
WO Aspecb of f ie Validafion
and VeiMeafion of
KnowUedae=Based Svsfems - ~-

- I -
- ~ - - -~

~ - U -
Trevor Bench-Capon, Frans Coenen, Hyacinth Nwana, Ray Paton, and Michael Shave, University of Liverpool

based systems face a number of practical
problems when trying to move this tech-
nology into routine use. Two research
projects at the University of Liverpool have
examined problems related to system ver-
ification and validation, and the associated
issue of maintenance.

O n e source of problems i s that the
d o m a i n ana lys i s under taken before
actually constructing the knowledge base
is often unsatisfactory. Typically, it is
carried out at too shallow a level and so
fails to reflect the true structure of the
domain; or it fails torecognize the bound-
aries of the embodied expertise, and the
bias that may be introduced by concen-
trating on a particular task within the
domain. The Mekas (Methodology for
Knowledge Analysis) project has devel-
oped a method to give knowledge engi-
neers a thorough characterization of the
domain, that is, a full description of the
ontology, structure, functions, and theo-
ries that underpin the domain. This pro-
vides a coherent framework within which
a knowledge base can be more readily
identified with key aspects of the domain,
aiding verification and validation. The
framework also allows the addition of

ONE OF OUR PROJECTS DEVELOPED A METHODOLOGY
FOR ANALKZNG A D O M A N PRlOR TO CONSTRUCTlNG A

SYSTEM. T H E OTHER PROJECT COMPRISES A SET OF
TOOLS THAT SUPPORT SYSTEM DEVELOPMENT THROUGH

ZNCREASNGLY FORMAL REPRESENTATIONS.

the maintenance and extension of the
knowledge base.

The second project, known as MAKE
(Maintenance Assistance for Knowledge
Engineers), pursued in collaboration with
International Computers Ltd . (ICL)
and Brit ish Coal , was a imed a t the
process of constructing and revising the
knowledge base. Two things are required:
adisciplined and methodica l approach
to au thor ing the knowledge base, and
tools to support and reinforce this ap-
proach. When AI toolkits first appeared,
they were often described as “power tools
for programmers.” Admirable as many of
these tools are, they remain directed at
programmers, and writing a knowledge
base becomes rather like programming.
Proper construction of a knowledge base

knowledge representation, which requires
a different approach and different tools.
Central to our philosophy is that validation
and verification should always be carried
out at a level higher than the level of exe-
cutable code; we are engaged in a process
of knowledge representation and model-
ing, not programming.

Mekas

It is essential to capture all pertinent
aspects of the expert’s view of any real-
world problem. This is a nontrivial prob-
lem, and can only be achieved by the in-
depth analysis that we describe as the
characterization stage of the investigation.
A structured approach based on analysis of

new or revised knowledge, thus aiding 1 should instead be seen as a process of 1 the domain is required at this stage, rather

76 08X5/9000/93/0600-0076 $3.00 0 I993 IEEE IEEE EXPERT

This is a revised version of an article that appeared on pp. 125.132 of the Proceedings ofEuroVAV ’91.
published in 1991 by Logica Cambridge Ltd., Cambridge. England.

~ ~~ ~~~~ ~ ~ ~ ~~~~~ ~.

~ _ _

I

I

than one based on the desired artifact or
model of performance.‘ Without such anal-
ysis, the software’s limitations (implicit in
the model that has been constructed) will
not be fully understood, and a correct view
of the domain’s objects and structure will
not be achieved. The subsequent design,
implementation, and maintenance of the
knowledge-based system will remain in-
complete. An adequate and comprehen-
sive domain characterization is essential if
the products of knowledge acquisition arc
not to remain shallow and fragmentary.

The Mekas project has sought to address
several key issues, including

(1) A theory of the nature of domains and
the modeling processes associated with
knowledge acquisition. This is needed
so that characterization can be clearly
understood and documented.

(2) A means by which the knowledge en-
gineer is provided with guiding princi-
ples for navigating the domain and
making sense of the mass of informa-
tion obtained. This avoids fudging is-
sues such as dealing with unknowns
and gaps in knowledge during the early
stages of the process.

(3) An approach that links informal mod-
els to the real world, formal models to
informal models, and design and im-
plementation concerns to formal mod-
els. At each transition, the limitations
brought about by abstraction are made
explicit so that the scope of the final
specification can be mapped back,
through formal and informal models,
to the real-world characterization. As
such, the validity of the informal mod-
els is determined with reference to the
real world and the expert’s models,
whereas the validity of the formal
models is assessed according to its
intrinsic properties.

Key aspects of domains. To satisfy these
(and other) issues, we had to recognize key
aspects of domain knowledge. Human
knowledge about domains is so complex
that i t is essential to identify the domain’s
fundamental characteristics before devel-
oping the knowledge-based system. The
purpose of Mekas is to give structure to a
knowledge analysis stage, which charac-
terizes a domain by organizing the infor-
mation acquired from a variety of sources
into a coherent and unambiguous whole.

JUNE 1993
____ _ _ _ _ _ _ _ ~-~

This is a difficult problem and a major
hurdle to the development of knowledge-
based systems. The purpose of knowledge
analysis is to probe the underlying nature
of the domain and investigate how experts
think about it. In our approach, called
SAAGS (for Specification, Anticipation,
Acquisition, Generation, Specification), the
products of analysis capture the domain’s
conceptual richness through a series of
iterative analysis-modeling cycles.

Using this approach, we can characterize

AN ADEQUATE AND
COMPREHENSlVE DOMAIN
CHARACTERlZATlON IS
ESSENTIAL IF THE PRODUCTS
OF KNOWLEDGE ACQUlSlTlON
ARE NOT TO REMAIN
SHALLOW AND
FRAGMENTARY.

domains in terms of certain broad (nondis-
joint) sets of features:

Theory: the conceptual framework used
to construct and maintain a domain.
Purpose: the problems addressed by the
domain in terms of their solution.
Metaphor: the language used to main-
tain a domain, especially in global terms.
Metatheoretical constraints: fundamen-
tal concepts related to time, causality,
category, and ontology.
Relations to other domains.
History of the domain.
Structure: the parts, relations, and orga-
nization of the domain.

These seven features provide a top-level
objective, which forms the basis of all
subsequent analysis. This yields analytical
outcomes with both breadth and depth. The
consequence of a broad description is that
knowledge engineers come to share a
wider perspective of the domain with the
experts; the depth captures the deeper
knowledge, in terms of the ontology, struc-
ture, and theory of the domain, necessary

for building second-generation knowledge-
based systems.

SAAGS. SAAGS is a four-stage cycli-
cal modeling process. It receives a loose
specification from a client as input and
ultimately produces a comprehensive spec-
ification that provides the domain’s char-
acterization. The overall goal is to detail
the domain’s structure and purpose in the
context of its evolving theory. The princi-
pal stages are

(I) Specification leading ultimately to the
production of a domain’s characteriza-
tion. The seven top-level features must
be steadily accounted for in the succes-
sive iterations of this stage, which must
also include relevant models and de-
scriptive details such as the epistemic
(domain) boundaries yielded by the
analysis.

(2) Anticipation of the nature of the do-
main. The top-level features allow the
knowledge engineer some anticipation
of the breadth of the characteristics of
the domain. Anticipations provide a
way of critically testing the knowledge
engineer’s evolving understanding. The
anticipation of top-level characteris-
tics will guide the domain-based knowl-
edge acquisition process.

(3) Acquisition of knowledge. This includes
knowledge elicitation from experts and
other sources (such as books and man-
uals). The outcomes from the anticipa-
tion stage are used to structure acquisi-
tion in a way that relates to the emerging
nature of the domain.

(4) Generation of models, including the
synthesis of outputs from the acquisi-
tion stage into a collection of models.
These outputs drive the analysis for-
ward and provide the explicit means
for confirming, refuting, or elaborat-
ing anticipations and thus prepare for
an improvement of the specification.

The cycle now repeats with a new spec-
ification stage, in which all the modeling
information is accounted for, together with
details of the emerging (hypothetical) epis-
temic boundaries of the domain. Cycles
will continue until both the domain expert
and the knowledge engineer arc satisfied
that the specification adequately character-
izes the domain. This methodology, with its
cyclical nature and emphasis on producing a

77

set of interrelated models describing the
domain, provides an essential analysis
against which systems subsequently de-
veloped in the domain can be validated and
verified.

Mekas and validation. The application
of the Mekas approach is pertinent to the
issues of verification, validation, and main-
tenance for three reasons. First, the process
of domain analysis and modeling is struc-
tured so that gaps and inconsistencies in
the knowledge are made explicit. Also,
SAAGS requires a comprehensive docu-
mentation of the domain in its specifica-
tion, which helps reduce the costs of sys-
tem maintenance, extensibil i ty, and
renovation. Finally, the relationships be-
tween models can be made explicit; that is,
real world +informal (referential) models
+formal (denotational) model +artifact.
As such, the epistemic boundaries associ-
ated with each, in relation to the real world,
domain, and artifact, are clarified.

The development of informal models is
crucial in characterizing the domain be-
cause they provide a way to bridge from
the complexities of the real-world domain
to the necessary simplifications of formal
models. No model can fully account for the
real world (if it did, it would not be a
model), so any model will have gaps. If we
do not make these gaps explicit, we will
always have problems that will undermine
attempts to verify and validate the formal
models. The methodology just described
seeks to generate the required models in a
structured way, driven by analysis of the
domain. This ensures that the models are
sensitive to the underlying nature of the
domain, rather than determined by a par-
ticular design method, predetermined rep-
resentation formalism, or predefined task
library.

The MAKE project addressed the later
stage in knowledge-based system develop-
ment, which centers on the actual con-
struction of the knowledge base. Its prime
focus was the construction of maintainable
systems, particularly in domains based on
regulations that are particularly vulnerable to
change. Maintenance issues cannot, however,
be considered in isolation from validation

78

and verification: Maintenance involves the
detection of flaws in the knowledge base,
and any changes that are made must them-
selves be validated and verified. Thus many
of the techniques developed for mainte-
nance apply equally to validation and ver-
ification-and vice versa-and the main-
tenance environment developed on the
MAKE project can also be used to validate
and verify a system under construction.

Validation, verification, and maintenance
should not be considered only when a system

A SERIES OF MODELS M O W
FROM THE ORIGINAL

SOURCE MATERIAL
THROUGH INCREASINGLY

FORMAL MODELS, W l L AN
EXECUTABLE

REPRESENTATlON IS
REACHED.

has been produced; rather, they must
inform the whole development process.
This is supported by the methodologies for
designing and building conventional sys-
tems. These methodologies have as their
primary aim the construction of better sys-
tems, that is, systems in which we can have
a high degree of confidence, and systems
that can be more readily maintained.

The MAKE project therefore prescribes
a development methodology that we be-
lieve will produce systems that are more
capable of validation, verification, and
maintenance. The starting point for devel-
opment should be a characterized domain
such as that produced by Mekas. Develop-
ment takes place in the MAKE Authoring
and Development Environment (Maude),
which supports system production via a
series of models that move from the origi-
nal source material through increasingly
formal models, until an executable repre-
sentation is reached. The output from each
stage of the development cycle should re-
flect the structure of the material from the
previous phase. Maude provides a suite of
authoring tools, including textual and

graphical browsers; a way to link individ-
ual rules to the source material through the
different development stages; and tools to
aid the verification and validation of the
knowledge-based system during develop-
ment, on completion of development, and
after a maintenance session. Verification
and validation is performed statically by
comparing the various models, and dy-
namically by animating the executable rep-
resentation so that consequences of rules
and assertions can be explored.

Maude. The design of Maude revolves
around three base windows. The Kant win-
dow is used to form and link various levels
of structures. The Maude window is the
interface to the compiler and the various
MAKE tools. The Mappe (MAKE Appli-
cation Environment) window provides the
user view of the application. This allows
the developer to execute the representation
so that test cases can be run and the conse-
quences of particular assertions explored.

The methodology uses a development
environment based on Kant (Knowledge
Analysis Tool), a hypertext-like tool built
to help develop a knowledge-based deci-
sion support system for assessing Social
Security benefit claims2

System development using Maude con-
sists of using Kant to construct four levels
of structure. At the first level, source doc-
uments are imported into the Kant system
in their original format, ready for analysis.
In MAKE’S target application (support for
processing insurance claims made on Brit-
ish Coal), these sources comprised the leg-
islation and other supporting material. In a
domain that lacks this rich textual basis, a
Mekas characterization would form the
source documents. The role of Kant is to
support the copying and pasting of words,
phrases, and so on, from these documents
into other structures, and the definition
and maintenance of links between these
sources and the new structures. The links
are vital: They enable the direct comparison
of the various models with one another.

Freestyle Kant structures, comprising
the second level, can best be described as
structured English notes. Kant readily sup-
ports the structuring of such notes (called
nodes in Kant) through the use of child
and sibling relations, and through separa-
ble fields within a node. The author is free
to construct any number of such structures,
with a variety of contents. The aim of this

IEEE EXPERT

stage is to select and organize the material
on which the proposed knowledge-based
system will be based: In particular, it is
necessary here to identify the entities rele-
vant to the domain, and for each entity the
attributes it can possess and the values
these attributes can take. This will form
the vocabulary to be used in the formal
model of the domain. Here too, relations
between these features are identified, thus
forming the basis of the rules of the final
system.

MIR (MAKE Intermediate Representa-
tion) structures are the third level. These
form the intermediate representation, which
uses yet more Kant structures, but are con-
structed according to a defined ~ y n t a x . ~
MIR structures use this formal representa-
tion language to specify the entities, their
attributes, and allowable values; the rules
govern ing the relat ionships between
them; and the topics and quest ions to
be used in dialogues with the user. The
role of this intermediate representa-
t ion is crucial: It is formal enough to allow
for the unambiguous representation of
knowledge, and so can permit manipula-
tion to support the various MAKE tools,
but it remains uninfluenced by concerns
specific to a target executable representa-
tion language.

Compiled MIR, the final level, is an
executable representation of the MIR. The
MAKE inference engine interprets the com-
piled MIR and forms the dynamic, instan-
tiated user application. In the MAKEproject
we used a clausal form of compiled MIR,
and translation between i t and the MAKE
inference engine is completely automatic.
Alternative compilers could be written to
target different formalisms, if the applica-
tion were to be executed in, for example,
Nexpert. A key idea is to confine authoring
and maintenance tasks to the intermediate
representation represented by the MIR struc-
tures and the preceding structures and sources,
so that Maude can be used as a generalized
development environment irrespective of
the ultimate executable formalism.

The passage through these levels of for-
mality is an iterative process, both because
requirements will change over time and so
source material will be superseded, and
because the transitions from one stage to
the next will not be right the first time.
What is important, however, is that every
item in aderived structure can be identified
with the relevant item or items in the

JUNE 1993

previous structure, so that its validity can
be determined.

The MAKE tools

Some of the MAKE tools are particularly
relevant to validation and v ~ r i f i c a t i o n . ~ . ~
The central tool is the rule map, which
provides a graphical view of the intermedi-
ate representation and access to several
other MAKE tools. It is a left-to-right di-

EYER; ITEM IN A DERIVED
STRUCTURE CAN BE
lDENTlFlED WITH THE

RELEVANT lTEM OR ITEMS
IN THE PREVIOUS
STRUCTURE, SO THAT ITS
WLIDlTY CAN BE
DE TERMlNED.

rected graph showing the relationship be-
tween attributes and rules in the rule base.
The user can scroll up and down the rule
base from the root attributes to the leaf
attributes, inspecting any desired attribute
or rule along the way. This gives the main-
tenance engineer a clear view of the rules
in the knowledge base and the attributes
they use. By following a path through the
rule map, it is possible to determine the leaf
attributes and propositions into which a
root attribute ultimately unfolds, and vice
versa.

Options are provided to allow the user to
interrogate the rule map to display a rule
and the clauses i n which an attribute ap-
pears. Clicking on a rule node displays the
structures from which the rule was de-
rived, so that the links through the various
layers of model can be followed and faulty
transitions detected.

The project also specifies a proposition/
clause rule map to give an alternative view
of the rules, showing in fine detail how
values of attributes affect one another, pro-
viding a fine-grain perspective on the rules.

The rule map also gives users a number

of structural tools that test for the correct
formation of the rule base. Here we can
identify redundant rules, which make no
contribution to the overall goal; dead-end
rules, which fail to lead to any assertable
leaf proposition; and subsumed rules, whose
effect is duplicated by another broader rule.
An inconsistency tool identifies groups of
leaf attributes that would, if asserted si-
multaneously, lead to a contradiction. The
non-cotenable propositions can then be ex-
amined to see whether they are in fact
incapable of holding together.

Provenance and jeopardy tools. While
the rule map provides excellent access to
the intermediate representation (a level of
abstraction suitable for the system devel-
oper), we may need to go further back
through our models. This in turn requires
tools that exploit the links between struc-
tures created during development. Two tools
support these transitions.

The provenance tool. The provenance
tool essentially follows the links back from
executable representation through the in-
termediate representation and the freestyle
structures to the source. When running test
cases, we may find that the system behaves
in some unexpected manner. Having iden-
tified the particular executable rule that is
the source of the problem, we can use the
provenance tool to find the structures from
which i t derived. If the transitions are cor-
rect, however, the fault must lie in the
original source; thus, there was a mischar-
acterization in the analysis phase. If this
happens, the provenance tool can be used
to identify all the parts of the source mate-
rial from which the problem clause de-
rived. These can then be shown to the
domain expert who, given these specific
items and the identified problem, should
be able to detect what is wrong, and the
source can then be corrected accordingly.
The provenance tool also records the history
of the item: when it was created, who
created it, and any comments. This can
provide valuable help in assessing the cor-
rectness of a transition.

The problem at this point is that chang-
ing the source may have invalidated other
aspects of the representation. It is therefore
necessary to identify all the parts of the
other structures that have been jeopardized
by the change. This identification is car-
ried out using the jeopardy tool.

79

The jeopardy tool. The jeopardy tool ~ The rule base animation tool. Test cases
works by following links forward. Depend- ~ are typically executed as a whole. Where
ing on the level at which the change was ’ there is a well-founded set of prototypical
made, different aspects of the representa- cases associated with a set of expected
tion can be identified for checking: i results, this can provide good confidence

in the rule base. Sometimes, however, we
If the change in the source material ne- may wish to test the rule base in a more
cessitates a revision of the type hierar- exploratory way. For this reason the Maude
chy, thejeopardy tool is used to identify ’ environment includes a tool for construct-
those classes, attributes, and possible ing test cases interactively.‘
values that were founded on the changed The display of this tool i s similar to the
source material. Then the appropriate i rule map, but we can also mouse-click on
modifications can be made. ~ nodes to assert values for the attributes
If a change is made to the type hierarchy , represented by those nodes. Once one or
defining the vocabulary of the domain, ~ more values have been asserted, inference
certain rules may become invalidated.

The “why not” tool. The why not tool
lets the maintenance engineer determine
why an attribute of an instance has not
assumed an expected value. Of course, the
tool can also be used in reverse, to ask why
an attribute for a specific instance has
assumed a certain value. The tool requires
the user to select an attribute of an in-
stance and then offers a list of rules af-
fecting this attribute. The user can then
select a rule that he/she thinks should have
led to the expected value, and an instance
for each variable used by the selected rule.
Maude will then test each tail proposition
in each clause of the rule and write a report
stating which is true and which is false.

Thus if an attribute 19 removed, or the
p o w b l e values that it can take are mod-
ified. the rules that use that attribute
must be identified, examined, and if nec-

If a class is removed from the type
hierarchy. any attributes introduced into

Inspection of the list allows the user to
determine “why not” in terms of either
missing conditions to the rule or an error in
the rule In the first case, the why not tool

input is missing.

T H E PRIII/IARY Focus OF
essary, modified. ~ ~ ~ 1 C A T I O N A N D may be used again to discover why the ’

VALlDATlON MUST BE ON
the type hierarchy through that class will
no longer be available. These attributes

THE MODELS, AND THE

i must be identified and reintroduced
into the hierarchy, either through the
super class of the removed class or
throughoneormoreofthesubclasses,as

TRANSlTlONS BE TWEL?N
THEM, RATHER TE-L4N

OGETHER, THESE PROJECTS
reflect our view that validation and verifi- SZMPLY ON THE EXECUTABLE

appropriate.
Sometimes the source change does not
alter the type hierarchy. Here the jeopardy
tool is used to identify all the rules in the
intermediate representation that are
linked to an altered source so that they
can be reevaluated.

rules that call or are called by the mod-
ified rule. The jeopardy tool identifies
the subset ofthe rules that must be reex-
amined after a rule has been modified.

Both the jeopardy and provenance next three tools described.

REPRESENTATION.

can be invoked and the effect of the asser-
tions shown on the display. This in turn can

A change to a rule may threaten those ~ suggest what other assertions will form an
interesting testcase. Theinteractive, menu-
driven nature of this process supports the
rapid identification of critical combina-
tions of facts. If the behavior is not what we

~ expected, we can find the cause using the

tools use the links that the knowledge engi- I
neer created during system development. The justification and consequence
This is an essential part of the Maude browsers. During execut ion of a case ,
methodology. the inference engine keeps track of how

~ each object/slot obtained its value. I t
Dynamic tools. Although we believe ~ does this by maintaining justifications in

that inspection and modification should be terms of the rules, user input, or prede-
carried out at a level above that of the ~ fined sources of values. The justification
executable code, we must still be able to browser will then allow the maintenance
execute the representation to ensure that engineer to examine the justification links
the behavior is correct. Facilities to exe- i for any given objectlslot. The consequence
cute representations are integrated into the ~ browser is similar t o the jus t i f ica t ion
Maude environment, and supplemented by ~ browser but allows the user to examine
tools that help to determine the source of the consequences of a particular object/
any unexpected behavior. slot value.

cation cannot be addressed in isolation.
Rather, these issues must influence every
stage of system development and construc-
tion. Moreover, Mekas and MAKE reflect
our conception of knowledge-based-sys-
tem development as a process of modeling
and knowledge representation: The primary
focus of verification and validation must
be on the models, and the transitions be-
tween them, rather than simply on the ex-
ecutable representation.

Acknowledgments
Mekas was sponsored by Shell Research

(Thornton) and Unilever Research (Port Sun-
light). The MAKE project was supported by the
Information Engineering Directorate of the
United Kingdom Department ofTrade and Industry
and the United Kingdom Science and Engineer-
ing Research Council. The project collaborators
are ICL, the University ofliverpool, and British
Coal. The views expressed in this article are
those of the authors and may not necessarily be
shared by the other project collaborators.

Referentes
1 . R.C. Paton et al., “From Real-World Prob-

lems to Domain Characterisations,” Proc.
Ftfih European Knowledge Acquisition
Workshop, GMD-Studien Nr. 21 I , GMD,
Sankt-Augustin, Germany, 1992, pp. 235-
236.

2. G.E. Storrs and C.P. Burton, “Kant, A
Knowledge Analysis Tool,” ICL Technicul
J. , Vol. 6, No. 3 . May 1989, pp. 572-581.

3 . T.J.M. Bench-Capon and J.M. Forder,
“Knowledge Representation for Legal Ap-
plications,” in Knowledge-Based Systems
and Legal Applicafions, T.J.M. Bench-
Cauon, ed., Academic Press, London, 199 I ,

current work focuses on techniques to reduce
the overheads associated with group working.
He has a PhD in computer science from the
Liverpool John Moores University.

Hyacinth S. Nwana is
a lecturer in computer
science at the Universi-
ty of Keele. When the
research for this article
was performed, he was 1
a postdoctoral research ’
fellow in computer sci-
ence at the University of I

Liverpool. His main in- I
terests are in intelligent 1

tutoring/expert systems, knowledge acquisition,
and integrating connectionist and symbolic ar-

pp: 245-264

chitectures. He holds a PhD in artificial intelli-
“Practical Application ofKBS toLaw: The ! gence from Aston University. He is a member of
Crucial Role Of Maintenance,” in Le&’U/ , the Society of Arti-ficial Jntelligence and Simu-
Knowledge-Based Systems, Aims for Re- ~ lation of Behaviour,
rearch and Development, C. van Noortwi-
jk. A.H.J. Schmidt, and R.G.F. Winkels,
eds.. Koninklijke Vermande BV, Lelys-

4. T.J.M. Bench-Capon and F.P.

tadt, Netherlands, I99 I , pp. 5- I7

5. F. Coenen and T.B.C. Bench-Capon, “A
Graphical Interactive Tool for KBS Main-
tenance,” in Database and Expert Systems
Applications (DEXA ‘91), D. Karagiannis,
ed., Springer-Verlag, Vienna, 199 I , pp. 166-
171.

6. F. Coenen and T.J.M. Bench-Capon, 1992,
“KBS Maintenance Validation Using Sim-
ulation,” in Application ofArtificial Intelli-
gence in Engineering VII, D.E. Grierson.
G. Rzevski, and R.A. Adey, eds., Computa-
tional Mechanics Publications/Elsevier Ap-
plied Science, New York, 1992, pp. 215-228.

hasa.PhD in philosophy 1
from St. John’s College. Oxford. I

Frons Coenen is a
research associate at the
University of Liverpool.
His research interests
include the maintenance,
verification, and valida-
tion of rule bases, com-
putes-supported cooper-
ative work, and the
application of geograph-
ic information systems

and A I technology (knowledge-based systems
and neural nets) to the maritime industry. His

chair and coeditor of the
ACM SIGBio, and a member of ACM, the Insti-
tute of Biology, and the European Society for
the Study of Cognitive Systems. He has a BEd in
biologv and education from the University of
Liverpool and a PhD
the University of Lei

in cognitive science from ~

:ds. I

Michael Shave was 1
appointed the first pro-
fessor of computer sci-
enceat theuniversity of
Liverpool in 1982. His
research hascenteredon !
databases, knowledge I
analysis. and knowledge ~

representation. Current-
Iv he is involved with a 1

I project developing ,
methods and tools for intelligent communica-
tions software. He is honorary secretary of the
Conference of Professors of Computer Science.

Bench-Capon. Coenen, Paton, and Shave can be
reached at the Dept. of Computer Science, Uni-
versity of Liverpool, Chadwick Building, Liver-
pool L69 3BX, United Kingdom; e-mail,
tbc @compsci.liverpool.ac.uk

Nwana can be reached at the Dept. of Com-
puter Science, University of Keele, Stafford-
shire, England; e-mail, nwanahs@cs.keele.ac.uk

IEEE COMPUTER
SOCI€lY PRESS

TITLES

KNOWLEDGE-BASED SYSTEMS:
Fundamentals and Tools

edited by Oscar N. Garcia and
Yi-Tzuu Chien

The tutorialexamines thesuhjectofknowl-
edge engineering and considers how to
match the appropriate method to an exist-
ing problem; covers eight paradigms used
in today’s practice (semantic networks,
frames and scripts, procedural representa-
tions, analogical or direct representations,
specialized languages for knowledge r e p
resentations, ohject-oriented program-
ming, logic representations, and rule-
based representations); and introduces
the terminology of logic-based database
development.

512 PAGES DECEMBER 1991
ISBN 0-8 186 1924-4

CATALOG NO 1924 -$65 00
MEMBERS $45 00

GROUPWARE :
Sohare for Computer-Supported

Cooperative Work
edited by David Marca and

Geoffrey Bock

This hook is a collection of distinctions,
approaches, methods, andexampleswhich
have altered positively the practice of de-
veloping computer systems for groups. It
concentrates on the task of designing soft-
ware to fit the way groups interact in spe-
cific work situations. The tutorial covers
the social and technical aspects of.
groupware development and presents a
wide range of material on the need to
design grouprelated computer and infor-
mation systems.

c 500 PAGES APRIL 1992 HARDBOUND.
ISBN 0-8186-2637-2

CATALOG NO. 2637-*$80 00
MEMBERS $50.00

(“prepublication pricel

ORDER TODAY!

1 -KS

or
FAX (714) 821-4010

in California call (714) 821-8380

@ IEEE COMPUTER SOCIETY

mailto:compsci.liverpool.ac.uk
mailto:nwanahs@cs.keele.ac.uk

