
Int. J. Man-Machine Studies (1991) 35, 69-93

Hierarchical formalizationst

TOM ROUTEN

Department of Computing Science, Leicester Polytechnic, P.O. Box 143, Leicester
LE1 9BH, UK

TREVOR BENCH-CAPON

Department of Computer Science, University of Liverpool, PO Box 147, Liverpool,
L69 3BX, UK

This paper examines the prospects for using logic to represent legislation. This is
important since it offers, via the technology of logic programming, a straightforward
way of constructing knowledge-based systems in the legal domain. We suggest
requirements which an ideal logical representation would satisfy and find that there
is an apparent tension between two of them. Specifically, the need to produce a
logically correct representation can appear to work against the need to produce a
representation which is also easy to validate and maintain. This conflict, and other
tensions which the use of logic is seen to create, have led some researchers to
advocate the abandonment of logic. However, we argue that the tensions are created
by the assumption that a logically correct representation will be one in which no
recta-level features are represented. This assumption is encouraged by previous
practice but is erroneous. Relaxing the assumption not only permits software
engineering considerations to be respected but eases representational difficulties.
The penalty is that the resulting formal representations can no longer serve as simple
logic programs.

1. Formalizations of legislation

In recent years, one popular me thod of building knowledge-based programs in the
legal domain has been to have a formalization of the complex definitions contained
in relevant legislation at the heart of the system. The idea is to take a statute and to
arrive at statements expressed in a formal language which correspond so well to the
statements expressed in the statute, that anything one could determine as being a
consequence of the statute for any given case, could also, given appropriate
inference procedures, be derived mechanically from the formal statements. This
approach is in contrast with the use of more traditional knowledge elieitation
techniques. The origins of the formalization approach can be traced back through
McCarty (1977) to Allen (1957), but perhaps the work on the British Nationality
Act , reported in Sergot, Cory, Kowalski, Kriwacek, H am m o n d and Sadri (1986), is
most responsible fo r its current popularity. The formal language which has tended to
be adopted for these projects has been standard propositional or predicate logic, or
a closely related formalism such as Horn clause logic or the programming language,
Prolog. The use of these different formalisms means that there can be a number of
different things meant by the term "formalization". In addition, there are a number
of different motivations behind producing a formalization. It will serve to clarify the

t This paper is an elaborated version of Routen (1989).

69
0020-7373/91/010069 + 25503.00/0 �9 1991 Academic Press Limited

70 T. ROUTEN AND T. BENCH-CAPON

focus of this paper if we distinguish the different kinds of formalization and the
different kinds of motivation behind them.

Layman Allen's original reason for formalizing legislation was to disambiguate it.
The natural language in which legislation is couched is typically susceptible to
a variety of interpretations, but the discipline of formalizing it forces one of these
interpretations to be selected. Allen was particularly concerned with the import of
such quasi-logical connectives as "unless", and the pervasive ambiguity in legislation
between "if" and "if and only if". For this kind of disambiguation a formalization in
propositional logic will often suffice, and no thought need be given to mechanical
derivations. Normalization, as Allen calls this process, can be done as a first step
whatever the target knowledge representation of the ultimate system, and it is a
helpful first step. It is, after all, wise to be sure exactly what it is that is to be
represented before attempting to represent it. This style of normalization has been
used to clarify legislation before going further in formalization; for example, the
ESPLEX project described in Biagioli, Mariani and Tiscornia (1987).

A second reason for formalizing legislation can be exemplified by the work
done at Imperial College on the British Nationality Act, reported in Sergot et al.
(1986) and Supplementary Benefit legislation, reported in Bench-Capon, Robinson,
Routen and Sergot (1987). This work comes from within the tradition of logic
programming which argues that the way to build a problem solving system is to
represent the knowledge pertinent to the problem, and allow the control necessary
to produce the problem solving algorithm to be supplied by a theorem prover
capable of deriving the deductive consequences of that knowledge. Thus the
British Nationality Act program is no more than a formalization of the Act in the
Horn Clause subset of first-order predicate calculus. This formalization can
perform as an expert system when embedded in an expert system shell such as
APES (Hammond & Sergot, 1984) which supplies the necessary control component.
That the resulting system appears to work so well as an expert system is due to some
special factors of the British Nationality Act which are discussed in Bench-Capon
(1988a), and since these special factors may not apply in every case, such an
approach will in general only give a first approximation to be a practical system.
This point is also stressed in Bench-Capon et al. (1987), which draws on the
experience of applying this approach to very different legislation: the Law Relating
to Supplementary Benefit. The prime aim of this work was not, however, to produce
a legal expert system, but rather to explore legal knowledge representation and logic
programming.

A third reason for formalization is illustrated by programs such as the
formalization of the tax law of Canada described in Sherman (1987). Here the
motivation is not theoretical but simply to produce an operationally satisfactory
program. Noting the correspondence in form between the legislation and the clauses
of a Prolog program, one might think that this language is peculiarly well-suited for
building a program based on the legislation. Here, however, restrictions need not be
placed on the use of extra-logical predicates, or the exploitation of Prolog's control
strategy, as they must when the formalization is meant to be a logical one. The
resulting program may not be declarative, and one might on that ground deny it the
status of a formalization at all.

HIERARCHICAL FORMALIZATIONS 71

The final reason for formalizing legislation that we shall discuss, and one which is
often overlooked, is rather more pragmatic than those discussed above, and
derives from notions of software engineering. If knowledge-based systems in the
legal domain are to be used in practice, they must be capable of acceptable
validation, and susceptible to relatively straightforward maintenance if, or rather
when, the underlying legislation changes. It may be that basing a program on a
direct representation of the relevant legislation is the best means for achieving these
features. This software-engineering-motivated approach is explained in detail in
Bench-Capon (1988b), but can be illustrated here with a simple example.

The UK Social Security Act (1986) states:

39(1) Subject to the provisions of this Act-
(a) a person who was over pensionable age on 5th July 1948 and satisfies such other
conditions as may be prescribed shall be entitled to a Category C retirement pension at
the appropriate weekly rate.

To interpret this we need also to bear in mind:

27(1) In this Act "pensionable age" means-
(a) in the case of a man, the age of 65 years; and
(b) in the case of a woman, the age of 60 years.

If we had been constructing an expert system on classical lines, relying on the
ability to extract knowledge from an expert, in, say, August 1978, and we had asked
our expert which people were entitled to a Category C retirement pension, he might
well have said something like "men over 95 and women over 90". If we represented
this information, however, the system would cease to be correct within the year.
Whilst is would be plausible to pay a benefit to anyone over a certain age, in fact it
is not age but date of birth that is crucial here, and whilst this is clear from a
formalization of the legislation, it might well be lost in the summary of expertise
extracted from an expert. Moreover, it would be dangerous in the formalization of
39(1)(a) to replace pensionable age by the date of birth indicated by the definition in
27(1)(a) and (b). For if this latter section were changed, perhaps to provide a
common pensionable age, this change would not percolate through to our
representation of the conditions for Category C retirement pension, and there would
be no indication that the part of the program representing 39(1)(a) needed updating.
Thus for maintenance purposes it is clearly advantageous to represent the
legislation, and to represent it as faithfully as possible.

These points illustrate the easier maintenance of a program rooted in a
formalization of the legislation, but we can make similar points with reference to
validation. References to explicit dates of birth would require several pieces of
legislation to be considered at once, and the performance of a calculation, whereas a
more faithful formalization would permit direct and piecemeal comparison of
sections to their formalization. Therefore we believe that a formalization should be
put at the centre of a legal knowledge based system, not because this is the only way
to produce such programs, but because programs written in this way will be better
engineered, and will consequently produce more practically applicable programs. It
is the best way to produce such programs not, or not only, from a theoretical
perspective, but from a practical perspective.

72 T. ROUTEN AND T. BENC~CAPON

Not all "formalizations" present us with these software engineering benefits. They
do not accrue unless the formalization is disciplined in certain respects. Thus, for
example, they do not attach to a program like Sherman's, since in this kind of
formalization it would be perfectly permissible to substitute, in the above example,
the explicit dates of birth for "pensionable age" when encoding 39(i)(a), and it
would also be likely to be convenient for the sake of efficiency to do so.

It is probably worthwhile at this stage to point out that no one, to our knowledge,
takes the extreme position that the deduction of logical consequences of a
formalization is a correct and exhaustive model of legal reasoning, although this
position has been attributed to proponents of the formalization approach by critics
such as Greenleaf, Mowbray and Tyree (1987). What is proposed is not that the
deduction of consequences is the whole story, but that it is useful to underpin any
system based on legislation by a formalization of the relevant legislation, and that
this, together with a means of deducing consequences from that formalization can
form a valuable component in any AI system in the legal domain. The user will then
be aware of the logical consequences, although what he chooses to do with this
information is a separate matter.

2. A tension between requirements

2.1. REQUIREMENTS OF A FORMALIZATION

Let us try to make explicit the characteristics which an ideal formalization of a piece
of legislation would exhibit. What we are saying above is that ideally a formalization
should not only (1) be a faithful representation of what is expressed by the
legislation; (2) be computationally adequate, i.e. should permit us to make all
relevant derivations by machine; but also (3) be easy to validate and maintain. We
might expand the third requirement into a clduster of desirable features. Perhaps the
most important of these would be that the structure of the formal representation
should resemble the structure of the original text.

With these points before us, we might discern a tension between 1 and the
expanded 3. 1 states that a formalization should aim to capture the c o n t e n t of the
legislation. Logical sophistication tells us that content is independent of the means
by which it is expressed. Indeed the primary function of logic has been to help
people overcome the imprecision and obfuscation of everyday means of expression
in making clear what is being said. Consequently, to have a requirement which says
that a formalization should respect the original means of expression would appear to
work counter to the satisfaction of the most basic requirement: that we satisfactorily
mine the con ten t of the statute and represent it faithfully.

What is the content of a statute.'? The intention behind a statute is to establish the
prec/se characteristics of properties and relationships which, were they found to hold
of or between individuals, would be the signal that the individuals concerned could
be afforded legal protection or could be penalized. For example, the UK's Housing
Act 1985 defines what it is for a tenancy to be a secure tenancy. If a tenancy is a
secure tenancy, then the tenant has greater rights than if it is not. It is natural to
suppose then that the content of this statute can be expressed as a set of statements
all of which c o n c e r n elements of the housing domain. "Concern" is italicized

HIERARCHICAL FORMALIZATIONS 73

because we intend it to have a precise meaning. In logic, statements are conceived
of in terms of objects and the properties or relationships which the statement asserts
to be true of them. A statement concerns whatever objects it contains. By "the
housing domain" we mean the set of "real-world" objects one would expect a
Housing Act to be talking about. This would contain physical objects such as
houses, landlords, tenants, but also non-physical objects such as tenancy agree-
ments. "Real-world" is of course not well-defined and we use it here essentially to
contrast such objects with statements contained in the statute. Here is an example of
a statement in the statute which concerns elements of the housing domain:

79-(1) A tenancy under which a dwelling house is let as a secure separate dwelling is a
secure tenancy at any time when. . , the landlord condition and the tenant condition are
satisfied.

However, the Housing Act also contains statements which do not concern
real-world objects but statements, or sets of statements. These kinds of statements
are at said to be at the meta-level with respect to statements of the previous kind.
The next subsection provides an example:

79-(2) Subsection (1) has effect subject to-
(a) the exception in schedule 1 . .
(b) sections 89(3) and (4) and 90(3).. and
(c) sections 91(2) and 93(2)

This is a bone fide statement: it has content, and that content can be judged to be
true or false. What the statement expresses appears to be just as much part of the
content of the statute as that which is expressed by 79-(1). Does this mean that the
content of the Housing Act 1985 cannot after all be expressed in a set of statements
all of which concern elements of the housing domain? Our logical intuitions tell us
that although 79-(2) has content, it is inessential from the point of view of defining
security of tenure. The meta-level statement is merely part of the contingent means
that the drafters have chosen to express a complex definiton. The definition of
security of tenure could have been made more "logical" by locating all exceptions
within the general rule and thereby eliminating the need for this recta-level
statement. This is precisely what we would be inclined to do in a formalization of
the legislation. If we were trying to formalize 79-(1) in Prolog, our first effort might
mirror precisely the content of that subsection considered on its own:

secure_tenancy(Tenancy) ~--
satisfies_landlord_condition(Tenancy),
satisfies_tenant_condition(Tenancy).

The meta-level statement (79-(2)) states that there are exceptions to this general
rule. One exception to the rule is that "a tenancy is not a secure tenancy if it is a
long tenancy". We could incorporate this exception into our formalization of 79-(1)
as follows:

secure_tenancy(Tenancy)
satisfies_landlord_condition(Tenancy),
satisfies_tenant_condition(Tenancy).
not long_tenancy(Tenancy).

74 T. ROUTEN AND T. BENCH-CAPON

In the same way, we could incorporate all the exceptions and qualifications
mentioned in 79-(2) into a new object-level rule, extending it to make it
exception/ess. In this way, we would be able to construct a logically correct
f o ~ t i o n which did not require explicit representation of meta-rules such as
79-(2). One would be tempted to say that this kind of formalization had captured
the "logic" of the definition.

The tension between logic and software engineering has shown itself in this
example, since in our quest to capture the logic of the definition we have moved
from a first effort which was comprehensible and mapped well onto its textual source
to a complex exceptionless rule whose content is derived from many disparate parts
of the text.

Since to make the general rule into an exceptionless rule may be to create an
horrendously complicated rule, there would be a natural inclination to introduce
conditions within the definition which correspond to groups of exceptions rather
than just one. It would be natural if the predicate names chosen for these conditions
would refer to the location of the exceptions in the text.

secure_tenancy(Tenancy) <---
satisfies_landlord_condition(Tenancy),
satisfies_tenant_condition(Tenancy).
not satisfies_exceptions_in_sched- 1 (Tenancy).

This would permit a formalization which did not require explicit representation of
the recta-level rule, and also which did not suffer from over-complex rules. The
penalty of doing this is that mention of the text intrudes into our definition, and it is
therefore less convincingly the pure "logic" of the definition. After all, when
politicians and civil servants were deciding what should or should not qualify as a
secure tenancy, they did not consider the "satisfication of exceptions in schedule 1"
to be significant since, schedule 1 of the Act they were in the process of writing
could obviously not have existed at that time. This technique has been disparaged
for this kind of reason by, for example, Gordon (1987, p. 62) states that: "it is not
our purpose to model the statute, but the law represented by the statute; referring to
code section numbers in rules blurs this distinction". Despite this, pragmatically
speaking, it may be an attractive compromise in many cases.

3. Logical models and fiat formalizations

Recently, some have argued that because of these difficulties, and others which we
will examine below, classical first-order predicate calculus (hereafter, following
Gordon, "standard logic") is an inappropriate formalism in which to produce
formalizations (Gordon, 1987; Berman & Hafner, 1987). Their view appears to be
that representing legislation requires one to have recta-level statements in the
formalization, but that standard logic requires these to be eliminated in the fashion
described above. "Logic does not allow explicit statements to be made about its own
rules. Yet such 'meta-level' statements are frequently found in legal discourse".
(Berman &Hafner (1987) p. 3) "Standard predicate logic and Prolog require that
systems of general rules and exceptions be collapsed into logically complete
formulas" (Gordon, 1987, p. 61). This leads Gordon, for example, to offer a new,

HIERARCHICAL FORMALIZATIONS 75

ad hoc, formalism. There are strong advantages in using standard logic for the task
if possible because of its universality, naturalness, and the fact that there are
well-understood mechanical inference procedures for it. We would agree that if the
use of standard logic did not permit meta-level features in a formalization then it
may well be inappropriate, but it is mistaken to think that it does not. It does not
follow from this that standard logic is the most appropriate formal language to use,
or even that it is appropriate at all. However, we believe that at this stage there is
credibility gap between the arguments for abandoning the use of logic and their
conclusion. While this paper will produce further considerations which may serve to
cement the gap a little more, we shall argue that the gap still remains.

The origin of the view that a logic-based formalization cannot include meta-level
statements may lie in the work on the British Nationality Act. Here, a strong
analogy is made between statute-based reasoning and logico-mathematieal reason-
ing. The rules contained in the statute are thought of as axioms, the complete set
constituting an axiomatic theory, along the lines of Euclidian geometry (Sergot et
al., 1986, p. 46). It is suggested that all rules in the formalization of the British
Nationality Act appear as axioms in a single theory, much as a set of premises in a
very long argument. The term logical model has been introduced to refer to such
axiomatic theories (Kowalski & Sergot, 1986; Bench-Capon, 1988a). "Model" in
logic has a technical meaning which the phrase "logical model of legislation" is
evidently appealing to. Any particular formalization of a statute in logic will be such
that a number of predicate symbols will have been used and a number of constants
will also have been used. Together with the usual machinery of the predicate
calculus, we can consider these expressions to constitute a language, let us call the
language L. An interpretation of the statements in the formalization is the
association of an object with each of the constants in L and the association of a
property or relation with each of the predicate symbols in L. An interpretation is a
model of the formalization if all of the statements in the formalization are true under
that interpretation. The phrase "logical model" and the Euclidean analogy strongly
suggest, and indeed an ideal use of logic would so require that in order to achieve a
formalization one must devise a single set of statements and an interpretation of the
symbols used such that not only are the statements all true (i.e. the interpretation is
a model), and not only do the statements faithfully represent what is expressed in
the statute, but also that all of the statements concern real-world objects, and
predicate symbols are associated with real-world relationships.

This would not be the case if the formalization utilized a meta-language. Then the
"logical model" could not be of the elegant and intuitive kind described above
which "says something" about the world, and it would not then be possible to liken
it to the axiomatization of Euclidean geometry. Instead, the model would be arrived
at by associating objects and relations with the constants and predicate symbols of
the meta-language, but now those objects would be statements contained in the
statute, rather than real-world objects such as houses, and the relations would be
those holding between statements rather than real-world relationships, Of course,
the object-level statements must also be given a meaning (an interpretation), but it
does not follow from this that we would have two logical models, one at the
meta-level and one Euclidean-style model at the object-level. This is because the set
of object-level statements we are considering include general rules and their

76 T, ROUTEN AND T. BENCH-CAPON

exceptions, and it would be inappropriate to try to find an interpretation under
which the rules and their exceptions are all true. It would be necessary to partition
the set into a number of small theories, such that we can construct a model for each.
The general rule 79-(1) would constitute one theory, the exceptions contained in
89-(3) another, the exceptions contained in schedule 1 another, and so on. Far from
the formalization of a statute being a single logical model, it would be a complex
hierarchy of models.

The important thing to note is that there is nothing logically illegitimate in using
logic in this (admittedly less appealing) manner. There are simply no restrictions on
the kinds of objects which can be associated with constants. One should be careful
to distinguish second-order logic, which permits quantification over properties from
the use of first-order logic as a meta-language whose objects are expressions of an
object-language. Whilst quantification over properties would alter the nature of the
logic significantly, simply altering the domain of a language from a set of objects
such as houses, landlords and tenants, to a set of objects such as statements and
theories does not alter the semantic conventions of the formalism employed. We
should be careful too when Berman and Hafner (1987) state "Logic does not allow
explicit statements to be made about its own rules". The thought underlying this
remark is perhaps that unless an exclusive distinction is made between object-level
and meta-level then self-referential statements are possible and some of these (such
as "this statement is false") can lead to paradox. But this kind of self-reference is
not likely to exist in statutes. The existence of cross-references does make a statute,
when considered as a whole, self-referential, but this is quite a different, less
dangerous kind of "self-reference". We are suggesting that the content of a statute
can be modelled in a hierarchy of theories, none of which contain statements which
refer to themselves. The self-referential nature of a statute derives that there are
statements within the statute, which refer to statements which are also contained in
the statute, but logically speaking they are in a different language.

What we have established so far is that there is a tension between the
straightforward intuitive application of the predicate calculus and the production of
a formalization which is a good one from a software engineering perspective. We
have seen that this tension is in part responsible for the view that logic is not the
right vehicle for such a task, but that this view depends on an erroneous view of
logic. The conclusion at this stage of the argument, one might suppose, is that
software engineering considerations must go by the board. The most important
requirement is that the formalization be a logically correct representation of what
the statute expresses. We have seen that the introduction of a meta-language entails
the abandonment of the most intuitively satisfying use of logic which promised to
capture the thoughts of the original drafters of the statute most satisfactorily.
However, we shall now present reasons why someone may wish to think twice
before making a decision to eliminate meta-level statements in order to create what
Gordon calls a "flat formalization".

4. Difficulties with flat formalizations

4.1, G O R D O N ' S POINTS

Thomas Gordon has provided arguments in favour of maintaining the separation in
a formalization between general rules and their exceptions. His points are basically

HIERARCHICAL FORMALIZATIONS 77

twofold and they are both concerned to show that a formalization in which rules and
exceptions are collapsed together would not be able to support important aspects of
legal reasoning. Firstly, he says that incorporating exceptions within general rules
can create, as we have remarked, incomprehensible rules in the formalization and
that this will have a detrimental effect on the capability of a knowledge-based system
based on such a formalization to explain itself. He states:

It is not enough for our models of the law to be suitable for symbolic manipulation by a
computer, they must first of all be comprehensible to their human users. An expert
system, especially a legal expert system, must be capable of explaining its reasoning in
terms users can appreciate. To achieve this transparency, it is helpful if the computer
model and the legal sources upon which the model is based have a similar structure"
(Gordon (1987), p. 61).

Secondly, Gordon makes the point that this kind of formalization would not
permit an expert system built upon it to answer a question regarding the
applicability of a general rule without extracting from the user information
concerning every exception to it mentioned in the statute. Separating rules and
exceptions would allow a system to simulate legal decision-making processes more
convincingly than this. For instance, not all exceptions to a rule need always be
considered for it would sometimes make a decision dependent on the acquisition of
too much information. In statutes, general rules can have many exceptions which
are rarely if ever fulfilled but represent the plugging of loopholes found in earlier
drafts. As an example, we can note that, in order to determine a person's
entitlement to supplementary benefit, an advice-giving system based on a "fiat"
formalization of the Law Relating to Supplementary Benefit would have needed to
ask of perfectly unexceptionable individuals whether they were members of a wide
range of minority groups such as refugees, share fishermen, and many more, since
members of those groups receive special treatment.

We can envisage further benefits in maintaining the separation. For example,
should we want an expert system to be able to present relevant parts of the original
legislative texts at relevant points in its interaction with the user, perhaps as part of
its explanation capability, then the system would need to be able to work out which
part of the text to present. If the rules it is reasoning with are composed of content
from many parts of the statute this will be difficult. If instead the rules map onto the
structure of the text naturally, then this kind of capability could be implemented
elegantly.

4.2. KNOWLEDOE REPRESENTATION PROBLEMS

Work within the "logical model" tradition has identified knowledge representation
problems: problems in formulating statements of logic which capture the meaning
expressed in statutes using certain typical linguistic constructions. It may be that
many of these difficulties exist only because of the implicit acceptance of the
assumption that the statements of logic must always be solely at the object-level.
Here we shall examine three of those problems and it will become clear how much
easier the task of representing them is made once a recta-level of representation is
permitted. Let us suppose then that we have two languages, an object-language and
a recta-language. The meta-language can be used to construct statements which
concern elements of the object language. Consequently, our meta-language requires

78 T. R O U T E N AND T. B E N C H - C A P O N

a way of referring to statements of the object-language. Here we shall not present
the exposition of a naming convention and will build names for statements using the
same characters surrounded with single quotes. Predicates of the meta-language will
appear in uppercase to distinguish them from predicates of the object-language.

4.2.1. Rules and exceptions
The first of the problems is that which we have been discussing, the problem of
maintaining the separation between a general rule and its exceptions. We have
already looked at an example of a general rule 79(1) of the Housing Act which is
subject to textually separate exceptions, and as we have seen, the next sub-section,
79(2), details where exceptions to the general rule are to be found. Instead of
compiling the meta-level 79(2) down into amendments to object-level statements we
could take seriously the idea that it is a statement at the meta-level. If we were to
represent 79(2) naturally and directly we would need to use a meta-level predicate
representing the relation it contains.

Let SUBJECT-TO be a predicate of the meta-language. Not only do we need
some way of naming the single statements of the object-language, but also sets of
statements (small theories) contained in subsections 89(3), 89(4) etc., so that we
could describe the dependencies asserted by 79(2) in formal statements. I f we use
statute section names to denote these sets of statements, we can represent the 79(2)
as a set of assertions at the meta-level:

SUBJECT-TO('79(1)', '89(3)')
SUBJECT-TO('79(1)', 'sched-l') . . . etc.

We could then leave the general rule expressed in 79(1) as it is, with all the
attendant software engineering and legal reasoning advantages mentioned above.

4. 2. 2. Deeming provisions
The second problem we shall look at has been called that of the "deeming
provision". Deeming provisions allow things which are not true to be treated as if
they were. In Bench-Capon et al (1987, p. 197), an instance of such a provision from
the Law Relating to Supplementary Benefit is quoted:

a person shall be treated as blind if he regained his eyesight within the previous six
months...

To understand why deeming provisions are a problem, suppose we had a statute
containing just the above deeming provision plus the rule which says that " a person
who is blind is entitled to disability benefit". A formal version of the rule would no
doubt look something like the following:

entitled(X) ~ blind(X).

As it stands, this definition of entitlement does not allow a person who has regained
his or her sight in the past six months to be entitled. The problem of representing
the deeming provision is the problem of modifying or adding to the rule in a natural
and convenient manner which at the same time achieves the consequences which the

HIERARCHICAL FORMALIZATIONS 79

deeming provision is intended to achieve. If achieving the right consequences were
all, we could straightforwardly add to the definition of entitlement:

entitled(X) ~ regained_sight_etc(X).

Comprehensibility of the formalization is already compromised since this is not what
the legislation says. In addition, the formalization is no longer easy to update and
maintain since the chain of reasoning which led to the addition of this alternative
definition of entitled may not be easy to reconstruct. The same points would hold
with more force were we to add

blind(X) ~ regained_sight_etc(X).

because it would allow us to derive contradictory predications of the same
individual--that he has sight and that he doesn't. A better suggestion (Bench-Capon
et al. 1987, p. 197) would be to introduce a new predicate (let's call it blind*) which
is defined in terms of blind and in terms of the deeming provision:

blind* (x) ~-- blind(X).
blind* (X) ~ regained_sight_etc(X).

Then, by replacing blind with blind* in the definition of entitled, we would have
achieved the intended meaning of entitlement. This is not entirely ad hoc because
one can argue that when the legislation uses the word "blind", it implicitly appeals
to a concept other than the real-world concept of blindness (because of the effect of
the deeming provision). This technical legal concept doesn't have a name already
and blind* is as good a name as any.

However, the proliferation of such peculiar concepts is not good from the point of
view of legal validation. One could just as easily argue that the whole reason for the
existence of deeming provisions is to allow the drafter to avoid having to introduce
such concepts when defining something with great precision, and instead couch
definitions in terms of ordinary concepts with patches. The above treatment of
deeming provisions also creates a potential problem for the development of the
software: it means that to update a formalization by adding a deeming provision
could entail having to replace many occurrences of a predicate denoting a real-world
concept by another denoting a related technical one. This is not always a simple
matter--for example it could have profound effects on the explanation capability of
an expert system based on the formalization--and is a complication to be avoided if
possible.

That fact that there are problems in arriving at a satisfactory formulation should
not be surprising since so far we have considered only attempts to represent at the
object-level something which is more naturally interpreted as making a meta-level
statement. We have said that deeming provisions are there to permit us to "treat
something as true" and this is clearly a meta-level notion. Many if not all deeming
provisions are more naturally interpreted as meta-level statements.

Let us introduce the following meta-level predicates, predicates whose arguments

80 T. ROUTEN AND T. BENCH-CAPON

are statements of the object-language, to help us to represent t h e deeming provision
under consideration. To simplify exposition we shall frame t h e discussion as if we
have a single object-level theory, rather than a number of such different theories, as
has been suggested above.

DEEMED(th, S) "The statement S is treated as if it w e r e true in
the object-level theory th".

PROVEI(th, S) "The statement S is proveable in the
object-level theory th"

What we want to say is that all object-level statements o f the form blind(c~)
(where c~ is any object-level constant) are to be treated as if they are true if
regained_sight_etc(oc) is proveable. This means something like:

DEEMED(th, 'blind (x)')
PROVEI(th, 'regained_sighLete(x)').t

This is not yet correct since we should be able to conclude blind(o~) not only if
regained_sight_etc(a~) is derivable at the object-level, but also, for example, if there
was a deeming provision which said that we should treat it as t rue, that is if it was
derivable at the meta-level that DEEMED (th, 'regained_sight_etc(a~)'). It would
be possible to add another clause to the representation of the deeming provision

DEEMED(th, 'blind(x)') *--
DEEMED(th, 'regained_sight_etc(x)')

At some stage however, we shall want to represent the fundamental reason for
having deeming provisions, that is that our peculiar overall notion of proveable
(perhaps "proveable according to the statute") is going to be t h a t some proposition,
p, is true if a statement of the form PROVEI(th, p) is der ivable at the meta-level,
but also if a statement of the formed DEEMED(th, p) is der ivable at the meta-level.
Therefore, it is clear that we require a further meta-level of representation; one at
which we can talk about derivability at the first meta-level. Predicates at the second
meta-level shall be in uppercase and italicized. Let us introduce the following two:

STATUTE-PROVE(S) "statement S is proveable according to the
statute"

PROVE2(ml, S) "statement S is proveable in the theory at
the first level meta-level ml"

STA TUTE-PROVE(S) *--
PROVE2(ml, 'PROVEI(th, S)').

STA TUTE-PROVE(S) *--
PROVE2(ml, 'DEEMED(th, S)').

t Here the apparent variable, x, is not really a variable at aU but merely par t of each of the two
unstructured names of object-level statements, and the two occurenees of x do n o t have any relationship.
To effect the definition properly we would need to have meta-level predicates which would permit us to
reason about the object-level statements referred to by the names. Perils (1985) calls this "un-naming" .
Suppose we had the following predicate:

EXPRESSION(P, O, S) "S is the statement referred to by the concatenat ion P + ' (' + O + ') ' "
The definition of the deeming provision would then look something like th i s :
DEEMED(th, S1) ~--
EXPRESSION('blind', O, S1),
ExpRESSION('regained_sight_etc', O, $2),
PROVEI(th, $2).

HIERARCHICAL FORMALIZATIONS 81

With these predicates we would want to represent our deeming provision as
follows.

D E E M E D (t h , 'blind(x)') ~--
STA TUTE-PR O VE ('regained~sight_etc(x)').

This definition mixes levels. Its conclusion is at the first meta-level and its
condition is at the second meta-level. This kind of representation can be achieved in
amalgamation o f a meta-language with its object-language via "reflection principles"
(Bowen & Kowalski, 1982), rules which "communicate" results of the meta-
language to the object-language and vice versa. t With this definition, the repre-
sentation o f the general rule for entitlement remains unaltered. We have no peculiar
predicates and the deeming provision is explicit.

4. 2. 3. Counterfactuals
Before looking at the third representational difficulty, how one might represent
counterfactuals, we should remark that the prior question of their interpretation
remains a puzzle.

The problem of counterfactuals is discussed in Ginsberg (1986), Routen and
Bench-Capon (1986) and Bench-Capon (1989). Broadly, the problem eentres on the
fact that whilst the surface form of a counterfactual is very like that of a material
implication, counterfactuals behave very differently in a number of ways.

Firstly, we cannot use contraposition with counterfactuals: the truth of

If the oven had not failed the dinner would have been on time

does not imply that

If the dinner had been late the power would have failed

since the dinner can be late for a whole host of reasons. Secondly, counteffactuals
are not transitive. The following two eounterfactuals may be true:

If James Bond had been born in Russia he would have been a Communist.
If James Bond had been a Communist he would have been a traitor.

We cannot, however, conclude from them that

If James Bond had been born in Russia he would have been a traitor.

On the contrary he would probably have served his country loyally as an agent of
the KGB. Thirdly counterfactuals are non-monotonic; the following pair of
counterfactuals can both be true:

If Bert had come the party would have been lively
If Bert and Carol had come the party would have been dreary,

since Ber t is only the life and soul of a party when free from his wife Carol 's
restraining glares. Finally there is a pervasive problem with counterfactuals such as

If Dover were in Yorkshire, then Dover would be north of London
If Dover were in Yorkshire, then Yorkshire would be in the South of England

? This amalgamation presents the possibility of paradox mentioned earlier but, in the AI literature, see
Perlis (1985) for the argument that paradox can be avoided in such a first-order system.

82 T. ROUTENANDT, BENCH-CAPON

since we have no clear grounds of deciding which, if either, is true. The problem is
quite pressing when representing legislation, since the counterfactual is quite a
favourite construction of legal draftsmen.

To be able to pursue knowledge representation issues, let us look at an example
of a counterfactual whose meaning is relatively transparent. A simplified definition
of entitlement to supplementary benefit which was contained in the Law Relating to
Supplementary Benefit can be represented as follows:

entitled(x, supp_ben)
poor(x),
in_uk(x),
unemployed(x).

The law also allows that people can be entitled to benefit when they are away
from the UK on holiday. Let us call this benefit "holiday benefit". A person is
entitled to holiday benefit if he "would be ent i t ledto supplementary benefit if he
were in the UK" . t The meaning of this condition appears to be dear. The
conditions under which someone would be entitled to supplementary benefit if he
were in the UK are precisely the conditions defining entitlement to supplementary
benefit minus the condition that the person is in the UK. Therefore, the following
would appear to serve to represent entitlement to holiday benefit:

entitled(x, holiday_ben)*--
poor(x),
unemployed(x).

We shall remark on a fundamental problem with this treatment below. For the
moment, we might note a less important though still undesirable consequence for
the software engineering point of view. Suppose that there were many more
conditions defining entitlement to supplementary benefit, and that there were
several altemative benefits defined counterfactually with respect to entitlement to
supplementary benefit instead of the one. Treating the counterfactual definitions in
the way suggested above would result in a formalization containing several
definitions all long, and yet extremely similar. The drafter managed to avoid this
duplication and so should our formalization. The general point here is that
meta-level statements can be shorthand devices, the advantages of which are lost if
the meta-level statements are eliminated by reduction.

The introduction of a meta-level predicate would ease our task. Let us call it
WOULDBE. WOULDBE takes two statements as its arguments:
WOULDBE(th, C, A) is read: "C would be derivable in the object-level theory
were it the case that A was derivable" which relates the antecedent and the
consequent of the counterfactual. The definition of entitlement to holiday benefit
would now look like this:

entitled(x, holiday_ben) <---
WOULDBE(th, 'entitled(x, supp_ben)', 'in_uk(x)')

t This too is slightly simplified for purposes of exposition. The full definition is given in Routen and
Bench-Capon (1986).

HIERARCHICAL FORMALIZATIONS 83

In this way we avoid having to duplicate the definition, and the counterfactual is
explicit.

We have seen three constructions which have appeared in the literature as
presenting problems of knowledge representation. They have a common feature:
that they are constructions used to express things at the recta-level. Relaxing the
requirement that meta-level features are reduced to amendments to object-level
statements facilitates the resolution of these problems. We would not want to
pretend that the resolutions offered above, particularly in the case of the deeming
provision, constitute an illustration of how easy it is to represent things in standard
logic. From a practical point of view, the importance of the formalizations above is
that the meta-level representations they employ make clearer the logical structure of
the problematic constructs and show that the difficulties in constructing equivalent
object-level statements are only to be expected. We shall see shortly that matters
are made considerably easier when we are interested only in approximating these
representations in Prolog.

4.3. FLAT FORMALIZATIONS ARE IMPOVERISHED TRANSLATIONS

Let us recap. The attempt to model the content of a statute in a theory composed of
a single linear set of axioms creates representational difficulties, software engineer-
ing difficulties, leads to inflated knowledge bases, hinders the simulation of legal
reasoning, and the indexing of formal rules with original source material. Yet one
still might want to say that these considerations are secondary. One might still want
to argue that requirement i (of section 2.1) should be our guiding light, and that this
demands that all axioms in our formalization concern the law; there should be none
which concern the statute. In this section we'll see that, paradoxically, even this
requirement can in fact demand the contrary.

We can treat it as self-evident that the most basic constraint is that the
formalization be a correct representation of the logical content of the statute. One
might call a translation in which content existing in the source has been lost, an
impoverished translation (Studnicki, 1985). If we take this constraint seriously, then
it can be the case that a formalization must not be a single axiomatic theory. We
shall describe two ways of demonstrating that such "flat" formalizations are
necessarily impoverished translations.

The first way is to show the existence of irreducibly meta-level features in statutes.
Counterfactuals are such essentially meta-linguistic features. They are not wholly
reducible to object-level statements. We have argued elsewhere that they are in fact
not statements at all but are devices for presenting arguments which have
suppressed premises relating the counterfactual's antecedent with its consequent
(Bench-Capon, 1989). If one can be said to be making a statement at all in asserting
a counterfactual, one is making a statement of existence: i.e. that there exists a set
of true statements from which one can derive the counterfactual's consequent once
the truth of its antecedent is assumed. In compiling a counterfactual down to a
single set of object-level statements then, one is inevitably failing to represent
accurately its truth-conditions since the counterfactual, interpreted as an existence

84 T. ROUTE, N AND T. BENCH-CAPON

statement, could be satisfied by an alternative set of object-level statements.t To
illustrate the effect of this we can refer back to our example counteffactual and note
that legislators may decide to alter the definition of entitlement to supplementary
benefit and yet have no desire to alter the definition of entitlement to holiday
benefit. Thus, while the intended meaning of the counterfactual used remains
constant, its object-level representation has to change. From the software engineer-
ing point of view, this demonstrates the likely failure of modularity in a flat
formalization.

The second way of showing that flat formalizations are necessarily impoverished
translations is by pointing out that drafters of statutes can and often do distribute
the definition of a concept across a number of fragments. This is the case when
exceptions are kept distinct from a general rule, but also when concepts are defined
disjunctively, and quite often when there are a number of conditions in a
conjunctive definition. It is then possible to refer to and use in other contexts, single
conditions, exceptions, disjuncts etc.. Common phrases such as " . . . the condition
mentioned in sec t ion . . . " , " . . . in virture of s ec t i on . . . " , " . . . within the meaning
of sect ion. . . " are all used to accomplish such reference.

For example, one might find that a statute asserts that a tenancy has a certain
property if it fails to be a secure tenancy in virtue of 89(3) of the Housing Act 1985.
If we had not stayed faithful to the text and kept the general rule of 79(1) and its
exceptions distinct in our formal representation, and moreover had kept all
exceptions distinct from each other, then we would be unable to represent this
condition without adding to our formalization of the Housing Act an extra predicate
such that the predicate is satisfied by a tenancy if the exceptions contained in 89(3)
apply to itA: A fiat formalization would not have maintained a distinct concept of
"the condition contained in 89(3)" and so would have been an impoverished
translation with respect to the statute. The importance of this impoverishment is
perhaps dependent on the scale of one's ambitions. Just as the rigorous application
of software engineering techniques appropriate to a large system is overkill for a
very small program not intended for regular use, a small-scale one-off formalization
in which it is possible to get to know all of the cross-references which will need to be
formalized would not determine a need to worry about glueing all parts of a
definition into one. On the other hand, if one were undertaking the formalization of
a large piece of legislation, one which is susceptible to frequent amendment, or one
which may be required to interact with formal representations of other statutes, then
this point needs to be considered carefully. Statutes are hierarchical structures which
hold meaning in their rafters and not only at ground level. That is, some of the
essential content of a statute is embodied in the organization of the text as well as in
its meaning.

5. A Prolog meta-interpreter
There are a couple of related points which remain to be addressed. Firstly, how can
we use the representations offered in section 4.2 to make the relevant deductions.'?

t This fact also accounts for the ambiguity of some counterfactuals which is stressed in Routen and
Bench-Capon (1986).

~: This would cause duplication in the knowledge base.

HIERARCHICAL FORMALIZATIONS 85

Secondly, what is the relationship between the representations and the writing of a
logic program which can use them.

We shall examine both by attempting to write a Prolog "recta-interpreter" which
satisfactorily captures the definition of STATUTE-PROVE and which utilizes the
representations given above, One should note that this is not the only conceivable
way to produce a logic program which can handle features such as rules and
exceptions. For example, Kowalski (1989) uses a program transformation technique
to address similar concerns.

Consider a knowledge base consisting of the following three statements:

entitled(X) ~-- blind(X).
DEEMED(blind(x))

STATUTE-PROVE (regained_sight_etc(x)).
regained_sight_ete(bill).

It would appear that in satisfying the first and third requirements on a formalization
outlined in section 2 (that a formalization be a faithful representation of what is
expressed by the legislation, and that it be easy to validate and to maintain) our
formalization fails to satisfy the second (that it should permit us to make all relevant
derivations by machine) since, from the above knowledge base, a simple Prolog
interpreter could derive nothing. What we wanted from our representation on the
other hand was that it should enable us to conclude that entitled(bill) is true; to
derive a statement of the form STA TUTE-PROVE(entitled(bill)).

The specialized recta-interpreter we need to define for reasoning with statutest
can be an augmentation of a backward-reasoning meta-interpreter with a familiar
top-level definition of the kind mentioned in Welham (1988, p. 293):

STA TUTE-PROVE(KB, Goals)
EMPTY(Goals).

STATUTE-PROVE(KB, Goals)
SELECT(Goals, Goals, Rest),
REDUCE(KB, Goal, SubGoals),
COMBINE(Rest, SubGoals, NewGoals),
STA TUTE-PROVE(KB, NewGoals).

The standard definition of REDUCE is as follows: it is possible to reduce a goal to
subgoals if there is a clause in the knowledge base whose conclusion matches the
goal--the subgoals are then the suitably instantiated conditions of that rule.

REDUCE(KB, Goal, SubGoals)
CLAUSE(KB, Goal, SubGoals).

5.1. DEEMING PROVISIONS

With the kind of reasoning involved in using deeming provisions, there is another
way of reducing a goal to subgoals. One can reduce the problem of showing a
proposition is (statute) proveable, not only if there is a clause in the knowledge base

t The one we describe here is "coarse-grained" since it exploits the underlying Prolog unification
mechanism rather than making unification explicit in the definition. We are also using unification to
simulate the naming and un-naming referred to above.

86 T, ROUTEN AND T. BENCH-CAPON

defining it, but also if there is a clause in the knowledge base which gives conditions
under which one should treat if as being true:

REDUCE(KB, Goal, SubGoals)*--
CLAUSE(KB, DEEMED(Goal), SubGoals).

5.2, COUNTERFACTUALS

We can similarly augment the meta-interpreter to handle counterfactuals. One of
the most popular ways of interpreting counterfactuals is to follow the philosopher
David Lewis (1973) and suggest that they are best understood as making statements
about possible worlds. This interpretation has appeared in the A.I. literature (e.g.
Ginsberg, 1986). We have given reasons for rejecting this account in Routen and
Bench-Capon (1986), and an alternative view is elaborated there and in Bench-
Capon (1989). The alternative view is that referred to above, that a counterfactual
is properly construed as an elliptical argument, and states that there is some valid
argument which has the antecedent of the countedactual amongst its premises and
the consequent as conclusion.

We can extend our definition of REDUCE to incorporate this interpretation in
the following way:

REDUCE(K.B, WOULDBE(C, A), SubGoals) <--
CLAUSE(KB, C, Conditions),
EXTRACT(KB, A, Conditions, SubGoals)

Here a counterfactual can be reduced to subgoals if there is a clause defining the
antecedent of the counterfactual in terms of some conditions, and the ex hypothesi
satisfaction of the consequent of the counteffactual is effected by removing its
occurrence from the conditions to leave the remaining subgoals.t An alternative of
REDUCE definition embodying the possible worlds approach to eounteffactuals
could be constructed, although we shall not attempt to do so here. The important
thing to note is that these various attitudes to counterfactuals do not impact on the
formalization, and the debate can be contained within the meta-interpreter, where
its terms are at least formally stated.

5.3. RULES AND EXCEPTIONS

General rules and exceptions are often related by cross-referencing rules like 79(2)
of the Housing Act. Where they are not related by an explicit cross-reference, they
could be, since the rules and exceptions are invariably described in different
paragraphs of the legislation. Therefore, if we define S T A T U T E - P R O V E to allow
us to handle cross-references like 79(2), it would provide us with a general method
for formalizing rules and exceptions.

As we have remarked, representing cross-references with recta-level predicates
(such as SUBJECT-TO(79(1), 89(3))) implies that one is able to refer successfully to
sets of statements which represent formalizations of fragments of text (such as
89(3)). The most basic precondition for successful reference is that the object one
wants to refer to exists. Since we do not know in advance what fragments we will

t Unfolding of conditions may be required to produce a set of conditions from which it is possible to
extract the antecedent.

HIERARCHICAL FORMALIZATIONS 87

want to be able to refer to in this way, it must be possible, for any specified
fragment of the statute, be it a sub-paragraph or a whole section, to extract from our
formalization a set of statements which represents the content of that fragment. This
constitutes a reiteration of the point we made above which said that a formalization
which did not permit arbitrary cross-references to be made (or at least as many as
does the original text) would be impoverished. The most convenient and perhaps
the only way of developing a formalization in the light of this is by adopting the
methodological principle that, as far as possible, the structure of one's formalization
be faithful to the structure of the text. Ideally, there would be a one-to-one
correspondance between rules in the formalization and indivisible fragments of the
text. Cross-references will generally refer to fragments which are divisible, i.e. which
contain a number of textual atoms. This means that we must tag each rule in our
formalization with its source in order to be able to determine the make-up of the
sets of statements referred to.t Consequently, we need to describe rules within a
meta-level relation which relates source with content; perhaps:

RULE(KB, Source, Conclusion, Conditions)

For example, the general rule, 79-(1) and the exception from schedule 1 could be
represented in the following two assertions:

RULE(housing-act- I985,
[ha, V, 79, 1],

, secure_tenancy(Tenancy),
[satisfies_landlord_condition(Tenancy),
satisfies_tenant_condition(Tenancy)]).

RULE(housing-act-1985,
[ha, sched-1],
long_tenancy(Tenancy),
[]).

We also require the definition of a predicate which would tell us, given two
sources whether or not a particular fragment was included in another. For example,
that subsection 79(2) is included within section 79.

CONTAINS(A, B) "Fragment A contains fragment B"

For our purposes it will be convenient if we consider a source to contain itself. We
can now amend our definition of REDUCE as follows: one can reduce a goal to
sub-goals only by finding a clause whose conclusion matehes the goal i f there does
not exist a valid exception to the means by which the goal was reduced (represented
by the source of the rule used).

REDUCE(KB, Goal, SubGoals),~-
RULE(KB, Source, Goal, SubGoals),
NOT EXCEPTION(KB, Source, Goal).

There exists a valid exception to the means by which a goal was reduced if there is
a set of statements which constitute exceptions to the means by which it was reduced

t There are independent reasons for representing sources as we have remarked in 4.1.

88 T. R O U T E N AND T. B E N C H - C A P O N

and, after having substituted the relevant variable bindings contained in the goal to
these statements, it is possible to show that any of them is (statute) true:

EXCEPTION(KB, Source, Goal)<--
CONTAINS(OtherSource, Source),
RULE(KB, AnySource, SUBJECT-TO(OtherSource, Exs), true),
SUBSTITUTE(Goal, Exs, Exceptions),
MEMBER(X, Exceptions),
STA TUTE-PRO VE(KB, X).

Because STATUTE-PROVE is defined recursively, the recta-interpreter will
check for exceptions to exceptions and so on, to the limit of exception-free
exceptions. This would appear to negate one of the major benefits of maintaining
the separation between rules and exceptions described above (that we would not
always have to consider all exceptions to a rule). However, here we are describing
just one possible meta-interpreter. The important thing is that rules and exceptions
are separate at the object-level, making possible the implementation of the
sophisticated inferencing features desired while still permitting one to obtain, if
required, the same exhaustive behaviour characteristic of a fiat formalization.

We have one final problem. The definition above, although it gives the general
structure of the definition we shall require, is inadequate since there is in general no
way that any SUBSTITUTE predicate of the kind we have supposed to exist can
communicate the appropriate substitutions of values for variables between a goal
and a set of statements which does not contain a term matching that goal. If rules
and exceptions are represented entirely distinctly in the way we have described
immediately above, then the rules and exceptions are not guaranteed to share terms
which can unify.

Kowalski (1989) suggests that an exception C, to a rule A <---B would normally be
represented as a rule with a negative conclusion - A <---C. Clearly, if we represent
exceptions in this way then our problem is solved: A and --A can be unified to
communicate the substitution. In doing this, we would give up one of the supposed
advantages of separate rules and exceptions: that the same exception can serve as an
exception to more than one rule, or even that an exception can function at one and
the same time as an exception to one rule and a condition for another (as noted,
drafters can achieve this by using complex cross-references such as "if x satisfies the
condition mentioned in schedule 1, t h e n . . . ") .

For example, let us suppose not only that A<--B, but also that D <---E. Let us
suppose also that the condition C is contained in section n. Finally, let us suppose
that both of the rules are qualified by the phrase "subject to the exception
mentioned in section n" (i.e. C). Kowalski's method would mean that C would be
represented as two rules, -A*- -C and - D <--C, must appear in the formalization,
whereas it would be useful to be able to have, as in the statute, a single
representation of C which the meta-interpreter, using SUBJECT-TO assertions, can
know as an exception to both rules.

The best of both worlds can be achieved by compromising the representation a
little and including in the formalization of a rule a list of conclusions to which it is an

HIERARCHICAL FORMALIZATIONS 89

exception, namely:

RULE(KB, Source, Conclusion, Conditions, Goals)

For example,

RULE(housing-act- 1985,
[ha, sched-1],
long_tenancy(Tenancy),
[],
[secure_tenancy(Tenancy)]).

The need for such a technique which has no logical justification suggests that if we
are to represent a statute in the manner this paper describes, then a distinction
should be drawn between the use of logic as a representational language and its use
as a programming language. That is, we give up the idea that our straight
formalization in logic can be directly executable. However, the step which we have
to take in order to bridge the gap between what we might now call logic specification
to logic program is remarkably slight.

Having said that, one should not underestimate the practical difficulties in
developing a satisfactory, domain-specific recta-interpreter of which the above was a
sketch. In fact, they are formidable. One of the main problems is the variety of
meta-level relations one will need to deal with. Even under the heading of "deeming
provision" there is a wide variety of constructs. Let us look at one more example.
The British Nationality Act 1981 (section 1) shows us that a deeming provision can
have an explicit scope parameter:

A new-born infant who . . , is found abandoned., shall., be deemed for the purposes of
subsection (1). . to have been born in the UK.

The striking effect of this is that a thorough definition of STATUTE-PROVE
which was able to reason with deeming provisions with scope would demonstrate
that statute-proveability must be scope-relative.

6. Indeterminacy and non-monotonicity

In Berman and Harrier (1987) three obstacles to the use of logic based models are
advanced. The third is the objection we have looked at above (see section 3), in this
section we shall examine the remaining two. They are firstly that logic permits only
the truth values true and false whereas law is often indeterminate, and secondly that
legal reasoning is non-monotonic, whereas logic is monotonic. We will discuss each
of these in turn.

Indeterminacy is defined in Berman and Hafner (1987) p. 3 as follows:

By indeterminacy legal scholars mean the ability to justify both sides of a legal question
using accepted legal principles to reach mutually inconsistent results. This is true even in
cases where there is agreement on the facts and the applicable rules of law. Thus, the law
as a decision-making system is "indeterminate"--in the majority of cases the decision
could go either way.

This is in clear contrast to classical logic, where a sentence is either true or false.
But it is rather disingenuous to cite the fact that either side of a case could be argued

90 T. R O U T E N A N D T, B E N C H - C A P O N

to suggest that a legal conclusion lacks a truth value, for the legal process is designed
to provide a determinate answer to disputed legal questions. In an adversarial
system, the system requires that both sides be argued, but that a determinate
decision must be made when the two sides have been presented. (The situation is, in
fact, better in law than in mathematics, which is uncontroversially accepted as an
appropriate field in which to apply logic: whereas any legal question can be
determinately resolved, some mathematical statements are provably unprovable.)
What we need to show is not that it is possible for a logic-based approach to give an
indeterminate decision, but rather to explain how disagreement as to the outcome of
a case is possible. I f we have a formalization of law, then any given proposition will
or will not be a consequence of that formalization. There are, however, three ways
in which indeterminacy can arise. Firstly there may be disagreement as to the
correct formal interpretation of the law. Suppose we have a law that states that a
person is entitled to a heating addition to some benefit if his house is hard to heat.

Suppose too that both parties are agreed that a particular claimant has a house
which is not hard to heat. We will be entitled to conclude that he is therefore not
entitled to a heating addition, only if we interpret the " i f" in the legislation as "if
and only if". Thus one way of arguing both sides of a legal question would be to
propose two different formalizations as competing candidates for the correct
interpretation of the applicable fragment of legislation. Secondly there is the
irreducibly open-textured nature of many legal concepts; in the above example the
two sides might be in perfect accord as to the facts of the case, that is the nature of
the claimant's house, and yet disagree as to whether or not the predicate "hard to
heat" correctly described the claimant's house. This is not a matter of fact, but of
judgement. Thus both sides could be in agreement as to the correctness of the
formalization, and so agree that if the claimant's house is not hard to heat then he is
not entitled to heating addition, but argue the contrary sides on the basis of the
applicability of the open-textured predicate to the facts. Thirdly, in practice, we
often see legal decisions that fly in the face of the letter of law, so as to ensure that
the outcome accords with the judge's idea of what is just. Such a decision may well
be justified by reference to some extra-statutory legal principle. Berman and Hafner
(1987) cite the case of the heir who murders his grandfather, where an Ohio court
held that the heir could inherit and a New York court that he could not. Here the
New York court appealed to the general principle that no wrongdoer should benefit
from his wrong. We could consider this to be a case in which one formalization (that
notionally used by Ohio) did not contain a representation of this principle and some
other formalization (notionally used by New York) did. This would reduce it to the
first case above, a disagreement as the formalization to use. Alternatively we could
leave it to the user to review the consequences of our formalization in the light of
general legal principles he found acceptable; this would always give the possibility of
the "decision" of the system being rejected by the user. This latter solution is
probably to be preferred, given the room for disagreement as to what constitutes a
general legal principle, and the circumstances in which it is applicable.

Thus we have the situation where two sides of a legal decision can be argued,
even though a legal model of the legislation gives a determinate answer on any of
the following three grounds: that the formalization fails to embody a correct

HIERARCHICAL FORMALIZATIONS 91

interpretation of the law; that the conclusion depends on the applicability of some
open-textured predicate which is not applicable; or that the formalization fails to
embrace some general legal principle which should be operative. We submit that
these three factors give rise to sufficient scope for both sides of any question to be
argued, and that such legal disagreement, can, if there is agreement as to the facts
and applicable rules of law, be accounted for in terms of one or more of them.

The second obstacle is that of non-monotonicity. Here we must admit that in the
course of reviewing the facts of, and legislation applicable to, a given case, a legal
reasoner may first be persuaded one way and then another. However, the situation
need not be described as deciding first one way then another, as would be the case if
true non-monotonicity were in evidence. Rather it is better to say that no decision is
made until all the facts and laws have been considered. The interim views are better
expressed as "on the basis of the facts and laws so far considered, the decision is
this", than as "the decision is this and I have to consider more factors". When a
case is decided, complete information is supposed to be available: if it is not then
decision should be deferred until it is, since it would be clearly unjust to decide a
case on the basis of only partial information. Where complete information cannot be
made available, perhaps because there were no witnesses, as is the case with certain
facts relevant to certain cases, a decision must be made on the balance of
probabilities, or with reference to whatever other procedure the law provides. Thus
information can be taken as being complete even in such cases. Given this (real or
assumed) completeness of information the question of non-monotonicity does not
arise. Against this it might be argued that jumping to conclusions is a fundamental
feature of human legal reasoning; Gordon (1988) seems to be saying something of
the sort when he says that a conclusion drawn on the basis of a general rule is
overturned when an exception is discovered. To this there are two replies; first that
the formalization approach does not attempt to model the reasoning processes of
lawyers, but only to support legal decision making, and second that if non-
monotonic problem solving behaviour is required, this can be accommodated within
a strictly monotonic framework of inference by placing the inference component
under the control of a non-monotonic problem solver and an Assumption-Based
Truth Maintenance System, of the sort described in de Kleer (1986).

Apparent non-monotonicity can, in addition to coming to conclusions on
incomplete evidence, arise when a decision in a particular case is reversed on
appeal, and when a decision is quashed in the light of new evidence which shows
that a previous decision was not soundly based. Neither of these cases presents a
problem for logical formalizations. The first is simply a special case of both sides of
the case being argued; the appeal will be allowed as a result of a disagreement
falling under one of the three heads outlined when discussing indeterminacy. Also
note that any system must provide a final level of appeal (corresponding to the
House of Lords in the UK): and any decision of a lower level adjudicating body
should be regarded not as absolute, but as conditional upon a superior court not
overturning the verdict. The case of new evidence simply means that the situation
has changed; a fact which was taken as true when deriving the original decision,
should not have been so taken, and nothing in logic states that a different set of facts
may not give rise to a different conclusion.

92 T. ROUTEN AND T. BENCH-CAPON

7. Conclusion

Work on the British Nationality Act, and the response to it, established a debate
concerning the applicability of logic for the representation of legislation, and of law
in general. The attraction Of the BNA paradigm is dependent on the idea that
statutes are representable as fairly simple logic programs. Difficulties in representing
some things in Horn clauses were discovered and further research within this
paradigm was largely an effort to discover general ways of overcoming those
problems. Critics brought forward arguments to show that statutes could not be
represented as logic programs and (it is important to keep these questions distinct)
that logic was an inadequate tool for representing legislation.

This paper provides a synthesis of elements of the two positions. It proposes that
knowledge representation problems will be inevitable unless formalizations respect
the multi-layered logical structures which most statutes exhibit. This requires the
introduction of meta-level features into a formalization which in turn destroys the
possibility that the formalization can be interpreted as a 'logical model' of the
intuitive kind which the BNA work suggests. On the other hand, once a formal
representation of a statute incorporates recta-level features to enable a closer
approximation of its complex structure, it will meet some of the points made by
critics of the logic-based approach.

From a logical point of view the most significant and striking finding from all of
the above is that, in capturing the content of self-referential bodies of text, one
cannot always safely treat as irrelevant the admittedly contigent organization of that
text.

References

ALLEN, L. E. (1957). Symbolic logic: a razor-edged tool for drafting and interpreting legal
documents. Yale Law Journal, 66, 833-879.

BENCrI-CAFoN, T. J. M., ROB~SON, G. O., Rotrr~N, T. W. & SEROOT, M. J. (1987). Logic
programming for targe-scale applications in law. In Proceedings of the First International
Conference on Artificial Intelligence and Law, pp. 190-198. New York: ACM Press.

BENcrI-CAPor~, T. I. M. (1988a). Logical models of legislation and expert systems. In I-L
FmDLER, F. HAFr & T. TRAtrNMULLER, Eds. Expert Systems in Law: Impacts on Legal
Theory and Computer Law, pp. 27-41. Tubingen: Attempto Verlag.

BENCrI-CAeoN, T. J. M. (1988b). Applying legal expert systems techniques: practical
considerations. In P. DuFmN, Ed. KBS in Government 88. Pinner, UK: On Line
Publications.

Br~NCri-CAPoN, T. J. M. (1989). Representing counterfactual conditionals. In A. C o ~ , Ed.
Proceedings AISB '89. London, UK: Pitman.

BEaJaA~, D. & Hn~-r~a, C. (1987). Indeterminacy: A challenge to logic-based modets of
legal reasoning. In C. A~'~oLr), Ed. Yearbook of Law, Computers & Technology, vol. 3,
pp. 1-35. London: Butterworths,

BtAOOLI, C., MARIANI, P. & TISCO~IA, D. (1987). ESPLEX: a rule and conceptual model
for representing statutes. In Proceedings of the First International Conference on Artificial
Intelligence and Law, pp. 240-251. New York: ACM Press.

BOW~N, K. A. & KOWALSrJ, R. (1982). Amalgamating language and meta-language in logic
programming. In CLAR~:, K. L. & TARNLUND, S. A., Eds. Logic Programming, pp.
153-172. London, UK: Academic Press.

de KLEeR, J. (1986). An assumption based truth maintenance system. Artificial Intelligence,
28, 127-162.

HIERARCHICAL FORMALIZATIONS 93

GINSBERO, M. (1986). Counterfactuals, Artificial Intelligence, 30, 35-79.
GOaDON, T. F. (1987). Some problems with Prolog as a knowledge representation language

for legal expert systems. In C. ARNOLD, Ed. Yearbook of Law, Computers &
Technology, vol. 3 pp. 52-67. London, UK: Butterworths.

GOaDON, T. F. (1988). The importance of non-monotonieity for legal reasoning. In H.
FIEDLER, F. HAFr & T. TRAUNMULLER, Eds. Expert Systems in Law: Impacts on Legal
Theory and Computer Law, pp. 111-126. Tubingen: Attempto Verlag.

GREENLEAF, G., MOWBRAY, A. & TYREE, A. L. (1987). Expert systems in law: The
DataLex project. In Proceedings of the First International Conference on Artificial
Intelligence and Law, pp. 9-17. New York: ACM Press.

HAMMOND, P. & SERGOT, M. J. (1984). APES Reference Manual. Richmond, UK: Logic
Based Systems Ltd.

KOWALSKI, R. & SERGOT, M. (1986). The Use of Logical Models in Legal Problem Solving,
Logic Programming Group Research Report, Dept. of Computing, Imperial College,
London, UK.

KOWALKI, R. (1989). The treatment of negation in logic programs based on legislation. In
Proceedings of the Second International Conference on Artificial Intelligence and Law, pp.
11-15. New York: ACM Press.

LEWIS, D. (1973). Counterfactuals. Oxford, UK: Blackwell.
McCARTV, L. T. (1977). Reflections on Taxman: an experiment in artificial intelligence and

legal reasoning. Harvard Law Review, 90, 837-893.
PERLm, D. (1985). Languages with self-reference I: foundations. Artificial Intelligence, 25,

301-322.
ROUTEN, T. W. (1989). Hierarchically organized formalizations. In Proceedings of the Second

International Conference on Artificial Intelligence and Law, pp. 242-250. New York:
ACM Press.

ROOTEN, T. W. & BENCH'CAPON, T. J. M. (1986). Counterfactuals in Logic Programs, Logic
Programming Group Research Report, Dept. of Computing, Imperial College, London,
UK.

SERGOT, M..l., CORY, H., KOWALSKI, R. A., KRIWACEK, F., HAMMOND, P. • SADRI, F.
(1986). Formalization of the British Nationality Act. In C. ARNOLD, Ed. Yearbook of
Law, Computers & Technology, vol. 2, pp. 40-52. London, UK: Butterworths.

SHERMAN, D. M. (1987). A PROLOG Model of the Income Tax Act of Canada. In
Proceedings of the First International Conference on Artificial Intelligence and Law, pp.
127-136. New York: ACM Press.

STUDNtCKt, F. (1985). Computational aspects of legal interpretation. In C. WALTER, Ed.
Computing Power and Legal Reasoning. St. Paul: West.

WELHAM, B. (1988). Interpreters and meta-level inference. In P. MAES & D. NARDI, Eds.
Meta-Level Architectures and Reflection, pp. 287-299. Amsterdam: North-Holland.

