

Argumentation and Reasoned Action

Proceedings of the 1st European
Conference on Argumentation,

Lisbon 2015

Volume II

Edited by

Dima Mohammed
and

Marcin Lewiński

© Individual author and College Publications 2016
All rights reserved.

ISBN 978-1-84890-212-1

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Original cover design by Orchid Creative www.orchidcreative.co.uk
Printed by Lightning Source, Milton Keynes, UK

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise without prior permission, in writing, from the
publisher.

	

	
	

D.	Mohammed	&	M.	Lewiński	(eds.)	(2016).	Argumentation	and	Reasoned	Action:	Proceedings	of	the	1st	
European	Conference	on	Argumentation,	Lisbon,	2015.	Vol.	II,	163-180.	London:	College	Publications.	

163	

2	
	

Using	Abstract	Dialectical	Frameworks		
to	Argue	about	Legal	Cases	

	
LATIFA	AL-ABDULKARIM		

Department	of	Computer	Science,	University	of	Liverpool,	UK		
latifak@liverpool.ac.uk		

	
KATIE	ATKINSON		

Department	of	Computer	Science,	University	of	Liverpool,	UK		
katie@liverpool.ac.uk		

	
TREVOR	BENCH-CAPON		

Department	of	Computer	Science,	University	of	Liverpool,	UK	
tbc@liverpool.ac.uk		

	
	

Recent	 work	 has	 shown	 how	 to	 map	 factor	 hierarchies	 for	
legal	 reasoning	 into	Abstract	Dialectical	 Frameworks	 (ADFs),	
by	defining	acceptance	conditions	for	each	node.	In	this	paper	
we	 model	 as	 ADFs	 bodies	 of	 case	 law	 from	 various	 legal	
domains,	rewrite	them	as	logic	programs,	compare	the	results	
with	 previous	 legal	 reasoning	 systems	 and	 propose	
improvements	 by	 increasing	 the	 scope	 of	 reasoning	
downwards	to	facts.		

	
KEYWORDS:	 ADF,	 case	 based-reasoning,	 factors,	 legal	
reasoning	

	
	
1.	INTRODUCTION		
	
A	 recent	 development	 in	 computational	 argumentation	 has	 been	
Abstract	 Dialectical	 Frameworks	 (ADFs)	 by	 Brewka	 and	 Woltran	
(2010).	ADFs	can	be	seen	as	a	generalisation	of	standard	Argumentation	
Frameworks	 (AFs)	 (Dung,	 1995)	 in	 which	 the	 nodes	 represent	
statements	rather	than	abstract	arguments,	and	each	node	is	associated	
with	an	acceptance	condition	that	determines	when	a	node	is	acceptable	
in	 terms	 of	 whether	 its	 children	 are	 acceptable.	 Thus	 links	 in	 AFs	
express	only	one	relationship,	namely	defeat,	but	ADFs	can	represent	a	

Latifa	Al-Abdulkarim	et	al.	
	

	

164	

variety	of	attack	and	support	relations.	In	consequence,	whereas	nodes	
in	an	AF	have	only	the	single	acceptance	condition	that	all	their	children	
are	 defeated,	 nodes	 in	 ADFs	 can	 have	 different	 acceptance	 conditions	
specifically	tailored	for	each	node.	In	Al-Abdulkarim	et	al.	(2014)	it	was	
argued	 that	 ADFs	 are	 very	 suitable	 for	 representing	 factor	 based	
reasoning	with	legal	cases	as	found	in	the	CATO	system	(Aleven,	1997)	
and	as	formalised	in	Prakken	and	Sartor	(1998).	

	The	 key	 idea	 in	Al-Abdulkarim	 et	 al.	 (2014)	 is	 that	 the	 abstract	
factor	hierarchy	of	CATO	(Aleven,	1997)	 (an	extract	given	 in	Figure	1)	
corresponds	directly	to	the	node	and	link	structure	of	an	ADF,	or	rather	
(since	the	links	are	labelled	“+”	or	“−”)	a	Prioritised	ADF	(PADF)	Brewka	
et	al.	(2013)	which	partitions	links	into	supporting	and	attacking	links,	
and	so	corresponds	to	the	labels	on	the	links	in	the	factor	hierarchy.	To	
express	CATO’s	factor	hierarchy	as	an	ADF,	acceptance	conditions	need	
to	 be	 supplied	 for	 each	 of	 the	 nodes.	 Finally	 the	 logical	 model	 of	 IBP	
(Brüninghaus	&	Ashley,	2003)	can	be	used	to	tie	the	various	parts	of	the	
factor	hierarchy	together	to	supply	decisions	for	particular	cases.	In	Al-
Abdulkarim	 et	 al.	 (2014)	 it	 was	 suggested	 that	 the	 acceptance	
conditions	 could	be	expressed	as	Prolog	procedures.	These	 could	 then	
be	 used	 directly	 to	 form	 a	 Prolog	 program	 that	 could	 be	 executed	 to	
classify	cases	(as	to	which	side	they	are	decided	for)	represented	as	sets	
of	factors.	

In	 this	 paper	 we	 will	 evaluate	 this	 approach.	 We	 will	 use	 US	
Trade	 secrets	 as	 the	 domain,	 allowing	 us	 to	 use	 the	 analysis	 of	 CATO	
which	 will	 permit	 direct	 comparison	 with	 CATO,	 IBP,	 the	 various	
systems	used	as	comparators	 in	Brüninghaus	&	Ashley	(2003)	and	the	
AGATHA	 system	 of	 Chorley	 and	 Bench-Capon	 (2005).	 We	 will	 firstly	
consider	a	quantitative	analysis,	in	terms	of	performance	and	how	easily	
the	program	can	be	refined	to	improve	performance,	and	then	consider	
the	 system	 in	 terms	 of	 the	 transparency	 of	 its	 outputs,	 the	 relation	 to	
case	 decision	 texts,	 and	 the	 relation	 to	 formal	 frameworks	 for	
structured	 argumentation	 such	 as	 Prakken	 (2010).	 Finally	 we	 will	
consider	whether	the	method	can	be	readily	applied	to	other	domains,	
by	 briefly	 describing	 an	 application	 of	 the	 ADF	 approach	 to	 Popov	 v	
Hayashi	and	related	cases	as	modelled	in	Bench-Capon	(2012).	
	
2.	BACKGROUND	
	
In	this	section	we	will	recapitulate	the	essentials	of	ADFs	(Brewka	et	al.,	
2013),	CATO	(Aleven,	1997)	and	IBP	(Brüninghaus	&	Ashley,	2003).		
	
	
	

Abstract	dialectical	frameworks	
	

165	

	

2.1	Abstract	Dialectical	Frameworks	
	
An	ADF	is	defined	in	Brewka	et	al.	(2013),	as:		
	

Definition	1:	An	ADF	is	a	tuple	ADF	=	<	S,L,C	>	where	S	 is	the	
set	of	statements	(positions,	nodes),	L	is	a	subset	of	S	×	S,	a	set	
of	links,	and	C	=	{Cs	∈	S}	is	a	set	of	total	functions	Cs	:	2par(s)	→	{t,	f	
},	 one	 for	 each	 statement	 s.	 Cs	 is	 called	 the	 acceptance	
condition	of	s.	

	
In	 a	 Prioritised	 ADF,	 L	 is	 partitioned	 into	 L+	 and	 L−,	 supporting	 and	
attacking	 links,	 respectively.	 Although	 the	 acceptance	 conditions	 are	
often	expressed	as	propositional	functions,	this	need	not	be	the	case:	all	
that	 is	 required	 is	 the	specification	of	 conditions	 for	 the	acceptance	or	
rejection	of	a	node	in	terms	of	the	acceptance	or	rejection	of	its	children.	
	
2.2	CATO	
	
CATO	(Aleven,	1997),	which	was	developed	from	Rissland	and	Ashley’s	
HYPO	 (1990),	 takes	 as	 its	 domain	 US	 Trade	 Secret	 Law.	 CATO	 was	
primarily	directed	at	law	students,	and	was	intended	to	help	them	form	
better	 case	 based	 arguments,	 in	 particular	 to	 improve	 their	 skills	 in	
distinguishing	cases,	 and	emphasising	and	downplaying	distinctions.	A	
core	 idea	was	 to	 describe	 cases	 in	 terms	 of	 factors,	 legally	 significant	
abstractions	 of	 patterns	 of	 facts	 found	 in	 the	 cases,	 and	 to	build	 these	
base-level	 factors	 into	 an	 hierarchy	 of	 increasing	 abstraction,	 moving	
upwards	through	intermediate	concerns	(abstract	factors)	to	issues.	An	
extract	from	the	factor	hierarchy	is	shown	in	Figure	1.		
	

	
	

Figure	1	–	CATO	Abstract	Factor	Hierarchy	from	Aleven(1997)	
	

Latifa	Al-Abdulkarim	et	al.	
	

	

166	

Each	 factor	 favours	 either	 the	 plaintiff	 or	 the	 defendant.	 The	 program	
matches	precedent	 cases	with	a	 current	 case	 to	produce	arguments	 in	
three	 plies:	 first	 a	 precedent	 with	 factors	 in	 common	 with	 the	 case	
under	consideration	is	cited,	suggesting	a	finding	for	one	side.	Then	the	
other	 side	 cites	 precedents	 with	 factors	 in	 common	 with	 the	 current	
case	 but	 a	 decision	 for	 the	 other	 side	 as	 counter	 examples,	 and	
distinguishes	 the	 cited	 precedent	 by	 pointing	 to	 factors	 not	 shared	 by	
the	 precedent	 and	 current	 case.	 Finally	 the	 original	 side	 rebuts	 by	
downplaying	distinctions,	citing	cases	to	prove	that	weaknesses	are	not	
fatal	 and	distinguishing	 counter	 examples.	 CATO	used	 twenty-six	 base	
level	factors	(there	is	no	F9),	as	shown	in	Table	1.	
	

	

Table	1-Base	Level	Factors	in	CATO	

Abstract	dialectical	frameworks	
	

167	

	

There	is,	however,	no	single	root	for	the	factor	hierarchy	as	presented	in	
Aleven	(1997):	rather	we	have	a	collection	of	hierarchies,	each	relating	
to	 a	 specific	 issue.	 To	 tie	 them	 together	 we	 turn	 to	 the	 Issue	 Based	
Prediction	(IBP)	system	of	Bruninghaus	and	Ashley	(2003).		
	
2.3	Issue	Based	Prediction	
	
In	IBP,	which	is	firmly	based	on	CATO,	the	aim	is	not	simply	to	present	
arguments,	 but	 to	 predict	 the	 outcomes	 of	 cases	 (find	 for	
plaintiff/defendant).	To	enable	 this,	 the	 issues	of	CATO’s	hierarchy	are	
tied	 together	 using	 a	 logical	 model	 derived	 from	 the	 Uniform	 Trade	
Secret	Act	and	the	Restatement	of	Torts.	The	model	is	shown	in	Figure	
2.		
	

	
Figure	2	–	IBP	Logical	Model	from	Brüninghaus	&	Ashley	(2003)	

	
Now	consider	 the	 factor	hierarchy,	part	of	which	 is	shown	 in	Figure	1.	
We	can	now	regard	this	as	an	ADF	by	forming	the	set	S	from	the	issues,	
intermediate	concerns	and	base	level	factors,	L+	from	the	links	labelled	
“+”	 and	 L−	 from	 the	 links	 labelled	 “−”.	 Using	 the	 complete	 factor	
hierarchy	given	in	Figures	3.2	and	3.3	of	(Aleven,	1997)	we	will	have	an	
ADF	which	has	as	 its	 leaf	nodes	 the	base	 level	 factors	of	CATO.	This	 is	
described	in	tabular	form	in	Table	2.		
	

Latifa	Al-Abdulkarim	et	al.	
	

	

168	

	

	
	
The	roots	of	CATO’s	hierarchies	correspond	to	the	 leaves	of	 the	 logical	
model:	 we	 can	 therefore	 form	 them	 into	 a	 single	 ADF	 by	 using	 this	
structure.	The	relevant	additions	to	the	ADF	needed	to	integrate	the	IBP	
model	 are	 shown	 in	 Table	 3	 (note	 that	 F124	 is	 not	 discussed	 in	
Brüninghaus	&	Ashley,	2003).		
	

	
Table	3-IBP	Logical	Model	as	ADF	

	
IBP	 used	 186	 cases,	 148	 cases	 analysed	 for	 CATO	 and	 38	 analysed	
specifically	 for	 IBP.	 Unfortunately,	 these	 cases	 are	 not	 all	 publicly	
available	and	so	we	will	use	the	32	cases	harvested	from	public	sources	
by	Alison	Chorley	and	used	to	evaluate	her	AGATHA	system	(2005).	As	
part	 of	 the	 evaluation	 in	 Brüninghaus	 and	 Ashley	 (2003)	 nine	 other	
systems	were	 also	 considered	 to	 provide	 a	 comparison.	Most	 of	 these	
were	 different	 forms	 of	 machine	 learning	 system,	 but	 programs	
representing	 CATO	 and	 HYPO	 were	 also	 included.	 IBP	 was	 the	 best	
performer:	results	reported	in	IBP	(Brüninghaus	&	Ashley,	2003),	Naive	
Bayes	 (the	 best	 performer	 of	 the	 ML	 systems),	 CATO,	 HYPO	 and	 a	

Table	2	CATO	as	ADF	

Abstract	dialectical	frameworks	
	

169	

	

version	of	IBP	which	uses	only	the	model,	with	no	CBR	component,	are	
shown	in	Table	41.		

	

	
	
Direct	 comparison	 with	 AGATHA	 is	 hampered	 by	 the	 fact	 that	
evaluation	 in	 AGATHA	 was	 directed	 towards	 evaluating	 the	 different	
heuristics	and	search	algorithms	used	in	that	system,	and	so	no	version	
can	 be	 considered	 “definitive”,	 and,	 of	 course,	many	 fewer	 cases	were	
used	in	the	experiments.	However,	typically	27-30	of	the	32	(≈	84−93%)	
cases	 were	 correctly	 decided	 by	 the	 theories	 produced	 by	 AGATHA	
(Chorley	&	Bench-Capon,	2005).	
	
3.	ACCEPTANCE	CONDITIONS	
	
We	 now	 supply	 acceptance	 conditions	 for	 each	 node,	 to	 supply	 the	
elements	of	C	required	for	the	ADF.	We	will	rely	only	on	the	definitions	
of	the	factors	in	Aleven	(1997).	We	do	not	use	precedents	at	this	stage;	
as	Aleven	remarks:	
	

for	 certain	 conflicts,	 it	 is	 self	 evident	 how	 they	 should	 be	
resolved.	 For	 example,	 the	 fact	 that	 plaintiff’s	 product	 was	
unique	 in	 the	 market	 (F15)	 arguably	 supports	 a	 conclusion	
that	 plaintiff’s	 information	 (which	 is	 used	 to	 make	 the	
product)	is	not	known	outside	plaintiff’s	business	(F106),	but	
not	 if	 it	 is	also	known,	 for	example,	that	plaintiff	disclosed	its	
information	 in	 a	 public	 forum	 (F27).	 Common	 sense	 dictates	
that	in	those	circumstances,	the	information	is	known	outside	
plaintiff’s	business.	It	is	not	necessary	to	look	to	past	cases	to	
support	 that	 point.	 CATO’s	 use	 of	 link	 strength	 enables	 a	
knowledge	engineer	to	encode	inferences	like	this.	(p.	47).	

	
From	Tables	2	and	3	we	can	see	that	we	have	eighteen	nodes	to	provide	
with	 acceptance	 conditions.	 One	 (F124)	 has	 only	 a	 single	 supporting	

																																								 																					
1	No	explanation	for	using	a	different	number	of	cases	for	CATO	and	IBP	model	
is	given	in	Brüninghaus	and	Ashley	(2003).	

Table	4-	Results	from	[12]	

Latifa	Al-Abdulkarim	et	al.	
	

	

170	

child:	 thus	 the	 acceptance	 condition	will	 be	 Parent	←→	Child.	We	will	
write	 this	 (and	 the	 other	 acceptance	 conditions)	 as	 a	 set	 of	 tests	 for	
acceptance	and	rejection,	to	be	applied	in	the	order	given,	which	allows	
us	 to	 express	 priority	 between	 them.	 The	 last	 test	 will	 always	 be	 a	
default.	We	choose	this	form	of	expression	because	we	find	it	easier	to	
read	 in	 many	 cases,	 because	 it	 corresponds	 directly	 to	 the	 defeasible	
rules	with	priorities	used	in	formalisms	such	as	ASPIC+	(Prakken,2010),	
and	because	 it	 is	directly	usable	as	Prolog	code.	Thus	we	write	Parent	
←→	Child	as	
	

Accept	Parent	if	Child.		
Reject	Parent.	

	
Where	 NOT	 is	 required	 we	 use	 negation	 as	 failure.	 The	 tests	 are	
individually	 sufficient	 and	 collectively	necessary,	 ensuring	 equivalence	
with	 the	 logical	 expression	 (see	 Clark,	 1978).	 Six	 nodes	 (F201,	 F203,	
F105,	 F108,	 F114	 and	 F124)	 have	 only	 supporting	 links:	 these	 can	 be	
straightforwardly	represented	using	AND	and	OR.	We	followed	the	IBP	
model	 for	 the	 two	nodes	 taken	 from	that	model	 (F201	and	F203),	and	
used	 OR	 for	 the	 other	 four.	 The	 most	 complicated	 was	
InfoMisappropriated	(F201):	
	

Accept	InfoMisappropriated	if	F114	AND	F112.		
Accept	InfoMisappropriated	if	F110.		
Reject	InfoMisappropriated.	

	
Five	nodes	have	one	supporting	and	one	attacking	 link.	These	are	best	
seen	as	forming	an	exception	structure:	accept	(reject)	the	parent	if	and	
only	 if	supporting	(attacking)	child	unless	attacking	(supporting)	child.	
Note	that	the	exception	may	be	the	supporting	or	the	attacking	child:	in	
the	 former	 case	 the	default	will	 be	 reject,	 and	 in	 the	 latter	 the	default	
will	be	accept.	Thus:	
	

Accept	Parent	if	Support	AND	(NOT	Attack).		
Reject	Parent.		
Reject	Parent	if	Attack	AND	(NOT	Support).		
Accept	Parent.	

	
For	F110,	F120	and	F121	the	attacking	child	is	the	exception,	while	for	
F122	 and	 F123	 the	 supporting	 links	 are	 the	 exceptions.	 This	 leaves	
seven	nodes.	For	F200	we	regard	 the	attacking	 link	as	an	exception	 to	
the	case	where	the	conjunction	of	the	supporting	links	holds.	

Abstract	dialectical	frameworks	
	

171	

	

For	 F104	 and	 F112	 we	 see	 the	 supporting	 links	 as	 offering	
disjoint	ways	of	accepting	the	parent,	and	the	attacking	child	as	a	way	of	
establishing	that	the	factor	is	not	present.	We	default	to	yes	because	in	
many	cases	 there	are	no	 factors	 for	either	side	present	relating	 to	 this	
point.	We	take	it	that	this	factor	was	often	simply	accepted	on	the	facts	
and	 uncontested,	 and	 so	 there	 was	 no	 discussion	 on	 the	 point.	 A	 full	
description	 of	 all	 the	 truth	 conditions	 is	 given	 in	 Al-Abdulkarim	 et	 al.	
(2015).	
	
4.	PROLOG	PROGRAM	
	
The	Prolog2	program	was	 formed	by	ascending	 the	ADF,	 rewriting	 the	
acceptance	 conditions	 as	 groups	 of	 Prolog	 clauses	 to	 determine	 the	
acceptability	 of	 each	 node	 in	 terms	 of	 its	 children.	 The	 tests	 were	
restated	using	 the	appropriate	syntax,	with	some	reporting	 to	 indicate	
whether	 the	 node	 is	 satisfied	 (defaults	 are	 indicated	 by	 the	 use	 of	
“accepted	 that”),	 and	 some	 control	 to	 call	 the	 procedure	 to	 determine	
the	next	node,	and	to	maintain	a	 list	of	accepted	 factors.	Examples	can	
be	found	in	Al-Abdulkarim	et	al.	(2015).	

Each	 of	 the	 tests	 in	 the	 acceptance	 condition	 is	 applied	 in	 a	
separate	clause,	using	the	set	of	factors	currently	identified	as	present	in	
the	 case,	 before	 proceeding	 to	 the	 next	 factor,	with	 the	 current	 factor	
added	to	the	applicable	factors	if	 it	 is	accepted.	To	allow	completion	of	
the	database	(Clark,	1978),	a	final	clause	is	added	to	catch	any	case	not	
covered	 by	 any	 of	 the	 preceding	 clauses.	 These	 defaults	 may	 favour	
either	 side.	 In	 some	 cases,	 the	 default	 is	 accept	 because	 few	 case	
descriptions	 related	 to	 these	 abstract	 factors,	 although	 they	 are	 a	 sine	
qua	non	for	any	claim.	Our	belief	is	that	these	aspects	were	uncontested	
and	 so	 the	 factors	were	not	 explicitly	discussed	 in	 the	 trial,	 and	 so	do	
not	 appear	 in	 the	 CATO	 analysis.	 Where	 we	 felt	 it	 was	 clear	 that	 the	
factor	needed	to	be	explicitly	established,	the	default	was	reject.		

The	 above	 demonstrates	 that	 it	 is	 a	 straightforward	 and	
reasonably	objective	process	 to	 transform	a	 factor	based	analysis	such	
as	 is	 found	 in	 (Aleven,	 1997)	 to	 an	 executable	 program	 via	 an	 ADF.	
Although	 judgement	 was	 sometimes	 required	 to	 form	 the	 acceptance	
conditions,	we	would	suggest	that	such	judgements	were	not	difficult	to	
make.	 Moreover	 if	 there	 are	 difficult	 choices,	 the	 effect	 of	 the	
alternatives	can	be	compared	on	a	set	of	test	cases.	Overall	the	relatively	
small	number	of	 factors	 relevant	 to	particular	nodes	greatly	 simplifies	
the	task.	

																																								 																					
2	 Prolog	was	 used	 because	 of	 its	 closeness	 to	 the	 acceptance	 conditions,	 and	
made	the	implementation	quick,	easy	and	transparent.	

Latifa	Al-Abdulkarim	et	al.	
	

	

172	

5.	RESULTS	
	
We	can	now	run	the	program	on	the	cases.	We	represent	the	cases	as	a	
list	of	base-level	factors.	For	example,	the	Boeing	case3	is	represented	as	
case(boeing,[f4,f6,f12,f14,f21,f1,f10]).		
	

giving	output:		
1	?-	go(boeing).		
accepted	that	defendant	is	not	owner	of	secret		
efforts	made	vis	a	vis	outsiders		
efforts	made	vis	a	vis	defendant		
there	was	a	confidentiality	agreement		
defendant	was	on	notice	of	confidentiality	
	there	was	a	confidential	relationship		
accepted	that	the	information	was	used		
questionable	means	were	used		
accepted	that	the	information	was	not	available	elsewhere		
accepted	that	information	is	not	known		
accepted	that	the	information	was	neither	known	nor	
available		
accepted	that	the	information	was	valuable		
not	accepted	that	the	information	was	legitimately	obtained		
improper	means	were	used		
efforts	were	taken	to	maintain	secrecy		
information	was	a	trade	secret		
a	trade	secret	was	misappropriated		
find	for	plaintiff		
boeing[f200,	f201,	f203,	f102,f110,f104,f111,	
f112,f114,f115,f121,f122,f123,	f4,f6,f12,f14,f21,f1,f10]		
decision	is	correct	

	
The	initial	program	correctly	classified	25	out	of	the	32	cases	(78.1%).	
While	all	ten	of	the	cases	won	by	the	defendant	were	correctly	classified,	
seven	 of	 the	 22	 cases	 won	 by	 the	 plaintiff	 were	 not.	 The	 figure	 for	
correct	 answers	 is	 remarkably	 close	 to	 the	 77.8%	 reported	 for	 the	
version	 of	 CATO	 used	 in	 (Brüninghaus	 and	 Ashley,	 2003),	 which,	 of	
course,	uses	exactly	the	same	analysis	of	the	domain	and	cases	that	we	
have	adopted	here.	Thus	as	a	first	conclusion	we	can	tentatively	suggest	
that	 executing	 the	 analysis	 in	 	 Aleven	 (1997)	 as	 an	 ADF	 produces	 very	
similar	 results	 to	 those	 obtainable	 using	 the	 original	 CATO	 program	
(albeit	we	are	using	a	smaller	set	of	cases).	We	can	now	investigate	how	
the	initial	program	might	be	improved.		
																																								 																					
3	The	Boeing	Company	v.	Sierracin	Corporation,	108	Wash.2d	38,	738	P.2d	665	
(1987).	

Abstract	dialectical	frameworks	
	

173	

	

The	wrongly	predicted	cases	were:	
	

case(spaceAero,[f8,f15,f18,f1,f19]).		
case(televation,	[f6,f12,f15,f18,f21,f10,f16]).		
case(goldberg,[f1,f10,f21,	f27]).		
case(kg,[f6,f14,f15,f18,f21,f16,f25]).		
case(mason,[f6,f15,f21,f1,f16]).		
case(mineralDeposits,[f18,f1,f16,f25]).		
case(technicon,[f6,f12,f14,f21,f10,f16,f25]).		

	
Examination	 of	 the	 cases	 showed	 that	 five	 of	 the	 seven	 had	 F16	
(ReverseEngineerable)	present	and	that	these	cases	were	the	only	cases	
found	for	the	plaintiff	with	F16	present.	The	problem	in	these	five	cases	
is	 that	 the	program	 finds	 for	 the	defendant	because	 the	 information	 is	
available	 elsewhere	 (F105).	 This	 is	 established	 by	 the	 presence	 of	
ReverseEngineerable	 and	 is	 unchallengeable.	 Examination	 of	 the	 ADF	
shows	that	F16	is	immediately	decisive:	if	that	factor	is	present,	there	is	
no	 way	 the	 plaintiff	 can	 demonstrate	 that	 the	 information	 is	 a	 trade	
secret.	 Goldberg4	 also	 fails	 through	 F105	 (information	 known	 or	
available),	since	disclosure	in	a	public	forum	(F27)	is	sufficient	to	deny	
the	 information	 trade	 secret	 status.	 It	 would	 appear	 that	 we	 could	
significantly	 improve	performance	by	refining	 this	branch	 to	allow	the	
plaintiff	 some	 way	 to	 defend	 against,	 in	 particular,	 F16.	 See	 Al-
Abdulkarim	et	al.	(2015)	for	discussion	of	the	texts	of	the	decisions	and	
possible	 refinements.	 The	 refined	 program	 can	 equal	 or	 better	 the	
performance	of	any	of	the	existing	systems.	
	
5.1	Discussion	
	
By	 using	 the	 ADF	 we	 can	 readily	 explain	 the	 points	 at	 which	 the	
acceptance	 conditions	 do	 not	 concur	 with	 the	 decisions	 taken	 in	 the	
actual	cases.	We	can	then	return	to	the	original	decisions	and	use	them	
to	determine	possible	refinements	to	the	representation.	In	some	cases,	
the	 problem	 seems	 to	 lie	 with	 the	 attribution	 of	 the	 factors.	 Such	
matters	were	contested	in	the	actual	case,	and	ascribing	the	presence	or	
absence	of	particular	 factors	requires	 interpretation	of	 the	case	by	 the	
analyst.	 The	 interpretation	 cannot	 be	 disputed	 without	 descending	 to	
the	 level	 of	 facts	 as	 advocated	 by	 Atkinson	 et	 al.	 (2013)	 and	 Al-
Abdulkarim	et	al.	(2014).	Addition	of	the	fact	layer	has	been	the	subject	
of	work	subsequent	to	that	reported	here.	Other	decisions	suggest	that	
we	may	wish	to	modify	the	description	of	factors	intended	to	guide	the	

																																								 																					
4	Goldberg	v.	Medtronic,	686	F.2d	1219	(7th	Cir.	1982).	

Latifa	Al-Abdulkarim	et	al.	
	

	

174	

analyst.	 Adding	 or	 removing	 a	 factor	 to	 or	 from	 a	 particular	 case	
provides	 a	 local	 solution	which	will	 solve	 a	 problem	with	 a	 particular	
case.	 Our	 results,	 however,	 indicated	 a	 general	 problem	 which	 was	
applicable	 to	 several	 cases:	 the	 dominant	 affect	 of	 F16,	 reverse	
engineerable.	It	seemed	clear	to	us	that	the	presence	of	F16	should	not	
by	itself	be	sufficient	for	a	finding	for	the	defendant.	Again	the	decisions	
themselves	 suggested	 several	possible	ways	of	 arguing	against	F16:	 in	
particular	 the	 use	 of	 restricted	 materials	 and	 the	 uniqueness	 of	 the	
product.	Either	or	both	of	these	exceptions	could	be	incorporated	in	the	
ADF	 without	 adversely	 affecting	 any	 of	 the	 test	 cases,	 but	 we	 would	
need	to	have	a	reasonably	large	set	of	new	cases	in	order	to	evaluate	the	
different	solutions	and	to	guard	against	over	fitting.		

Finally	it	should	be	conceded	that	the	decisions	themselves	may	
be	erroneous.	Assuming	that	there	are	least	some	poor	decisions	which	
we	 would	 not	 wish	 to	 serve	 as	 precedents,	 we	 should	 be	 willing	 to	
tolerate	a	certain	number	of	divergences	from	our	results.		

To	summarise:	
-	 Simply	 translating	 the	 analysis	 of	 (Aleven,	 1997)	 into	 an	 ADF	 and	
executing	 the	 resulting	program	gave	 results	 almost	 identical	 to	 those	
found	 for	 CATO	 in	 the	 IBP	 experiments	 reported	 in	 Brüninghaus	 and	
Ashley	(2003).	Note	that	this	is	achieved	without	need	for	balancing	of	
pro	and	con	factors	central	to	existing	case	based	reasoning	systems.		
-	The	reasons	for	the	“incorrect”	decisions	can	be	readily	identified	from	
the	output	and	the	ADF,	as	we	saw	from	the	discussion	of	 the	wrongly	
decided	cases	above.		
-	 Examination	 of	 the	 texts	 of	 the	 decisions	 readily	 explained	 why	 the	
results	 diverged,	 and	 suggested	 ways	 in	 which	 the	 analysis	 could	 be	
improved,	either	at	the	case	level	by	changing	the	factors	attributed,	or	
at	 the	 domain	 level	 by	 including	 additional	 supporting	 or	 attacking	
links.	

From	 this	 we	 conclude	 that	 use	 of	 ADFs	 provides	 good	
performance,	 and	 has	 a	 number	 of	 positive	 features	 from	 a	 software	
engineering	(and	domain	analysis)	standpoint,	which	would	enable	the	
ADF	to	be	refined	and	performance	 improved.	We	also	believe	that	we	
do	need	to	include	a	fact	 layer	to	permit	 increased	transparency	in	the	
ascription	of	factors	to	cases.	
	
6.	QUALITY	OF	EXPLANATIONS	
	
As	 the	 Prolog	 program	 proceeds	 it	 reports	 on	 the	 acceptability	 or	
otherwise	of	the	various	abstract	factors	and	the	resolution	of	issues.	As	
shown	 above,	 this	 provides	 an	 excellent	 diagnostic	 for	 divergent	

Abstract	dialectical	frameworks	
	

175	

	

decisions,	 but	 how	 does	 it	 measure	 up	 the	 actual	 decisions	 found	 in	
cases?		

Of	 course,	 without	 facts,	 we	 will	 not	 be	 able	 to	 follow	 the	
decision	very	closely.	But	consider	a	reordering	of	 the	elements	of	our	
decision	 for,	 say	Boeing.	We	also	omit	 some	elements,	 and	 add	 a	 little	
linking	 text.	 Recall	 too	 that	 we	 wrote	 the	 program	 used	 thus	 far	 to	
“decide”	the	cases:	in	a	version	to	supply	explanation	we	would	want	to	
customise	 the	 text	 reports	 to	 indicate	 the	particular	 clause	being	used	
for	a	node	by	giving	the	base	level	factors	used.	Below	is	what	a	decision	
might	 look	 like:	 we	 show	 the	 current	 program	 output	 in	 boldface,	
possible	 clause-specific	 customisations	 in	 italics	 and	 linking	 text	 in	
ordinary	font.	
	

We	 find	 for	plaintiff.	 The	 information	was	 a	 trade	 secret:	
efforts	were	taken	to	maintain	secrecy,	since	disclosures	 to	
outsiders	were	restricted	and	the	defendant	entered	into	a	non-
disclosure	agreement	and	other	security	measures	were	applied.	
The	 information	 was	 unique.	 It	 is	 accepted	 that	 the	
information	 was	 valuable	 and	 it	 is	 accepted	 that	 the	
information	was	neither	known	nor	available.		
A	 trade	 secret	 was	 misappropriated:	 there	 was	 a	
confidential	 relationship	 since	 the	 defendant	 entered	 into	 a	
non-disclosure	 agreement	 and	 it	 is	 accepted	 that	 the	
information	was	used.		
Moreover	 improper	 means	 were	 used	 since	 the	 defendant	
used	restricted	materials.	

	
This	seems	to	have	the	makings	of	a	reasonable	explanation.	There	are	
two	problems:	it	does	not	indicate	what	the	defendant	contended,	since	
the	clauses	of	the	program	which	were	not	reached	do	not	feature	in	the	
report,	and,	of	course,	 the	facts	on	which	the	finding	are	based	are	not	
present.	 None	 the	 less,	 we	 find	 the	 output	 a	 distinct	 improvement	 on	
previous	 work	 such	 as	 Chorley	 and	 Bench-Capon	 (2005).	 We	 believe	
that	the	output	from	the	current	program	could	be	readily	used	to	drive	
a	program	of	 the	sort	envisaged	by	Branting	 (1993),	 and	 that	 this	will	
become	even	more	useful	when	we	have	added	a	fact	layer	to	allow	the	
explanation	of	the	attribution	of	factors.		
	
7.	APPLICATION	TO	A	SECOND	DOMAIN		
	
In	the	above	we	have	considered	the	approach	with	respect	to	a	single	
domain.	 If	 the	 approach	 is	 to	 be	 of	 general	 significance,	 however,	 it	
needs	to	be	applicable	to	other	domains.	This	section	describes	a	further	
exercise	 designed	 to	 show	 that	 the	 approach	 is	 more	 generally	

Latifa	Al-Abdulkarim	et	al.	
	

	

176	

applicable.	We	will	apply	the	method	to	a	domain	which	has	often	been	
used	as	an	illustration	of	factor	based	reasoning:	the	wild	animals	cases	
and	Popov	 v	 Hayashi.	 The	wild	 animals	 cases	were	 introduced	 into	 AI	
and	 Law	 in	 Berman	 and	 Hafner	 (1993)	 and	 extended	 to	 the	 baseball	
case	 of	 Popov	 in	 Wyner	 et	 al.	 (2007).	 We	 will	 use	 the	 factor-based	
analysis	of	Bench-Capon	(2012)	as	our	starting	point.		

Briefly	 the	 wild	 animals	 cases	 concern	 plaintiffs	 chasing	 wild	
animals	when	their	pursuit	was	interrupted	by	the	defendant.	Post	was	
chasing	a	fox	for	sport.	Keeble	was	hunting	ducks,	Young	fish	and	Ghen	a	
whale,	 all	 in	 pursuit	 of	 their	 livelihoods.	 Popov	 v	 Hayashi	 concerned	
disputed	ownership	of	 a	baseball	 (valuable	because	 it	 had	been	hit	 by	
Barry	Bonds	to	break	a	home	run	record).	Popov	had	almost	completed	
his	 catch	 when	 he	 was	 assaulted	 by	 a	 mob	 of	 fellow	 spectators	 and	
Hayashi	 (who	 had	 not	 taken	 part	 in	 the	 assault)	 ended	 up	 with	 the	
baseball	 when	 it	 came	 free.	 The	 wild	 animals	 cases	 were	 cited	 when	
considering	 whether	 Popov’s	 efforts	 had	 given	 him	 possession	 of	 the	
ball.	

Thirteen,	 base-level,	 factors	 are	 identified	 in	 Bench-Capon	
(2012).	 The	 first	 task	 is	 to	 form	 them	 (together	 with	 appropriate	
abstract	 factors)	 into	 a	 factor	 hierarchy,	 to	 use	 as	 the	 node	 and	 link	
structure	of	our	ADF.	This	 factor	hierarchy	 is	shown	in	Figure	3:	some	
adaptations	 have	 been	 made;	 for	 example,	 we	 include	 a	 factor	 Res	
(Residence	Status)	to	indicate	the	attachment	of	the	animals	to	the	land,	
since	 it	 appears	 to	 make	 a	 difference	 whether	 they	 are	 there	
permanently,	 seasonally,	 habitually,	 occasionally,	 or	 whatever.	 The	
nodes	and	links	are	given	in	Table	5.	

	

	
Figure	3-Factor	Hierarchy/ADF	for	Popov	

Abstract	dialectical	frameworks	
	

177	

	

	

	
We	now	supply	acceptance	conditions	for	the	nine	non-leaf	nodes.	
	

1. Decide	for	Plaintiff	if	NOT	(NoBlame)	AND	(Ownership	OR	
(RightToPursue	AND	IllegalAct))		

2. Ownership	if	(OwnsLand	AND	Resident)	OR	Convention	OR	
Capture		

3. Capture	if	NOT	(NotCaught)	OR	(Vermin	and	HotPursuit)		
4. RightToPursue	if	OwnsLand	OR	(HotPursuit	AND	PMotive	AND	

(NOT	(better)	DMotive))		
5. PMotive	if	PLiving	OR	(PSport	OR	PGain)	AND	(NOT	DLiving)	
6. DMotive	if	NOT	Malice	AND	(DLiving	OR	DSport	OR	DGain)		
7. IllegalAct	if	Trespass	OR	Assault		
8. Trespass	if	LegalOwner	AND	AntiSocial		
9. AntiSocial	if	(Nuisance	OR	Impolite)	AND	(NOT	DLiving)	

	
The	 only	 real	 controversy	 here	 is	 with	 the	 determination	 of	 Right	 to	
Pursue	when	 both	 the	 plaintiff	 and	 the	 defendant	 have	 good	motives.	
Essentially	we	want	to	say	that	if	the	land	is	not	owned	by	one	of	them,	
the	 right	 to	 pursue	 is	 given	 to	 the	 party	 with	 the	 better	 motive.	 The	
remainder	 seem	 fairly	 uncontroversial.	 The	 acceptance	 conditions	 can	
easily	be	expressed	as	Prolog	procedures	and	then	embedded	in	code	as	
was	done	for	CATO.	We	can	now	execute	the	program.	Running	the	case	
for	 Young	 v	 Hitchens	 produces	 the	 output	 (note	 that	 the	 program	
abbreviates	factor	names):	

	
1	?-	go(young).		
the	plaintiff	had	not	captured	the	quarry	
the	plaintiff	did	not	own	the	quarry		
plaitiff	has	good	motive		
defendant	has	good	motive		

Table	5-Popov	as	ADF	

Latifa	Al-Abdulkarim	et	al.	
	

	

178	

plainiff	did	not	own	the	land		
plainiff	had	a	right	to	pursue	the	quarry		
defendant	committed	no	antisocial	acts		
defendant	committed	no	trespass		
no	illegal	act	was	committed		
do	not	find	for	the	plaintiff		
find	for	the	defendant		
young[rtToPursue,dMotive,pMotive,nc,hp,imp,pliv,dliv]	

	
We	produce	correct	results	from	all	five	cases	discussed	in	Bench-Capon	
(2012),	and	on	this	basis	we	believe	that	the	ADF	representation	can	be	
used	to	encapsulate	the	knowledge	of	the	domain.	We	cannot	evaluate	it	
as	 a	 decision	 making	 program	 since	 there	 are	 insufficient	 cases	
available,	 but	 this	 suggests	 that	 the	 method	 can	 be	 applied	
straightforwardly	 to	 a	 second	 domain	 to	 construct	 an	 executable	
program.	 In	general	we	believe	 that	 the	method	can	be	applied	 to	any	
domain	for	which	factor	based	reasoning	in	the	CATO	(or	HYPO	or	IBP)	
style	 is	 appropriate.	 This	 has	 encouraged	 us	 sufficiently	 to	 attempt	 to	
apply	 the	 method	 to	 a	 larger	 scale	 problem	 in	 the	 domain	 of	 the	 US	
automobile	exception	 to	 the	 fourth	amendment	rule	 for	which	 there	 is	
no	accepted	analysis	into	factors	available,	so	we	that	need	to	start	from	
the	 case	 decision	 texts:	 we	 will	 also	 incorporate	 a	 fact	 layer	 in	 this	
domain.	This	is	the	subject	of	the	next	stage	of	our	project.	
	
8.	CONCLUDING	REMARKS	
	
In	 this	 paper	 we	 have	 evaluated	 an	 approach	 to	 reasoning	 with	 legal	
cases	 described	 in	 terms	 of	 factors	 using	 Abstract	 Dialectical	
Frameworks,	as	described	and	advocated	in	Al-Abdulkarim	et	al.	(2014).	
We	find	that:		
-	 The	 success	 of	 the	 implementation	 depends	 to	 a	 large	 extent	 on	 the	
quality	 of	 the	 analysis.	 Making	 a	 direct	 translation	 of	 the	 analysis	 of	
CATO	(Aleven,	1997)	yields	a	success	rate	almost	identical	to	that	found	
for	CATO	in	(Brüninghaus	&	Ashley,	2003).	This	is	a	creditable	78.1%	of	
the	cases	decided	“correctly”.		
-	 The	 ADF	 does,	 however,	 provide	 very	 transparent	 output	 that	
identifies	 precisely	 where	 the	 outcomes	 suggested	 by	 the	
implementation	 diverge	 from	 the	 actual	 outcomes.	 Now	 reading	 the	
original	 decision	 texts	 suggests	 one	 of	 four	 solutions.	 These	 are,	 in	
ascending	order	of	divergence	from	the	original	analysis:		

1. Removing	a	factor	wrongly	attributed	to	the	case	
2. Adding	a	factor	wrongly	omitted	from	the	case		
3. Modifying	an	acceptance	condition:	e.g.	changing	the	priorities		

Abstract	dialectical	frameworks	
	

179	

	

4. Modifying	 the	 ADF:	 e.g.	 adding	 a	 supporting	 or	 attacking	 node	
for	 the	problem	node.	Often	 several	 of	 these	modifications	 can	
potentially	solve	the	problem,	and	the	choice	is	made	according	
to	 the	 context	 provided	 by	 the	 other	 divergent	 cases	 we	 are	
trying	to	accommodate.		

-	The	ADF	approach	provides	a	good	way	of	using	a	set	of	test	cases	to	
refine	an	initial	analysis.		
-	 The	 output	 from	 the	 program	 provided	 good	 diagnostics	 and	 a	
reasonable	 explanation	 of	 the	 outcome.	 Our	 output	 does,	 however,	
currently	 lack	 the	 citations	 and	 facts	 which	 are	 prominent	 in	 actual	
decisions.		
-	The	method	emphasises	reasoning	with	portions	of	precedents,	rather	
than	whole	cases.	We	believe	that	this	does	correspond	to	legal	practice	
as	manifest	in	real	decisions.		
-	The	method	can	be	applied	to	different	domains.	We	believe	that	any	
domain	 for	which	 factor	based	 reasoning	would	be	appropriate	would	
be	amenable	to	this	method.		

We	find	all	of	this	encouraging.	The	next	important	step	will	be	
to	extend	the	method	to	the	 fact	 level,	so	as	 to	permit	argument	about	
the	 ascription	of	 factors,	 and	 to	be	 able	 to	 ground	our	 explanations	 in	
the	 particular	 facts	 of	 a	 case.	 Once	 the	 method	 has	 been	 extended	 to	
include	 the	 facts	 of	 particular	 cases	 at	 the	 lowest	 level	 of	 the	 ADF,	 a	
program	to	present	the	output	 in	a	 form	resembling	the	texts	of	actual	
decisions	can	also	be	considered.	

	
	

REFERENCES	
	
Al-Abdulkarim,	L.,	Atkinson,	K.,	&	Bench-Capon,	T.	 (2014).	Abstract	dialectical	

frameworks	for	legal	reasoning.	Proceedings	of	Jurix	2014,	61–70.		
Al-Abdulkarim,	L.,	Atkinson,	K.,	&	Bench-Capon,	T.	(2015).	Evaluating	the	Use	of	

Abstract	Dialectical	Frameworks	to	Represent	Case	Law.	Proceedings	of	
the	Fifteenth	International	Conference	on	Artificial	Intelligence	and	Law,	
156–160.		

Aleven,	 V.	 (1997).	 Teaching	 case-based	 argumentation	 through	 a	 model	 and	
examples.	PhD	thesis,	University	of	Pittsburgh.		

Ashley,	 K.	 (1990).	 Modelling	 Legal	 Argument:	 Reasoning	 with	 Cases	 and	
Hypotheticals.	Cambridge,	MA.	:	MIT	Press.		

Atkinson,	K.,	Bench-Capon,	T.,	Prakken,	H.,	&	Wyner,	A.	(2013).	Argumentation	
schemes	 for	 reasoning	 about	 factors	with	 dimensions.	Proceedings	 of	
JURIX	2013,	39–48.		

Bench-Capon,	 T.	 (2012).	 Representing	 Popov	 v	Hayashi	with	 dimensions	 and	
factors.		Artificial	Intelligence	and	Law,	20(1),	15–35.		

Latifa	Al-Abdulkarim	et	al.	
	

	

180	

Berman,	 D.,	 &	 Hafner,	 C.	 (1993).	 Representing	 teleological	 structure	 in	 case-
based	 legal	 reasoning:	 The	 missing	 link.	 Proceedings	 of	 the	 Fourth	
International	Conference	on	Artificial	intelligence	and	Law,	50–59.		

Branting,	 L.	 K.	 (1993).	 An	 issue-oriented	 approach	 to	 judicial	 document	
assembly.	Proceedings	of	the	4th	ICAIL,	228–235.	ACM.		

Brewka,	G.,	Strass,	H.,	Ellmauthaler	S.,	Wallner,	J.,	&	Woltran	S.	(2013).	Abstract	
dialectical	 frameworks	 revisited.	 Proceedings	 of	 the	 Twenty-Third	
international	joint	conference	on	Artificial	Intelligence.	AAAI	Press.	

Brewka	G.,	&	Woltran	S.	 (2010).	Abstract	dialectical	 frameworks.	 In	Principles	
of	Knowledge	Representation	and	Reasoning:	Proceedings	of	the	Twelfth	
International	Conference.	

Brüninghaus,	 S.,	&	Ashley,	K.	 (2003).	 Predicting	 outcomes	 of	 case-based	 legal	
arguments.	In	Proceedings	of	the	9th	ICAIL,	233–242.		

Chorley,	 A.,	 &	 Bench-Capon,	 T.	 (2005).	 Agatha:	 Using	 heuristic	 search	 to	
automate	 the	 construction	 of	 case	 law	 theories.	Artificial	 Intelligence	
and	Law,	13(1),	9–51.		

Clark,	K.	L.	(1978).	Negation	as	failure.	Logic	and	data	bases,	293–322.	Springer.		
Dung,	P.	M.	(1995).	On	the	acceptability	of	arguments	and	its	fundamental	role	

in	nonmonotonic	 reasoning,	 logic	programming,	and	n-person	games.	
Artificial	Intelligence,	77,	321–357.	

Prakken,	H.	(2010).	An	abstract	framework	for	argumentation	with	structured	
arguments.	Argument	and	Computation,	1(2),	93–124.		

Prakken,	 H.,	 &	 Sartor,	 G.	 (1998).	 Modelling	 reasoning	 with	 precedents	 in	 a	
formal	dialogue	game.	Artificial	Intelligence	and	Law,	6(2-4),	231–287.	

Wyner,	 A.	 Z.,	 Bench-Capon,	 T.	 J.	M.,	&	Atkinson,	 K.	 (2007).	 Arguments,	 values	
and	 baseballs:	 Representation	 of	 popov	 v.	 hayashi.	 JURIX2007,	 151–
160.	

	ECA Pro Vol.2 - To Repeat
	ECA Pro Vol.2 - 02

