
Expert Systems With Applications. Vol. 5, pp. 267-273, 1992 0957-4174/92 $5.00 + .00
Printed in the USA. © 1992 Pergamon Press Ltd.

Maintenance Tools for Knowledge-Based Systems:
The MAKE Project

TREVOR BENCH-CAPON AND FRANS COENEN

University of Liverpool, Liverpool, England

AImtmct - -One of the major obstacles to the routine exploitation of knowledge-based and expert
systems, is the difficulty of validating the knowledge base, and of maimaining it in a state which
reflects current knowledge. This is of particular importance for systems based on law or regulations,
where it is vital that the knowledge base be a true reflection of the legal position, and where there is
a constant stream of changes to the correct legal position. Maintenance Assistance for Knowledge
Engineers (MAKE) is a project designed to explore these issues, and to build a set of tools which will
support the validation and maintenance of knowledge bases deriving fi'om regulations. These tools
include facilities to examine the structural features of the knowledge base, so as to guard against
redundancy, nonprovability and comrudiction; facilities to identify parts of the knowledge base jeo-
pardised by changes in the domain, or in the understanding of the domain; and facilities to perform
a variety of "house keeping" tasks. The paperj~rstly analyses the different types of change that may
be required to maintain the knowledge base, and then proceeds to describe the set of tools developed
in the MAKE project to accommodate these changes.

1. INTRODUCTION

KNOWLEDGE-BASED SYSTEMS (KBSs) have been in
existence for several decades now, but their general
acceptance is still limited. It is suggested that one prin-
cipal reason for this is the difficulty in maintaining
such systems due to the nature of the expert knowledge
used (Bench-Capon & Coenen, 199 l a; Brafley, Fre-
mont, Mackaay, le Poulin, 1991). This tends to be dy-
namic, in that the knowledge will change as new dis-
covefies are made and expert opinions alter over a pe-
riod of time. Thus KBSs, if they are not maintained,
quickly become obsolete or inaccurate. This is even
more the case in legal domains where the knowledge
required may change overnight if legislation is altered
or a new case decided.

The maintenance of KBSs thus tends to be adaptive
maintenance rather than the corrective or perfective
maintenance associated with conventional systems
(Coenen & Bench-Capon, 1990), a categorisation first
proposed in Swanson (1976). The approach to mainte-
nance is therefore not the same since the emphasis is
on responding to external changes. Further, the struc-

Revised version of Bench-Capon, T., & Coenen, F., The MAKE
project: Maintenance tools for knowledge based systems, pp. 1030-
1036, from Liebowitz: Expert Syslems World Congress Proceedings,
copyright 1991, with permission from Pergamon Press Ltd., Head-
ington Hill Hall, Oxford, OX3 0BW, United Kingdom.

Requests for reprints should be sent to Trevor Bench-Capon, De-
partment of Computer Science, University of Liverlxml, P.O. Box
147, Liverpool, England L69 3BX.

ture of KBSs is such that traditional maintenance tech-
niques are not applicable. Given the above, a surpris-
ingly small amount of research work has been carded
out to investigate the maintenance of KBSs. What work
has been carried out has largely been concerned with
formal consistency checking of rule bases (RBs) such
as in the COVADIS system (Rousset, 1988), the de-
bugging of RBs such as provided by the TEIRESIAS
system (Davis, 1984), or the syntactical editing of RBs
within KBS development toolkits.

In this paper, a number of tools to assist the KBS
maintenance engineer are outlined. The tools form a
suite oftools under development as part ofthe Mainte-
nance Assistance for Knowledge Engineers (MAKE)
Project. This is a two-year collaborative project between
Liverpool University, ICL and British Coal. The project
includes the development ofa KBS to provide decision
support for the claims inspectorate at British Coal's
Insurance and Pensions Division. This provides a real
application for use as a test bed. The tools are essentially
designed to be used in conjunction with KBSs built
using the MADE (MAKE authoring and development
methodology) development environment and meth-
odology, a brief overview of which is given in Section
2. A more detailed description is given in (Coenen &
Bench-Capon, 1991).

Knowledge analysis using MADE results in a class
hierarchy (CH) giving a vocabulary for the domain and
a set of rules represented in an intermediate represen-
tation called MIR (MAKE Intermediate Representa-
tion). This is fully described in Bench-Capon and For-
der (1991): a brief overview is given in Section 3. The

267

268 T. Bench-Capon and F. Coenen

philosophy behind knowledge analysis using KANT is
that the resulting KB will be isomorphic with the
source, i.e., it will reflect the structure of the source
and vice versa. This desire for isomorphism necessitates
the use of an intermediate representation, such as MIR,
for reasons described in Bench-Capon (1991a). The
advantages to be gained by an isomorphic represen-
tation have been discussed in Routen and Bench-Ca-
pon (1991) and Bench-Capon and Coenen (1991 b).

KBSs developed using MADE can be considered to
represent knowledge about the domain which they are
designed to address at three different levels. At the top-
most level are the source documents themselves. The
second intermediate level is in the MIR attribute-rule
representation. The third level is the fine grain prop-
osition-clause level produced when the intermediate
representation is compiled into CMIR (compiled MIR)
or other suitable formalisation. We have earlier argued
(Bench-Capon, 1990) that wherever possible mainte-
nance should be carried out at the MIR level. In some
cases however, for example inconsistency checking, it
is necessary for the proposed maintenance tools to op-
erate at the proposition-clause level. Prior to introduc-
ing the proposed tools, a discussion on the nature ot
KBS maintenance activities is given in Section 4. The
proposed tools are then described in Section 5. Finally
in Section 6 some conclusions are offered.

2. OVERVIEW OF THE MAKE AUTHORING
AND DEVELOPMENT ENVIRONMENT

(MADE)

MADE is a KBS development environment based on
KANT (Knowledge ANalysis Tool). This is a hypertext
like knowledge analysis tool originally built to assist in
the development ofa KBS to provide decision support
for Department of Social Security (DSS) Adjudication
Officers in the assessment of claims for benefits in local
DSS offices (Storrs & Burton, 1989). This system was
called the local office demonstrator (LOD) system and
was one of three applications built as part of the Alvey
DHSS Large Demonstrator Project aimed at demon°
strating the viability of KBS decision support in large,
legislation-based organisations (Forder & Taylor,
1991). It is ideally suited to the construction of KBSs
in domains, such as legal domains, where the source
knowledge is comprised of a significant amount of tex-
tual material, by assisting the knowledge engineer in
the analysis of these source documents. The current
version of KANT is CKANT, which is a C++ version
of the original.

The design of MADE revolves around three base
windows, the KANT, MADE and MAPPE (MAKE AP-
Plication Environment) windows. From the KANT
base window sources can be selected and analysed. This
is where the knowledge analysis of the application is
carried out. The result is a rule base and class hierarchy

in MIR. The MIR rule base and class hierarchy are
then compiled into the target representation used in
the MAKE inference engine (MIE). Currently this
consists of a clausal form referred to as CMIR (com-
piled MIR). Other target representations could be used
equally well, for example Kappa or NExpert. A sche-
matic illustrating the MADE architecture is given in
Figure 1.

With respect to the RB and CH in the MIR the
following definitions, used in the rest of this document,
should be noted:
I. Rule. This is an expression comprising propositions,

typically EAVs, and logical connectives. It consists
of a head and a tail separated by an if or iff (read
as if and only if). The head contains a single prop-
osition, the truth or falsity of which is determined
according to the truth or falsity of the propositions
contained in the body and their connectives.

2. Clause. This is an expression in standard clausal
form, with a proposition as head and a set of con-
joined propositions as tail (body). The head prop-
osition is true if all the propositions in the body are
true. A single rule will typically be equivalent to
several clauses.

3. Proposition. A proposition is a triple comprising an
entity, an attribute and a value. The entity may be
a constant (the name of an instance) or a variable
(typed to some class in the CH). The attribute will
be a slot associated with the class of which the entity
is a member. The value will be a subrange of the
possible values for the slot as defined in the class of
which the entity is a member. Note that the CH
constrains what propositions are possible.

4. Root Propositions and Attributes. A root proposition
is a proposition which appears in the head of some
clause, and does not appear in the tail of any clause.
A root attribute is an attribute associated with one
or more root propositions. Thus a root proposition
represents the task which the RB is designed to es-
tablish.

5. Leaf Propositions and Attributes. A leaf proposition
is a proposition which appears in the body of one
or more clauses, and in the head of no clauses. A
leaf attribute is an attribute associated with one or
more leaf propositions. The significance of leaves is
that values associated with them must be supplied
to the system, not deduced. Values may be supplied
either by explicit user input, or by the association
of an instance with a class, the definition of which
makes the proposition true.

3. OVERVIEW OF MIR

MIR is essentially a simple language to define objects
and rules using first-order predicate logic with some
extensions, for example to handle arithmetic. In

The MAKE Project 269

Structures

En#necr)

HCI

MADE

Sources
CKANT

HCI

User)

1
HCI

MAPPE

MIE

Classes Rules Constraints

KEY:-
H C I

C K A N T

M I E

M A P P E

= H u m a n Compute r Interface

= C + + version of Knowledge engineers assistANT

= Make Inference Engine

= Make APPlicat ion Envi ronment

FIGURE 1. Schema~ of MADE architeclUre. HCh human computer Interface; CKANT: C++ vefMon of Knowledge engtneem
alIMMANT; MIE: MAKE Inference engine; MAPPE: MAKE APPlication ~ n t .

MADE it is used to represent a CH and RB describing
an application domain.

The CH in the MIR consists of a top level class with
subclasses branching of it describing different object
types. Each class has a unique class name describing
an object and a number of slots describing attributes
of that object, and the possible values that the attribute
may have. A feature of the CH is that subclasses inherit
attributes of super classes. Thus a subclass is always a
strict specialisation of its super class. In KANT inher-
ited attributes cannot be cancelled as is the case with
some other development environments, for example
KEE. This permits classes to be interpreted as logical
types and avoids the problems raised in Brachman
(1985).

In the MIR a RB built to support a particular task
will consist of a set of rules typically all branching out
from a single top level node. It is important to differ-
entiate between rules and constraints at this stage. Rules
are task dependent, and are thus arranged in a hierarchy
headed by a top level rule representing the goal to be

attained: Further rules then branch of this top level
rule down to a number of leaf rules. Propositions found
in Rules are therefore either "leaves," in which case
their truth will be ascertained by direct reference to the
CH or the user, "roots," where they are what the system
is intended to establish, or "intermediate," where they
need to be established from the KB in order to establish
some root. Constraints however are task independent.
The important issue here is that in a KB redundancy
and missing branches are significant, but depend on
the notion of a purpose for the rule set in terms of what
is to be given and what must be deduced. Different
tasks may require different literals in a constraint to
be treated as the head. Additionally when considering
hard and soft inconsistencies in a task-dependent RB,
it may be that an inconsistency is hidden by the re-
stricted set of inferences that may be drawn, but ex-
posed when the rules are considered as constraints.
Therefore, some of the tools proposed in this document
will be designed to be implemented on the fine grain
proposition-clause third level representation.

270 T. Bench-Capon and F. Coenen

4. KBS MAINTENANCE

It is not the intention of the MAKE project to address
major maintenance tasks which may necessitate the
entire rebuilding of the system. If changes are suffi-
ciently radical, of course the system will need to be
rewritten. The aim of the MAKE project is to address
minor adaptive maintenance only, i.e., maintenance
resulting from the day to day changes in the source
material due to changes in legal texts, the application
and operation of the law etc. In this context, the
maintenance required can be considered under a
number of headings, (a) RB maintenance, (b) CH
maintenance, (c) changes to the source data, (d) vali-
dation, and (e) maintenance support.

4.1. RB Maintenance

The maintenance of the RB will involve one or more
of the following activities:
M I The introduction of a new rule.
M2 The modification of an existing rule.
M3 The removal of an existing rule.
The effect of introducing a new rule may be unwanted
redundancy or subsumption, or the creation of a miss-
ing branch, a hard contradiction or soft inconsistency.
A hard contradiction is simply a logical contradiction,
i.e.,

A and not A.

What we term a "soft inconsistency" occurs when some
proposition is a consequence of the KB, whereas it is
in fact known that its negation is possible. In the sim-
plest possible case, we may have two rules:

methods outlined above for the introduction and re-
moval of rules can be used in sequence:

Remove old rule
check for C I and C2
Introduce new rule
check for C l, C2, C3 and C4.

It should be noted that as a result of removing the rule
in this case some acceptable redundancy and/or miss-
ing branches may temporarily be created until the new
rule is added.

It would be rare for a maintenance session to consist
of only the removal or introduction of a single rule. In
most cases, a maintenance session will involve all three
types of KB maintenance, i.e., M 1, M2, and M3. It is
therefore proposed that on completion of any KB,
maintenance checks for C I to C4 should always be
carried out. Two RB maintenance tools are therefore
proposed:
T l The rulemap.
T2 Hard contradiction and soft inconsistency identi-

fication.
T l can be implemented on the RB in its static form
and incorporate redundancy and subsumption. It can
also be considered to be an RB navigation tool that
will allow the user to move through the RB at the MIR
level and the fine grain level so that missing rules and
branches can be identified and facilitate "by eye" ver-
ification.

T2 is designed to address the dynamic aspects of
the RB and will be implemented at both the MIR and
third level representations as appropriate. The existence
of redundant and missing branches will only be sig-
nificant in a task-dependent RB. Hard and soft incon-
sistencies can only be identified at the constraint level.

P => Q,

P => not Q.

There is no logical contradiction here, but not P is a
logical consequence of the KB. If, however, P repre-
sented something which we knew to be sometimes true
and sometimes false, this would indicate that our KB
was in error.

The introduction of a new rule will thus involve
checking for the following:
C1 Redundancy or subsumption.
C2 Missing rules or branches.
C3 Hard inconsistency.
C4 Soft inconsistency.

The removal of a rule may also result in the creation
of a missing branch or cause a section of the KB to
become redundant. Therefore when removing a rule
checks C 1 and C2 should be implemented.

The modification of a rule has the same effect as
removing a rule and introducing another. Hence, the

4.2. CH Maintenance

In the methodology described, the CH plays an im-
portant role as the means by which the vocabulary to
be used in writing the rules is described, it also describes
the state of an application at any particular time. The
discipline that this imposes is important if the repre-
sentation is to be a faithful reflection of the domain,
and hence keep its structure through a period of
maintenance. The maintenance associated with the CH
may involve:
M4 The modification of an existing slot by introducing

a new value.
M5 The modification of an existing slot by removing

an existing value.
M6 The modification of an existing class by introduc-

ing a new slot.
M7 The modification o fan existing class by removing

an existing slot.
M8 The introduction of an entire new class.
M9 The removal of an existing class.

The MAKE Project 271

4.2.1. Introducing or removing a value. One of the most
basic actions in the maintenance of the CH is the ad-
dition of a possible value to a slot. In practice a value
will be added to a slot as a consequence of the intro-
duction or modification of a rule. The allocation of
this additional value to an existing slot will not generally
affect the operation of any established rules or the ex-
isting CH. The exception to this is if rules exist that
use the possible values of a slot to express negation.
Thus, the rules that contain the attribute to which a
value is to be added need to be identified so that the
effect of introducing this value can be determined. For
this purpose it will, in some cases, be necessary to go
down to the fine grain level of representation.

Removing a value from a slot will jeopardise all
rules which make use of that value either in the head
or the body of the rule. These rules must therefore be
identified and presented to the maintenance engineer
so that a decision can be made on whether it is appro-
priate to remove the rule, remove the atom containing
the removed value, or modify the rule.

A tool to allow the identification ofjeopardised rules
as a result of removing and introducing values to and
from slots in the CH is therefore required. A more
general to identify jeopardised slots and rules as a result
of changes to the source data or changes to the rule
base or CH would be more useful. Thus:
T3 Jeopardy tool.

Because the inheritance mechanism used, the CH
insists on strict specialisation, a value can only be added
to an attribute at the highest level at which that attribute
appears. If the rule which motivates the introduction
of the new value refers to a class which inherits the
attribute from a super class, either the value must be
added to the super class, or some new attribute must
be created in the class in question. If the value is added
to the super class, of course, the rules for that class in
which the attribute appears are jeopardised. Therefore,
before a new value can be added, the user should be
confronted with the class which introduces the attribute
to the CH, which may not be the class mentioned in
the rule which motivated the introduction of the value,
and the value added to this class. If the class to which
the attribute is added is not a leaf class, this process
would be facilitated by a tool which walks down the
CH so that the user is able to determine the correct
point, on each path, at which the new value should
cease to apply.

Note that the removal of a value will also cause that
value to be removed from all subclasses of the class
from which it is removed. It will therefore be necessary
to walk down the hierarchy repeating the process for
all these subclasses, until the value has been "special-
ised out."

There is thus a need for a tool to provide the
maintenance engineer with the facility to walk system-

atically up or down the CH, focusing on particular at-
tributes. Thus:
T4 CH navigation tool.

4.2.2. Introducing or removing an attribute. An attri-
bute can be added to a class in two ways. Either it can
be added directly to the class, or it can be added to a
super class, and so added to the class in question in-
directly by inheritance. Thus ifa rule needs to mention
a new attribute for some class, the first step should be
to walk up the CH to determine the appropriate point
at which the attribute should be introduced into the
hierarchy. Note, however, that adding it to a super class
will cause all the subclasses of that class to take on the
attribute, not only those on the path walked up. Once
introduced into the hierarchy, rules may be written
using the attribute. These can then be subject to the
usual checks for new rules already described. The final
stage will then be to walk down the CH specialising
the values of the attribute as appropriate, until a point
range is reached on every downwards path. The process
of adding a new attribute to an existing class will thus
also involve the use of the CH navigation tool (T4).

The process of removing an attribute from an ex-
isting class can be regarded as removing a set of values.
Inheritance, however, means that the attribute will also
be removed from all the subclasses up to the point in
the hierarchy at which it was introduced. The best ap-
proach would therefore be to commence the removal
at this point, and then to walk down the CH to deter-
mine at which point the attribute should be reintro-
duced into the hierarchy if necessary. Class(es) at which
it is now introduced and their subclasses will not be
affected. Thus the CH navigation tool will also be of
relevance here.

4.2.3. Introducing or removing a class. The point at
the hierarchy in which the class should be introduced
will be best determined by the attributes that need to
be associated with the class. If an existing class contains
a subset of the desired attributes, then it is a potential
super class for the new class. Clearly the class with the
largest such subset (i.e., the lowest such class in the
hierarchy) is the logical super class to choose. Next, it
must be determined which existing classes should be
subclasses of the new class. The answer here is that
existing classes with attributes which are a superset of
the new class should be subclasses of the new class. A
tool to determine the relations between sets ofattributes
is clearly suggested. This may be incorporated into the
CH navigation tool. l f a suitable super class is not iden-
tiffed, the class can be considered to represent a leaf
node, a subclass of the class with the largest subset of
desired attributes.

Removing a class is, as far as the KB is concerned,
effectively like removing a set of attributes. As far as

272 T. Bench-Capon and F. Coenen

the class hierarchy is concerned, existing subclasses of
the class need to become subclasses of its immediate
super class. Problems still arise if any specialisation of
attribute values, or addition of attributes, were made
in the removed class. Clearly such attributes must be
reintroduced, or specialisations made, either in the
subclasses or the immediate super class, as seems to be
most appropriate.

4.3. Changes to the Source Data

At a higher level, rules will also be jeopardised by
changes in the source material, as when legislation is
amended. A feature of the MADE development meth-
odology is that a linking facility is provided to link
individual sections in the source material through the
various analysis stages to the resulting CHs and RBs
in the target representation. This provides a useful basis
for identifying rules and classes that may be affected
as a result of changes in the source material and can
be automated as part of the jeopardy tool (T3).

4.4. Validation

So far only the verification of the KB and CH have
been considered. However, it is also necessary to val-
idate the KBS after maintenance has taken place. This
can be carried out by peopling the rule base and de-
termining what inferences can be made or tracing how
inferences are made. Thus:
T5 Rule base animation tool.

5. INTRODUCTION TO PROPOSED TOOLS

In the previous section, a number of maintenance tools
were identified to address different aspects of KEgS
maintenance. These are summarised below:
TI The rulemap.
T2 Hard contradiction and soft inconsistency identi-

fication.
T3 Jeopardy tool.
T4 CH navigation tool.
T5 Rules base animation tool.
In the following subsections, each ofthese tools will be
described in greater detail.

5.1. The Rulemap

The rulemap is a directed (from left to right) bipartite
graph which graphically displays the rule base either
at the attributes-rules level or the proposition-clause
level. A number of options are provided to allow the
user to walk up and down the rule base. By following
a path through the rulemap, it is possible to determine
the leaf attributes and propositions into which a root
attribute ultimately unfolds and vice versa. This gives
the user a clear visual view of the rules in the knowledge

base. Options are also provided to allow the user to
interrogate the rulemap to display the rule and clauses
in which attribute and propositions appear or to i ~
the values or entities associated with attributes and
propositions. There is also a facility to identify redun-
dant or subsumed rules or subsets of rules.

5.2. The Class Hierarchy Navigation Tool

This is a class-instance browser designed to allow the
user to navigate through a class hierarchy. The tool is
intended to give visibility to the author of not just the
class hierarchy, but also where slot definitions come
from, and will enable the user to determine the best
location for new classes, subclasses and attributes re-
lated to those classes, and specialisations of attribute
values.

5.3. Jeopardy Tool

This is a general purpose maintenance tool to identify
jeopardised slots and rules as a result of changes to the
source data or changes to the rule base or class hier-
archy. The tool will incorporate the following facilities:

(a) Rules Jeopardised by Slot Changes Identifica-
tion. Facility to identify rules jeopardised as a
result of changes to slots in the class hierarchy.

(b) Class Definitions Jeopardised by Class Dele-
tions Identification. Facility to identify the slots
jeopardised by the removal of a class because
they are typed to that class.

(c) Rules Jeopardised by Source Changes Identi-
fication. Facility to identify the rules that are
affected by changes in the source material.

(d) Slots Jeopardised by Source Changes Identifi-
cation. Facility to identify the slots in the class
hierarchy that are affected by changes in the
source material.

(e) Rules Jeopardised by Rule Changes Identifi-
cation. In a task-dependent rule base rules above
and below an altered rule may be jeopardised.
This facility will identify the subset of rules
which have been affected by a KB maintenance
session.

The jeopardy tool operates using the finks that
should be included by the knowledge engineer during
system development. This is an essential part of the
MADE methodology.

5.3. I. The rule base animation tool. This tool is similar
to the rulemap but addresses the dynamic aspects of
the rule base. It allows the user to people the rule base
by creating instances and asserting propositions, and
then determine what inferences can be made as a result.
When the behaviour is unexpected, either because an
inference which should not be made is made, or be-
cause an inference which was expected fails to be made,

The MAKE Project 273

this tool will enable the user to locate the precise clause
which caused the failure, and f rom this the rule, anal-
ysis, and source f rom which it was derived. Such ani-
mat ion is a necessary adjunct to the "by eye" validation
supported by the static tools, since the practical con-
sequences o f a given fragment o f the KB may be hard
to envisage in the abstract.

5.3.2. H a r d contradiction and soft inconsistency iden-
tification. W h e n adding or modifying rules in a KB
during a maintenance session a hard contradiction may
be introduced. In logical terms, this means that there
can be no model for the knowledge base, so the knowl-
edge base cannot be correct. Soft inconsistency is a
modified p h e n o m e n o n and occurs when some prop-
osition is a consequence o f the KB when it is in fact
known that its negation is possible. This means that
the knowledge base excludes some models which are
known to occur, and again suggests a defect in the
knowledge base. Thus a minimal validation o f the
knowledge base will involve ensuring that neither o f
these situations exist. Tools are under development in
the M A K E project which will allow such inconsisten-
cies in a knowledge base to be detected.

6. C O N C L U S I O N S

In this paper we have given a brief overview o f the
M A K E project and identified a number o f maintenance
tasks that may be required for systems developed in
this environment . To assist in these maintenance tasks,
a n u m b e r o f main tenance tools have been suggested
and briefly described. These descriptions do not in any
way represent a precise specification. They are however
an indication o f how the proposed tools may be im-
plemented.

For m a n y o f the proposed tools prototypes have
been built. I f not, the tools are at least well understood.
Where prototypes have been built, these have been im-
plemented on a pilot version o f the British Coal KBS
which has been developed as part o f the M A K E project
and have been well received.

Acknowledgements---The work described here is being carried out
as part of the MAKE Project, supported by the Information Engi-
neering Directorate of the UK Department of Trade and Industry
and the UK Science and Engineering Research Council. The project
collaborators are ICL, the University of Liverpool and British Coal.

REFERENCES

Bench-Capon, T.J.M., & Coenen, F. (1990). Role ofintermediaw
representation in maintenance of KBS (MAKE Report 4/90).
Liveqxml, England: Liverpool University.

Bench-Capon, TJ.M., & Coenen, F. (1991a). Practical application
of KBS to law: The crucial role of maintenance. In C. van Noort-
wijk, A.H.J. Schmidt, & R.G.F. Winkels (Eds.), Legal knowledge
based systems: Aims for research and development. Lelystad,
Netherlands: Koninklijke Vermande BV.

Bench-Capon, T.J.M., & Coenen, F. (1991b). Exploiting isomor-
phism: Development of a KBS to support British coal insurance
claims. Proceedings of the 3rd International Conference on Arti-
ficial Intelligence and Law (pp. 62-68). Oxford: ACM.

Bench-Capon, T.J.M., & Forder, J.M. (1991). Knowledge represen-
tation for legal applications. In T.J.M. Bench-Capon (Ed.),
Knowledge based systems for legal applications (pp. 245-264).
New York: Academic Press.

Brachman, R.J. (Fall, 1985). l lied about the trees. AI Magazine,
6(3), 80-93.

Bratley, P., Fremont, J., MacKaay, E., & Poulin, D. (1991). Coping
with change. Proceedings oflCAIL (pp. 69-76).

Coenen, F., & Bench-Capon, T.J.M. (1990) Initial analysis of
maintenance issues associated with knowledge based systems
(MAKE Report 2/90). Liverpool, England: Liverpool University.

Coenen, F., Bench-Capon, T.J.M., & Smith, M.J. (1991). KBS de-
velopment using X windows: The MADE development method-
ology. Proc. UKUUG Summer Conference (pp. 64-72).

Davis, R. (1984). Interactive transfer of expertise. In B.G. Buchannan
& E.H. Shortliffe (Eds.), Rate-based expert systems: The MYCIN
experiments of the Stanford Heuristic Programming Project (pp.
171-205). Reading, MA: Addison-Wesley.

Forder, J.M., & Taylor, A.D. (1991). The local office system. In TJ.M.
Bench-Capon (Ed.), Knowledge based systems for legal applica-
tions. (pp. 139-164) New York: Academic Press.

Roussct, M. (1988). On the consistency of knowledge bases: The
COVADIS system. 8th Int. Conf. on Expert Systems & Their
Applications (pp. 79-83). Avignon EC2 Nanterre, Cedex, France.

Routen, T.W., & Bench-Capon, T.J.M. (1991). Hierarchical for-
malisation. International Journal of Man-Machine Studies.

Storrs, G.E., & Burton, C.P. (1989). KANT, A knowledge analysis
tool. ICL Technical Journal, 6(3), 572-581.

Swanson, E.B. (1976). The dimensions of maintenance. Proceedings,
2nd International Conference on Software Engineering (pp. 492-
497). IEEE, Long Beach, CA.

