
Artificial Intelligence and Law 1, 65-86, 1992 65 
© 1992 Kluwer Academic Publishers, Printed in the NetheHands 

Isomorphism and Legal Knowledge Based Systems 
T. J. M. B E N C H - C A P O N  & F. P. C O E N E N  

Department of Computer Science, University of Liverpool, Liverpool, England 

(Received 10 October 1991; accepted 13 December 1991) 

Abstract. This paper discusses some engineering considerations that should be taken into account when build- 
ing a knowledge based system, and recommends isomorphism, the well defined correspondence of the knowl- 
edge base to the source texts, as a basic principle of system construction in the legal domain. Isomorphism, as it 
has been used in the field of legal knowledge based systems, is characterised and the benefits which stem from 
its use are described. Some objections to and limitations of the approach are discussed. The paper concludes 
with a case study giving a detailed example of the use of the isomorphic approach in a particular application. 

Key words: legal knowledge based systems, maintenance, isomorphism 

1. Introduction 

Michael Jackson begins his influential book Principles of Program Design, (Jackson, 

1975), with the words 

The beginning of wisdom for a programmer is to recognize the difference between getting his program to work 
and getting it right. A program which does not work is undoubtedly wrong; but a program which does work is 
not necessarily right. It may still be wrong because it is hard to understand; or because it is hard to maintain as 
program requirements change; or because its structure is different from the structure of the problem; or because 
we cannot be sure that it does indeed work. 

These words were directed at programmers working in conventional data processing, but 

they should also b6 reflected on by those whose concern is knowledge based systems. 

When knowledge based systems techniques were in their infancy it was necessary to 
show that it was feasible to construct such systems in a variety of  domains, and while that 

was the aim the production of  a working system was achievement enough. But we are 
past that stage now, and we should be considering how to build better engineered 
systems. Here Jackson's points about comprehensibility, maintainability and validation 

are all right on point. In this paper we will advocate an approach, isomorphism, to build- 

ing knowledge based systems in the legal domain which will help to satisfy these con- 

cerns. 
Jackson's important insight was to base the structure of  the program on the structure of  

the data to be manipulated by the program. A chief reason for data driven design is that it 
provides a starting point which is objective: whereas techniques such as modular decom- 

position require the designer to exercise skill and judgement in determining the appropri- 
ate decomposition, with the result that the consequent design will inevitably contain 
subjective elements, if we start with the data we build from an objective foundation, and 



66 T . J . M .  BENCH-CAPON AND COENEN 

there is the possibility that the resulting design will be similarly objective. What then is 
there that corresponds to the data in the case of a legal knowledge based system? 

An obvious answer to this question, appropriate to many potential applications, is the 
legislation governing the area of  law under consideration. Even in areas where the practi- 

tioners do not habitually refer to the legislation - the adjudication of  social security 
claims in the UK, for example - the materials that they do use are ultimately founded on 

legislation. Basing a system on a representation of legislation was popularised by work 

done at Imperial College [Sergot et al., 1986; Bench-Capon et al., 1987]. The motivation 
for this work was primarily to demonstrate the power of logic programming, and empha- 

sis was placed on the separation of  the logic of  the problem - the relevant legislation - 
from the manipulation performed by the inference mechanism so as to apply the legisla- 

tion in carrying out a particular task grounded on that legislation. The representation was 

intended to be a declarative rendering of  'some chosen unambiguous interpretation of the 

selected legal sources' [Sergot, 1991]. It was not necessarily supposed to reflect the struc- 

ture of  these sources. Later developments, however, started to emphasise the additional 
advantages that would accrue if the representation was as faithful to the sources as possi- 

ble. For example, it was argued in [Bench-Capon, 1989] that a truly faithful representa- 

tion could serve some of the purposes of  'deep models '  as used in some other areas of  
knowledge based systems, and [Routen, 1989] argued that the representation needed to 

reflect the structure of the legislation since 'some of  the essential content of  a statute is 

embodied in the organisation of the text'. In the following sections of  this paper we will 

describe what is meant by a faithful representation, and discuss the advantages that result 
from such faithfulness. 

2. Ismorphism 

In an effort to give more precision to what is meant by a representation being faithful the 

term ' isomorphism' was used in works such as [Bench-Capon, 1989], [Karpf, 1989], 
[Vey Mestdagh, 1990] and [Bench-Capon and Forder, 1991]. Isomorphism has, of 
course, been used in other fields previously, but in this paper we will concern ourselves 
only with its use in the context of legal knowledge based systems. In essence the term is 

intended to capture the notion of  creating a well defined correspondence between source 

documents and the representation of  the information they contain used in the system. 

Karpf [1989] gives a particularly clear statement of what he means by ' isomorphism',  
and so it is worth recalling his definition here. Karpf lays down five conditions which a 

representation must fulfil if it is to be isomorphic: 
(i) Each legal source is represented separately. 

(ii) The representation preserves the structure of  each legal source. 
(iii) The representation preserves the traditional mutual relations, references and connec- 

tions between the legal sources. 
(iv) The representation of  the legal sources and their mutual relations. . ,  is separate from 

all other parts of  the model, notably representation of  queries and facts management. 
(v) If  procedural law is part of  the domain of  the model then the law module will have 

representation of material as well as procedural rules and it is demanded that the 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 67 

whole system functions in accordance with and in the order following the procedural 

rules. 
His first condition is a sine qua non but is not a peculiar feature of isomorphic representa- 

tions: the importance of keeping sources separate and resisting the temptation to 

'compile in' expert knowledge with regard to interpretation or operational definition is 

recognised in places where isomorphism is not an issue, such as [Bench-Capon et al., 

1987]. The second raises questions discussed in [Routen and Bench-Capon, 1991], and 

which will be further discussed below. The third condition reflects the need to keep 

explicit cross references in the text rather than compiling them away into a flat formalisa- 

tion, for reasons advanced in [Routen, 1989] and [Johnson & Mead, 1991]. The fourth 

condition is related to the first, but the fifth raises interesting issues, since it appears to 
conflate the representation with the manipulation of the representation which gives rise to 

system behaviour. For that reason we would not insist on the fifth condition being met by 
any representation claiming to exhibit isomorphism: but the explicit representation of 

procedural knowledge remains a difficult issue, and the importance of system behaviour 

will be discussed below. 
The important demand made by isomorphism is that there is a clear correspondence 

between items to be found in the source material and items to be found in the knowledge 
base. The direction needed is this: that it is possible to say of any item in the knowledge 

base that it derives from some self-contained unit in the source material. Ideally there 

would be a one to one correspondence between the knowledge base items and the source 
material items, but practical reasons may necessitate deviation from this. Where one to 

one correspondence is not achieved, however, it is important to relax the constraint only 

so that one source item corresponds to several knowledge base items and to maintain the 
prohibition on a single knowledge base item capturing the material from several source 

items. The need to avoid such conflation is perhaps best discussed in Routen & Bench- 
Capon, [1991]. Why cannot we maintain a one to one correspondence in all cases? There 

may be good reasons, such as efficiency or the need to use a particular expert system 

shell, why the executable representation has a less rich syntax that would be required to 
mirror the syntax of the source. Suppose for example we wished to use horn clauses so 

that we could execute the system in Prolog: and thai the source contains a subsection of 

the form 

S 1 A person shall be P if, and only if, he is Q or R and S. 

This might be represented within the logic programming paradigm, interpreting the con- 
dition as Q v (R & S) rather than (Q v R) & S, as 

HC1 p(X):- q(X). 

HC2 p(X):- r(X), s(X): 

Leaving aside the problem that part of the biconditional in S 1 is represented by the treat- 

ment of negation as failure within this paradigm (defended in [Kowalsk i, 1989]), this has 
clone some small violence to the form of the original statement. HC 1 and HC2 in fact 
translate 



68 

S2a 

S2b 

$2c 

T. J. M. B E N C H - C A P O N  AND C O E N E N  

A person shall be P if he is Q 

A person shall be P if he is R and S 

No person shall be P unless he satisfies the conditions in S2a and S2b. 

Whilst S1 and $2 are logically equivalent, there may well have been a motive in choos- 

ing to express the conditions for Pness in the form of S1 rather than $2. Attaining strict 

isomorphism would thus preclude the use of horn clauses and Prolog. For this reason we 

prefer in practice to use an intermediate representation which can exhibit one to one cor- 
respondence with the sources and which can then be transformed into the desired exe- 

cutable formalism. There is thus a one to one correspondence between source items and 
intermediate representation items, and, potentially, a one to many correspondence 

between intermediate representation items and executable knowledge base items. This 
makes it possible to follow links from source to executable knowledge base. The analysis 

process which results in the intermediate representation is described in Bench-Capon and 
Coenen, [1991] and Section 5 of this paper. 

2.1. I N T E R M E D I A T E  R E P R E S E N T A T I O N  

The construction of the intermediate representation, and the analysis which accompanies 

is, in our view, crucial to the sound development of a legal KBS, and so we will give 
some account of the nature of the representation here. A full description of the formalism 

can be found in Bench-Capon & Forder, [ 1991 ]. The intermediate representation consists 

of two parts: the 'class hierarchy' and the rule base. Classes in the hierarchy represent 
logical types and objects of concern to the domain, as they appear in the domain. 

Inheritance is by strict specialisation, giving the class hierarchy a sound logical interpre- 
tation. These classes also define the attributes which their instances may possess, and the 

values which these attributes can take. The overall effect is that the class hierarchy 

defines a vocabulary which can then be used in the development of the rule base. It is of 
crucial importance that this declaration of a vocabulary takes place, because this makes 

explicit the nature of the objects in the domain, which would otherwise remain implicit to 
be inferred by the reader of rules in accordance with his subjective interpretation. That 

this is needed is well illustrated by Glickfield's 'perpetuities people' [Glickfield, 1991]. 
In this paper Glickfield argues that perpetuities reasoning takes place in an abstract perpe- 

tuities world in which people have properties which run somewhat counter to those that 
everyday intuition would ascribe to people, such as the 'irrebutable presumption of fertil- 

ity'. Analysis of the domain requires that the properties that the abstracted objects can 
have for the purposes of the domain be uncovered, and we would recommend their 
recording in the explicit form of a domain vocabulary as described above. While the per- 
petuities domain may be an extreme example, similar abstractions are in practice required 

in every domain. 
Once this well defined vocabulary has been established, rules can be written. These 

rules will relate the domain objects in the type hierarchy, further defining the properties 
of those objects and the relations between them. For the most part these rules will be 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 69 

derived from the source documents, although it may be also necessary to write some to 

make explicit  knowledge latent in the objects, such as that men cannot be pregnant. The 

flexible syntax of  the intermediate representation, and the moving of  typing information 

into the class hierarchy, means that the rules of the intermediate representation can have a 

one to one correspondence with items in  the source, and can mirror the structure of the 

source very closely. 

The development  of  the intermediate representation is an important step in the con- 

struction of  the system because it forces the essential analysis of  the domain to take place, 

and ensures a clean separation of  the design process from implementation considerations. 

We believe that the construction of  a knowledge base is best seen as representation rather 

than programming and first building an intermediate representation ensures that the two 

processes are kept distinct. Moreover,  it ensures that any assumptions or deviations from 

what might commonly be assumed are made explicit, that conflation of  different sources 

are avoided, and that considerations of control are not al lowed to dictate the representa- 

tion. Finally we emphasise that the intermediate representation is a formalisation: we 

believe that this use of  a formal language is a necessary improvement on a verbatim rep- 

resentation as recommended by Mead & Johnson, [1991], as it forces choices of  struc- 

tural interpretation as in Alien & Saxon, [1991] to be recorded rather than allowing the 

ambiguities of natural language to pass through to the representation. 

3. Advantages of Isomorphism 

When isomorphism was first discussed, the advantages were largely thought to lie in the 

verification and validation of  the knowledge bases used, and in maintenance. These 

advantages largely reflect the kind of software engineering concerns that we noted when 

quoting Jackson in the introduction. Experience with applying this principle has, 

however,  shown that there are other advantages, and that isomorphism has an impact on 

the system throughout the whole lifecycle. In the following sections we will discuss these 

advantages under four headings: the development  methodology,  the verification and vali- 

dation of  systems, the use of  systems and the maintenance of  systems. Of course, at this 

stage we can be no more than persuasive, and comment  in the light of  our own experi- 

ment in using these methods, which has been encouraging. But a single case cannot be a 

proof  and whether these advantages are really to be found is a matter which cannot be 

settled other than by extensive empirical  investigation. We believe, however,  that the fol- 

lowing sections do make out a persuasive case, and hope that the experiments that will 

test these arguments will come in the course of time. 

3.1. ISOMORPHISM AS A DEVELOPMENT METHODOLOGY 

Building a knowledge base by representing legislation and other source documents is a 

non-trivial and labour intensive task. One solution is to use highly skilled and experi- 

enced staff to perform this task, and to rely on their judgement  to solve and work around 

problems. This is not really satisfactory, however: such staff are expensive, and often 



70 T. J. M. BENCH-CAPON AND COENEN 

reluctant to devote the necessary time and effort to what is essentially a mundane and 

unexciting business. The problem has been encountered before with respect to conven- 
tional software, and there the solution was to use more junior and less experienced staff, 

but to compensate for their lack of experience by providing them with a methodology 

which would guide them through the various stages, and encapsulate the best practice of 
more highly skilled practitioners. Jackson Structured Programming, popular as a method- 

ology for the design of data processing programs [Jackson, 1975], is a good example. 

It has been our experience that adopting the principle of isomorphism can help people 

for whom the representation of sources is a novel area, by guiding their choices, and 

revealing that they can approach even the largest source text in a methodical, piece by 
piece, section by section, manner. The basic instruction, to represent the sources in a form 

as close to the original as th e representation language permits, imposes a discipline, and 
is an instruction that is, when coupled with an expressive intermediate representation lan- 

guage, relatively easy to follow, as it removes a number of concerns that might otherwise 

intrude. The clear cut, objective, nature of the desired result greatly diminishes the trepi- 

dation felt by a novice when confronted with a large source document. Moreover, it pro- 
vides a framework in which general solutions to problematic constructs can be provided, 

thus avoiding the difficulties that such constructs present. Examples of sucfi solutions can 

be found in Routen & Bench-Capon, [1991]). 
A further advantage comes when the size of the source documents requires the work of 

representation to spread across a team of several people. The structure of the sources pro- 

vides a natural way of dividing the work between team members, but this would avail 

nothing were we not confident that the resulting pieces could be smoothly integrated into 
a seamless final product. The principle of isomorphism should promote such integration 

because there is no conflation and no 'short cuts' (to use Johnson and Mead's useful 

term). 
Isomorphism provides a style of representation which enables different people to work 

in a similar fashion, and this further enables the provision of tools which will facilitate 
and encourage that working style. Some such tools are described in the case study in the 

later sections of this paper. 
Thus isomorphism aids the development of systems by providing a genuine methodol- 

ogy. It is a genuine methodology because it is teachable, its products are objective and do 

not rely on the developer's flair and insight, it provides a way of decomposing the task 
into tractable subtasks, and it is capable of being supported by tools. This has been illus- 
trated on the MAKE project Bench-Capon & Coenen, [1991] in that two out of the three 

developers had not previously built a legal KBS and yet the Pilot was produced in six 
man months, including time taken to acquire knowledge of the tools described later. Once 

the use of the tools and techniques had been learned, progress was rapid, and resulted in a 
knowledge base in which the individual contribution were painlessly integrated. 

3.2. ISOMORPHISM AND VALIDATION 

Next we need to turn to the issue of whether the system does indeed work. This is of par- 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 71 

ticular importance with a system concerned with legislation, because there, unlike other 

areas such as fault diagnosis, it is important not only that the answer be correct, but also 

that the answer be arrived at in the correct manner, and that the basis of the answer be 

seen to be correct also. For these reasons it is important that the material be susceptible to 

validation, not just through the running of  test cases to ensure that the correct output is 
produced, but through an examination of  the knowledge base itself to ensure that the 

correct material is being used to produce that output. 
This latter activity can be performed only by an expert scrutinising the knowledge base 

and comparing it with the original sources which it claims to represent. A number of 

things are necessary for this to be a practical proposition. First it must be possible to 
detach fragments of the representation from the knowledge base without changing the 

meaning of  those fragments. Formalisms which permit the context of  the rest of  the 

knowledge base and the control strategy which will manipulate the knowledge base to 
affect the import of  items in the knowledge base require the knowledge base to be consid- 

ered as a whole: we submit that this places an intolerable burden on the validating expert. 

Separability of  knowledge fragments, is not, however, enough. The validator must be 

able to tell of any fragment precisely which pieces of  the source which it purports to rep- 
resent, and to have confidence that the fragment is intended to represent this piece of  

source exhaustively. Maintenance of  precise links between source and knowledge base, 

which is a feature of  isomorphism, enables this confidence. The validator will have a 
good knowledge of  the source and its structure, and reflecting this structure in the knowl- 

edge base will ease the task of  navigating the knowledge base. Finally, at a syntactic 
level, the validator may well be reluctant to go through the kind of intellectual contor- 

tions necessary to recast the source in a normal form, and so it is helpful if the knowledge 

base syntax is as close as is possible to that of  the source. It must, however, remembered 

that that the representation is unambiguous whereas the source may well contain ambigu- 
ities. For a discussion of  the structural ambiguities latent in almost any piece of legisla- 

tion written in natural language see Allen & Saxon, [1991]. It is important that the 

representation clearly show how these ambiguities have been resolved: this too is facili- 

tated by the structural correspondences found in an isomorphism representation. 
This kind of 'by eye '  scrutiny of  the knowledge base cannot, however, be enough to 

give complete confidence in the correctness of  the knowledge base: it is also necessary to 
run test cases through the system. Running test cases, however, is not simply a matter of  
assembling some arbitrarily chosen previous cases and seeing if the correct result is 

achieved. Test data must be designed, so that each of the test cases will exercise specific 

areas of  the knowledge base, both so that there can be some confidence that the test data 

has tried out all the various parts, and so that when the system fails a test, there can be 
some clear idea of  which area of  the knowledge base requires attention. This in turn 
means that the designer of  the test data must have an understanding of  the structure and 

components of  the knowledge base. 
Isomorphism can help here also, because the structure of  the "knowledge base is given 

by the structure of  the sources and so does not need to be discovered independently and 
because the actual behaviour of  the system is largely dictated by the structure of  the origi- 



72 T. J. M. BENCH-CAPON AND COENEN 

nal legislation. This means that when aberrant behaviour is detected it can be noticed 

more easily, because there is a deviation in structure from what is expected, as well as 

possibly a wrong answer being produced. Further the offending piece of the knowledge 
base can then be identified and detached, its parent source fragment associated with it, 

and corrections made without any need to worry that surrounding parts of the knowledge 
base or source will be jeopardised by the changes. 

3.3. ISOMORPHISM AND MAINTENANCE 

It has long been recognised with regard to conventional systems that computer applica- 

tions are not fixed once and for all upon delivery, but must be capable of being adapted 

to changing requirements and circumstances, and enhanced to meet extra requrements. 
The need for maintenance in a legal KBS cannot be overstated, and is now receiving 

some attention: see [Bench-Capon & Coenen, 1991], [Bratley et al, 1991a], [Coenen & 

Bench-Capon, 1991 ] and [Bratley et al, 1991 b]. As an example of the extent of the mainte- 
nance problem, we may quote some figures from the application being developed as part of 
the MAKE project, dealing with claims for compensation from British Coal. The number 

of changes that will have to be made to this application each year is considerable. 

Regarding the law itself, each year, there are between 10 and 20 court judgements in 

British Coal cases and another 5 relating to other employers, but with significance for 
British Coal. There are up to 20 new relevant Statutory Instruments, and 10 technical 

instructions issued. In addition the policy of British Coal is modified from time to time, 

and some 10-15 such policy decisions are made in a typical year. All of these alterations 
need to be assimilated by the claims officers dealing with the claims. Other changes in the 

expertise of these employees arise out of changes in medical views, for example the accep- 

tance that a particular substance can cause dermatitis; policy changes by other bodies, as 
when a particular firm of solicitors may start to issue writs if the claim is not settled in a 

certain period of time; and changes in the perception of methods of work or occupations. 
British Coal estimate that will require another 30 changes per year. Note that many of 
these changes will be relatively minor, but none the less the cumulative effect of these 

changes indicates the rapidity with which a knowledge base dealing with this sort of appli- 

cation would go out of date. Moreover these changes come in constantly and in an unpre- 

dictable manner: a single annual up-dating of the system would simply be unacceptable. 

An important criterion for a maintainable system is that small and localised changes to 
the problem specification should result in small and localised changes to the program. 
This is the key motivation behind structured programming in conventional systems, and 
an important concern of later developments such as Object Orientated Programming. It is 
to help to satisfy this criterion that we need to insist that the structure of the program 
matches the structure of the problem: if the structures differ, the result is that a small 
change to the problem may ramify throughout the program. It is, of course, the central 
idea of the isomorphic approach that the structure of the knowledge base is a faithful 

reflection of the structure of the sources: this should ensure that limited changes to the 
source give rise to similarly limited changes to the knowledge base. 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 73 

Maintenance is thus facilitated by two features of isomorphism: that a given source 

change can be related to a defined fragment of the knowledge base, and that this fragment 

can be removed from the knowledge base, altered and replaced with confidence that 

nothing else will be affected by the changes. Isomorphism enables us to identify the jeop- 

ardised parts of the knowledge base given a particular change to the source material, and 
it enables such jeopardised bits of the knowledge base to be removed cleanly from the 

knowledge base and worked on in isolation and replaced with all its links to the rest of 

the knowledge base intact. If, in the case of a legal KBS, a section of source, for example 

a section in an Act, is changed, an isomorphic representation will allow the maintenance 
engineer to 'trace' the change from the source through to the final rules representing this 

source. Any maintenance can then be implemented only on that rule set and, if the repre- 

sentation is truly isomorphic, no other rules will be affected. 

It should, however, be emphasised that for the above maintenance technique to have 

its best effect, statements in the representation must be truly declarative. While almost all 
knowledge representation paradigms have declarativeness as an aspiration, in practice 

some formalisms require that a given fragment needs to be understood in the context of 

the rest of the knowledge base. If we want to ensure that localised changes to the source 
material result in correspondingly localised changes to the knowledge base, we must be 

sure that there are no ramifications of changes resulting from a subtle alteration of the 

meaning of the statement deriving from its context in the knowledge base. Such problems 

are discussed at greater length in [Bench-Capon & Forder, 1991]. 

Finally, by achieving a structural correspondence, we will also be able to record the 

provenance of all items of knowledge in the intermediate representation. This is not a 

simple matter in the absence of such isomorphism, but it is vital if changes are to be fol- 

lowed through from source to knowledge base. 

3.4. ISOMORPHISM AND USING THE SYSTEM 

There is a class of advantages which the isomorphic approach yields which do not 

have analogues in conventional structured programming. These are the advantages 

seen from the standpoint of the user, and were perhaps first noted in Vey Mestdagh 
[1990]. These relate to the the correspondence between the users' conceptualisation of 

the domain and the way the domain is conceptualised in the knowledge based system. 
In that paper Vey Mestdagh argues that it will be easier for the user to learn to use 

such a program, easier for the user to follow to the reasoning of such a program, and 

that the explanations from such a program will be easier to understand. We 
concur wholeheartedly with these points: the user will be, or can become, familiar 
with the domain as expressed in the sources, and the user will therefore expect the 
system to reflect this conceptualisation. Many of the problems with expert systems come 
from a mismatch between the rule based conceptualisation of the expert system and the 

conceptualisation of the user. Such a mismatch will lead to the user failing to recognise 
why certain questions are asked, and a dissatisfaction with the rule-orientated explana- 
tions that form the typical explanation facilities. Isomorphism should give a correspon- 



74 T. J. M. BENCH-CAPON AND COENEN 

dence between user and system conceptualisations, and hence make the behaviour of  the 

system more transparent to the user. 

Making the objective structure of  the domain drive the behaviour of  the system is 

further exploited in the M A K E  system by the use of structured dialogues as previously 

used in the Local Office Demonstrator system (Forder 91). Instead of  merely presenting 

the user with a form which requires him to answer questions without giving him a ratio- 

nale for those questions or an idea of  the consequences of  his answers, the user can be 

presented with a dialogue which is tied to a particular section of the source, facilitating 

orientation, and which is structed in a way that corresponds with the source, allowing the 

user to employ his knowledge of those sources to select questions which are likely to 

have the most relevance and impact on outcome. 

Isomorphism also helps when the user is faced with the need to come to a decision as 

to some open textured concept. In systems of  the sort under consideration much of  the 

resolution of  open texture is thrust on the judgement  of  the user. It is clearly impossible 

to anticipate every situation, and the resolution of  open texture must therefore be left to 

the user. The user must, however,  resolve the question not in an arbitrary way, but must 

take into account the guidance provided for him by case law and his employers.  Guidance 

and decisions are typically associated with particular fragments of  the legislation, and 

because the rules reflect this structure, the specific guidance and decisions relevant to the 

point of  the processing which has been arrived out can be selected and presented to the 

user. Were  the rules not isomorphic wi th  the legislation, the associations could not be 

made. The need for harmonisation of  rules, legislation and guidance is further discussed 

in Bench-Capon Coenen & Dunne, [1991]. 

The above, of course, assumes that the user does conceptualise the domain in terms of  

the source documents. We  would contend that this is generally true - although the source 

document in question may not be the legislation. Thus U.S. perpetuities law seems to be 

conceptualised in terms of  John Chipman Gray ' s  commentary (Gray, 1886), according to 

Glickfield (1991), and the UK Social Security, law is often conceptualised by adjudicators 

in terms of  the manuals issued by the Department of  Social Security rather than the 

original legislation. If  this is the case, and the commentary or manual has a significantly 

different structure from the legislation, structuring the system on the legislation may lead 

to a mismatch with the user 's  conceptualisation. In such cases the correct response is not 

to abandon isomorphism - for the arbitrary structuring of  the knowledge engineer is 

unlikely to accord with the user 's  conceptualisation either - but to achieve isomorphism 

with the favoured source document. This may slow the maintenance process, in that the 

knowledge base will need to await the revised commentary or manual before it can 

updated, but when the chosen source is available the maintenance benefits of  isomor- 

phism will accrue. Ideally analysis will also discover links between the commentary and 

legislation also which can be further exploited here. So it may be the case that in order to 

get the advantages of  harmony with the user 's  conception we need to base our system on 

a source other than legislation to get the benefits outlined in this section, unless we are 

willing to educate the users into a new legislation based conceptualisation. 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 75 

4. O b j e c t i o n s  to  I s o m o r p h i s m  

At this point we should consider an objection to isomorphism. This is due to Marek 

Sergot, and is latent in Sergot et al. [1991], in which the more traditional logic program- 
ming method of  top down development was followed. The objection was more fully 

developed in Sergot 's  presentation of  the paper, and in subsequent private discussion. In 

essence the objection is this: the isomorphism approach is all very well if the legislation 
is itself well structured. In such a case, the structure of  the problem, the structure of  the 
legislation, and the structure of  an isomorphic knowledge base would all be in harmony. 

It is, however, often the case that the legislation is not well structured. Often repeated 
amendments and 'patching'  mean that the legislation is itself a complete mess, and fails 

to reflect the real structure of  the domain. In such a case, basing the structure of the 

knowledge base on legislation would lead to a poorly structured knowledge base, which 

failed to correspond to the 'real world'  problem. 
This is a serious objection, but one which turns on what is meant by 'poorly struc- 

tured'. It is true that a knowledge base structured according to poor legislation will fail to 

correspond to the real world problem. However, the legislation is what we have to work 
with, and although such legislation is in the long run a good candidate for consolidation 

and re-writing, in the short term it is likely that this poor legislation will itself continue to 

be patched and amended. If  the knowledge engineer tries to Produce an interpretation 

which is the 'simplest and most perspicuous', any subsequent amendments will require a 
re-interpretation and fail to receive the advantages of  limitations of changes that it was an 

argued an isomorphic representation would have. Moreover, no matter how poor the leg- 

islation, it is that structure that is familiar and available to the validating experts and 

potential users: and their knowledge of  such structure will be lost in a wholesale re-inter- 
pretation. We therefore maintain that even an inconveniently structured piece of  legisla- 

tion should have its structure respected. 
Of course, we are not arguing that the isomorphic approach is the only way to build a 

legal knowledge based system. As was explained in Bench-Capon, [1991b] there are 

many entry points to the knowledge required, and the entry point to choose depends on 

the needs of  the application, and the sort of  application that needs to emerge. None the 
less, we maintain that the advantages we have cited for the isomorphic approach will still 

accrue even when the legislation itself contain structural weaknesses. 

The admission that isomorphism may not always be the best policy leads to the ques- 
tion of  when we believe that it should be adopted. We noted some reasons in the last 

section why the knowledge base might need to be isomorphic with a source other than the 
legislation, but there may be reasons why even this is not enough of a concession. 
Considerations such as the scale of  the system, the expected use and life time of the 
system, the intended users of the systems and the relation of  this system to other systems 
all need to be taken into account. Isomorphism, and the associated analysis process may 
increase the effort required and it might be that such a thorough job is not needed. On the 

other hand if it is intended that the knowledge base should be transferable between 
several tasks, an isomorphic foundation is essential. It is partly an empirical matter which 



76 T . J . M .  BENCH-CAPON AND COENEN 

cannot be resolved until a range of systems built using both isomorphic and non-isomor- 
phic methods have been developed and put into practical use. All we argue here is that 

badly structured legislation is not in itself a sufficient reason to abandon the isomorphic 
approach. 

A second objection concerns the efficiency of the program. Objectors argue that the 

pressure to produce an isomorphic representation will invariably carry with it a certain 
amount of baggage which will make the program less efficient than it could be. This 

objection is related to program optimisation in general, and it it is worth quoting 

Jackson's two rules on optimisation (Jackson, 1975): 

Rule 1. Don't  do it. 
Rule 2 (for experts only). Don' t  do it yet - that is, not until you have a perfectly clear and unoptimized solu- 
tion. 

There will always be a trade off between optimisation and clarity of design. As Jackson 

says: 

Two points should always be remembered: first, optimization makes a system less reliable and harder to 
maintain, and therefore more expensive to build and operate; second, because optimization obscures structure 
it is difficult to improve the efficiency of a system which is partly optimized. 

We therefore recommend that optimisation should not be at the forefront of the mind 
when constructing a system. Our advocacy of an intermediate representation is intended 

to re-inforce the idea that such implementation concerns should be kept distinct from the 

representation process. Of course, when moving from the intermediate to an executable 

representation it may be that the temptation to optimise is too great to resist: none the less 
the optimiser should be clear as to the price he is paying for any extra performance he 

may gain. 

5. A Case Study 

In this part of the paper, the development of a regulation base Knowledge Based System 
(KBS) using the Make Authoring and Development Environment (MADE) and method- 
ology for British Coal is presented as a practical case study of isomorphic development. 

The knowledge base was developed as part of the Maintenance Assistance for 

Knowledge Engineers (MAKE) project. MAKE is a collaborative project between 

Liverpool University, International Computers Limited (ICL) and British Coal directed at 
developing a suite of maintenance tools, suitable for use on regulation based KBS, sup- 
ported by a methodology that encourages the prodution of maintainable systems. MADE 
is the result of the latter. The methodology supports KBS maintenance by basing system 

development on the isomorphic principles advocated above. 

5.1. OVERVIEW OF THE MAKE AUTHORING AND DEVELOPMENT ENVIRONMENT (MADE) 

MADE is a KBS development environment based on KANT (Knowledge ANalysis 
Tool). This is a hypertext like knowledge analysis tool originally built to assist in the 
development of a KBS to provide decision support for Department of Social Security 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 77 

(DSS) Adjudication Officers in the assessment of claims for benefits in local DSS offices 

(Storrs, 1989). It is ideally suited to the construction of KBSs in domains, such as legal 

domains, where the source knowledge is comprised of a significant amount of textual 

material, by assisting the knowledge engineer in the analysis of these source documents. 

The design of MADE revolves around three base windows, the KANT, MADE and 

MAPPE (Make APPlication Environment) Windows. From the KANT base window 
sources can be selected and analysed. This is where the Knowledge Analysis of the 

Application is carried out. The result of the analysis is a set of rules, contained in a Rule 

Base, and a hierarchical set of objects, called the Class Hierarchy. The Class Hierarchy 

defines the vocabulary of objects, their slots, and the values which can fill these slots. 
This vocabulary must then be used when constructing rules. It also describes the state of 

the application at any given time. The Rule Base and the Class Hierarchy are developed 

in an intermediate representation called MIR (Make Intermediate Representation). This is 

essentially a simple language to define objects and rules using a language resembling first 
order predicate logic with some extensions, for example to handle arithmetic. The nature 

of this intermediate representation and the advantages to be gained are fully described in 
(Bench-Capon and Forder, 1991). 

The MIR Rule Base and Class Hierarchy are compiled into the target representation 

used in the MAKE Inference Engine (MIE). Currently this executable representation con- 

sists of a Clausal form referred to as CMIR (Compiled MIR). Other target representations 
could be used equally well. The MADE window is the user interface through which the 

MAKE maintenance tools are invoked. These all operate on the compiled version of the 
MIR. A full discussion of the tools available under the MAKE project is given in (Bench- 
Capon and Coenen, 1991). 

The MAPPE Base Window provides the end user view of the application. It is organ- 

ised as a hierarchy of Topics or Question forms which the user is invited to fill in. The 
answers to questions are 'asserted' as the values of slots and so trigger rules in the Rule 

base. The structure of this topic hierarchy is used to reflect the natural decomposition of 

the problem with respect to the task that the application is required to support. 

5.2. SYSTEM DEVELOPMENT USING MADE 

System development using MADE consists of an iterative process in which repeated 

cycles are performed. These iterations may proceed indefinitely, in that requirements will 
change over time and source material will be superseded. Each iteration involves the con- 
struction of four levels of (KANT) structures as follows:- 

(1) Source Documents: These are imported into the KANT system, preserving their orig- 
inal format, ready for analysis. KANT supports the 'cutting and pasting' of words, 
phrases etc from these documents into other structures, and also the definition of 
'Links' within these sources and between the sources and the new structures. 

(2) Freestyle KANT Structures: These can best be described as 'Structured English' 
notes. KANT readily supports the structuring of such 'notes' (called 'Nodes') 
through the use of child and sibling relations, and through separable fields within a 



78 T. J. M. BENCH-CAPON AND COENEN 

node: The author is free to construct any number of such structures, with a variety of  

contents. However the proposed methodology strongly suggests a number of  specific 

structures, which are detailed later in this document. 

(3) MIR Structures: These are yet more KANT structures, but constructed according to 

the defined syntax of  the intermediate representation. They not only define rules and 

classes, but also the topics and questions to be used in the dialogue with the end user. 

(4) Compiled MIR: This is an executable representation of  the MIR, in that it can be 

interpreted by the M A K E  Inference Engine (MIE), forming the executable applica- 

tion. It is envisaged that alternative compilers can be written in order to translate 

MIR into different target representations. Thus if  authoring and maintenance tasks 

can be confined to operate on MIR Structures and preceding structures/sources, then 

the M A D E  can be used as a generalised development environment. 

For Legislation Based KBS systems the proposed methodology suggests three strands of  

authoring material as shown in Fig. 1. The dialogue strand results in the user interface 

and the object classes and rules strands in the Class Hierarchy and Rule Base respec- 

tively. As can be seen a number of  Freestyle KANT structures are used in the analysis 

gradually building up to the definition of rules, classes, topics and questions in MIR. It is 

important to remember  that throughout this analysis links are being constructed so that 

any MIR definition can be traced back to the original source material and vice versa. The 

method actually encourages the isomorphism betWeen source and MIR definitions 

SOURCES 

FREESTYLE 

MIR 

Mines & H & SE Mines[ ] Claims 
Quarries Regulations ~ Inspectors 

Act 1988 Manual 

I I I 

Dialogue 
Strand 

Topic 
List 

Topic 
Tree 

Question 
Texts 

Topic & 
Question 

MIR Defns. 

Object 
Classes 
Strand 

Tests on 
Entity 
Values 

Entity 
Attribute 

Value 
Triples 

Class 
Descriptions 

MIR Class 
Definitions 

Judgements ] 

r 

Rules 
Strand 

Rules 
Relating 
Entity 
Values 

Structured 
Rules & 

• Groupings 

MIR Rule 
Def'mitions 

Fig. 1. Strands of authoring material for a regulation based KBS. 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 79 

through the cut and paste' operations offered by KANT. The MIR definitions are then 

compiled into the target representation, CMIR. 

In the following sub-sections each stage in the development of the Class Hierarchy and 

Rule Base strands will be considered in further detail by considering a fragment of the 

British Coal application in terms of the four levels of KANT structure created on each 

iteration. This fragment is concerned with the safety of buildings and structures on the 

surface of a mine. This fragment will be used to build a sample KB, consisting of a Rule 

Base and Class Hierarchy, to establish whether the mine manager has complied with the 

Regulations or not. 

5.3. IMPORTATION OF SOURCE DOCUMENTS 

Importation is the process of taking raw texts and moving them into a KANT source 

format but preserving its original appearance. The source documents used in the develop- 

ment of the British Coal application were: 

(i) The Mines & Quarries act 1954. 

(ii) The H & SE Mines (safety of Exit) Regulations 1988. 

(iii) The Claims inspectors Manual (1990). 

(iv) A number of significant judgements. 

If we consider the fragment of the British Coal application concerned with the safety of 

surface buildings and structures the relevant section from the Mines and Quarries Act is 

as follows: 
Buildings, Struciures, Means of Access, &c. 

86. All buildings and structures on the surface of a mine shall be kept in safe condition. 
87. (1) There shall be provided and maintained safe means of access to every place in or on a building or 

structure on the surface of a mine, being a place at which any person has at any time to work. 
(2) Where a person is to work at any such place as aforesaid from which he will be liable to fall a dis- 

tance of more than 10 feet, then, unless the place is one which affords secure foothold and, where 
necessary, secure handhold, means shall be provided by fencing or otherwise for ensuring his safety. 

In its imported form the above will consist of four blocks of text, the title and paragraphs 

86, 87.1 and 87.2. These blocks or parts of them can then be copied into KANT 

Structures where further analysis can take place. 

5.4. FREESTYLE KANT STRUCTURES 

After importation knowledge analysis is commenced by examining the relevant passages 

in the source material to gain a broad understanding of the domain. In some cases it 

is advantageous to collect together the subset of rules and regulations that are applicable 

to a particular part of the final application into a single KANT Structure file, using the 

cut and paste facilities provided with KANT. Fig. 2 gives a KANT window showing 

the relevant legislation in Freestyle KANT Structure format. Note that at the same time 

links will be created between the nodes and the source. At any time the author may 

follow these links back to the source or forward to the rules and objects in the final appli- 

cation, when they have been developed. 



8 0  T . J . M .  B E N C H - C A P O N  AND C O E N E N  

~ MinesAndQuarriesAct 

* + * Buildings, Structures, Means of Access, &c. 

__ *O > 86. All buildings and structures on the surface of a mine shall be kept 
in safe condition. 

*+* 87. 

*O> 1) There shall be provided and maintained safe means of access 
to every place in or on a building or structure on the surface of a 
mine, being a place at which any person has at any time to work. 

*O> 2) Where a person is to work at any such place as aforesaid from 
which he will he liable to fall a distance of more than 10 feet, then, 
unless the place is one which affords secure foothold and, where 

- -  necessary, secure handhold, means shall be provided by fencing or 
__ otherwise for ensuring his safety. 

Fig. 2. Source Freestyle KANT Structure. 

It is suggested that analysis be implemented by following the steps listed below. 

(1) Pass through the source identifying attributes and their entities and the tests applied 
to them. 

(2) Collect the attributes of  and tests on each entity into a Freestyle KANT structure. 
(3) Collect Entity Attribute Value triples (EAVs) together and form another Freestyle 

KANT structure. 

If we consider the above imported regulations we can identify three principal entities, 

'buildings and structures on the surface', 'places where persons work'  and 'high places 
where persons work' ,  i.e. buildings, work places and high work places. It is important 
to appreciate that high work places are a type of work place and that work p~aces are a 

type of  building or structure. We can also identify a fourth implied entity, namely the 
mine manager who is responsible for ensuring that the regulations are complied with. 

The entity 'mine manager '  can be considered to be a type of  'manager '  which in turn is a 
type of  'person' .  We could identify further entities such as 'means of access',  ' foothold'  

and 'handhold' .  However within the example fragment of  legislation no tests are carried 

out on these entities and so they can be considered to not require independent 
representation. There is also a question of  grain size to be considered here. For example 
we may consider buildings, structures, surfaces and mines to be four separate types 

of  entities. However in the piece of  legislation under consideration here no distinction 

is made between them and thus they can effectively be considered as a single entity since 
they only occur in the same phrase. Should these entities occur separately elsewhere 
in the legislation they will, of  course, need separate representation as subclasses of  the 
composite derived from this section. But it is important that the composite object exists, 
also: the rules derived from this piece of  the source need to be attached to the composite 
object. It is partly this desire to locate rules at the correct epistemic level that motivates 
the use of  a type hierarchy. This deviation between the objects discovered by analysis 
and what might result from everyday intuition is an example of need to abstract and 
explicitly record an ontology tailored to the domain discussed in 2.1. above. 

Having identified the relevant entities contained in the Regulations we can consider the 
tests that may be performed on them. For example from Section 86 of the Regulations we 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 

TestsOnObjects 

< O >  m i n e  manager complies with act 

< O >  mine manager responsible for buildlng/structure 

< O >  building/structure in safe condition 

< O >  building/structure is work place 

< O >  w o r k  place has safe means of access 

< O >  w o r k  place safe means of access maintained 

< O >  w o r k  place has falling distance 

< O > h igh  w o r k  place has secure foothold 

< O > h igh  w o r k  place has secure handhold where necessary 

< O > h igh  w o r k  place has means for ensuring safety 

81 

Fig. 3. Tests On Objects Freestyle KANT Structures. 

can identify a test to determine whether a building/structure is in a safe condition. 

Similarly from Section 87.1 we can identify a test to determine whether a building/struc- 

ture is a work place. At a higher level we can presume the existence of  a test to determine 

whether a manager complies with the act or whether he/she is responsible for the build- 

ing/structure in question. All  relevant tests can be collected into a single KANT structure 

file and displayed in a KANT window as shown in Fig. 3. 

We are now in a position to consider EAVs. We can identify the attributes associated 

with the entities and the values those attributes can take by inspection of  the structure 

'Tests on Objects' and the source. Firstly, from the Tests On Objects structure, we can 

extract an attribute for the entity 'mine manager' that the manager complies with act and 

that this attribute can take the value 'true' or the value 'false'. Alternatively if we con- 

sider the entity 'in safe condition' which can take the value 'true' or the value 'false', or 

'is work place' which can also take the values true or false. The E AV triples identified 

are stored in another KANT structure file of  the form shown in Fig. 4. 

In the above EAV and Tests On Object structures care has been take to ensure that 

each structure or sub-structure bears a direct, one-to-one, correspondence with the source 

material i.e. isomorphism with the source is maintained. Further note that the above 

~ EAVs 

< O >  m a n a g e r  - compl ies  w i t h  act  - t rue ,  false 

< O > m a n a g e r  - responsible for - building/structure 

< O > b u i l d i n g / s t r u c t u r e  - in  safe condition - true, false 

< O  > b u i l d i n g / s t r u c t u r e  - is w o r k  p lace  - t rue ,  false 

< O >  w o r k  p lace  - compl ies  w i t h  w o r k  placed regs - true, false 

< O >  w o r k  p lace  - has  safe m e a n s  of  access - t rue ,  false 

< O >  w o r k  p lace  - safe  mear ts  of  access maintained - t rue ,  false 

< O >  w o r k  place  - has  fal l ing d is tance  - 0 to  big 

< O >  high  w o r k  p lace  - complies with high work place regs - true, false 

< O >  h igh  w o r k  p lace  - has secure foothold - true, false 

< O >  h igh  w o r k  p lace  - has secure handhold where necessary - true, false 

< O >  h igh  w o r k  p lace  - has means for ensuring safety - true, false 

Fig. 4. EAVFreestyleKANTStructures. 



82 T.J.M. BENCH-CAPON AND COENEN 

analysis  stages are designed to min imise  and conta in  the need for redoing the analysis  as 

a result  of  problems located at later steps. It is r ecommended  that the author uses source 

material  terminology for entity,  attribute and value names  wherever  possible. 

5.5. MIR STRUCTURES 

In the Intermediate  Representat io  n stage the Tests On Objects and EAV structures are 

developed into a MIR Class Hierarchy and Class Hierarchy. In this case the Classes and 

Rules are stored in MIR K A N T  structures. 

Consider ing  the Class hierarchy first, we create the hierarchy by collect ing the 

attributes and tests for each enti ty and defining the attribute set for each entity. At  the 

same t ime checks should be made for dupl icat ion and overlap. The entities are collected 

together in a Class Lattice, and c o m m o n  attributes are placed up to their highest  c o m m o n  

level. The result  is a formal definit ion of entities, attributes and types in the MIR lan- 

guage, explici t ly recording the appropriate ontology of the domain  uncovered by analy-  

sis. For  the f ragment  of  KB under  considerat ion here the Class Hierarchy in MIR will be 

of the form given in Fig. 5. Note that the Class Hierarchy is arranged so that subclasses 

inherit  attributes from super-classes.  For  example  a 'H ighWorkP lace '  inherits the 

attribute ' kep t lnSafeCondi t ion ' .  

With  respect to the Rule Base we can pass through the sources, Tests On Objects and 

E A V  structures again and identify rules. Thus we can construct  a rule to establish 

whether  the mine  manager  complies  with the Act: 

manager CompliesWithAct is true 
iff 
BuildingStructureInSafeCondition is true 
and 

BuildingStructure IsWorkPlace is false 
or 

ClassHierarehy 
* + * TopObjeet 

< O * MineManager 
~CompliesWithAet (true false) 
OResponsibleFor - BuildingStrueture 
* + * BuildingStructure 
~CompllesWithWorkPlaceRegs (true false) 
OInSafeCondition (true false) 
OIsWorkPlace (true false) 

* + * WorkPlace 
OHasSafeMeansOfAccess (true false) 
OSafeMeansOfAecessMaintalned (true false) 
OHasFallingDistance (0 big) 

< O* HighWorkPlace 
0 CornpliesWit hHighWorkPlaceRegs 
OHasSecureFoothold (true false) 
OHasSecureHandhold (true false) 
<)HasMeansForEnsuringSafety (true false) 

Fig. 5. Class Hierarchy MIR KANY Structure. 



I S O M O R P H I S M  A N D  L E G A L  K N O W L E D G E  B A S E D  S Y S T E M S  

RuleBase 

' * +* @ Rule definitions 

< + * MIRRule: Section86 

• O* declarations: 

<) MineManager manager 

~>BuildingStrueture building 

• + * head 

<O* manager compliesWithAct is true 

"+* IFF 

• +* when 

<O* manager responsibleFor building 

• +* and 

<O* building inSafeCondition is true 

<O* building isWorkPlace is false 

• +* or 

<O* building compliesWithWorkPlaceRegs is true 

<-* MIRRule: Section87.1 

<-* MIRRule: Section87.2 

83 

Fig. 6. Rule Base MIR KANT Structure. 

BuildingStructure CompliesWithWorkPlaceRegs is true 
when 
(manager Responsible BuildingStructure) 

Here 'manager '  and 'BuildingStructure '  are variables typed the appropriate class of  

entity. In MIR this will appear as illustrated in Fig. 6. Note that the links back to the 

structures from which the rule was derived are shown. The figure also illustrates two 

additional rules referring to this section of  the source in folded form. 

5.6. COMPILED MIR 

During the compilat ion stage the MIR Class Hierarchy and Rule Base are compiled into 

objects and rules in the executable target representation, CMIR. In the case of  the Rule 

Base this will result in a set of  clauses. If  we consider the rule constructed in the previous 

section this will compile  into the following clauses. 

(manager CompliesWithAct is true 
if 
((BuildingStructure InSafeCondition is true) 
and 
(BuildingStructure IsWorkPlace is false) 
and 
(manager Responsible BuildingStructure))) 



84 T.J.M. BENCH-CAPON AND COENEN 

(manager CompliesWithAct is true) 
if 
((BuildingStructure InSafeCondition is true) 
and 
(BuildingStructure CompliesWithWorkPlaceRegs is true) 
and 
(manager Responsible BuildingStructure)) 

(not manager CompliesWithAct is true) 
if 
((not BuildingStructure InSafeCondition is true) 
and 
(manager Responsible BuildingStructure)) 

(not manager CompliesWithAct is true) 
if 
((not BuildingStructure IsWorkPlace is false) 
and 
(not BuildingStructure CompliesWithWorkPlaceRegs is true) 
and 
(manager Responsible BuildingStructure)) 

These clauses show the inferences that are licensed by the rule in Figure 6. Tools, 

described in Bench-Capon & Coenen, [1991] and Coenen & Bench-Capon [1991] are 

available for displaying and animating this version of the knowledge base. 

6. Summary of the Case Study 

The M A K E  Applicat ion Development Environment and Methodology have been 

described in terms of  

- The way in which it preserves an isomorphism between source material and, ulti- 

mately, the end user application. 

- The use of  the M A K E  Intermediate Representation as a general re-targetable step 

before delivery in a specific language or environment. 

- An authoring process, supported by Freestyle KANT structures, which exploits audit 

trail information, and thus encourages the preservation of the aforementioned isomor- 

phism. 

- The linking of  structures to form an audit trail which will later be used in various 

maintenance activities. 

- The heavy use of  graphical presentation of  the material produced. 

It is argued that all these features put together, as in the MADE system, combine to make 

a very practical development  environment for regulation based KBSs which addresses the 

whole application life cycle. 

7. Conclusion 

In this paper we have discussed the isomorphic approach to the construction of  legal 

knowledge based systems, and have argued that a number of  gains come from this 

approach, and drawn comparisons between this approach, and its benefits to the best 



ISOMORPHISM AND LEGAL KNOWLEDGE BASED SYSTEMS 85 

practice in the software engineering of conventional systems. We have illustrated the 

approach and some of its gains by a detailed case study of the approach in operation. We 
emphasise that we do not believe that this is the only way to build such a system: we do 
maintain, however, that for a large class of potential applications it is the best approach. 

AcknowLedgements  

The work described above was carried out as part of the MAKE Project, supported by the 
Information Engineering Directorate of the UK Department of Trade and Industry and the 
UK Science and Engineering Research Council. The project collaborators are 
International Computers Limited, the University of Liverpool and British Coal. In addi- 
tion the authors would like to express special thanks to Charlie Portman for his working 
paper 'Authoring in MAKE.' We greatly benefited from a number of discussions with a 
variety of people at the Third International Conference on AI and Law held in Oxford in 
June 1991: especially Marek Sergot, Paul Bratley and Kees de Vey Mestdagh. Finally we 
would like to thank Don Berman for his comments on an earlier draft of this paper. 

References  

Allen, L. E. & Saxon C. S. 1991. More IA Needed in AI: Interpretation Assistance for Coping with the Problem 
of Multiple Structural Intepretations. In Proceedings of The Third International Conference on A1 and Law, 
53-61.  Oxford:ACM Press. 

Bench-Capon, T.J.M., Robinson, G. O. Routen, T. W. & Sergot, M. J. 1987. Logic Programming for Large 
Scale Applications in Law: A Formalisation of Supplementary Benefit Legislation. In Proceedings of The 
First lnternational Conference on Al and Law, 190 198. Boston:ACMPress. 

Bench-Capon, T. J. M. 1989. Deep Models, Normative Reasoning and Legal Expert Systems. In Proceedings of 
The Seeond lnternational Conference on Al and Law, 37 45. Vancouver:ACM Press. 

Bench-Capon, T. J. M & Forder, J. M. 1991. Knowledge Representation for Legal Applications. In Knowledge 
Based Systems and Legal Applications, ed., T. J. M. Bench-Capon, 245-264.  Academic Press. 

Bench-Capon, T. J. M. & Coenen, F. P. 1991. Practical Application of KBS to Law: The Crucial Role of 
Maintenance. In Legal Knowledge Based Systems, Aims for Research and Development, C. van Noortwyk, A. 
H. J. Schmidt, R. G. F. Winkels, 5 17. Lelystad, The Netherlands:Koninklijke Vernande BV. 

Bench-Capon, T. J. M. & Coenen F. Exploiting Isomorphism: Development of a KBS to Support British Coal 
Insurance Claims. In Proceedings of The Third International Conference on Al and Law, 62-68.  
Oxford:ACM Press. 

Bench-Capon, T. J. M. 1991. KBS Applied to Law: A Framework for Discussion. In Bench-Capon T. J. M. 
(ed), Knowledge Based Systems and Legal Applications, ed. T. J. M. Bench-Capon, 329-342.  Academic 
Press. 

Bench-Capon, T. J. M., Coenen, F. P. & Dunne, P. E. S. Integrating Legal Support Systems Through Document 
Models. Expert Systems with Applications (to appear). 

Bratley, P., Fremont, J., Mackaay, E. & Poulin, D. 1991. Coping with Change. In Proceedings of The Third 
International Conference on A1 and Law, 69-76.  Oxford:ACM Press. 

Bratley, P., Poulin, D. & Savoy, J. 1991. The Effect of Change on Legal Applications. In Proceedings of DEXA 
Berlin, ed. D. Karagiannis, 436-441.  

Coenen, F. & Bench-Capon, T. 1991. A Graphical Interactive Tool for KBS Maintenance. In Proceedings of 
DEXA Berlin, ed. D. Karagiannis, 166-171. 

Glickfield, Barnett W. 1991. Perpetuities Reasoning Captured and Automated in a Logic Program. In 
Proceedings of The Third International Conference on AI and Law, 128-136. Oxford:ACM Press. 

Gray, J. 1986. The Rule Against Perpetuities. Boston: Little, Brown and Company. 
Jackson, M.A. 1975. Principles of Program Design. Academic Press. 
Johnson, P. & Mead, D. 1991. Legislative Knowledge Based Systems for Public Administration - Some 



86 T. J. M. BENCH-CAPON AND COENEN 

Practical Issues. In Proceedings of The Third International Conference on AI and Law, 108-117. Oxford: 
ACM Press. 

Karpf, Jorgen. 1989. Quality Assurance of Legal Expert Systems. Jurimatics No 8, Copenhagen Business 
School. 

Kowalski, R. A. 1989. The Treatment of Negation in Logic Programs Representing Legislation. In Proceedings 
of The Second International Conference on A1 and Law, 11-15. Vancouver:ACM Press. 

Routen, Tom. 1989. Hierarchically Organised Formalisations. In Proceedings of The, Second International 
Conference on AI and Law, 242-250.  Vancouver:ACM Press. 

Routen T. W. & Bench-Capon, T. J. M. 1991. Hierarchical Formalisations. International Journal of Man 
Machine Studies 1:69-93. 

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P. & Cory, H. T. 1986. The British 
Nationality Act as a Logic Program. Communications of the ACM 29:5 370-386 

Sergot, M. J. 1991. The representation of Law in Computer Programs. In Knowledge Based Systqms and Legal 
Applications, ed. T. J. M. Bench-Capon, 3 -68 .  Academic Press. 

Sergot, M. J. Kamble, A. S. & Bajaj, K. K. 1991. Indian Civil Service Pension Rules: A Case Study in Applying 
Logic Programming to Regulations. In Proceedings of The Third International Conference on AI and Law, 
118-127. Oxford:ACM Press. 

Storrs, G. E. & Burton, C. P. 1989. KANT, A Knowledge Analysis Tool. ICL Technical Journal 6:572-581. 
de Vey Mestdagh, C. N. J. 1990. How Artificial Should Artificial Intelligence Be? In Legal Knowledge Based 

Systems: An Overview of Criteria for Validation and Practical Use, eds. Kracht D., de Vey Mestdagh, 
C. N. J. and Svensson, J. S. 93-104. Lelystad, The Netherlands:Koninklijke Vermade. 


