
From Parity and Payo� Gamesto Linear ProgrammingSven SheweUniversity of Liverpoolsven.shewe�liverpool.a.ukAbstrat. This paper establishes a surprising redution from parity andmean payo� games to linear programming problems. While suh a on-netion is trivial for solitary games, it is surprising for two player games,beause the players have opposing objetives, whose natural translationsinto an optimisation problem are minimisation and maximisation, re-spetively. Our redution to linear programming irumvents the needfor onurrent minimisation and maximisation by replaing one of them,the maximisation, by approximation. The resulting optimisation probleman be translated to a linear programme by a simple spae transforma-tion, whih is inexpensive in the unit ost model, but results in an ex-ponential growth of the oeÆients. The disovered onnetion opens upunexpeted appliations { like �-alulus model heking { of linear pro-gramming in the unit ost model, and thus turns the intriguing aademiproblem of �nding a polynomial time algorithm for linear programmingin this model of omputation (and subsequently a strongly polynomialalgorithm) into a problem of paramount pratial importane: All ad-vanements in this area an immediately be applied to aelerate solvingparity and payo� games, or to improve their omplexity analysis.1 IntrodutionThis paper links two intriguing open omplexity problems, solving parity andpayo� games and solving linear programming problems in the unit ost model.Linear programming [1{7℄, the problem of maximising Tx under the sideonditions Ax � b and x � 0, is one of the most researhed problems in om-puter siene and disrete mathematis. The interest in linear programming hastwo soures: It has a signi�ant pratial impat, beause a wide range of opti-misation problems in eonomy and operations researh an be approahed withlinear programming, and it is the soure of a range of hallenges that remainedunresolved for years.The most prominent open hallenge is Smale's 9th problem [8℄, whih asks iflinear programming has a polynomial time solution in the unit ost model. Inthe unit ost model, we assume that all arithmeti operations have an identialunit ost. This model is inspired by the desire of mathematiians to use realnumbers instead of rationals, but it an also be applied to handle large numbers,



whose representation in binary led to an exponential (or higher) blow-up in thesize of the problem desription.Dantzig's simplex algorithm addresses both omplexity models alike. Whilehighly eÆient in pratie [1℄, Klee and Minty [2℄ showed that the worst aserunning time of the simplex algorithm is exponential in the size of the linearprogramme. Their original proof referred to a partiular Pivot rule, but it hasproven to be very exible with respet to the hosen Pivot rule, and ould beextended to every suggested deterministi Pivot rule that does not depend onthe history of previous updates. The proof is also independent of the hosen ostmodel, beause the path onstruted by the Pivot rule has exponential length.While the omplexity for the unit ost model is still open, polynomial timealgorithms for the Turing model like Kahian's ellipsoid method [3℄ and interiorpoint methods suh as Karmarkar's algorithm [4℄ are known for deades. Unfor-tunately, these algorithms depend on the size of the binary representation of thenumbers, and do not provide any insight for the unit ost model. Apart from themathematial interest in determining the unit ost omplexity of solving linearprogrammes, suh an algorithm is a prerequisite of �nding a strongly polynomialtime algorithm. The requirement for an algorithm to be strongly polynomialis slightly higher: It also requires that the intermediate arithmeti operationsan be performed in polynomial time, whih usually depends on the representa-tion of the numbers. Thus, a polynomial time algorithm in the unit ost modelwill usually provide a polynomial time algorithm for some representation of thenumbers di�erent from the usual binary representation.Current attempts to �nding a strongly polynomial time algorithm fous onthe Simplex algorithms. Randomised update strategies, for example, have beensuggested early on for the simplex tehnique, but their omplexity has not yetbeen analysed suessfully. For the simplest of these tehniques, whih uses arandom edge Pivot rule that hooses a pro�table base hange uniformly at ran-dom, the number of arithmeti steps needed on non-degenerated simplies ismerely known to be at least quadrati in the size of the onstraint system [5℄.Shadow vertex tehniques [6, 7℄ for exploring the simplex allowed for randomisedpolynomial time proedures for the approximation [6℄ and omputation [7℄ of thesolution to linear programmes.Parity and Payo� Games are �nite two player zero sum games of in�niteduration. They are played on labelled direted graphs, whose verties are parti-tioned into two sets of verties owned by two players with opposing objetives.Intuitively, they are played by plaing a pebble on the game graph. In eah step,the owner of a vertex hooses a suessor vertex of the digraph. This way, anin�nite run of the game is onstruted, where the objetives of the players is tominimise and maximise the average payo� of the moves in mean payo� games,or to enfore parity or imparity of the highest olour ourring in�nitely manytimes in parity games, respetively. These games play a entral role in modelheking [9{13℄, satis�ability heking [11, 9, 14, 15℄, and synthesis [16, 17℄, andnumerous algorithms for solving them have been studied [9, 18{34℄. Mean payo�games [34{36℄ have further appliations in eonomi game theory.2



The omplexity of solving parity games is equivalent to the omplexity of�-alulus model heking [9℄. The omplexity of solving parity and mean payo�games is known to be in the intersetion of UP and oUP [22℄, but its mem-bership in P is still open. Up to a reent omplexity analysis by Friedman [37℄,strategy improvement algorithms [25{29℄ have been onsidered andidates for apolynomial running time. To the best of my knowledge, all algorithms proposedso far for solving parity or mean payo� games are now known not to be in P.The Redution proposed in this paper redues testing if there are states in amean payo� game with value � 0 to solving a linear programming problem. Itis simple to extend this non-emptiness test to �nding the 0 mean partition of amean payo� game and hene to solving parity and mean payo� games.Our redution goes through an intermediate representation of the non-emptiness problem to a non-standard optimisation problem that treats minimi-sation and maximisation quite di�erently: While minimisation is representedin a standard way | replaing minimisation v = minft1; t2; : : : ; tng over nterms by n inequalities v � ti and maximising over the possible outome |maximisation is replaed by an approximation within small margins. We usev = logb(bt1 + bt2 + btn) instead of v = maxft1; t2; : : : ; tng, whih keeps the errorof the operation suÆiently small if the basis b is big enough:maxft1; t2; : : : ; tng � logb �bt1 + bt2 + btn� � logb n+maxft1; t2; : : : ; tng:From there it is a small step to building a linear programme that omputes theexponent of the solution to this non-standard optimisation problem.Starting from parity games or from mean payo� games with a binary repre-sentation of the edge weights, this linear programme is heap to ompute in theunit ost model (bi-linear in the number of verties and edges and linear in thesize of the representation), but the onstants are exponential in the edge weightsof the mean payo� game, and doubly exponential in the number of olours forparity games.The bene�t of the proposed redution for game solving is therefore not imme-diate, but depends on future results in linear programming. There has, however,been reent progress in the quest for polynomial time algorithms in the unit ostmodel, or even strongly polynomial algorithms. Shadow vertex tehniques [6, 7℄,for example, seem to be promising andidates; Kelner and Spielman [7℄ use thisquest as the main motivation for their randomised polynomial time algorithm.But the bene�t of the redution is bi-diretional. While solving �nite gamesof in�nite duration automatially pro�ts from future progress in the theory oflinear programming, linear programming pro�ts from the problem: The proposedredution ontributes an important natural problem lass that an be redued tolinear programming, but requires a polynomial time algorithm in the unit ostmodel, beause the onstants are too large for eÆient binary representation.Opening up a range of model heking problems to linear programming, theproposed redution lifts the problem of �nding suh algorithms from a problemof mere aademi interest to one of pratial importane. Furthermore, it is3



unintuitive that the omplexity of inherently disrete ombinatorial problemslike �-alulus model heking or solving parity games should depend on theost model of arithmeti operations. Provided a polynomial time algorithm forsolving linear programming problems in the unit ost model is found, it thusseems likely that a polynomial time algorithm for solving parity games an beinferred.2 Finite Games of In�nite DurationFinite games of in�nite duration (!-games) are played by two players, a Max-imiser and a Minimiser, with opposing objetives. !-games are omposed of a�nite arena and an evaluation funtion.Arenas. A �nite arena is a triple A = (Vmax; Vmin; E) onsisting of{ a set V = Vmax[Vmin of verties that is partitioned into two disjoint sets Vmaxand Vmin, alled the verties owned by the Maximiser and Minimiser, re-spetively, and{ a set E � V �V of edges, suh that (V;E) is a direted graph without sinks.Plays. Intuitively, a game is played by plaing a token on a vertex of the arena. Ifthe token is on a vertex v 2 Vmax, the Maximiser hooses an edge e = (v; v0) 2 Eoriginating in v to a vertex v0 2 V and moves the token to v0. Symmetrially,the Minimiser hooses a suessor in the same manner if the token is on one ofher verties v 2 Vmin. In this way, they suessively onstrut an in�nite play# = v0v1v2v3 : : : 2 V !.Strategies. For a �nite arena A = (Vmax; Vmin; E), a (memoryless) strategy forthe Maximiser is a funtion f : Vmax ! V that maps every vertex v 2 Vmax ofthe Maximiser to a vertex v0 2 V suh that there is an edge (v; v0) 2 E fromv to v0. A play is alled f-onform if every deision of the Maximiser in theplay is in aordane with f . For a strategy f of the Maximiser, we denote withAf = (Vmax; Vmin; Ef ) the arena obtained from A by deleting the transitionsfrom verties of the Maximiser that are not in aordane with f . The analogousde�nitions are made for the Minimiser.Mean Payo� Games. A mean payo� game is a gameM = (Vmax; Vmin; E; w)with arena A = (Vmax; Vmin; E) and a weight funtion w : E ! Z from the edgesof the mean payo� game to the integers. Eah play # = v0v1v2 : : : of a meanpayo� game is evaluated to value(#) = lim infn!1 1nPni=1 w�(vi�1; vi)�.As a variant, we an allow for real valued weight funtions w : E ! R. Wethen refer expliitly to a real valued mean payo� game.The objetive of the Maximiser and Minimiser are to maximise and minimisethis value, respetively. For single player games where all verties are owned byone player (or, likewise, all verties owned by the other player have exatly one4



suessor), the optimal strategy for this player from some vertex v is to proeedto a yle with maximal or minimal average weight a and heneforth follow it.The outome value(v) = a of this game when started in v is alled the value ofv. Mean payo� games are memoryless determined:Proposition 1. [34{36℄ For every real valued mean payo� game M, there areMinimiser and Maximiser strategies f and g, respetively, suh that the value ofevery vertex in Mf equals the value of every vertex in Mg. utThe 0 mean partition M�0 = fv 2 V j value(v) � 0g of a mean payo� gameis thus well-de�ned. We say that a vertex v is winning for the Maximiser if it isin M�0, and winning for the Minimiser otherwise.Corollary 1. [34{36℄ The 0 mean partition is well-de�ned, and both playershave winning strategies for their respetive winning region M�0 and V nM�0.utSolving a mean payo� game an be redued to �nding the 0 mean partition ofa number of games played on sub-arenas with a slightly adjusted weight funtion,beause the average weight of a yle is a multiple of 1n for some n � jV j, andit hene suÆes to know that the value is within an interval [ in2 ; i+1n2 [ for someinteger i 2 Z.Corollary 2. A mean payo� game with n verties and maximal absolute edgeweight a an be solved in time O�n log(a + n)� when using an orale for theonstrution of 0 mean partitions. utParity Games. A parity game is a game P = (Vmax; Vmin; E; �) with arenaA = (Vmax; Vmin; E) and a olouring funtion � : V ! C � N that maps eahvertex of P to a natural number. C denotes the �nite set of olours.Eah play is evaluated by the highest olour that ours in�nitely often.The Maximiser wins a play # = v0v1v2v3 : : : if the highest olour ourringin�nitely often in the sequene �(#) = �(v0)�(v1)�(v2)�(v3) : : : is even, whilethe Minimiser wins if the highest olour ourring in�nitely often in �(#) isodd. Without loss of generality, we assume that the highest ourring olour isbounded by the number of verties in the arena. It is simple to redue solvingparity games to �nding the 0 mean partition of a mean payo� game: One ansimply translate a olour  to the weight jV j [34℄.Corollary 3. [34℄ Parity games are memoryless determined, and solving theman be redued in time O(mn) to solving the 0 mean partition problem of a meanpayo� game with the same arena, suh that the Minimiser and Maximiser havethe same winning regions and winning strategies. ut3 RedutionIn this setion, we desribe a redution from �nding the 0 mean partition of amean payo� game, to whih solving parity and payo� games an be redued in5



polynomial time by Corollaries 2 and 3, to solving a linear programming problem.We �rst fous on the slightly simpler problem of testing M�0 for emptiness, andredue this question to a linear programming problem.The �rst important observation for our redution is that membership inM�0is invariant under inreasing the weight funtion slightly: If every edge weightin a mean payo� game with n verties is inreased by some value in [0; 1n [, thenthe weight of every yle is inreased by a value in [0; 1[, and hene non-negativeif, and only if, the original integer valued weight of the yle is non-negative.Lemma 1. If we inrease the weight funtion of an (integer valued) mean payo�game M = (Vmax; Vmin; E; w) with n = jV j verties for every edge by some non-negative value < 1n , then the same yles as before have non-negative weight inthe resulting real valued mean payo� game, and the 0 mean partition does nothange. utThis observation is used to replae maximisation in a natural representationof the objetives of both players in a mean payo� game (Subsetion 3.1) by alogarithmi expression in Subsetion 3.2, whih is subsequently translated intoa boundedness test for a linear programming problem in Subsetion 3.3. In Sub-setion 3.4, we show how this boundedness test, whih refers to a non-emptinesstest of M�0, an be adjusted to a bounded optimisation problem that providesM�0, and disuss the omplexity of the transformations in Subsetion 3.5. Anexample that illustrates these transformations is provided in Setion 4.3.1 Basi InequationsWe now devise a set of inequalities that have a non-trivial solution if, and only if,M�0 is non-empty. For our redution, we extend addition from R to R [ f�1gin the usual way by hoosing a+ (�1) = �1 = �1+ a for all a 2 R [ f�1g.This motivates the de�nition of a family of basi inequalities for a mean payo�game M = (Vmax; Vmin; E; w) that ontains one inequalityv � w�(v; v0)�+ v0for every edge (v; v0) originating from a Minimiser vertex v 2 Vmin, and oneinequality v � max�w�(v; v0)� j v0 2 su(v)	+ vfor every Maximiser vertex v 2 Vmax, where su(v) denotes the set of suessorverties of v, and eah v 2 [0; 1jV j [ an be any suÆiently small slip value (f.Lemma 1).Every suh system of inequalities has a trivial solution that assigns �1 toevery vertex; but it also has a real valued solution for all verties in M�0.Lemma 2. For every suh system of inequalities for a mean payo� game M =(Vmax; Vmin; E; w), a vertex v 2 V has a real valued solution if, and only if, v isin M�0. 6



Proof. `(:' Let us �x an optimal strategy for the Maximiser in the mean payo�game and onsider the system of inequalities that ontain one equation v �w(e)+v0 for every edge of the resulting singleton game. (A solution to this set ofinequalities is obviously a solution to the original set of inequalities.) This set ofinequalities has obviously a solution that is real valued for every vertex v 2M�0(and sets v = �1 for every vertex v not in M�0)1.`)' A real valued solution for a vertex v de�nes a strategy for the Maximiserthat witnesses value(v) � 0: If v � max�w�(v; v0)� j v0 2 su(v)	 + v holdstrue, then v � w�(v; v0)�+ v0 + v holds for some v0 2 su(v) in partiular, andwe hoose a Maximiser strategy that �xes suh a suessor for every Maximiservertex. By a simple indutive argument, every vertex u reahable from v in theresulting singleton game is real valued, and, for every yle reahable from v,the sum of the edge weights and vertex slips is non-negative. As the sum of thevertex slips is stritly smaller than 1 in every yle, the sum of the edge weightsis stritly greater than �1, and hene non-negative. utNaturally, having one real valued solution implies having unbounded solu-tions, beause adding the same value r 2 R to every value of a solution providesa new solution.3.2 Logarithmi InequationsThese observations set the ground for a redution to linear programming:For a suÆiently large basis b > 1, logbPv02su(v) bw((v;v0)) bv0 equalsmax�w�(v; v0)�+ v0 j v0 2 su(v)	 + v for some slip value v 2 [0; 1n [, beausemaxv02su(v)fw�(v; v0)�+v0g � logb Xv02su(v)bw((v;v0)) bv0 � logb jsu(v)j+ maxv02su(v)fw�(v; v0)�+v0gholds true. (For the extension to R [ f�1g we use the usual onvention b�1 =0 and logb 0 = �1.) Choosing a basis b > nout jV j that is greater than thejV j-th power of the maximal out-degree nout of Maximiser verties guaranteeslogb i < 1n , and hene that the small error aused by moving from minimisationto the logarithm of the sum of the exponents is within the margins allowed forby Lemma 1.Corollary 4. The system of inequalities onsisting of the Minimiser inequalitiesand the adjusted Maximiser inequalities have a real valued solution for a vertexv 2 V if, and only if, v 2M�0. ut1 Starting with the digraph with states M�0 and the respetive edges de�ned bythe �xed Maximiser strategy, we an apply the following algorithm until values areassigned to all verties inM�0: (1) pik a vertex v in a leaf omponent of the digraphthat is the minimum of the weighted distane to plus the value assigned to any vertexv0 that is already removed from the graph (or an arbitrary value if no suh vertexexists), and then (2) remove v from the graph.7



Note that the redution uses estimation from below (through the inequality)as well as estimations from above (through the slip) at the same time, whih issound only beause the slip values are within the small margins allowed for byLemma 1.3.3 Linear InequationsThe resulting optimisation problem an be translated into a standard linearprogramming problem by a simple spae transformation: As the exponentialfuntion v 7! bv is a stritly monotone asending mapping from R [ f�1g ontoR�0 , we an simply replae the Minimiser inequalities bybv � bw((v;v0)) � bv0 ;for every edge (v; v0) originating from a Minimiser vertex v 2 Vmin, and theadjusted Maximiser inequalities bybv � Xv02su(v) bw((v;v0)) bv0for every vertex v 2 Vmax owned by the Maximiser, and require bv � 0 for allverties v 2 V of the game.Reading the bv as variables, this provides us with a linear onstraint systemAx � 0, subjet to x � 0;and Corollary 4 implies that this onstraint system has a solution di�erent fromx = 0 if, and only if, M�0 is non-empty for the de�ning mean payo� game. Asevery positive multiple of a solution to Ax � 0 and x � 0 is again a solution,this implies the following orollary:Corollary 5. The resulting linear programme maximise 1Tx for Ax � 0 andx � 0 is unbounded if M�0 is non-empty, and the onstraint system has x = 0as the only solution if M�0 = ; is empty. ut3.4 From Qualitative to Quantitative SolutionsWhile solving the linear programme introdued in the previous subsetion an-swers only the qualitative question of whether the linear programming problemis bounded, and hene if M�0 is non-empty, it is simple to extend the approahto a qualitative solution that provides us with M�0 and a strategy for the Max-imiser that witnesses this. To ahieve this, it suÆes to bound the value of everyvertex from above, for example, by adding a onstraint x � 1, or any other on-straint x � d for some onstant vetor d > 0. (Where > for the vetor requires> for every row.) 8



Proposition 2. For every onstant vetor d > 0, the solution to the linearprogramming problem maximise Tx for Ax � 0, x � d, and x � 0 assigns avalue 6= 0 to a variable if, and only if, it is in M�0. A witnessing strategy for theMaximiser in the de�ning mean payo� game an be inferred from the solution.Proof. For the solution of the linear programming problem it holds that if aMaximiser vertex v has some suessor with non-zero value, or if a Minimiservertex v has only non-zero suessors, than the value bv assigned to v by thesolution is also non-zero. (Otherwise we ould inrease it, and hene 1Tx, withouthanging any other value.) Hene, the logarithms of the solution de�ne a solutionto the system of logarithmi inequalities from the previous subsetion, and wean infer a witnessing strategy for the Maximiser as desribed in the proof ofLemma 2.Now onsider a solution to the new linear programming problem de�ned bythe sub-game of the mean payo� game that ontains only the verties with 0values. If it had a solution di�erent to 0, we ould inrease the solution of thelinear programming problem we started with by " times the solution of the newliner programming problem for a suÆiently small " > 0. Hene 0 is the onlysolution to the new problem, and therefore there is no real valued solution forthe basi or logarithmi inequalities de�ned by this sub-game. By Corollary 1the Minimiser has thus a witnessing strategy for the 0 mean partition in thesub-game, whih is also a witnessing strategy in the full game. ut3.5 Translation ComplexityThe proposed translation of a given mean payo� game to a linear programmingproblem is heap in the unit ost model:Proposition 3. A mean payo� game M with n verties and m edges, and edgeweights represented in binary an be translated in time O(jMj+nm) in the unitost model. (Where jMj denotes the length of the representation of M.)Proof. We have to ompute the linear onstraint Ax � 0, whih requires theomputation of the non-zero onstants of A, and �lling up A with 0s. As the rowsof A refer to Maximiser verties or edges originating from Minimiser verties,and the olumns refer to verties, the latter requires O(nm) steps.Eah edge refers to exatly one non-zero onstant in A, and we need to trans-late the edge weight w(e) to bw(e). We ompute b0 = b (omputing b is well withinO(nm)), and then bi = b(2i) = b2i�1 for all i � log2maxfjw(e)j j e 2 Eg. bw(e)an then be expressed as a produt of the respetive bi if w(e) > 0 is positive,as its reiproal if w(e) < 0 is negative, and by 1 if w(e) = 0. The required timefor the omputation of bw(e) is therefore linear in the binary representation ofw(e), and omputing all onstants bw(e) requires O(jMj) operations. utThe translation of parity games to mean payo� games [34℄ disussed in Se-tion 2 implies a likewise bound for parity games.9



01 21(a) v1v2 v3v4�1 �10 �140 �1�1 4(b)Fig. 1. Figure 1(a) shows a small example parity game. The verties of the playerwith the objetive to ensure parity are depited as squares, while the positions of heropponent are depited as irles. The verties of the parity game are deorated withtheir respetive olour. The parity game of Figure 1(a) is translated into the meanpayo� gameM of Figure 1(b). The edges ofM are deorated with their weights, andthe verties with their name.Corollary 6. A parity game P with n verties and m edges an be translatedin time O(nm) in the unit ost model. utNote that this also implies a polynomial bound on the ost of translating amean payo� game whose edge weights are represented in unary | and heneof parity games with a bounded number of olours | in the Turing model ofomputation.Corollary 7. For parity games with a bounded number of olours and meanpayo� games where the edge weights are represented in unary, the redutionresults in a linear programme in binary representation that an be onstrutedin polynomial time. utAs a result, the known polynomial bounds [3, 4℄ for solving linear program-ming problems in the Turing model of omputation imply a polynomial boundfor these sub-problems.Corollary 8. Parity games with a bounded number of olours and mean payo�games whose edge weights are represented unary an be solved in polynomialtime. utRemark 1. If the algorithm requires non-degenerated linear programmes, thenwe an �rst apply the strongly polynomial standard "-perturbation tehnique[38℄.While the bounds provided by Corollary 8 are not new, they an be onsid-ered as a sanity hek for new tehniques: Besides its potential for parity andmean payo� games in general, the redution is good enough to infer the relevantknown polynomial bounds.4 ExampleThis setion ontains an example redution from solving the small parity gamefrom Figure 1(a) to a linear programming problem.10



Finding the winning region for the player that wins when the highest olourourring in�nitely many times is even an be redued to �nding the 0 meanpartition of the mean payo� game from Figure 1(b). By Lemma 2, �nding this0 mean partition redues to determining whih variables an have a real valuein a solution to any setv1 � maxfv2 � 1; v4 � 1g+ v1 v3 � v1 v4 � v2 � 1v2 � maxfv1; v3 + 4; v4 � 1g+ v2 v3 � v4 � 1 v4 � v3 + 4of inequations, where v1 ; v2 < 14 an be any non-negative onstant smaller thanthe reiproal of the size of the game.The maximal out-degree of a Maximiser vertex is 3, and hoosing a basisb big enough to provide logb 3 < 14 , whih holds for all b > 34, we an seek asolution to the inequationsv1 � logb(bv2�1 + bv4�1) v3 � v1 v4 � v2 � 1v2 � logb(bv1 + bv3+4 + bv4�1) v3 � v4 � 1 v4 � v3 + 4instead by Corollary 4, beause logb(bv2 + bv4�1) = maxfv2; v4 � 1g+ v1 andlogb(bv1�1 + bv3+4 + bv4) = maxfv1 � 1; v3 + 4; v4g+ v2 holds for some v1 �logb 2 < 14 and v2 � logb 3 < 14 , respetively.This system of inequations on the domain [�1;1[ an be rewritten as thesystembv1 � b�1 � bv2 + b�1 � bv4 bv3 � bv1 bv4 � b�1 � bv2bv2 � bv1 + b4 � bv3 + b�1 � bv4 bv3 � b�1 � bv4 bv4 � b4 � bv3of inequations. Finally, the individual bvi an be treated as variables after addingthe onstraints 0 � bv1 ; bv2 ; bv3 ; bv4 .For �nding a witnessing strategy for the Maximiser|and hene a winningstrategy for the player that wants to ensure parity in the game from Figure 1(a)|it suÆes to add the additional onstraint bv1 ; bv2 ; bv3 ; bv4 � 1 and maximisebv1 + bv2 + bv3 + bv4 .Note that the onstraints in the linear programming problem reah b4 =45212176 for b = 82 even in this tiny example.5 DisussionThe introdued redution from solving parity and mean payo� games to linearprogramming opens up the well developed lass of linear programming tehniquesto the analysis of these lasses of !-games. It also links their omplexity to theomplexity of linear programming in the unit ost model.As the unit ost omplexity of linear programming is not known, there isno immediate pratial bene�t attahed to this redution, but the drawn on-netions between linear programmes and �nite games of in�nite durations linktwo intriguing open problems. The potential bene�t for the two areas are quitedi�erent in nature: The linear programming ommunity gains a natural and im-portant lass of problems that would bene�t from a polynomial time algorithm11
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