
What Makes a System a Legal Expert?

Trevor BENCH-CAPON 1,
Department of Computer Science, University of Liverpool, UK

Abstract. Since the 1980s, AI and Law has attempted to capture legal expertise
in computer programs. But what is this expertise? This paper reviews a number of
approaches, from the 1980s to the present day, which represent different answers
to this question. It argues that our notion, and understanding, of expertise has de-
veloped and improved over the decades. As yet, however, only a few rather spe-
cific aspects have been addressed in detail, in particular the move from intermedi-
ate predicates to legal consequences, and the distinguishing of precedents. Much
more, including the moves from evidence to facts and from facts to intermediate
predicates, awaits exploration.

Keywords. expert systems, legal reasoning, legal expertise, argumentation schemes

1. Introduction

2012 sees the twenty-fifth Jurix conference, and so provides a good opportunity for some
retrospective consideration of where we have come since the 1980s. In this paper I will
look at our evolving understanding of what is needed to put the ‘expert’ in a legal expert
system. One caveat: I am a computer scientist, not a lawyer, and so my own notion of
legal expertise is heavily influenced by what I have seen represented in AI and Law
systems. This is the perspective from which I discuss the expertise included in these
systems: if lawyers see some things as missing, or different, the paper will at least provide
a clear target for their criticisms, and perhaps the future practice of computer scientists
can be modified accordingly.

2. Formalisation of Legislation

For our first example of an attempt to represent legal expertise, we may consider the
classic British Nationality Act System of Imperial College [15]. The idea here is that the
question what do lawyers know? can be answered simply with lawyers know the law.
Thus the system comprises little more than a set of Horn Clauses intended to capture the
law as stated in the British Nationality Act 1981 as a logical theory. Then, given a set
of facts, using a standard reasoning procedure, such as classical deduction, the program
can derive the consequences of the theory: in particular when augmented by a set of
relevant facts regarding a person (their age, place and date of birth, parentage and the
like) it can derive an answer to the key question of whether the person concerned is

1Corresponding Author: Trevor Bench-Capon; E-mail: tbc@liverpool.ac.uk



a British citizen2. Gathering information was similarly general, using the APES expert
system shell which employed the Query-the-User technique [14]: some predicates (the
facts relating to particular people) were declared askable, and if they became relevant the
user would be asked if they were true.

In fact this approach yielded a remarkably impressive system in the case of the
British Nationality Act, and the system inspired a number of imitators, e.g. [16] and [7].
These, however, were far less convincing than the original. What was very important to
the success of the BNA system was that the questions asked - age, place and date of birth
and the like - were all straightforward questions, readily understood by the layman, and
they sought information that almost everyone knows about themselves. But this is not
invariably the case, and in other areas the questions that come to the user are abstruse
and technical and not immediately answerable. Also, very often the questions that come
from the legislation are vague or even ambiguous. The authors of [15] write:

“In addition to vagueness, legislation is generally thought to contain both impreci-
sion and ambiguity. ... In fact, we found fewer such examples than we originally ex-
pected. In practice, where imprecision or ambiguity did exist, it was usually possible
to identify the intended interpretation with little difficulty.”

.
This may have been true of the BNA (or possibly elements of vagueness and ambi-

guity went unnoticed by the authors of [15]): if so it was a somewhat untypical piece of
legislation and this finding did not generalise very far. In the next section we will con-
sider US Trade Secrets law, the domain of HYPO [2], CATO [1] and IBP [9], to explore
these issues further.

3. BNA Approach Applied to US Trade Secrets Law

Issue-Based prediction (IBP) [9] uses the Restatement of Torts to provide a top level ‘log-
ical model’ based on the Restatement of Torts. Although the Restatement is not strictly
speaking legislation, it plays the same role and if the domain were governed by statutory
provisions we would expect them to have a similar import: a similar top layer of logical
rules for Home Office Deduction was used in the CABARET system [17].

The top level of IBP, written as a logic program3, is:

tradeSecretMisappropriation(X):-infoTradeSecret(X),
infoMisappropriated(X).

infoTradeSecret(X):-informationValuable(X),
effortsToMaintainSecrecy(X).

infoMisappropriated(X):-infoUsed(X),
confidentialRelationship(X).

infoMisappropriated(X):-improperMeans(X).

Figure 1: Trade Secrets a la BNA

2Strictly [15] could derive the answer if the facts gave a positive answer. Otherwise, it answered ‘no’: in-
ability to demonstrate that someone was a citizen was taken as a reason to say that they were not a citizen.

3I use Prolog to present program code.



If we were writing a US Trade Secrets law system in the style of [15], this (together
with declarations marking the predicates in the bodies of the last three clauses as askable
and supplying suitable text prompts) would be the whole program. Running with Query
of the User, the user would need to answer a sequence of questions:

• Is the Information valuable?
• Were Efforts taken to maintain secrecy?

Answering yes to both these questions would establish that the information was a Trade
Secret and lead to the next set of questions, while answering no to either would mean a
finding for the defendant.

• Was the Information used?
• Were the Plaintiff and the Defendant in a Confidential relationship?

Answering yes to both these questions would establish that the information was misap-
propriated, finding for the plaintiff. Answering no to either would lead to

• Were Improper Means used to Obtain the Information?

Again answering yes would establish that the information was misappropriated and lead
to a finding for the plaintiff. Answering no would mean a finding for the defendant.

This shows up fairly clearly why this approach will not work in all domains. The
questions asked of the user are simply not appropriate for a lay person. To answer, for
example, whether the plaintiff and the defendant were in a confidential relationship, one
needs to know a good deal about what counts as a confidential relationship and this will
involve knowing a good range of previous decisions, not confined to Trade Secrets law.
Indeed the rationale for systems such as HYPO and CATO is to provide the case-based
knowledge to answer just these questions, which are recognised as requiring considerable
legal expertise to answer.

Seen in this light, the formalisation of the legislation tells us not what the law is - for
that we need the elaboration in terms of cases - but rather the problem solving knowledge
of the system: the questions that need to be answered, the points at which the plaintiff’s
case may be attacked. The formalisation also determines the order in which they are
answered. That this may be a problem was recognised in the BNA program:

The quality of this interactive dialogue is sensitive to the order in which the different
rules for acquiring citizenship are written, and to the order of the conditions within
individual rules. [15], p371.

Ordering is, however, not a problem where the questions are posed internally as they
are in IBP and CABARET. In both these programs the division into issues by providing
a set of questions to answer provides a very useful structure which can then be filled out
with the case law.

4. Including Case Law

Thus far we have seen that knowledge of the legislation is by no means enough: it is
useful in that it tells us which questions must be answered, and the consequences of the
answers given, but it provides us with very little assistance in answering them. And it



is this that we would expect an expert lawyer to assist us in. So what do the case-based
systems add to capture this aspect of expertise?

The case-based systems provide two things: a collection of cases, together with their
outcomes, and a means of describing cases (factors in CATO and IBP, focal slots and
dimensions in HYPO).

The usage of the term ‘factor’ varies somewhat in different descriptions of HYPO
and in CATO and is discussed in [13]. A dimension can be seen as a consideration rele-
vant to decisions in the domain of interest. For example, in US Trade Secrets Law, two di-
mensions would be whether the secret had been disclosed (Secrets-Disclosed-Outsiders),
or whether a common employee had been paid to change employers (Bribe-Employee).
Dimensions may be applicable or not applicable, but if applicable they have a range
(the number of people to whom the secret had been disclosed, or the size and nature of
the bribe). At one end of the range the plaintiff is favoured (e.g. no disclosures), at the
other the defendant is favoured. Where the facts put the case somewhere in the middle
of the range, both sides are more or less favoured. Factors can be seen as points on the
dimension: they are present or absent in a case. If present they fixedly favour one side
or the other. Often a dimension maps into two factors, one representing one extreme and
the other the entirety of the rest of the range. For example, no bribe favours the defen-
dant, while any bribe at all favours the defendant. Sometimes a dimension maps into
several factors. Thus voluntary disclosures may either be disclosure to specific outsiders
or disclosure in a public forum, both of which favour the defendant, but clearly the latter
favours the defendant more strongly. In HYPO the applicability of dimensions was sup-
posed to be determined by the facts of the case: in CATO cases were simply supplied to
the program already represented as collections of factors.

Thus a key piece of expertise would seem to be knowledge of how to describe the
cases. The facts of the cases differ greatly, but if they are to be compared and act as
precedents for one another they need to be described on some common basis. One well
known set of cases in AI and Law require us to be able to subsume descriptions of chasing
a fox with horse and hound, waiting to shoot a flock of passing ducks, trawling for a
shoal of fish and attempting to catch a baseball under a common description (the wild
animals cases and Popov v Hayashi, described in AI and Law 20(1) [3]). The additional
knowledge thus includes the relevant considerations (whether dimensions or factors) and
how they relate to the case outcomes. Ideally we would want to know how they relate to
facts, but this is not very explicit in any of these systems, and entirely absent from CATO
and IBP. We will need to return to this point below.

As well as simplifying dimensions into factors, CATO introduced the notion of a
factor hierarchy. The factors describing the case (the base level factors) are children of
more abstract factors. Where the abstract factor is pro-plaintiff, its pro-plaintiff children
suggest that it is present and its pro-defendant children suggest that it is absent. Where
the abstract factor is pro-defendant, the reverse is, of course, the case. The abstract factors
are in turn the children of more abstract factors (issues, essentially the predicates found
in the Prolog program of Figure 1).

Viewed in one way, the factors could play a very similar role to the way case law
is used to extend a BNA style program, as described in, e.g. [4], in which certain fact
patterns are held, on the basis, of case law, to provide sufficient conditions for (or against)
a predicate found in legislation to hold. For example we could add to the program from
the last section the following procedure to determine whether improperMeans(X)



were used. The first three clauses provide sufficient conditions for the predicate to hold,
the fourth a sufficient condition for it to fail.

improperMeans(X):-bribeEmployee(X).
improperMeans(X):-deception(X).
improperMeans(X):-invasiveMethods(X).
improperMeans(X):-reverseEngineered.(X),!,fail.

Figure 2: Improper Means with Factors as Sufficient Conditions

However, this embodies a great deal more than can be justified on the basis of the
CATO representation. While CATO identifies the four considerations, this treatment:

• decides that these factors represent sufficient conditions;
• imposes a priority ordering: if two of the conditions hold it is the first encountered

in the program that will be applied. Thus in Figure 2 reverseEngineered
is the least important and will not be considered if any of the other three factors
apply. But it could be written as the first clause, in which case it would be decisive
if present, or in some intermediate position.

• imposes the burden of proof on the plaintiff: if none of the factors apply
improperMeans will be taken to be false. The opposite burden of proof could
be given by adding improperMeans(X) as the last clause of the procedure.

Although this approach has been applied in the logic programming tradition, it is
hard to justify to lawyers. It lacks any real expertise in using the factors: in a very real
sense it embodies the thinking of a computer scientist rather than the thinking of a lawyer.

One way of expressing dissatisfaction with the approach of Figure 2 is that it does
not treat the case as a whole, and so the context is lost. An approach using a rule based
representation which does preserve the integrity of the case was developed in [12]. Here
every case was represented as three rules:

• a rule with all the pro-plantiff factors present as antecedent and a decision for the
plaintiff as consequent;

• a rule with all the pro-defendant factors present as antecedent and a decision for
the defendant as consequent;

• a rule expressing the priority between these rules, according to the actual outcome
of the case.

This can, of course, be very easily expressed as a Prolog program. Suppose we
have a case with pro-plaintiff factors bribed-employee and unique-product
and pro-defendant factor reverse-engineered, found for the plaintiff and another
case with pro-plaintiff factors security-measures and unique-product and
pro-defendant factor reverse-engineered, found for the defendant. This produces
the following program (the order of the clauses captures the priorities):

winner(p):- bribed-employee, unique-product.
winner(d):- reverse-engineered.
winner(p):- unique-product, security-measures.
winner(d).

Figure 3: Trade Secrets a la Prakken and Sartor 88



Figure 3 presents a faithful encapsulation of the knowledge of the two cases, with
the additional information that the burden of proof is on the plaintiff. This could be al-
tered by changing the final clause to winner(p). The drawback with the program of
Figure 3 is that it is a faithful encapsulation of the knowledge to be gained from the
two cases, but it lacks any expertise: it cannot use this knowledge to go beyond what is
given there. Reasoning is strictly a fortiori, so that given a new case with pro-plaintiff
factors bribed-employee and security-measures and a pro-defendant factor
reverse-engineered, we would have to find for the defendant, on the basis of the
second clause, whereas the plaintiff’s lawyer ought to be able to make a plausible argu-
ment for her client. Indeed we would might expect (if the case was one of our prece-
dents rather than the new case), that the case would have been decided for the plaintiff,
so that bribed-employee and security-measures would represent the most
important sufficient factor.

Something of the required expertise can be found in [18], which provides some
assistance in how to use cases by giving a set of argument moves with which to deploy
the cases. Among these are moves to use when one has no exact match with a favourable
precedent, but one does have a near miss, which can be adapted for use in an argument.
Even so, thinking in terms of sets of factors, rules and priorities does savour more of
scientific than legal thinking. The point is that when people go to Law School they do
not go primarily to learn information, neither statutes (which would be rather transitory
knowledge in any case), nor cases. While they do consider cases, the point is not to
learn large quantities of them. The best lawyer is not the one who knows the most cases:
provided there is access to a decent library, or on-line facility, this knowledge is not
essential. It is not knowing the cases themselves but knowing what can be done with
them them, how arguments for particular positions can built from them, that is the goal
of legal education. The aim is to acquire certain habits of thought, to come to think like
a lawyer. So let us look again at the classic case-based systems from this perspective.

5. Use of Cases in HYPO and CATO

If we consider the way in which HYPO uses its cases, we see immediately that it de-
ploys them in the context of what it calls three-ply argumentation. This framework firstly
presupposes an adversarial setting, with the first and third plies being supplied by one
party (we will here assume the plaintiff’s counsel) and the second by her opponent (here
counsel for the defence). The three plies are:

• Cite a Case. Here the counsel chooses some precedent with the desired outcome
to cite as reason to find for their side. The choice is not, of course, arbitrary, but
should represent the best precedent. The best precedent is determined by HYPO
by forming a lattice of cases according to how ‘on-point’ the cases are, with on-
pointness calculated in terms of their shared dimensions.

• Dispute Precedent. In this ply the opposing counsel puts forward reasons why
the precedent cited in the first ply should not be applied. There are two ways to
do this: offering a counter example or distinguishing the precedent. A counter
example is a precedent found for the defendant which is at least as on-point as
the precedent cited in the first ply. Distinguishing involves finding a difference
between the current case and the precedent cited which either makes the precedent



stronger that the current case for for the plaintiff, or the current case stronger for
the defence.

• Rebuttal. Finally the plaintiff will have the opportunity to rebut the arguments
from the second ply. Most important here is the ability to distinguish any counter
examples, but the plaintiff’s counsel may also cite additional precedents to show
that any weaknesses identified in the second ply are not fatal (e.g. if a case was
distinguished by the absence of some feature present in the precedent, cases lack-
ing the feature found for the plaintiff could be cited), or to emphasise strengths
(e.g. pointing to features strengthening the current case for the plaintiff but not
present in the precedent).

This encapsulates a view of what it means to approach a case like a lawyer:

• Awareness that the setting is intrinsically adversarial. The counsel do not take a
dispassionate or balanced view: they are supposed to find and advance arguments
only for their side.

• Understanding of the notion of on-pointness. This is a rather different notion from
the kind of triangular distance or least squares matching that we might find in
a mathematical application. Notice also that, in HYPO, this is done in terms of
dimensions, rather than the points on them.The relevance of different locations on
dimensions is that a difference in position might provide a way of distinguishing
the cases in the next ply.

• Understanding what counts as a counter example.
• Understanding of what can (and what cannot) be used to distinguish a case.
• The kind of supporting information that can be deployed in the rebuttal.

Much of this is now very familiar to people working in AI and Law, but it is not
obvious that this is the way to go about arguing with cases. An approach more akin to
multiple linear regression, Bayes nets or some other statistical approach such as using
neural networks might have seemed (to a computer scientist) the natural way to go if one
had chosen to ignore the ways lawyers reason in practice, and simply to apply standard
AI techniques to the problem (e.g. [6]).

While HYPO was targetted quite generally at legal practioners seeking arguments
based on precedent cases to support their clients, CATO was specifically aimed at law
students. Moreover it was designed to teach these students a specific skill, namely how
to distinguish a precedent, and what makes a distinction a good distinction. Remember,
not every difference can be used to distinguish a case. To distinguish a case cited for
the plaintiff, one must find a difference which strengthens the current case relative to the
precedent for the defendant, or which weakens the current case relative to the precedent
for the plaintiff. The differences between CATO and HYPO are instructive because they
show what was was considered vital to the teaching of this particular task, to inculcating
this specific piece of legal expertise.

First CATO dispenses with the notion of dimensions altogether and represents
cases solely as bundles of factors, so abstracting away all factual issues. This means
that the students can focus single-mindedly on the differences in terms of the ab-
stract, legally relevant, considerations represented by factors. Moreover, CATO intro-
duces the notion of abstract factors and the factor hierarchy. The role of the factor hi-
erarchy is to enable moves evaluating and responding to distinctions to be made. If
we have a factor which has siblings favouring the same side (e.g bribedEmployee



and deception are both children of ImproperMeans favouring the plaintiff) one
of which is present in the current case and the other in the precedent, it is possible
to downplay the distinction. If it is argued that a case can be distinguished because
the precedent contains deception, while deception is missing from the current
case, we can respond that bribedEmployee is present in the current case, so that
ImproperMeans were still used, and so the cases cannot be distinguished after all.
Similarly if the current case or the precedent contains siblings which argue for both
the presence and absence of the parent, downplaying is possible. Thus, if the prece-
dent contains nothing relating to Impropermeans but the current case contains both
deception and reverseEngineered, an attempt to argue that deception dis-
tinguishes the current case in favour of the plaintiff, can be met by a claim that, since
reverseEngineered is also present, it is not clear that the trade secret was ob-
tained by ImproperMeans. Distinctions which can be downplayed are, of course, to
be avoided if possible, since they can be rendered inconclusive or even neutralised.

In contrast if a distinction cannot be downplayed it is more desirable, and it is possi-
ble to emphasise its strengths by pointing to the abstract factor that is present (or absent)
and explicitly stating that this was not so with the precedent.

6. Representing Expertise Declaratively

So far we have argued that the expertise that a good lawyer has is less a matter of knowl-
edge, whether knowledge that or knowledge how, but rather certain habits of thought,
particular ways of approaching a problem, and recognising the ways in which informa-
tion needs to be used. All this is largely absent from programs built using rules, but is
present in the case-based systems. It is, however, present in these systems only in the
code itself, or in discussions about the system: there is no explicit representation of the
expertise. And it was just this declarative capture of expertise that was the original goal
of expert systems. So, can this expertise be made explicit and declarative? Argumenta-
tion schemes are currently are an important topic in research on computational argumen-
tation, and they may provide the answer, as explained below.

Typically argumentation schemes are understood to offer a collection of stereotyp-
ical patterns of reasoning permitting conclusions to be presumptively drawn, assuming
certain felicity conditions (often represented by critical questions) are not violated. Ex-
pert Opinion is often taken as the paradigm of such argumentation schemes. Analysis of
the Supreme Court opinions in Furman v Georgia [5] showed a number of these. But
also, in Brennan’s opinion the analysis identified something more interesting:

The four principles in his test are substantially equivalent to four dimensions which
can favour the plaintiff in these cases. His cumulative test therefore could be seen as
an application of the HYPO method to the current case, assuming that an appropriate
analysis of the precedents existed. In particular the way he uses the test once found,
with none of the principles being necessary or sufficient, individually or collectively,
and all taken as established to a greater or lesser extent. is very much in accord with
this approach. In the course of his opinion he effectively analyses the case in the same
way as a knowledge engineer building a HYPO system for this domain would.

In fact argumentation schemes do not always represent a way of moving premises to
conclusions, but are sometimes better seen, e.g. [11], as a reasoning method in them-



selves. In other words, some schemes capture not a sterotypical pattern of inference, but
a method for reasoning, exactly what we have come to understand as constituting legal
expertise and exemplified in Brennan’s opinion in Furman. Now consider the argumen-
tation schemes of [19], further developed in [20]. There the reasoning of CATO is recon-
structed as a set of argumentation schemes, which are highly related in that there is a main
scheme and the remainder of the schemes are used either to establish the premises needed
by another scheme in the set, or to provide undercutters for a scheme in the set. Taken
together the schemes provide a cascade of arguments which follow the three-ply struc-
ture of HYPO and CATO, and so using the schemes will result in following the CATO
reasoning method; with the techniques for making pertinent distinctions, downplaying
them and emphasising them all expressed as particular schemes. Thus these schemes can
be seen as explicit, declarative, representations of the methods that CATO is attempting
to instill in its students. But this is only the tip of the iceberg. Legal reasoning can be
seen (e.g. [10]) as a two step process of reasoning from facts to intermediate predicates,
and then from intermediate predicates to legal consequences. Factors can be seen the
intermediate predicates. But whereas this second step is relatively tractable, because it
does not require knowledge about the world, the first step is deeply problematic (e.g. [8]),
because of the amount and diversity of knowledge required. And even then they may be
further steps required, such as a step to establish the facts of the case on the basis of the
available evidence, requiring yet more knowledge, and specialised argument schemes.

7. Concluding Remarks

The schemes of [19] and [20] are specific to reconstructing the reasoning covered by
CATO. They represent a technique for distinguishing cases, and so do not cover several
other aspects of legal reasoning with cases. They begin with factors and so do not address
any questions of how factors are identified in the first place, how they are assigned to
cases, or how it is determined which side they favour. All these are questions for which
expertise - thinking like a lawyer - is required. Indeed much of a lawyer’s skill must be
seen as lying precisely in deciding, given a set of facts, how best to present these facts
to support the assignment to the case of a set of factors favouring her client, and fac-
tors which will align the case with favourable precedents. Finding sets of argumentation
schemes which correspond to the ways lawyers tackle these questions, and the objections
that can be made to counter unfavourable proposals, would, I suggest, be a highly fruitful
way of attempting to pin down the required expertise. Unlike distinguishing, however,
there is no existing AI and law program which embodies this method, and so there are
not the same firm foundations from which to develop such a set of schemes. Attacking
this problem is therefore a substantial challenge for the future.

References

[1] V. Aleven. Teaching Case Based Argumentation Through an Example and Models.
Phd thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1997.

[2] K. D. Ashley. Modeling Legal Argument. MIT Press, Cambridge, MA, USA, 1990.
[3] Katie Atkinson. Introduction to special issue on modelling popov v. hayashi. Artif.

Intell. Law, 20(1):1–14, 2012.



[4] Katie Atkinson and Trevor J. M. Bench-Capon. Legal case-based reasoning as
practical reasoning. Artif. Intell. Law, 13(1):93–131, 2005.

[5] T. Bench-Capon. Towards computational modelling of supreme court opinions.
In K. Atkinson, editor, Modelling Legal Cases, pages 77–90. Huygens Editorial,
Barcelona, 2009.

[6] Trevor J. M. Bench-Capon. Neural networks and open texture. In Proceeding of
the 4th International Conference on AI and Law, pages 292–297, 1993.

[7] Trevor J. M. Bench-Capon, G. O. Robinson, Tom Routen, and Marek J. Sergot.
Logic programming for large scale applications in law: A formalisation of supple-
mentary benefit legislation. In Proceedingts of the First International Conference
on AI and Law, pages 190–198, 1987.

[8] Joost Breuker and Nienke den Haan. Separating world and regulation knowledge:
Where is the logic. In proceedings of the 3rd International Conference on AI and
Law, pages 92–97, 1991.

[9] Stefanie Brüninghaus and Kevin D. Ashley. Predicting outcomes of case-based
legal arguments. In Proceedings of the Ninth International Conference on AI and
Law, pages 233–242, 2003.

[10] Lars Lindahl and Jan Odelstad. Open and closed intermediaries in normative sys-
tems. In Proceedings of JURIX 2006, pages 91–99, 2006.

[11] H. Prakken. On the nature of argument schemes. In C.A. Reed and C. Tindale, edi-
tors, Dialectics, Dialogue and Argumentation, pages 167–75. College Publications,
2010.

[12] Henry Prakken and Giovanni Sartor. Modelling reasoning with precedents in a
formal dialogue game. Artif. Intell. Law, 6(2-4):231–287, 1998.

[13] Edwina L. Rissland and Kevin D. Ashley. A note on dimensions and factors. Artif.
Intell. Law, 10(1-3):65–77, 2002.

[14] M. Sergot. A query the user facitiy for logic programs. In M. Yazdani, editor, New
Horizons in Educational Computing, pages 145–163. Ellis Horwood, 1984.

[15] Marek J. Sergot, Fariba Sadri, Robert A. Kowalski, F. Kriwaczek, Peter Hammond,
and H. T. Cory. The british nationality act as a logic program. Commun. ACM,
29(5):370–386, 1986.

[16] D. M. Sherman. A prolog model of the income tax act of canada. In Proceedingts
of the First International Conference on AI and Law, pages 127–136, 1987.

[17] David B. Skalak and Edwina L. Rissland. Argument moves in a rule-guided do-
main. In Proceedingts of the Third International Conference on AI and Law, pages
1–11, 1991.

[18] David B. Skalak and Edwina L. Rissland. Arguments and cases: An inevitable
intertwining. Artif. Intell. Law, 1(1):3–44, 1992.

[19] Adam Wyner and Trevor Bench-Capon. Argument schemes for legal case-based
reasoning. In Proceedings of JURIX 2007, pages 139–149, 2007.

[20] Adam Wyner, Trevor Bench-Capon, and Katie Atkinson. Towards formalising ar-
gumentation about legal cases. In Proceedings of the 13th International Conference
on AI and Law, pages 1–10, 2011.


