
Argument-based explanation of
logic programs

T J M Bench-Capon, D Lowes and A M McEnery

The paper argues that a satisfactory explanation of a
logic program must take the form of an argument, rather
than a proof. This can only be done on the basis of
information regarding the role of the various literals
in the bodies of the clauses, which is normally not
captured by such programs. A schema for arguments,
derived from Toulmin, is presented, and the components
of this schema are related to the roles of literals in the
bodies of clauses. A metainterpreter is described that
uses annotations of body literals to build up an argument
structure according to this schema. This structure can
then be used to present the argument in a variety of
ways; this is illustrated by a discussion of how the
argument structure can be used as the basis of a presen-
tation as a paragraph of text. A simple example from a
quasilegal domain is presented.

Keywords: explanation, arguments, rule-based pro-
grams, logic programming, knowledge-based systems

One of the major attractions of logic programs and
expert systems based on the predicate calculus para-
digm is their potential for justifying and explaining the
conclusions they reach. The standard form of expla-
nation offered is produced by an ascent or descent of
the goal tree. A conclusion drawn by the system is
based on some clause that licenses that conclusion, and
a demonstration of the truth of the literals in the body
of the clause. Thus, given a clause of the form

C I : S i f P & Q & R

an explanation of S would be expected to be something
like

By C1 I can show S if I can show P and Q and R
I can show P
I can show Q
I can show R

If desired P, Q and R can be explained in a similar
fashion, until things are reached that are true by virtue

Department of Computer Science, University of Liverpool, PO Box
147, Liverpool, UK
Paper received 13 July 1990. Revised paper received 16 May 1991

of being facts in the knowledge base or input from the
user. Such explanations have the attraction that they
are a faithful reflection of the reasoning of the system,
and that they are simple to implement by a keeping of
a record of the goal tree. They are particularly helpful
when the knowledge base is built as an aid to the
detection of incorrect clauses, but they are not so
helpful to the end user, who may well not conceptualize
the knowledge base into a chain of clauses, and who,
in any event, has no need for this level of detail. Such
explanations have, therefore, been castigated as unsat-
isfactory, as not resembling the kind of explanation
that is appropriate for a user of such a system, who
wants something much more like the kind of expla-
nation that he/she would receive from an expert, and
not a simple recapitulation of the reasoning process.
Consider the following PROLO6 clause:

C2 old(X) :- man(X),
age(X,A),
A >70 ,
not tibetan(X).

% all men over 70 are old, except tibetans
% who are exceptionally long-lived

Here, the explanation that the system can show that
John is old because it can show that John is a man,
John has an age of 80, and 80 is greater than 70, and
because it is unable to show that John is Tibetan, is
clearly not what the user wanted; that John is aged 80
is enough of an explanation for most people, and that
any man over 80 is old would be enough of a supple-
mentary explanation to satisfy most of the others. The
fact that John is not a Tibetan is unlikely to be
mentioned, unless there is some reason to suppose that
he is, or unless the person seeking the explanation
raises the issue. This kind of explanation is unsatisfac-
tory, because it makes no distinction between a proof,
which cites a set of premises of which the conclusion is
a logical consequence, and an argument, which is a
presentation of the reasoning that is sufficient to con-
vince the recipient of the argument. When explanations
of reasoning are sought outside the formal contexts of
mathematics and formal logic, what is looked for is an
argument, and not a proof.

The need to present the reasoning in an effective

Vol 4 No 3 September 1 9 9 1 0950-7051/91/030177-07 © 1991 Butterworth-Heinemann Ltd 177

manner shows itself in a variety of ways. The argument
tends to omit some of the premises that it is supposed
are already accepted by the audience; in the case
above, it is usually accepted by both parties that John
is a man and is not a Tibetan, and so these premises
need not appear in the argument. Also, there is some
combination of premises: in the example, age(john,80)
and 80 > 70 need to be taken together to give some-
thing like the age of John is greater than 70. Thus an
argument, and, hence, a satisfactory explanation,
needs an intelligent consideration of the premises and
their contributions to the argument, so that this kind of
selection can be made. This contrasts with the proof,
which treats all the premises as being of equal status.

If C2 is returned to, and the literals in the body of
the clause are examined, it can be seen that they are,
in fact, there for different reasons. The first literal,
man(X), provides information as to the sortal concept
under which the individual must fall if the rest of the
clause is to be applicable; if dogs were being con-
sidered, the age limit for being old would be very much
lower. The second literal, age(X,A), is required to
retrieve the age of the individual from the database.
Note that it is not expected to fail, so that its truth is
not in question, but it is needed to instantiate A. The
third literal, A > 70, provides a test of the value of A,
which is the real truth condition; if the domain of
consideration is limited to men, it is the success or
failure of this literal that typically determines the value
of old(X). The final literal is there to cover rare or odd
cases that represent an exception to the general rule.

Considered simply as part of a logic program, these
differing motivations for the literals in the body can be
ignored, as one is only interested in the relationships
between the truth values of the various terms, and the
interpretation suggested by the various predicate
names is not strictly material. However, the interpre-
tation returns to the fore when the clause is used as
part of a system that explains its reasoning, and the
different motivations critically affect what is a sensible
explanation with regard to the interpretation. The
upshot is this: by concentration on the logic, a program
is produced that is adequate for the correct conclusions
to be drawn, but some information is lost, i.e. the
information pertaining to the role of the various liter-
als, and it is this extralogical information that is
required for an argument or explanation, as opposed
to a proof, to be produced. It is, therefore, necessary
to include this information in some form if a satisfac-
tory explanation is to be given.

One very simple approach, previously adopted by
Bench-Capon and McEnery 1, is to include this infor-
mation as a template that represents the desired form
of presentation, which is held as an additional argu-
ment in the head. Thus, C2 would become

C2b old(X,[X,is,old,because,all,men,
aged,over,70,are old,unless,
they,are,tibetan,and,X,is,A,years,old]) :-

man(X),
age(X,A),
A > 7 0 ,
not tibetan(X).

When a body literal is itself deduced, it too is supplied
with an explanation template that is located appropri-

ately in the explanation template of the head. Thus, if
man(X) were defined by some other clause in the
database, C2b would become

C2c old(X,[X,is,old,because,all,men,aged,over,70,
are old,unless,they,are,tibetan,E,and,
X,is,A,years.old]) :-
man(X,E),
age(X,A),
A >70,
not tibetan(X).

where E would become instantiated to a suitable
explanation of the truth of man(X), enabling this to be
included in the explanation of old(X). This method can
produce effective explanations, particularly if they are
postprocessed to break up what can, in lengthy infer-
ence chains, become unreadably long sentences into
more presentable prose. This approach allows the
explanation for every clause to be customized, so giving
a very precise account of the role of the various body
literals, but it has the obvious drawback that it is
necessary to write the appropriate template for every
clause. What would be preferable would be to have a
generally applicable formalism for an argument with a
link between this formalism and the extralogical role of
the body literals. This would enable the different
motivations for the inclusion of these literals to be
recorded in the form of simple annotations, a proof to
be constructed without reference to these annotations,
and the annotations to then be exploited, via the
argument formalism, in the presentation of the reason-
ing. This approach ensures that the explanation has the
information that it needs, while obviating the need to
provide specific explanation templates for every clause.
The implementation of this approach is the subject of
this paper.

Critical to the approach is the adoption of a schema
for representing arguments. One popular schema is
that developed by Stephen Toulmin 2 and adopted by a
number of researchers, particularly in the field of
artificial intelligence (AI) and the law. The Alvey and
UK Department of Health and Social Security Dem-
onstrator project 3, and the Dick 4, MarshalP and
Lutomski 6 papers may be cited as examples of systems
for which the schema has proved helpful and effective
for representing arguments. The next section, there-
fore, introduces Toulmin's formalism, presents some
extensions to it, and shows how annotations indicating
the role of literals in the bodies of clauses relate to that
schema.

TOULMIN'S ARGUMENT SCHEMA

Toulmin's schema for argument representation is
described in his book The Uses of Argument 2. Toul-
min's representation is intended to provide a frame-
work for the analysis of jurisprudential and other types
of argument, while maintaining the procedural and
declarative aspects of such arguments.

The argument schema is developed from an initial
assertion (or claim) that must then be justified by facts
(or data) being called upon. The step from data to
claim must also be justified by the rules (or warrants)
that have been used. The representation can be shown
diagrammatically.

178 Knowledge-Based Systems

Data so Claim

I
since

I
Warrant

Toulmin continues the development of the representa-
tion by including the notions of backing, to provide
further justification for the warrant, rebuttals, to allow
for exceptional conditions (conditions under which a
prima facie argument may be rebutted), and modal
qualifiers, to allow for variations in the degree of force
of the argument. The resulting schema is as follows:

Data so ~ Modal, Claim
I I
t t

since unless
Warrant Rebuttal

I
I

on account of
Backing

Schemata such as Toulmin's have proved to be popular
for giving a well structured and clear form for expla-
nation. The authors' aim was to develop such a schema
to provide a model for explanation in logic programs
that could then provide a basis for presentation of the
explanation in a variety of ways, either in the form of
diagrams, as above, or, as discussed below, as para-
graphs of text.

The method used was that of identifying the extra-
logical role played by each part of the clause, and how
the various roles related to Toulmin's argument com-
ponents. Toulmin's schema already provides something
of what is required. If a clause is taken as expressing a
simple argument for the truth of the head of the clause,
Toulmin's schema can be used to distinguish between
three kinds of premise: the basic conditions that form
the data, the operative clause, which forms the war-
rant, and the exceptional conditions that form the
rebuttal. This would, however, create a restriction to a
single argument/clause, whereas the typical explanation
of a logic program involves a chain of such small
arguments. The Toulmin schema was therefore
extended to allow for the justification of data by the
creation of further arguments, so that a chain of
arguments could be formed where the claim of one
argument could be a datum for the next, reflecting the
chaining of clauses in a logic program. Second, it must

Table 1. Roles identified with elements in argument schema

Role in
clause Literal Role in Argument

Claim old(X)

Class man(X)

Data age(X, A)

Cond greater_than(A, 70)

Qual not(tibetan(X))

The head of the clause
corresponds to the claim

Defines the things for which the
warrant is applicable; it
corresponds to the context

Data used to justify the claim

Condition on a datum, and part
of the warrant

Defines an exceptional condition
when the clause is not applicable;
it corresponds to a rebuttal

the user does not know under which sortal the thing
named falls. The basis is the warrant extended to
include the contextual information.

In the authors' example of the clause for old, the
specific age condition may well depend on the type of
individual:

a man is old if aged over 70,
a dog is old if aged over 10 etc.

In this case, the sortal (man or dog) is called part of
the 'context', and the warrant becomes 'old if aged
over 70' in the case of a man, and 'old if aged over 10'
in the case of a dog. The 'basis' is 'old if man and aged
over 70', which is an expanded version of the warrant,
showing the effect of the sortal information.

Omitted entirely as being inapplicable to standard
logic programs were Toulmin's modal qualifiers (which
have no counterparts in lst-order predicate calculus),
and backing, which, although important for Toulmin's
schema, has no obvious counterpart in a logic program.
These omissions mean that the full richness of Toul-
min's schema cannot be captured, but they do not
vitiate the authors' more limited aims, which are to
exploit some of his ideas to help organize their expla-
nations of logic programs.

The authors' modified schema, intended to be a
general form of argument represented by the successful
application of a clause in a logic program, is thus

be noted that Toulmin, who is concerned with argu- Context
ments expressed in a natural language, typically I
includes warrants of the form 'all men over 70 are old'. t
As an untyped logic is used to generate the authors' because
arguments, an unmodified use of Toulmin's method Basis

would require that data such as 'John is a man' be had.
However, this moves this part of the argument from its
correct location, as it justifies the warrant, and not the
claim. Two components were therefore added to the
Toulmin schema: 'context' and 'basis'. These allowed
the sortal information to be located appropriately, by
justifying the applicability of warrants by appealing to
the sort of the individual under consideration. The
sortal information was termed a 'context', because such
information is normally taken as understood when the
singular term is used in the query; it is arguable,
indeed, that the use of a proper name is illegitimate if

Data so ~ Claim
I

L I
because unless

so ~ Warrant Rebuttal

Of course, some of these elements may not be present
in a given case.

It is now necessary to identify the role played by
each part of a clause in the explanation, and the
relationship of the role to the Toulmin schema. Con-
sider the example of C2 used above, and recall the four
different roles played by the body literals.

Those roles were identified with elements in the
authors' argument schema giving rise, in the example
in this paper, to the information in Table 1.

The following warrants were identified for the
authors' schema:

Vol 4 No 3 September 1991 179

Warrant old(X) if age(X,A)and greater than(A,70)

Note that this is the clause without class and qualifica-
tion. This corresponds to the authors' observation that
rules are typically expressed in English in terms of a
sortal concept, e.g. 'all men are old if they are over
70', and not 'all things are old if they are men and over
70'.

Basis old(X)if man(X),age(X,A)and greater than(A,70)

Note that this is the clause without qualification. Rules
are normally expressed in a general but defeasible way;
the defeasibility is only considered when an exceptional
case is suspected.

ARGUMENT P R O G R A M

The different extralogical roles in the logic programs
and the relationship of each role to the modification of
Toulmin's schema having been identified, the next step
was to design an annotated form for the logic program,
and a metainterpreter to transform proofs into the
argument schema.

The clauses in the program are annotated by the
addition of an extra argument to each literal in the
body of each clause. This argument is an atom, and
must be one of {data,cond,qual,class}; it designates
the role that each literal plays. The annotated version
of C2 appears as

C2a old(X):-man(X,class)
age(X, A, data),
greater than(A, 70, cond),
not(tibetan(X), qual).

Note that the head goal in a clause can play different
roles in different arguments (e.g. old(X) may be any of
data, cond, class or qual). However, in relation to the
body of the clause, the head always plays the role of
claim, and so does not need to be annotated.

The interpreter is a backward-chaining prover in
which the 'call' predicate has been specialized to handle
the annotated subgoals. The interpreter is given a claim
(or goal), and builds a proof trace in the form of the
schema components; the components from this trace
are then asserted in relational form with unique argu-
ment identifiers to indicate to which argument (or
subargument) each component belongs. This relational
form can then be manipulated to give the explanation
in the desired form. The argument identifiers are
generated automatically by the interpreter.

As an example, suppose that C2a is executed, with
the additional clause

C3a man(X):- human(X, class),
male(X, data).

and the fact

F1 age(john, 80).

The call to the interpreter is makeargument (old(john)).
The interpreter then displays

Proved old(john) with arguments [al, a2].

The relational forms of the arguments al and a2 are as
follows:

argument(al).
argument(a2).
claim(al, old(john)).
claim(a2, man(john)).
data(al, age(john,80)).
data(a2, male(john, data)).
rebuttal(al, not(tibetan(john))).

warrant(al, [old(john),if,age(john, X), greater than(X, 70)]).
warrant(a2, [man(john), if, male(john)]).
context(al, man(john), a2).
context(a2, human(john)).

basis(al, [old(X), if, man(X), age(X,Y), greater than(Y,70)]).
basis(a2, [man(X), if, human(X), male(X)]).

In the case of context, there can be a third argument,
which indicates that the context of its argument is
further defined by the argument a2.

When trying to prove a claim at any stage, the
interpreter checks through the existing arguments. If
an argument for the claim already exists, then there is
no need to reprove it; a cross reference to the existing
argument is inserted into the proof trace.

Thus the metainterpreter uses the annotations in the
clauses and its proof trace to assert a number of
relationships that together constitute a description of
the modified Toulmin structure for the chain of argu-
ment that confirmed the query. This can then form the
basis for the explanation to be given to the user. Thus,
given the above example, Figure 1 might be produced.

This figure would be suitable for someone who
understood the argument formalism, and was unafraid
of the relational expressions. The authors believe that
it contrasts favourably with the 'proof' explanation.
However, it is believed that a more effective and
universally convincing explanation would be produced
by the use of the argument formalism to generate an
appropriate paragraph of text. This form of presenta-
tion is discussed in the next section.

USING A T O U L M I N S T R U C T U R E TO
G E N E R A T E A T E X T U A L E X P L A N A T I O N

The form of output required to be generated from the
Toulmin structures is a passage of English text present-
ing the argument. The generation of such a paragraph
is achieved by three steps. First, a straightforward
series of templates is used to generate simple sentences
from the predicates. This is little more than syntactic
'sugar', although it is very helpful sugar for the user,
but the second, and far more important, step uses the
fact that the Toulmin argument structure itself consti-
tutes a plan for output, and can therefore use work on
natural-language generation using plans, a common
and effective method of producing natural-language
output. Finally, the presentation is further refined by
the introduction of appropriate pronouns. In this sec-
tion, each of these steps is discussed, and some example
outputs are then presented.

The output from the Toulmin metainterpreter is in
the form of the series of relationships describing the
argument. The natural-language module uses only a
knowledge of these relevant relationships to promote
data abstraction. The method of converting the predi-
cates to simple sentences uses the simple, but effective,
technique reported by McEnery 7. The technique

180 Knowledge-Based Systems

male(john)

human(john) ~ man(john):-human(john)

I man (john):-human (john), I male(john)

man (john)

Figure 1. Basis of explanation for user

depends on the introduction of a linguistic typing for
each of the elements to be output. In, for example, a
PROLOG program, each of the predicates used receives a
linguistic typing, and the output level is generally one
literal to one sentence. Several literals may be output
in one sentence, however, where they are conjoined
within the body of one main clause. The linguistic
typing of each predicate determines what skeleton
sentence type is used to output the literal in question.
As an example, one type of predicate is assertive.
Assertive predicates essentially transpose onto a skele-
ton sentence in which a subject is related to a comple-
ment via the verb 'to be'. Hence, the basic sentential
skeleton is of the form 'X is Y'. Thus, the formation of
sentences in the current output module leads to output
based on a series of skeleton sentences that are selected
on the basis of some manually generated typing of a
predicate. The advantage of introducing this typing
information is that it reduces the need for individual
pieces of canned text to be provided for each of the
predicates; instead, it uses information that corre-
sponds to part of a speaker's knowledge of how a word
is to be used.

This technique could be used on its own to make any
explanation more presentable, but this would still not
address the need to treat the sentences differently
according to their role when it comes to the presenta-
tion of the argument. The actual coherence given to
the output sentences is afforded by the use of the
Toulmin schema, and it is this that is most worthy from
the natural-language processing point of view in the
current work. Much effort has been expended within
computational linguistics, not merely to generate sen-
tences, but also to make those sentences cohere in an
interrelated whole that may be called a text. One
popular method of achieving this has been the use of
plans, as used, for example, by Wilensky 8, and other
schema theoretical constructs. The authors' earlier
work involving the use of plans to generate natural-
language descriptions of logic programs is described in
Reference 3. In the CHRISTIE program, after an initial
attempt to provide descriptions from templates of
canned text, a move was made towards the generation
of descriptions from schema theoretical plans. A pro-

age(john,80)

I I

old(john) I

[not tibetan (john) I

old (john):-age (john, X), X>70 [

old (john):-man (john),
age (john,A),
A>70

gram was described in schema theoretical terms, and
the program examined these stored relationships in
explaining its reasoning, much as the current program
uses the stored Toulmin relationships. The main prob-
lem with this approach was, however, that a lengthy
period of analysis was required for each program, as
the schema of each program had to be generated
manually. The Toulmin argument structure is clearly
related to schema theory, but it has some significant
advantages. First, the Toulmin structure is composed
of a small number of elements, and is well specified.
This is in contrast to schema theory in general, within
which no common grounds exist to describe what
constitutes a schema, or of what formal elements it is
composed, as was shown by Cavilcanti 9. Second, the
Toulmin argument structure deals only with a specific
subset of schema theory that is relevant to logically
ordered conversation. The explanation of logic pro-
grams is a single type of activity, and so it should be
susceptible to being driven by a single general plan,
which the modified Toulmin framework can provide.
For this reason, it is over complicating matters to use
the whole of whatever may constitute schema theory to
describe the output from such programs. Hence, from
a natural-language generation point of view, the cur-
rent work is of some significance, as it not only shows
that output at the sentential level can be achieved with
a low level of cost, but it also suggests that, in the
generation of text from plans, the use of specific models
such as the Toulmin argument may be more fruitful in
certain application areas than that of other models
that, although ostensibly more powerful, are over-
general in terms of meeting the needs of the application
economically.

The final stage, that of pronominalization, uses the
techniques described in Reference 10.

The actual form of the output is now examined. The
plan is to provide three sentence~. The first will contain
only the data, and will represent a typically sufficient
explanation; the second will contain only the warrant,
showing why it is an explanation; the third will contain
only the rebuttal, representing the dismissal of excep-
tional cases. Note that, at this level of explanation,
neither the context nor the basis is mentioned, as this

Vol 4 No 3 September 1991 181

information should be taken as being understood by
the user. This gives the following output:

John is old because his age is 80.
John is old if his age is greater than 70.
John is not Tibetan.

If desired, some extra means of interaction could be
provided, so that the warrant and rebuttal would be
presented only on request, as, as has been noted, the
first sentence is often enough of an explanation by
itself. Had the contextual assumption been violated,
and the user been unaware of the sortal under which
John fell, he/she might have been unsatisfied with the
second of these sentences. On request, the further
explanation, using the context and the basis, can be
given:

John is a man.
A man is old if he is over 70.

Where the fact that John is a man can be proven from
a further clause, there is an argument to explain the
first of these sentences:

John is male
John is a man if he is male

where the context is now only that John is human. This
simple example is enough to demonstrate the following
points, which result from the ability to assign different
roles to the clauses, and, hence, to use them differently
when the explanation is presented. First, the contextual
sortal information is held back unless it is requested by
the user. Second, the exceptional case is separated
from the main condition so that attention is drawn to
the key factor in the explanation. Third, the two literals
using an internal variable have been combined so that
the irritating (because obvious) 80 > 70 no longer
appears at all. Fourth, there are now two further ways
of obtaining further explanation: either one can chain
back through the data elements, or one can ask that
the context be made explicit, so obtaining a reason why
the clause applies. All of these were included in the
desiderata for a successful argument outlined in the
introduction.

While the simple example is helpful in understanding
the mechanics of how the process works, it is too
simple to exhibit the features to best effect. Therefore,
consider the following example pertaining to (fictional)
nationality legislation. Suppose that there is an anno-
tated clause

citizen(X,eden):-
male(X,class),
father(X,Y,data),
citizen(Y,eden,cond),
age(X,A,data),
greater than(A,16,cond),
not(murderer(X),qual),
not(exiled(X),qual).

If this is run with the query citizen(abel,eden), the
following explanation would be obtained:

Abel is a citizen of Eden because his father is a
citizen of Eden and his age is 23.

Abel is a citizen of Eden if his father is a citizen of
Eden and his age is greater than 16.

Abel is not a murderer and he has not been exiled.

This seems to the authors to be an excellent expla-
nation. Those in any doubt should construct the con-
ventional proof-based explanation, and make the
comparison.

CONCLUSIONS

This paper has outlined a simple technique for aug-
menting the information incorporated within a logic
program so as to produce acceptable explanations of
its conclusions. Central are two types of knowledge:
first, the role played by the various literals in the body
of a clause used to reach a conclusion, and second, a
general notion of how to present an argument for a
conclusion. The first is represented by annotations to
the clauses, and the second by knowledge of a gener-
alized argument schema used by a metainterpreter.
The output from the interpreter is entirely independent
of any presentation format. This enables the chosen
presentation module to use any desired format, such as
a diagram or text, but this module requires, of course,
additional information governing the diagrammatic or
linguistic conventions to be used. The authors believe
that the distinction between a proof and an argument
is an important one, and that their work demonstrates
part of the considerable mileage that can result from
taking the distinction seriously.

ACKNOWLEDGEMENTS

Some of the work described above was carried out as
part of the UK Department of Health and Social
Security Large Demonstrator Project, which was sup-
ported by the Alvey Directorate of the UK Department
of Trade and Industry and the UK Science and Engin-
eering Research Council. The project collaborators
were ICI, Logica, Imperial College, University of
London, and the Universities of Lancaster, Liverpool
and Surrey (all in the UK). The views expressed in this
paper are those of the authors, and they may not
necessarily be shared by the other collaborators.

REFERENCES

1 Bench-Capon, T J M and McEnery, A M 'CHRIS-
TIE: Towards explaining logic programs' Alvey
Report 89/3 Dep. Computer Science, University of
Liverpool, UK (1989)

2 Toulmin, S The Uses of Argument Cambridge Uni-
versity Press, UK (1958)

3 Bench-Capon, T J M (Ed.) Legal Applications of
KBS Academic Press (1991)

4 Dick, J P 'Conceptual retrieval and case law' Proc.
1st Int. Conf. A1 and Law ACM Press, USA (1987)

5 Marshall, C C 'Representing the structure of a legal
argument' Proc. 2nd Int. Conf. AI and Law ACM
Press, USA (1989)

6 Lutomski, L S 'The design of an attorney's statisti-
cal consultant' Proc. 2nd Int. Conf. AI and Law
ACM Press, USA (1989)

7 McEnery, A M Computational Linguistics Sigma
Press, USA (1990)

182 Knowledge-Based Systems

8 Wilensky, R 'PAM' in Schank, R C and Riesbeck,
C K (Eds.) Inside Computer Understanding Law-
rence Erlbaum, USA (1981)

9 Cavilcanti, M 'The pragmatics of foreign language
reader-text interaction' PhD Thesis Dep. Linguis-

tics, Lancaster University, UK (1983)
10 McEnery, A M and Bench-Capon, T J M 'The WEB

cohesive tie marking system: an expert system to
resolve pronoun reference' Expert Syst. Inf.
Manage. Vol 2 No 3 (1989) pp 157-171

Vol 4 No 3 September 1991 183

