme maximise 1Tx for Ax � 0 andx � 0 is unbounded if M�0 is non-empty, and the 
onstraint system has x = 0as the only solution if M�0 = ; is empty. ut3.4 From Qualitative to Quantitative SolutionsWhile solving the linear programme introdu
ed in the previous subse
tion an-swers only the qualitative question of whether the linear programming problemis bounded, and hen
e if M�0 is non-empty, it is simple to extend the approa
hto a qualitative solution that provides us with M�0 and a strategy for the Max-imiser that witnesses this. To a
hieve this, it suÆ
es to bound the value of everyvertex from above, for example, by adding a 
onstraint x � 1, or any other 
on-straint x � d for some 
onstant ve
tor d > 0. (Where > for the ve
tor requires> for every row.) 8



Proposition 2. For every 
onstant ve
tor d > 0, the solution to the linearprogramming problem maximise 
Tx for Ax � 0, x � d, and x � 0 assigns avalue 6= 0 to a variable if, and only if, it is in M�0. A witnessing strategy for theMaximiser in the de�ning mean payo� game 
an be inferred from the solution.Proof. For the solution of the linear programming problem it holds that if aMaximiser vertex v has some su

essor with non-zero value, or if a Minimiservertex v has only non-zero su

essors, than the value bv assigned to v by thesolution is also non-zero. (Otherwise we 
ould in
rease it, and hen
e 1Tx, without
hanging any other value.) Hen
e, the logarithms of the solution de�ne a solutionto the system of logarithmi
 inequalities from the previous subse
tion, and we
an infer a witnessing strategy for the Maximiser as des
ribed in the proof ofLemma 2.Now 
onsider a solution to the new linear programming problem de�ned bythe sub-game of the mean payo� game that 
ontains only the verti
es with 0values. If it had a solution di�erent to 0, we 
ould in
rease the solution of thelinear programming problem we started with by " times the solution of the newliner programming problem for a suÆ
iently small " > 0. Hen
e 0 is the onlysolution to the new problem, and therefore there is no real valued solution forthe basi
 or logarithmi
 inequalities de�ned by this sub-game. By Corollary 1the Minimiser has thus a witnessing strategy for the 0 mean partition in thesub-game, whi
h is also a witnessing strategy in the full game. ut3.5 Translation ComplexityThe proposed translation of a given mean payo� game to a linear programmingproblem is 
heap in the unit 
ost model:Proposition 3. A mean payo� game M with n verti
es and m edges, and edgeweights represented in binary 
an be translated in time O(jMj+nm) in the unit
ost model. (Where jMj denotes the length of the representation of M.)Proof. We have to 
ompute the linear 
onstraint Ax � 0, whi
h requires the
omputation of the non-zero 
onstants of A, and �lling up A with 0s. As the rowsof A refer to Maximiser verti
es or edges originating from Minimiser verti
es,and the 
olumns refer to verti
es, the latter requires O(nm) steps.Ea
h edge refers to exa
tly one non-zero 
onstant in A, and we need to trans-late the edge weight w(e) to bw(e). We 
ompute b0 = b (
omputing b is well withinO(nm)), and then bi = b(2i) = b2i�1 for all i � log2maxfjw(e)j j e 2 Eg. bw(e)
an then be expressed as a produ
t of the respe
tive bi if w(e) > 0 is positive,as its re
ipro
al if w(e) < 0 is negative, and by 1 if w(e) = 0. The required timefor the 
omputation of bw(e) is therefore linear in the binary representation ofw(e), and 
omputing all 
onstants bw(e) requires O(jMj) operations. utThe translation of parity games to mean payo� games [34℄ dis
ussed in Se
-tion 2 implies a likewise bound for parity games.9



01 21(a) v1v2 v3v4�1 �10 �140 �1�1 4(b)Fig. 1. Figure 1(a) shows a small example parity game. The verti
es of the playerwith the obje
tive to ensure parity are depi
ted as squares, while the positions of heropponent are depi
ted as 
ir
les. The verti
es of the parity game are de
orated withtheir respe
tive 
olour. The parity game of Figure 1(a) is translated into the meanpayo� gameM of Figure 1(b). The edges ofM are de
orated with their weights, andthe verti
es with their name.Corollary 6. A parity game P with n verti
es and m edges 
an be translatedin time O(nm) in the unit 
ost model. utNote that this also implies a polynomial bound on the 
ost of translating amean payo� game whose edge weights are represented in unary | and hen
eof parity games with a bounded number of 
olours | in the Turing model of
omputation.Corollary 7. For parity games with a bounded number of 
olours and meanpayo� games where the edge weights are represented in unary, the redu
tionresults in a linear programme in binary representation that 
an be 
onstru
tedin polynomial time. utAs a result, the known polynomial bounds [3, 4℄ for solving linear program-ming problems in the Turing model of 
omputation imply a polynomial boundfor these sub-problems.Corollary 8. Parity games with a bounded number of 
olours and mean payo�games whose edge weights are represented unary 
an be solved in polynomialtime. utRemark 1. If the algorithm requires non-degenerated linear programmes, thenwe 
an �rst apply the strongly polynomial standard "-perturbation te
hnique[38℄.While the bounds provided by Corollary 8 are not new, they 
an be 
onsid-ered as a sanity 
he
k for new te
hniques: Besides its potential for parity andmean payo� games in general, the redu
tion is good enough to infer the relevantknown polynomial bounds.4 ExampleThis se
tion 
ontains an example redu
tion from solving the small parity gamefrom Figure 1(a) to a linear programming problem.10



Finding the winning region for the player that wins when the highest 
olouro

urring in�nitely many times is even 
an be redu
ed to �nding the 0 meanpartition of the mean payo� game from Figure 1(b). By Lemma 2, �nding this0 mean partition redu
es to determining whi
h variables 
an have a real valuein a solution to any setv1 � maxfv2 � 1; v4 � 1g+ 
v1 v3 � v1 v4 � v2 � 1v2 � maxfv1; v3 + 4; v4 � 1g+ 
v2 v3 � v4 � 1 v4 � v3 + 4of inequations, where 
v1 ; 
v2 < 14 
an be any non-negative 
onstant smaller thanthe re
ipro
al of the size of the game.The maximal out-degree of a Maximiser vertex is 3, and 
hoosing a basisb big enough to provide logb 3 < 14 , whi
h holds for all b > 34, we 
an seek asolution to the inequationsv1 � logb(bv2�1 + bv4�1) v3 � v1 v4 � v2 � 1v2 � logb(bv1 + bv3+4 + bv4�1) v3 � v4 � 1 v4 � v3 + 4instead by Corollary 4, be
ause logb(bv2 + bv4�1) = maxfv2; v4 � 1g+ 
v1 andlogb(bv1�1 + bv3+4 + bv4) = maxfv1 � 1; v3 + 4; v4g+ 
v2 holds for some 
v1 �logb 2 < 14 and 
v2 � logb 3 < 14 , respe
tively.This system of inequations on the domain [�1;1[ 
an be rewritten as thesystembv1 � b�1 � bv2 + b�1 � bv4 bv3 � bv1 bv4 � b�1 � bv2bv2 � bv1 + b4 � bv3 + b�1 � bv4 bv3 � b�1 � bv4 bv4 � b4 � bv3of inequations. Finally, the individual bvi 
an be treated as variables after addingthe 
onstraints 0 � bv1 ; bv2 ; bv3 ; bv4 .For �nding a witnessing strategy for the Maximiser|and hen
e a winningstrategy for the player that wants to ensure parity in the game from Figure 1(a)|it suÆ
es to add the additional 
onstraint bv1 ; bv2 ; bv3 ; bv4 � 1 and maximisebv1 + bv2 + bv3 + bv4 .Note that the 
onstraints in the linear programming problem rea
h b4 =45212176 for b = 82 even in this tiny example.5 Dis
ussionThe introdu
ed redu
tion from solving parity and mean payo� games to linearprogramming opens up the well developed 
lass of linear programming te
hniquesto the analysis of these 
lasses of !-games. It also links their 
omplexity to the
omplexity of linear programming in the unit 
ost model.As the unit 
ost 
omplexity of linear programming is not known, there isno immediate pra
ti
al bene�t atta
hed to this redu
tion, but the drawn 
on-ne
tions between linear programmes and �nite games of in�nite durations linktwo intriguing open problems. The potential bene�t for the two areas are quitedi�erent in nature: The linear programming 
ommunity gains a natural and im-portant 
lass of problems that would bene�t from a polynomial time algorithm11
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