Semantic Models and Ontologies in Modelling Policy-making

–A Position Paper–

Adam WYNER 1, Katie ATKINSON, and Trevor BENCH-CAPON

Department of Computer Science,
University of Liverpool, Liverpool, United Kingdom

Abstract. In modelling policy-making, we propose the use of formal semantic models and ontologies to structure the analysis of informal policy statements, specify the domain, generate the logical space of arguments and counter-arguments about a policy proposal, and underpin tools for automated policy-making.

Keywords. policy-modelling, semantics, ontologies

Introduction

In this position paper, we discuss the role of semantic models and ontologies in modelling policy-making. Policy making can be viewed as a cyclical, multi-stage process [1,2] with several stages: evaluation, agenda setting, policy formulation, decision, implementation. We focus on the policy formulation stage, where the policy proposal is set and critiqued.

While current approaches make some use of IT, e.g. e-petitions to get feedback on a policy proposal, these tend to be too coarse-grained to identify what, in particular, citizens agree or disagree with. Moreover, there is a lack of structure to the proposal in the sense that the components and their relationships have to be identified. Consequently, it is difficult to apply automated techniques and tools to support policy formulation, which would make it more efficient, transparent, and accessible.

In recent work [3,4], formal semantic models are introduced to represent knowledge about the policy domain and to provide components that are used in forming practical reasoning arguments about policy proposals. Such arguments are extracted from comments on policy proposals, formalised, then presented to users in a web-based policy consultation tool, where users are queried about their opinions about particular components of the policy proposal [5].

In our view, formal semantic models are advantageous in that they provide a precise basis for organising, distinguishing, and reconciling the diverse opinions

1Corresponding Author: University of Liverpool, Department of Computer Science, Liverpool, United Kingdom; E-mail: adam@wyner.info
from the original documents, for constructing initial arguments based on this collective understanding, for evaluating these arguments by identifying conflict and inconsistency, and for assimilating additional information. It disciplines the policy analysts' analysis of the source material by providing a clear, specific structure into which the arguments from the source must be cast, thereby clarifying alternatives and making implicit information explicit. Furthermore, the model, once given, can be used to generate the logical space of arguments found in the source materials along with their systematic inter-relationships. The semantic model also supports and makes transparent the policy analysts' evaluation of given arguments in light of the responses to the survey, which may endorse, oppose, or introduce further particular elements of the arguments. A formal model specifies a computer program that can generate arguments and their relationships, allowing in-depth representation and automated reasoning. In sum, the semantic model helps us to have a greater understanding of the meaning and implications of the policy as well as how they might specifically critique or contribute to it.

Aligned with the semantic model, we propose to present an ontology for the domain, where the ontology is systematically derived from the semantic model. The ontology has been used to generate arguments using the **Legal Knowledge Interchange Format (LKIF)** [6], an XML specification for the representation of legal rules, and Carneades [7], a tool which supports argument representation and evaluation. The role of the ontology is to act as a bridge between the formal model and the executable code. This bridge could also be realised in other ways, such as a database or even directly in code, e.g. Prolog.

While we have some understanding of the semantic models and ontologies, we intend to deepen and broaden it, elaborating on the derivations, relationships, and applications of the models and ontologies as well as extending our current representations to incorporate models and ontologies for related aspects of policy-making such as supporting arguments concerning credible sources of information and causation. In the following sections, we outline elements of our current understanding of the formal semantic model and ontology, while at the workshop, we propose to present elaborated and extended analyses.

1. Practical Reasoning and a Semantic Structure

In public policy discussions, participants recommend and justify what should be done. We can represent such arguments with the practical reasoning argumentation scheme (PRAS) [8,9], wherein the proponent justifies an action:

**PRAS**: In the current circumstances ($R$), action $A_c$ should be performed, since this will bring about a new set of circumstances, the consequences ($S$), in which some goal ($g$) is realised. Goal $g$ is desirable as it promotes a particular social value ($v$).

To give a formal semantic basis to the scheme, we make use of a computational model based on the **Action-Based Alternating Transition System with Values (AATS+V)** [10,9,3]. Here we provide an informal statement of the AATS+V and its association with the PRAS (see [3] for a full, formal specification and a range of examples), where main elements of the structure are:
• $Q$, a set of states, where a state is a consistent conjunction of literals. Current circumstances $S$ and consequences $R$ in the PRAS are states.
• $Ag$ is a set of agents, $Ac_i$ is the set of actions available to a particular agent, $ag_i$, and $J$ is the set of joint actions, assuming agents execute actions jointly. In the PRAS, agents appear as part of $Ac_i$.
• The state transition function defines the state that results from the execution of each joint action in a given state. Transitions are implied in the PRAS by the change from circumstances to consequences.
• A goal is a literal that holds after execution of a joint action, where the negation of the literal holds in a circumstance before execution.
• $V$ is the set of values relevant to the scenario.
• The valuation function defines the status (promoted $+$, demoted $-$, or neutral $=$) that labels the transition between the two states. The values and function are given in the PRAS.

The AATS+V is an abstract semantic structure that we have instantiated [5]. However, to operationalise and automatically reason with the arguments generated from the semantic representation, we must represent the instantiated semantic model in a machine readable form.

2. The Ontology

We have represented our instantiated semantic model in an OWL ontology using the Protege ontology editor and knowledge acquisition system. For the purposes of this position paper, we do not give a full presentation of the ontology, but indicate the elements of the semantic model (given in italics) followed by ontological classes with data and object properties (indicated in bold), briefly discussing the relationship between elements of the semantic model and the ontology.

• $Q$ - class State of individuals such as $q_0, ..., q_6$. Every element of $Q$ is an individual in State.
• $q_0$ - class CurrentState with a single individual. The class has hasTime data property with range to type:string set to value 0 and an object property stateRelation with domain CurrentState and range State. The object property associates the CurrentState individual with a State individual, thus indicating the time of the State individual.
• $Ag$ - For each agent in $Ag$, we have an object property with domain JointAction and range Action, for each of the available action subclasses, e.g. $Ag_0$ - jointActionGovernment governmentAction1.
• $Ac_i$ - Action with disjoint subclasses for each agent in $Ag$, e.g. Government, and given individuals. These subclasses have a data property hasAction with domain Action and range of type string.
• System transition function $\tau$ - a class Transition with object properties transitionJointAction with range JointAction, transitionSource with range State, and transitionTarget with range State.
• Action pre-condition function $\rho$ - this is expressed derivatively in the ontology as individuals of Action do not themselves have preconditions. The
class Transition has an object property transitionJointAction, which gives
the joint actions associated with individuals in Transition. JointAction has
an object property that identifies the actions associated with the JointAc-
tion, e.g. jointActionNature natureAction1. In addition, the class Transi-
tion has object property transitionSource, which gives an individual of
State as source of an individual in Transition. Thus, individuals of Action
implicitly are associated with a source state in virtue of object properties
to transitions.
- Atomic propositions - a data property with range State and range type
  boolean. For each atomic proposition of φ, there is a separate data property,
e.g. hasPropertyP.
- Interpretation function π - this is given by assignment of a boolean value to
each of the data properties associated with each proposition with respect
to a state, where hasPropertyP is a data property with domain State and
range boolean. For example, q1, an individual from State, has the hasProp-
ertyP data property set to false.
- Joint actions - a class JointAction with several joint action object prop-
erties, one for each of the Action subclasses associated with an agent, e.g.
- V - a class Value that has individuals such as Budget, Freedom, etc.
- Valuation functions δ - demotes and promotes object properties from Transi-
tion to Value.

One of the key differences between the AATS+V semantic model and the
OWL ontology is that the ontology can only be expressed within the constraints
of Description Logics, while the AATS+V is expressed in First-order Logic and
functions. In addition, not every aspect of the semantic model is translated di-
rectly into the ontology, e.g. the Action pre-condition function has no direct cor-
relate in the ontology. As well, though the semantic model represents propositions
and their interpretation (truth-value) as is standard in logic, there are alternative
ways to achieve the same representation in the ontology. These (and other) issues
remain to be explored further.

Here we have presented the ontological realisation of the semantic model.
Other operational representations are possible in a database or in a Prolog pro-
gram, offering different views on the semantic information and supporting differ-
ent functionalities relative to purpose.

3. Conclusion

In this position paper, we have outlined some of our motivations and uses for a
semantic model and ontology for policy-making. Some of the formal elements are
sketched. In future work, we deepen and broaden our understanding of repres-
entations of policy-making, for example, by adding argumentation schemes for cau-
sation or credible source along with supporting semantic models and ontologies.
Acknowledgements

This work was partially supported by the FP7-ICT-2009-4 Programme, IMPACT Project, Grant Agreement Number 247228. The views expressed are those of the authors and are not necessarily representative of the project.

References


