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Abstract Norms provide a valuable mechanism for establishing coherent cooper-
ative behaviour in decentralised systems in which there is no central authority.
One of the most influential formulations of norm emergence was proposed by
Axelrod [2]. This paper provides an empirical analysis of aspects of Axelrod’s ap-
proach, by exploring some of the key assumptions made in previous evaluations
of the model. We explore the dynamics of norm emergence and the occurrence of
norm collapse when applying the model over extended durations. It is this phe-
nomenon of norm collapse that can motivate the emergence of a central authority
to enforce laws and so preserve the norms, rather than relying on individuals to
punish defection. Our findings identify characteristics that significantly influence
norm establishment using Axelrod’s formulation, but are likely to be of impor-
tance for norm establishment more generally. Moreover, Axelrod’s model suffers
from significant limitations in assuming that private strategies of individuals are
available to others, and that agents are omniscient in being aware of all norm
violations and punishments. Because this is an unreasonable expectation, the ap-
proach does not lend itself to modelling real-world systems such as online networks
or electronic markets. In response, the paper proposes alternatives to Axelrod’s
model, by replacing the evolutionary approach, enabling agents to learn, and by
restricting the metapunishment of agents to cases where the original defection is
observed, in order to be able to apply the model to real-world domains. This work
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can also help explain the formation of a “social contract” to legitimate enforcement
by a central authority.1

1 Introduction

Modern state-based societies are reliant on a complex system of abstract legal
norms that govern the behaviour of individuals and a central authority that en-
forces these norms. In his seminal work on the sociology of law, Max Weber has
argued that these are prerequisites for such societies to exist [38]. Indeed, legal
norms enforced by a central authority enable individuals to specialise their roles
in society, which, in turn, enables the division of labour that industrialisation and
technological advancement of our societies require [18]. The field of AI and Law is
largely concerned with intelligent systems that reason with or about such norms
and support the work of agents of the central authority that enforces them.

Aside from centrally enforced abstract legal norms, Ehrlich has identified a sys-
tem of so-called “living law”, an assortment of customs and moral norms enforced
through social relationships between individuals [19]. Although living law does not
involve the complex enforcement infrastructure of legal norms, it too governs the
behaviour of individuals in society. Such living law may be the precursor to legal
norms. Occasionally, living law has been a precursor to centrally enforced legal
norms. Druzin, for example, argues that much of commercial law has evolved from
the customs of merchants and was codified into a formal legal system by states at a
later stage [17]. Interestingly, Druzin suggests that frequent interactions, as is the
case in commerce, is conducive to the emergence of norms that are incorporated
in legislation eventually, and his work examines the effect of engagement on norm
emergence.

In distributed computation systems in general, and internet systems in par-
ticular, there exist an increasing number of communities consisting of interacting
individual human and/or machine agents, typically with relatively little control
from a central authority. Often, the volume, frequency and nature of interactions
inhibit effective functioning of a central authority (or, as in pioneer societies, the
central authority is too remote for it to be feasible for it to enforce the norms)
and, sometimes, a central authority is not deemed desirable for the community.
Nonetheless, these communities too stand to benefit from a system of norms that
governs interactions between individuals, though the norms need to emerge spon-
taneously from the community. This paper presents an empirical study of the con-
ditions that are conducive for such a “legal order” to emerge in such distributed
computational systems.

In many application domains, engineers of distributed systems may choose, or
be required, to adopt an architecture in which there is no central authority, and the
overall system consists solely of self-interested autonomous agents. The rationale
for doing so can range from efficiency reasons to privacy requirements. In order for
such systems to achieve their objectives, it may nevertheless be necessary for the
behaviour of the constituent agents to be cooperative. In peer-to-peer file sharing
networks, for example, it is required that (at least a proportion of) peers provide

1 Michael Luck gave a keynote talk at the Fifteenth International Conference on AI and
Law, part of which was based on the work reported in this paper.
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files in response to the requests of others, while in wireless sensor networks nodes
must share information with others for the system to determine global properties
of the environment. However, there is typically a temptation in such settings for
individuals to deviate from the desired behaviour, which is known as the free rider
problem [24,29,59]. For example, to save bandwidth, peers may choose not to
provide files, and to conserve energy, the nodes in a sensor network may choose
not to share information. Therefore, some form of mechanism is needed to outweigh
such temptations and to encourage cooperation among self interested agents.

As has been suggested by many (e.g., [7,8,11,16,23,33,36]), norms provide a
valuable mechanism for regulating or constraining human societies. Perhaps the
most obvious and clear manifestation of norms is when they arise through the
explicit introduction of laws that are established by legislatures, for example, or
through rules or bye-laws of smaller groups such as member clubs. However, norms
are also valuable when there is no central authority, and they emerge as a result of
individual behaviour, in order to establish some coherence or stability in a group.
It is this latter aspect that has been the focus of several researchers, such as [26,
30,35,46,52].

In studying emergence, for example, Epstein [20] proposes a model in which
agents decide which side of a road to drive on in a particular area by imitating the
decision made by the majority of other agents in the area, while Borenstein and
Ruppin [9] study the use of learning by imitation to enhance the evolutionary pro-
cess through lifetime adaptation. Similarly, Savarimuthu et al. [43] use imitation
in considering the ultimatum game in the context of providing advice to agents on
whether to change their norms in order to enhance performance. In other work,
Shoham and Tennenholtz [48] propose the use of the highest cumulative reward
(HCR) learning algorithm, by which agents learn to choose the action that brings
the highest reward. Kittock [28] studies the iterated cooperation game (ICG) [27]
and the iterated prisoner’s dilemma (IPD) [1], both of which are iterative games
in which two agents choose one of two actions, with their reward depending on the
combination of their choices. Urbano et al. [53] use a classical convention emer-
gence game to study the influence of interaction topologies (random, regular, small
world and scale-free topologies). More recently, Franks et al. [21] have shown that
inserting a small amount of influencer agents — those with specific conventions and
strategies — is enough to manipulate the convention adopted by large societies.

The models used in these previous efforts are relatively unsophisticated, with
only two agents involved in a single interaction, making them difficult to use in reg-
ulating agent behaviours in domains of our interest, such as peer-to-peer file shar-
ing and wireless sensor networks, in which there are many interacting agents. How-
ever, Axelrod’s seminal paper in 1986 offered a model of norms and metanorms [2]
(that has since been investigated further [22,37]), in which multiple agents interact
in a way that suggests potential application to such domains. Axelrod’s model is
a game in which different agents decide whether to defect or cooperate (comply).
Agents may also observe others and have the ability to punish those who defect.
Here, an agent’s behaviour is assessed by means of a careful scoring system that
simulates the potential rewards and penalties associated with norm violation and
enforcement. Key to Axelrod’s model is the notion of metanorms, secondary norms
that help to enforce compliance with primary norms by punishing agents that fail
to punish a defector. By using metanorms, Axelrod was able to establish norms
in his experiments. Note that by introducing metanorms, the situation is one in
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which punishment of defection becomes a duty, rather than one in which it is sim-
ply permitted. By accepting metanorms, the agents can see themselves as part of
a wider society, with obligations to that society as a whole, which paves the way
for central enforcement to be accepted, and even welcomed.

Axelrod’s model may be a solution to our problem but, as was more recently
shown by Galan and Izquierdo [22], his results are dependent on both certain as-
sumptions and some very specific and arbitrary conditions. In this paper, we elab-
orate on the work of Galan and Izquierdo by analysing the results of Axelrod’s
model, showing that Galan and Izquierdo’s results also rely on some particular as-
sumptions and conditions. We also provide a further analysis of Axelrod’s model,
drawing out some important considerations for the establishment of norms more
generally. In addition, various improvements are needed in order to generalise the
metanorm approach, and make it applicable over distributed computational sys-
tems. The model assumes a central authority and full access to agents’ private
strategies, which is difficult to justify in real world distributed computational sys-
tems. In response, this paper investigates alternatives that allow us to make use of
the mechanisms resulting from Axelrod’s investigations, in more realistic settings.

The remainder of this paper is organised as follows. Section 2 introduces related
work. Section 3 provides a description of Axelrod’s model followed, in Section 4,
by a more detailed analysis of the results than provided elsewhere, leading to a
new consideration of the circumstances for norm collapse (when norms are not
established). Section 5 introduces limitations of Axelrod’s model that are revealed
from the analysis of the results. In Section 5.1, we present a new strategy copying
technique, and show how it performs in the original context and in situations
in which observation of defection is not guaranteed. In Section 5.2, we describe
a reinforcement learning algorithm designed to avoid the need for access to the
private strategies of others. Finally, we present our conclusions in Section 6.

2 Related Work

The existence of norms does not mean that agents will always comply with them.
Within the literature, norm compliance can be established using two different ap-
proaches, top-down and bottom-up. In the top-down approach, a norm is imposed
by some kind of authority, which is responsible for monitoring compliance with the
norm. The impact of such centrally imposed sanctions, promulgated by an author-
ity, in a norm regulated multi-agent setting has been discussed in some detail in [3].
In the bottom-up approach, in contrast, agents become aware of the existence of
a norm through their interactions with each other, and it is the responsibility
of every agent to monitor compliance with this norm. The top-down approach
is sometimes referred to as normative reasoning, while the bottom-up approach is
often referred to as norm emergence and is the focus of the work presented in this
paper. While there has been a considerable amount of work in the area of norm
emergence [26,30,35,46,52], to focus the paper appropriately, we introduce only
the most closely related research on using imitation or learning to study emergence
with the presence and absence of sanctions. For a more general overview, the work
of Savarimuthu et al. [44] provides an excellent reference.

Normative games have been widely used as environments in which various
mechanisms that support norm emergence can be evaluated (for example, [52]).
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Conventions and norms are related concepts, and the terms are sometimes (es-
pecially in a multi-agent systems context) used interchangeably. Of course, it is
possible to draw distinctions, and there is a considerable literature on the distinc-
tion in the humanities and social sciences (for example, [4]).

Often, norms involve the possibility for some kind of sanction or punishment
for violation, or reward for adherence, while conventions are seen as behaviours or
strategies that are adopted without these additional mechanisms, but this is by
no means a clear cut difference, since some norms do not have sanctions attached
(for example, some moral norms), whereas some conventions are reinforced with
sanctions, such as mockery or social ostracism. For our specific purposes in this
paper, the distinctions are not crucial. What we require is that the agents have a
code of behaviour (which could comprise norms, conventions or even laws), which
they may conform to (cooperation in game theory terms) or deviate from (defection

in game theory terms). Deviation has a positive payoff for the agent deviating and
a negative payoff for other agents. Deviation makes an agent liable to punishment,
which has a cost both for that agent and the agent punishing. When we introduce
metanorms, failure to punish becomes a deviation itself liable to punishment. We
give more precision to these notions in the next section when we discuss Axelrod’s
normative game [2]. In this paper, we will mostly use the term norms for the
constituents of this code of behaviour, since that is the term most often used in
agent systems, which is where our research background lies. No particular weight
should be placed on the term, however, and when we discuss work that has used
a different term, we use their term. Most of the systems we discuss come from
the field of artificial intelligence (AI) and multi-agent systems, although there has
been some related work specifically in AI and law (for example [40,41]).

Some researchers [49,51,55] have focussed on convention emergence, a process
that starts with a population of agents with no initial preferences for any of the
existing conventions. These agents must agree on a common convention (which is,
by definition, only useful when all agents share the same one); once all agents have
agreed on the same convention, the system has converged, and we can say that
the convention has emerged. A classic example of convention emergence games is
the iterated cooperation game (ICG) [27]. Salazar et al. [42] propose a variation
of the coordination game (as in convention emergence), implementing a language

coordination game similar to Lakkaraju and Gasser [31]. In this game, agents must
match words with concepts, creating a huge convention space.

The ultimatum game [50] is a game in which two agents interact with each
other in order to share money. The first agent proposes to the second how to
share the money, and the second is free to accept or reject the proposal. If ac-
cepted, each agent takes its share, otherwise neither gets anything. Here, each
agent has a personal norm that defines its proposal strategy. Villatoro et al. [54]
study the emergence of cooperation, where there is a conflict between the individ-
ual and the collective interests, making this the main difference with respect to
conventions. Here, actions are not chosen randomly, because the targets’ interests
lie in the direction of action opposing compliance with the norm, and the ben-
eficiaries’ interests lie in the direction of action favouring compliance with the
norm. The iterated prisoner’s dilemma (IPD) [1] can be seen as a classic example
of this. In this context, Lloyd-Kelly et al. [32] investigate the effect of simulated
emotions on the emergence of cooperation among a population of agents playing
IPD. Their model incorporates various emotional attributes, such as anger and
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gratitude, which influence agent decisions to cooperate or to defect and they also
consider the possibility for social interventions to prevent agents from continuous
defections. Simulation results suggest the best intervention strategy to use for each
such emotional attribute.

Within the context of the previous normative games, various forms of learning
have been an effective means for facilitating norm establishment among groups of
self-interested agents. Learning by imitation has been used by various researchers
[25,13] in artificial intelligence, and by Epstein [20] in the context of norm emer-
gence. In Epstein’s model, agents must decide which side of a road to drive on,
where the decision of each agent is determined by observation of which side of the
road already has more agents driving on it, within a particular area. In this re-
spect, agents imitate what the majority of their neighbours are doing. Borenstein
and Ruppin [9] study the use of learning by imitation to enhance the evolutionary
process through lifetime adaptation and show that imitation successfully achieves
such a goal.

Similarly, Savarimuthu et al. [43] use imitation in considering the ultimatum

game in the context of providing advice to agents on whether to change their
norms in order to enhance performance. Here, each agent has a personal norm
that defines its proposal strategy. In addition, agents are able to request advice
regarding their proposal strategy from only one agent, the leader, which is believed
to have the best performance in the requesting agent’s neighbourhood. Moreover,
agents are capable of accepting or refusing the advice according to their autonomy
level.

Walker and Wooldridge [57] use a simple strategic update function in their
model, based on the work of Conte and Castelfranchi [12]. In their model, agents
wander around searching for food in order to gain energy. However, since this
movement causes them to lose energy, they need to find as much food as they
can, and expend the least energy in doing so. For this reason, agents follow dif-
ferent strategies, and change from one strategy to another according to a majority

rule, which instructs an agent to switch to another strategy if it finds that the
other strategy is used by more agents than its current strategy. Shoham and Ten-
nenholtz [48] propose the use of the highest cumulative reward (HCR) learning
algorithm, by which agents learn to choose the action that brings the highest re-
ward. HCR has also been used by Delgado et al. [15] in the context of a simple
framework in which an agent makes a choice between two different actions and
receives a positive payoff if they both choose the same action, or a negative payoff
if their actions are different. Agents record the outcome of taking each of the two
actions and pick the action with the better outcome for the next interaction.

A more complex form of learning has been used by Mukherjee et al. [34] and
Sen and Airiau [46], who adopt Q-learning and some of its variants (WOLF-PHC
and fictitious play) to show the effect of learning on norm emergence. They ex-
perimented with two different scenarios, first with homogeneous learning agents
(where all agents have the same learning algorithm), and second with heteroge-
neous learning agents (where agents can have different learning algorithms). Their
results suggest that norm emergence is achieved in both situations, but is slower
in heterogeneous environments.

Urbano et al. [53] use a classical convention emergence game to study the influ-
ence of interaction topologies (random, regular, small world and scale-free topolo-
gies) on the External Majority strategy update rule (EM) originally proposed by
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Shoham and Tennenholtz [47]. In particular, they investigate the effect of different
memory sizes on the rate of convergence. Their empirical results show that a small
memory that a records a small number of recent interactions is the best option
for all types of topologies. More recently, Franks et al. [21] have shown that in-
serting a small amount of influencer agents — those with specific conventions and
strategies — is enough to manipulate the convention adopted by large societies.
In a particular effort, Delgado et al. [14,15] study the emergence of coordination
in scale-free networks. Their study involves an interaction model of a multi-agent
system, by which they analyse how fast coordination can spread among agents.
Coordination here is represented through agents being in the same state, which
is viewed as being achieved when 90% of the agents are in the same state. The
results of the work demonstrate that coordination can indeed be achieved over
scale-free networks, but in a rather restricted setting. Similarly, Sen and Sen [45]
analyse the effect of increasing the number of actions available to agents, as well
as the effect on the speed of norm emergence, of increasing the number of agents.
Their results suggest that both increasing the number of actions and increasing
the number of agents causes a delay to norm emergence in the population.

Villatoro et al. [56] adopt the same concept of two-agent interactions, but
introduce the notion of the reward of an action being determined through the
use of the memory of agents, thus adding some dynamism to the model. Here,
the reward of a certain action is determined by whether the action represents the
majority action in both agents’ memories, and the reward is proportional to the
number of occurrences of this majority action in their memories. However, it is
not clear from where these rewards derive nor who applies them, as agents only
have access to their memory.

3 Axelrod’s Model

In Axelrod’s model, a population of agents play a game in which each agent has
to decide between cooperation and defection [2]. The agent population evolves
through a number of iterations, with a mechanism whereby successful behaviour
(as measured by the scoring system) tends to be replicated and unsuccessful be-
haviour tends to be discarded. In each iteration, each replicated behaviour is sub-
jected to a small chance of mutation, reflecting the feature that an agent may
occasionally change its strategy, irrespective of past habits. The strategy of each
agent in determining whether to defect and whether to punish others is based on
two different attributes, boldness (encouraging agents to defect) and vengefulness

(encouraging them to punish others), which are distinct for each agent. The idea is
that a system eventually resulting in all agents having high vengefulness and low
boldness corresponds to norm emergence, since they will punish defection but they
will not themselves defect. Axelrod’s model is introduced in two stages, detailed
next.

3.1 The Norms Game

Axelrod’s norms game adopts an evolutionary approach in which successful strate-
gies are multiplied over generations, potentially leading to convergence of norms.
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Term Description Value
i, j Individuals A numerical index to identify indi-

vidual agents
S Probability of a defection being

seen by any given individual
Uniform distribution from 0 to 1

Bi Boldness of i Uniform distribution from 0
7

to 7
7

Vi Vengefulness of i Uniform distribution from 0
7

to 7
7

T Player’s temptation to defect +3
H Hurt suffered by others as a re-

sult of an agent’s defection
−1

P Cost of being punished −9
E Enforcement cost, i.e. cost of

applying punishment
−2

Table 1 The Norms Game terms (from [2])

Each individual, or agent, can choose to defect by violating a norm, and such be-
haviour has a particular known chance of being observed or seen (S). An agent i
has two decisions, or strategy dimensions, as follows. First, it must decide whether
to defect, determined by its boldness (Bi). Second, if it sees another agent defect
(determined by S), it must decide whether to punish this defecting agent, deter-
mined by its vengefulness (Vi), which is the probability of doing so. (A full list of
the terms used in the norms game is provided in Table 1). If S < Bi, then agent
i defects, receiving a temptation payoff, T = 3, while hurting all the others with
payoff H = −1. If a defector is punished (P ), the payoff to the defector is P = −9,
while the punishing agent pays an enforcement cost E = −2. The initial values of
Bi and Vi are chosen at random from a uniform distribution of a range of eight
values between 0

7 and 7
7 .

Axelrod’s simulation has a population of 20 agents, with each agent having four
opportunities to defect, and the chance of being seen for each drawn from a uniform
distribution between 0 and 1. After playing a full round (all four opportunities),
scores for each agent are calculated in order to produce a new generation, as
follows. Agents that score better or equal to the average population score plus one
standard deviation are reproduced twice in the new generation. Agents that score
one standard deviation under the average population score are not reproduced
at all, and all others are reproduced once. Although this may produce a new
generation with a different number of agents, Axelrod maintains the number of
agents at 20 over subsequent generations, but does not specify how. Finally, a
mutation operator is used to enable new strategies to arise. Since Bi and Vi (which
determine agent behaviour) take eight possible values, they need three bits to be
represented. Mutation is thus applied by flipping one of these bits whenever an
agent is reproduced, with a 1% chance and a uniform selection of which bit to flip.

In terms of experimental results of the norm game, Axelrod’s original experi-
ment [2] has five runs, each with 100 generations. The final results of these runs
are as follows: two runs achieved high average boldness and almost zero average
vengefulness, indicating no norm emergence at all; two other runs achieved low
average boldness and vengefulness; and only the final run achieved a high level of
average vengefulness and very low average boldness, indicating the partial estab-
lishment of a norm against defection. These results are not satisfactory, since they
indicate that norm establishment is not guaranteed. In response, Axelrod intro-
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Term Description Value
i, j Individuals A numerical index to identify indi-

vidual agents
S Probability of a defection being

seen by any given individual
Uniform distribution from 0 to 1

Bi Boldness of i Uniform distribution from 0
7

to 7
7

Vi Vengefulness of i Uniform distribution from 0
7

to 7
7

T Player’s temptation to defect +3
H Hurt suffered by others as a re-

sult of an agent’s defection
−1

P Cost of being punished −9
E Enforcement cost, i.e. cost of

applying punishment
−2

P ´ Cost of being punished for not
punishing a defection

−9

E´ Cost of punishing someone for
not punishing a defection

−2

Table 2 Metanorms Game terms (from [2])

duces a metanorm model, which incorporates an additional mechanism to better
support norm establishment.

Of course, there is no reason why a society in which norms do emerge should
be seen as “better” than one in which they do not. Many people argue that dereg-
ulation (of, for example, financial markets) is needed if enterprise and innovation
is to thrive. It is the existence of metanorms that suggests that norms are in-
deed desirable. In Section 4 we consider why norms might not emerge without the
metanorm.

3.2 The Metanorms Game

The key idea underlying Axelrod’s metanorm mechanism is that some further
encouragement for enforcing a norm is needed. This is accomplished by introducing
a metanorm for punishment of those who observe a defection but do not punish
the defectors. In this new metanorms game, if an agent sees a defection but does
not punish it, this is considered as a different type of defection, and others in
turn may observe this defection (with probability S) and apply a punishment to
the non-enforcing agent. However, if agents decide not to apply this second level
punishment, there is no risk of another level of punishment being applied to them.
As before, the decision to punish is based on vengefulness, and brings the defector a
punishment cost of P ′ = −9 and the punisher an enforcement cost of E′ = −2 (see
Table 2 for list of terms used in the metanorm game). Applying this new metanorm
game to the same simulation as before gives runs with high vengefulness and low
boldness, which is exactly the kind of behaviour needed to support establishment
of a norm against defection.

Introducing metanorms expresses a preference for norms over no norms, im-
poses an obligation to punish on agents, rather than relying on individual tem-
peraments, and their acceptance of such a metanorm suggests acceptance of mem-
bership of the society, with accompanying social obligations, on the part of the
agents.
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4 Analysis of Axelrod’s Model

It can be concluded from last section that norm establishment is always guaranteed
using the metanorms game. However, the experiments undertaken by Axelrod are
limited in terms of scale and duration. Binmore [5] has also identified similar
concerns in relation to the limits of the simulations undertaken. While he criticises
the lack of theory in Axelrod’s work as part of a broader analysis, he also recognises
that it offers some new conjectures that are worth exploring. Clearly, a more
comprehensive analysis is needed, but first we need to replicate Axelrod’s original
experiments in order to clarify certain assumptions that are not obvious.

4.1 Replicating Axelrod’s Results

In seeking to replicate Axelrod’s results, some assumptions need to be made, about
which Axelrod says nothing. Firstly, the model does not specify how the constant
population level is maintained after reproduction, when there are three possible
scenarios.

1. The new population is smaller than the original. In our re-implementation, ad-
ditional agents are randomly selected from the resulting population and repli-
cated. Here, if eliminating poorly performing agents, and replicating agents
that perform well, as specified above, results in too few agents in the popula-
tion, we select further agents at random to replicate, up to the number needed
to maintain a constant level.

2. The new population is equal in size to the original, in which case no action is
needed.

3. The new population is larger than the original. In this case, our position is
to select the required number of agents at random from the relevant set for
reproduction. Here, if eliminating poorly performing agents and replicating
agents that perform well, as specified above, results in too many agents in the
population, we select further agents at random to eliminate, to arrive at the
number needed to maintain a constant level.

Secondly, we assume the score of each agent is set to 0 at the beginning of each
generation.

Based on the above, and the description in Section 3 of Axelrod’s model, we are
able to provide an algorithmic representation of the model in Algorithm 1. This
algorithm covers both Axelrod’s norms game and his metanorms game, where lines
11-16 are relevant only in the context of the addition of the notion of metanorm
for the metanorms game. Note that in the algorithm, TSi refers to the total score
of agent i and similarly TSj refers to that for agent j.

Using the algorithm above, Axelrod’s experiments were repeated, running the
norms game 10 times. The results are shown in Figure 1, where the diamonds
represent the value of the mean average boldness and vengefulness of the final
generation’s population. As can be concluded from the figure, the results obtained
are similar to those of Axelrod, with one run having high vengefulness and low
boldness, two runs with exactly the opposite (high boldness and low vengefulness),
and all other runs with low values for both boldness and vengefulness.
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Algorithm 1: The Simulation Control Loop: simulation(T,H, P,E)

1. for each agent i do
2. for each opportunity to defect o do
3. if Bi > So then
4. TSi = TSi + T
5. for each agent j : j 6= i do
6. TSj = TSj +H
7. if see(j,i,So) then
8. if punish (j, i, Vj) then
9. TSi = TSi + P

10. TSj = TSj + E
11. else
12. for each agent k : k 6= i ∧ k 6= j do
13. if see(k,j,So) then
14. if punish (k, j, Vk) then
15. TSk = TSk + E
16. TSj = TSj + P
17. AvgS = calcAverageScore()
18. StdD = calcStandardDeviation()
19. for each agent i do
20. if TSi > AvgS + StdD then
21. replicate()
22. else
23. if TSi < AvgS− StdD then
24. eliminate()
25. maintainPopSize()

In order to establish how these results arise, changes to boldness and venge-
fulness for each individual were monitored. Figure 2 shows the results for three
sample individuals, illustrating how the average boldness and vengefulness vary
over generations (and hence time). In particular, Figure 2(a) shows one run end-
ing in the most common result, low boldness and low vengefulness. The run starts
with average boldness and vengefulness of about 0.5 (as initial values for Bi and
Vi are taken from a uniform distribution over {07 , . . . ,

7
7}). In the early stages,
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Fig. 1 Norms game overall results
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Fig. 2 Norms game: analysis of sample runs
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boldness decreases slightly, indicating that individuals with higher boldness are
eliminated. This is because high boldness causes an agent to defect, yet defecting
in the presence of others with average vengefulness can be costly, as the agent is
likely to be punished, leading to a low score. Subsequently, boldness stabilises at a
low level. With a low average boldness in the population, being vengeful becomes
costly, causing agents with low vengefulness to be favoured over those with high
vengefulness, with the latter getting eliminated when forming the new genera-
tion. Finally, the values stabilise at particular low values for both boldness and
vengefulness until the end of the run.

In the cases that result in high boldness and low vengefulness (an example run is
shown in Figure 2(b)), the run starts as before, with both values reducing. However,
around the 60th generation, the value of boldness increases sharply until it reaches
1, where it remains. This can be explained by a dramatic change to one individual’s
boldness, due to mutation, in an agent population with particularly low values
of vengefulness. In turn, this facilitates the individual’s survival, dominating the
others and allowing it to propagate its high boldness across the population. Here, a
high score is attained by defecting without punishment (due to low vengefulness),
which also hurts others and lowers their scores. In the final case, as shown in Figure
2(c), the run ends with high vengefulness and very low boldness: while eliminating
all those with high boldness, only individuals with high vengefulness remain, so
there are no individuals with low boldness and low vengefulness, and those with
high vengefulness and low boldness survive and dominate.
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Fig. 3 Metanorms game overall results

By introducing metanorms, Axelrod aimed to address the problems identified
above. Our replication of the metanorms game also provides similar results to Ax-
elrod (see Figure 3). Again, a deeper analysis of the results is helpful. As shown in
Figure 4, in the metanorms game, the population starts eliminating high boldness
individuals as before, but now also eliminates low vengefulness individuals. The
latter trend is due to the introduction of the metanorm according to which failure
to penalise a defector may also be penalised. This results in a population with
high vengefulness and low boldness, which survives until the end of the run.
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Fig. 4 Metanorms game analysis

In essence, these simulations characterise a situation reminiscent of the Wild
West in which individual citizens are relied upon to enforce the law, explaining
the importance of vengefulness in the emergence of norms. A“live and let live”
attitude is not conducive to maintaining a law, but the burden of punishment
here is unevenly spread. However, as these results show, emergence of a norm in
such situations is by no means certain. It is this that leads to a requirement for
metanorms if norms are to emerge with any certainty.

Such metanorms reflect a shift in attitude on the part of society towards the
norms: whereas without metanorms, punishment is seen as a (visceral) response to
defection, depending on the vengeful emotions of the victims, the metanorms make
it the duty of members of society to punish, so that failure to perform this duty
is itself liable to punishment. This move from enforcement by vigilantes (those
taking the law into their own hands) to seeing law enforcement as the social duty
of responsible citizens is an important milestone in the development of a society
that respects its laws. Without this shift, respect for law is hardly even a social
virtue, let alone a (social) duty. It is little more than a matter a taste: some agents
have a taste for vengeance and some do not. If it is no more than a preference, a
matter of taste, then that laws do not always emerge, or if they do, collapse over
time, becomes unsurprising. Obedience to laws may or not be to the taste of the
society.

4.2 Game Duration

The settings under which Axelrod’s experiments are performed are limited, par-
ticularly with relation to the duration of these experiments. To provide a stronger
analysis of Axelrod’s model, the experiments were repeated over a long duration,
1,000,000 generations (and 10 runs), as opposed to 100 generations (in Axelrod’s
experiments and our experiments of Section 4). In our norms game simulation,
the game starts with boldness decreasing, and then vengefulness decreasing until
they both settle at a low level, which is consistent with Axelrod’s results. How-
ever, an agent with high boldness can be introduced to such a population through
mutation, and would dominate others since it is not punished due to low levels
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of vengefulness. Clearly, running the experiment for a longer period increases the
possibilities for this to occur and, as shown in Figure 5, this always leads to norm
collapse.

In undertaking their own analysis of Axelrod’s metanorms game, Galan and
Izquierdo [22] increased the number of generations in a run and found different
results. By including 1,000,000 generations, in 1,000 runs, nearly 70% ended in
norm collapse, as opposed to Axelrod’s finding of norm establishment. According to
Galan and Izquierdo, this is because vengefulness is costly in a population in which
violation is rare. Thus, agents with low vengefulness are favoured over agents with
high vengefulness, leading to a significant decrease in vengefulness, encouraging
defection, and in turn causing boldness to increase. The results of Galan and
Izquierdo suggest that metanorms are not as useful as it might initially seem from
Axelrod’s results.
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Fig. 5 Norms game for 1,000,000 generations

By analysing these cases to determine the reasons for these results, it is clear
that the runs begin in the same way as previously observed, by eliminating in-
dividuals with high boldness and low vengefulness, stabilising on those with high
vengefulness and low boldness. Then, however, mutation causes vengefulness to
reduce. If an agent x with high vengefulness and low boldness changes through
mutation to give lower vengefulness, while boldness for all remains low, there is no
defection and the mutated agent survives. In addition, if boldness then mutates
to become just a little higher for a different agent y, with average vengefulness
remaining high, x will still rarely defect because of relatively low boldness. If it
does defect, and is seen by others, it receives a low score, unless it is not punished,
in which case the non-punishing agents may themselves be punished because of
the high vengefulness in the general population. Here, agent x may not punish y

either because of the low probability of being seen (which must be below the low
boldness level to have caused a defection) or because it has mutated to have lower
vengefulness. In the former case, x will not be punished for non-punishment since
it has not observed y’s defection, but in the latter case, x might be punished if
it is seen by others. However, we know that the probability of being seen is low
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because agent y has defected (and S < B for defection to take place). In this case,
y is eliminated, while x remains, because the likelihood of y’s defection being seen
by just one agent is relatively high, but the likelihood of agent x ’s non-punishment
being seen requires first y’s defection being seen by x, and then x ’s non-punishment
being seen by others, the combination of these being extremely unlikely.

If the values of vengefulness continue to decrease in this way, the population can
arrive at a situation with very low average boldness and vengefulness. At this point,
a single mutation to boldness could then cause the mutant to dominate the others
due to the general lack of vengefulness in the population. The key question here is
why, in cases of high boldness and low vengefulness, mutation of vengefulness from
a very low value to a significantly higher value does not cause boldness to decrease.
Here, such a mutant should punish all others for defecting and for not punishing
defectors. However, these punishments also incur significant enforcement costs,
all of which are borne by the punishing agent, potentially exceeding the penalty
meted out to the defectors and those agents who fail to punish others. For such a
mutant to survive, it needs to co-exist with other vengeful agents, with which it
shares the substantial enforcement load. In other words, there need to be sufficient
vengeful agents in the population to overcome this.

This analysis suggests that both mutation and sanctioning costs play a major
role in collapsing norms. However, there is an additional factor that gives rise to
these results, a particular characteristic of the underlying reproduction policy in
the model which, in certain circumstances, and with a very subtle change, can give
a very different outcome. We consider this next, in Section 4.3.

We note that there have been similar criticisms of Axelrod’s work. In particular,
Binmore et al. [6] considered a simplified version of the ultimatum game that is also
a simplified version of the norms game, concluding that the convergence process is
not robust and can easily be disrupted by quite small perturbations, giving little
confidence in conclusions obtained from just a few runs of a computer simulation.
Indeed, as we have done, Binmore [5] suggests that one needs to conduct very
large numbers of tests before beginning to take any results seriously.
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Fig. 6 Metanorms game for 1,000,000 generations and 1000 runs
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4.3 Reproduction and Norm Collapse

As specified earlier, a run of the metanorm game settles at very low boldness
and very high vengefulness at a certain point. For this to change to the opposite
situation of low vengefulness and high boldness, a sequence of modifications that
lower vengefulness must occur, and another sequence of modifications that increase
boldness must also occur.

Another factor that could contribute to norm collapse, which is not considered
above, is the reproduction policy over generations, especially where the boldness
of the entire agent population is very low. Specifically, when all individuals have
boldness around 0, defection rarely happens, and their scores (which change only
when agents enforce, are hurt, or are punished) are 0. As a result, the average score
and standard deviation are also 0, so that all agents have a score equal to the aver-
age score plus one standard deviation. According to Axelrod’s rules, agents in this
situation should be replicated twice when forming the new generation, giving them
a better chance of surviving the next round. However, duplicating the individuals
in this case does not seem sensible since all of the agents in the population have
performed equally, so there is no need to replicate every individual twice. Hence,
to study the effect of the reproduction policy, we undertook simulations in which
agents are only replicated once in the above special case (as opposed to Galan and
Izquierdo where all agents in such a case are duplicated). The results obtained by
running the metanorm game with many more generations are similar to those of
Galan and Izquierdo, but with a different proportion giving rise to defection. As
shown in Figure 6, 128 out of 1,000 runs (or 13%) of 1,000,000 generations ended
in norm collapse, as opposed to 70% reported by Galan and Izquierdo.

The reason behind the different results is that replicating an entire population
of non-defecting agents increases the likelihood of significant fluctuations in venge-
fulness over subsequent generations. For example, in one phase of a run using the
approach of Galan and Izquierdo in which all agents have 0.0 boldness, 5 agents
have vengefulness of 0.0, 11 with 1.0 and 4 with 0.8, the next generation includes
8 agents with vengefulness of 0.0, 7 agents with 1.0, and 5 agents with 0.8, simply
due to the replication policy. This means that average vengefulness drops from
0.71 to 0.55 and, as boldness continues at 0.0, replication again makes this worse.
However, note that replication could cause the opposite, increasing the number of
agents with high vengefulness over those with low vengefulness.

As new generations of agents with low boldness are evolved for more iterations,
it becomes more likely to observe the following combination of events. First, the
levels of vengefulness decrease repeatedly through a sequence of downward fluc-
tuations until they reach very low levels. Then, until vengefulness levels fluctuate
back upwards, this creates a temporarily fertile environment for defectors. Next,
the boldness of one or a few agents increases to a high level due to mutation.
This causes the bold agents to defect and be replicated in subsequent iterations of
the game. The end result of the phenomenon is an agent population where high
boldness and defection are so prevalent that being vengeful leads to extinction.
Thus, the game reaches a stable situation where norm collapse is ingrained in the
population (i.e. low vengefulness and high boldness).

This end state is reached in a proportion of experimental runs of both Galan
and Izquierdo’s experiments and our own experiments because it is more likely
to reach the required preconditions when repeating the experiment for 1,000,000
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(a) 1,000,000 generations and 0.001 mutation rate
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(b) 1,000,000 generations and 0.0001 mutation rate

Fig. 7 Metanorms game with different mutation rates

generations (i.e. over a long duration). However, a much larger proportion of Galan
and Izquierdo’s runs end in stable norm collapse because their replication policy
allows for much more significant fluctuations of vengefulness.

4.4 Mutation

As discussed above, mutation is significant in determining when norm collapse
occurs. Galan and Izquierdo [22] argue that decreasing the mutation rate from
0.01 to 0.001 allows norm collapse to arise much earlier. They present an example
in which a mutation rate of 0.001 allows the population to converge towards norm
collapse in about 25,000 generations as opposed to 300,000 with a rate of 0.01.
However, they do not explain the reasons, and do not explore the more general
effect of mutation rate on norm collapse or establishment.
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In seeking to consider this further, we undertook an experiment consisting of
1000 runs of 1,000,000 generations, using the mutation rate of 0.001 suggested
by Galan and Izquierdo, with results shown in Figure 7(a). Clearly, these results
support Galan and Izquierdo’s argument: 40% of the runs ended in norm collapse.
However, decreasing the mutation rate further does not have the same effect. In
particular, a mutation rate of 0.0001 resulted in all 1000 runs ending in norm
establishment, shown in Figure 7(b).
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Fig. 8 Metanorms game: 1,000,000 generations; 0.0001–0.01 mutation rate

The relation between mutation rate and norm collapse is thus unclear. To
understand this better, we performed a further series of experiments. Figure 8
illustrates the result of different experiments that consists of 10 runs each, with a
range of mutation rates between 0.0001 and 0.01. As can be observed from Figure 8,
the mutation rate seems to play an important role in causing norms to collapse.
Decreasing the mutation rate below 0.01 has a major effect on the proportion
of runs ending in norm collapse, with a peak around mutation rate values of
0.005 giving norm collapse in 80% of runs. However, decreasing the mutation rate
further causes the proportion of runs ending in norm collapse to drop back (with
fluctuations) until it reaches 0 with a mutation rate of 0.0001. While these results
suggest a potentially interesting relationship, further work is needed to establish
the exact correlation. Since the focus of this paper is to examine the possibility
of applying metanorms to computational systems, and it is difficult to justify the
use of mutation in these systems, this is outside scope but remains an important
area for future work.

Nevertheless, we can say that given these results, removing mutation should
avoid norm collapse. In the norms game, after the population stabilises at a low
level of both vengefulness and boldness, mutation of an agent’s boldness from low
to high allows it to dominate, and as a result eliminate others, which leads to norm
collapse (as previously shown in Figure 5). Figure 9 illustrates the result of a no-
mutation norms game that consists of 1000 runs, with 1,000,000 generations each.
As expected, removing mutation avoids norm collapse and leaves the population
with the other two situations.
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Fig. 9 No-mutation norms game: 1,000,000 generations and 1000 runs

In the metanorms game, as we have seen, mutation seems to have a great ef-
fect on moving away from norm establishment. By removing mutation, we might
expect to guarantee norm establishment. To corroborate this, we performed two
experiments for two different durations, with results shown in Figure 10(a) for 100
generations and 1000 runs and Figure 10(b) for 1,000,000 generations and 1000
runs. Surprisingly, the results were not as expected. A high level of vengefulness is
maintained in almost all the runs, but a high level of boldness is also observed in
some, and hence a high level of defection in the population, despite the associated
punishment. This is because the final result of each run primarily depends on the
initial distribution of vengefulness and boldness: if all individuals with high venge-
fulness happen to have high boldness, and if those with mid or low vengefulness
have low boldness, then individuals with high vengefulness and high boldness at
the start are favoured over those with average vengefulness and low boldness. As
a result, they survive and dominate the others. More importantly, the final result
is determined within the very first generation so that running the experiment for
a longer period has no impact and there is no change to the population once the
levels of vengefulness and boldness stabilise.

4.5 Characterising the vengefulness-boldness space

It is clear that Axelrod’s model exhibits many interesting aspects, and relies on
characteristics that provide different results with different assumptions or instan-
tiations. We have explored several of these in relation to our experiments, found
some distinct features and, as a result, we can also provide a characterisation of
the nature of norm establishment or collapse more generally.

Given the analysis so far, it should be clear that norm establishment lies in
the region where vengefulness is high and boldness is low; similarly, norm collapse
lies in the region where vengefulness is low and boldness is high. This is as used
by Axelrod in his model, and underlies the aim of the initial experiments. It is
illustrated graphically in Figure 11. However, we can also characterise the region
where vengefulness is low and boldness is low as tending to norm collapse: this is
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(a) 100 generations without mutation
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(b) 1,000,000 generations without mutation

Fig. 10 No-mutation metanorms game

a region of benign behaviour since boldness is low and defection is unlikely, but it
is unstable since a mutation to boldness may take it higher, leaving vengefulness
low, and causing norm collapse. Conversely, the region where both vengefulness
and boldness are high is tending to norm establishment: it is undesirable since
boldness is high and there are many defections, but these defections are likely to
be punished. If vengefulness does cause punishment, then it is likely that boldness
will drop, leading to norm establishment. Given this view, we can reinterpret the
previous experiments. For example, it is clear that the run shown in Figure 2(a)
ends in a state tending to norm collapse, the run in Figure 2(b) ends in norm
collapse, and the run in Figure 2(c) ends in norm establishment, as does the run
in Figure 3.

From the results we have seen, it is clear that a lack of vengefulness can lead
to norm collapse when a bold mutant arrives. In the real world, this is often the
point at which we sometimes see the emergence of a central authority: in recog-
nising the threat to order presented by the arrival of bold deviant individuals,
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Fig. 11 Characterising the vengefulness-boldness space

and being themselves reluctant to punish because of the cost involved, the citizens
tend to find a different mechanism for punishing, and hence suppressing, the bold
individuals. Here, what they do is pay a levy to a central authority, which punishes
the defectors. If there are relatively few law breakers (and where there is in gen-
eral low boldness), a relatively small levy will cover the costs of punishment (and
possibly allow the lawman a profit). Returning to the Wild West analogy consid-
ered earlier, as communities developed, the citizens would club together to hire
a gunfighter to keep the peace. Alternatives include seeing this as insurance, or
possibly establishing a central fund out of which agents who punish are rewarded
(which we might see as analogous to bounty hunters). Of course, if there are too
many defectors the levy will become too high, but given a low boldness and low
vengeance society, the levy should be advantageous over enforcement costs. (This
explains why the central authority will not emerge until the level of boldness has
fallen to a relatively low level.) The essential point is that norm establishment
requires the punishment of bold individuals who defect, and if the citizens are not
themselves vengeful enough, they need to pay someone to do it for them. Note also
that it is expected and desired that defectors be punished, since the agents have
already incurred the cost of punishment. While the process can be seen as the for-
mation of a Hobbesian social contract, there remain problems with this centralised
perspective, not least among them how to detect violations and violators. Indeed
in this paper, our focus is on the emergence of norms rather than a centralised
mechanism for enforcement, so while we note the alternatives, we omit further
discussion of such possibilities and leave them for further consideration outside
the context of this work.

5 Omniscience in Axelrod’s Metanorm Model

From the above analysis, it is clear that various improvements are needed in order
to generalise the metanorms approach and make it applicable over computational
systems. First, the model assumes full control over the entire agent population,



Establishing Norms with Metanorms in Distributed Computational Systems 23

which permits access to all agent utility scores and allows central manipulation
of the entire population by adding or eliminating agents. However, this is rarely
possible in computational systems in which populations can be vast, and no single
party can have control over every agent. Furthermore, agent scores are typically
understood as private information that agents might choose not to share with
others, posing a further problem for the application of Axelrod’s approach.

Instead, we need a mechanism through which individuals can learn to improve
their strategies over time. If we enable individuals to compare themselves to others,
and adopt more successful strategies, then we can take a learning interpretation of
the evolutionary mechanism [39], without needing to remove and replicate individ-
uals. However, this learning interpretation requires that the private strategies of
individuals are available for observation by other agents, which is again an unrea-
sonable assumption. As we have shown in the previous sections, Axelrod’s model
is not capable of sustaining cooperation over a large number of generations. Fur-
thermore, Axelrod’s approach relies on agents being able to punish both those that
defect and those that fail to punish defection, yet this is unrealistic since it assumes
omniscience through agents being aware of all norm violations and punishments.

In response, the remainder of this paper investigates alternatives that allow us
to make use of the mechanisms resulting from Axelrod’s investigations, in more re-
alistic settings. Specifically, we first take a learning interpretation of evolution and
describe an alternative technique, strategy copying, which prevents norm collapse
in the long term. Second, we remove the assumption of omniscience and constrain
the ability of agents to punish according to the defections they have observed.
Finally, to obviate the need for knowledge of the private strategies of others, we
propose a learning algorithm through which individuals improve their strategies
based on their experience.

5.1 Strategy Copying

In Axelrod’s model, the evolutionary approach causes some problems in extended
runs, leading to norm collapse. In addition, for use in domains such as peer-to-peer
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Fig. 12 Strategy copying from the best agent, 100 timesteps



24 Samhar Mahmoud et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
e
n
ge
fu
ln
e
ss

Boldness

The diamond represents the final average 
vengefulness and boldness of a single run

Fig. 13 Strategy copying from the best agent, 1,000,000 timesteps

or wireless sensor networks, the agents themselves cannot be deleted or replicated,
but instead must modify their own behaviour. In this section, therefore, we examine
a simple alternative to Axelrod’s model in which an agent that performs poorly
in comparison to others in the population can learn new strategies (in terms of
vengefulness and boldness attributes) by adopting the strategy of other, better
performing agents, replacing the existing strategy with a new one. Agents can
achieve this in different ways: they can copy the strategy of the agent with the
highest score or they can copy the strategy of one in a group of agents performing
best in the population. It is important to note that the parameter set-up used in
all experiments introduced in this section is the same as that specified in Table 2.

5.1.1 Strategy Copying from a Single Agent

Intuitively, copying the strategy of the agent with the highest score appears to be
a promising approach. However, it leads to poor results in the long term because
it draws on the strategy of a single agent rather than a population of agents. This
makes the approach vulnerable to strategies that are only successful in a small
number of possible settings. Moreover, by failing to draw on strategies from a
variety of agents, the strategies tend to converge prematurely.

To illustrate this, consider a group of students taking an examination, with
one of the students having cheated. If the cheating student has not been seen,
they may achieve the best exam performance. However, if all other students copy
this behaviour and cheat in the next exam, there is a high possibility that they
will be caught, and will thus suffer from much worse results than if they had not
cheated. This is supported by the results shown in Figures 12 and 13, illustrating
experiments with runs of 100 and 1,000,000 timesteps (where a timestep represents
one round of agents having opportunities to defect and learning from the results,
and is equivalent to a generation in the evolutionary approach). Each point on the
graph represents the average boldness and vengefulness of the population at the
end of a single simulation run.

In the short term, as can be seen from Figure 12, copying from the best agent
leads to norm establishment. However, in the long term the norm collapses, as
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Fig. 14 Strategy copying from a group of agents, 1,000,000 timesteps

shown in Figure 13. This can be explained by the fact that an agent with low
vengefulness that does not punish a defector (and thus does not pay an enforcement
cost) but is also not metapunished, scores better than any other agent with high
vengefulness that does punish (and thus pays the enforcement cost). As a result,
other agents copy the low vengefulness of this agent so that low vengefulness
becomes prevalent in the population. In the same way, when low vengefulness
prevails in the population, an agent with high boldness defects, gaining a temptation

payoff, and hurting others without receiving punishment. As a result, other agents
copy the high boldness of this agent so that low vengefulness and high boldness is
propagated through the population, leading to norm collapse. The essence of the
free-rider problem is that deviation is highly profitable to the free-riders as long
as sufficient numbers continue to conform, but that if everyone tries to free-ride,
all benefits are lost (c.f. the Nash Equilibrium strategy of mutual defection in the
Prisoners? Dilemma).

5.1.2 Strategy Copying from a Group of Agents

Alternatively, as we have suggested, we might seek to copy the strategy of one in
a group of high-performing agents. In this view, agents choose one agent, at ran-
dom, from the group of agents with scores above the average, and copy its strat-
egy. As previously, experiments of different durations (between 100 and 1,000,000
timesteps) were carried out. The results in Figure 14, for 1,000,000 timesteps,
show that all runs ended with norm establishment in the long term, indicating
that this approach is effective in eliminating the problematic effect of the repli-
cation method. This approach avoids norm collapse since it does not limit itself
to the best performing agent, and thus does not run the risk of only adopting a
strategy that performs well in a small number of settings.

5.1.3 Observation of Defection

In Axelrod’s model (see Section 3), an agent z is able to punish another agent y

that does not punish a defector x, even though agent z does not see the defection of
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Fig. 15 Strategy copying with defection observation constraint, 1,000,000 timesteps

agent x. However, such metapunishment is not possible if the original defection is
not observed: guaranteed observation of the original defection is an unreasonable
expectation in real-world settings. In consequence, our model needs adjustment so
that metapunishment is only permitted if an agent observes the original defection.
However, because this observation constraint limits the circumstances in which
metapunishment is possible, its introduction corresponds to removing the meta-
punishment component from part of the game. In Axelrod’s original experiments,
metapunishment was introduced as a means to stabilise an established norm, since
norms tend to collapse shortly after they are established without metapunishment.
In fact, this remains the case in our model and our results confirm this.

More precisely, the observation constraint causes all runs to end in norm col-
lapse when simulations are run for 1,000,000 timesteps, as shown in Figure 15.
This is due to the fact that, as in the original model, runs initially stabilise on
high vengefulness and low boldness, and then mutation causes vengefulness to
reduce. If an agent y with high vengefulness and low boldness changes through
mutation to give lower vengefulness, while boldness for all remains low, there is no
defection and the mutated agent survives. If boldness then mutates to become just
a little higher for a different agent x, with average vengefulness remaining high, x

will still rarely defect because of relatively low boldness.
If it does defect, however, and is seen by others, it receives a low score, unless

it is not punished, in which case the non-punishing agents may themselves be
punished because of the high vengefulness in the general population. Here, agent
y may not punish x because of the low probability of being seen (which must be
below the low boldness level to have caused a defection) or because it has mutated
to have lower vengefulness. In the former case, y will not be metapunished for non-
punishment, but in the latter case, y might be metapunished if it is seen by others.
The likelihood of agent y’s non-punishment being seen requires first x ’s defection
being seen by y, and then y’s non-punishment being seen by others. Importantly,
in this new model, agents that metapunish y must themselves see x ’s defection.
Since this combination of requirements is rare, such mutants like y survive for a
longer duration, enabling their strategy to propagate through the population, and
causing vengefulness to decrease. In addition, if another such event occurs, it will
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cause the average vengefulness of the population to drop further until it reaches
a very low level. When the model runs over an extended period, such a sequence
of events is much more likely, and low vengefulness allows a mutant of higher
boldness to survive and spread among the whole population, which is the cause of
the norm collapse. Indeed, where agents have subscribed to a central enforcement
agency, it will be in their interests to report any defections they observe, since
they have already expressed support for the norms, and have already incurred the
cost of punishment.

While our focus is on these aspects of Axelrod’s original model, we note that
an alternative approach could be taken, in which the metapunisher’s knowledge of
agents’ capability of observing is the key driver. This would allow metapunishers
to punish independently of whether other agents have in fact observed violations
(and this does sometimes happen in the law, where a metapunisher considers if it
is reasonable to assume that another agent should presume that some wrongdoing
was committed). Indeed, this would be a valuable aspect to explore, but would
take the paper in a different direction, away from our desired relative fidelity to
Axelrod, and is beyond the scope of our work.

5.2 Strategy Improvement

Once the observation constraint is introduced, strategy copying becomes inade-
quate and leads to norm collapse. Furthermore, it requires that agents have access
to the strategies and decision outcomes of others in order to enable the copying
mechanism. As we have already argued, in real-world settings such observations
tend to be unrealistic. Reinforcement learning offers an alternative to Axelrod’s evo-
lutionary approach to improving performance of the society while keeping agent
strategies and decision outcomes private. There are many reinforcement techniques
in the literature, such as Q-learning [58], Policy Hill Climbing (PHC) [10] and
WOLF-PHC [10], which we use as inspiration in developing a learning algorithm
for strategy improvement in the metanorms game.

5.2.1 Q-learning

Q-learning is a reinforcement learning technique that allows the learner to use the
(positive or negative) reward, gained from taking a certain action in a certain state,
in deciding which action to take in the future in the same state. Here, the learner
keeps track of a table of Q-values that records an action’s quality in a particular
state, and updates the corresponding Q-value for that state after each action. The
new value is a function of the old Q-value, the reward received, and a learning
rate, δ, and the action with the highest updated Q-value for the current state is
chosen. However, for us, Q-learning suffers from two drawbacks. First, it considers
an agent’s past decisions and corresponding rewards, which are not relevant here;
doing so would inhibit an agent’s ability to adapt to new circumstances. Second,
actions are precisely determined by the Q-value; there is no probability of action,
unlike Axelrod’s model.

Bowling and Veloso [10] proposed policy hill climbing (PHC), an extension of
Q-learning that addresses this latter limitation. In PHC, each action has a proba-
bility of execution in a certain state, determining whether to take the action. Here,
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Table 3 Effects of actions on agent score

Decision Effects
Defect Gain temptation payoff

Hurt all other agents
Potentially suffer punishment cost

Cooperate —

Punish Pay enforcement cost
Not punish Potentially suffer metapunishment cost

Metapunish Pay enforcement cost
Not metapunish —

the probability of the action with the highest Q-value is increased according to a
learning rate δ, while the probabilities of all other actions are decreased in a way
that maintains the probability distribution, with each probability update occur-
ring immediately after the action. In enhancing the algorithm, a variable learning
rate is introduced, which changes according to whether the learner is winning or
losing, inspired by the WOLF technique (win or learn fast). This suggests two
possible values for δ: a low one to be used while an agent is performing well and
a high one to be used while the agent is performing poorly.

However, in one round of Axelrod’s game, an agent can perform multiple pun-
ishments (potentially one per defection and non-punishment observed), while only
having a small number of opportunities to defect (four in Axelrod’s configura-
tion). Therefore, punishment and metapunishment actions would be considered
much more frequently than defection, leading to disproportionate update of prob-
abilities of actions, with some converging more quickly than others. To address this
imbalance, we can restrict learning updates to occur only at the end of each round,
rather than after each individual action, so that boldness and vengefulness are re-
considered once in each round and evolve at the same speed. The aim here is to
change the probability of action significantly when losing, while changing it much
less when winning, providing more opportunities to adapt to good performance.

In summary, while basic Q-learning is not appropriate because of the lack of
action probabilities, WOLF-PHC suffers from a disproportionate update of such
probabilities in this setting. Nevertheless, the use of the variable learning rate
approach in WOLF-PHC is valuable in providing a means of updating the boldness
and vengefulness values in determining which action to take. However, since agents
that perform well need not change strategy, we can consider only one learning rate.
The next section details our algorithm, inspired by this approach.

5.2.2 BV Learning

To address the concerns raised above, in this section, we introduce our BV (Boldness-
Vengefulness) learning algorithm. This requires an understanding of the relevant
agent actions and their effect on the agent’s score, as summarised in Table 3, which
outlines the different actions available to an agent and the consequence of each on
the agent’s score.

Now, since boldness is responsible for defection, an agent that obtains a good
score as a result of defecting should increase its boldness, and an agent that finds
defection detrimental to its performance should decrease its boldness. Learning
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Algorithm 2: The Simulation Control Loop: simulation(T,H, P,E, γ, δ)

1. for each round do
2. interact(T , H, P , E)
3. learn(γ, δ)

suitable values for vengefulness is more complicated, since while it is responsible
for both punishment and metapunishment, these also cause enforcement costs that
decrease an agent’s score. Low vengefulness allows an agent to avoid paying an
enforcement cost, but can result in receiving metapunishment. Vengefulness thus
requires a consideration of all these aspects.

First, in order to determine the unique effect of each individual action on agent
performance, we decompose the single combined total score (TS) of the original
model into distinct components, each reflecting the effect of different classes of ac-
tions. Therefore, each agent keeps track of four different utility values: the defection

score (DS) of an agent who defects, which is composed of the positive temptation
value and the negative punishment incurred, the punishment score (PS) incurred
by an agent who punishes or metapunishes another (as a result of an enforcement
cost), and the punishment omission score (POS) incurred by an agent who does
not punish another when it should, and is consequently metapunished. These are
combined into a total score (TS).

In this context, we can consider the algorithms used in our simulation, in two
phases, as represented in Algorithms 3 and 4, which are called by Algorithm 2.
(Note that we use subscripts to indicate the relevant agent only when needed).
More precisely, in Algorithm 3, each agent has various defection opportunities (o),
and defects if its boldness is greater than the probability of its defection being
seen (So). If an agent defects (Line 3), its DS increases by a temptation payoff,
T (Line 4), but it hurts all others in the population, whose scores decrease by H

(line 6), where H is a negative number that represents the hurt suffered. If an
agent cooperates, no scores change. DS thus determines whether an agent should
increase or decrease boldness in relation to its utility.

Each hurt agent can in turn observe the defection and react to it with punish-
ment probabilistically according to its vengefulness. Punishment and metapunish-
ment both have two-sided consequences: if an agent j sees agent i defect in one of
its opportunities (o) to do so, with probability So (Line 7), and decides to punish
it, which it does with probability Vj (Line 8), i incurs a punishment cost, P , to its
DS (Line 9), while the punishing agent incurs an enforcement cost, E, to its PS

(Line 10). If j does not punish i, and another agent k sees this in the same way
as previously (Line 13), and decides to metapunish (Line 14), then k incurs an
enforcement cost, E, to its PS, and j incurs a punishment cost P to its POS. Note
that both P and E are negative values, so they are added to the total to reflect
their effect.

In Axelrod’s original model, those agents that are one standard deviation or
more below the mean are eliminated and replaced in the subsequent population
generation with new agents following the strategy captured by the boldness and
vengefulness values of those agents that are one standard deviation or more above
the mean. Thus, poorly performing agents are replaced by those that perform
much better. In contrast, in our model, in Algorithm 4, we simply distinguish be-
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Algorithm 3: interact(T , H, P , E)

1. for each agent i do
2. for each opportunity to defect o do
3. if Bi > So then
4. DSi = DSi + T
5. for each agent j : j 6= i do
6. TSj = TSj +H
7. if see(j,i,So) then
8. if punish (j, i, Vj) then
9. DSi = DSi + P

10. PSj = PSj + E
11. else
12. for each agent k : k 6= i ∧ k 6= j do
13. if see(k,j,So) then
14. if punish (k, j, Vk) then
15. PSk = PSk + E
16. POSj = POSj + P

tween good and poor performance, with only agents that score below the mean
reconsidering their strategy. Thus, for each agent, we combine the various compo-
nent scores into a total, TS and, if the agent is performing poorly (in relation to
the average score, AvgS in Line 7), we reconsider its boldness and vengefulness.
Note that this average score is established through lines 1-5 in the algorithm.

Reinforcement learning algorithms typically involve an exploration parameter
that balances exploration and exploitation of behaviours, ensuring that agents try
every possible strategy that is available to them. To allow a degree of exploration in
our algorithm (similar to mutation in the original model’s evolutionary approach,
to provide comparability) and to enable an agent to step out of the learning trend
(captured by a learning parameter, or step, discussed below, δ), we adopt an
exploration rate, γ, which regulates adoption of random strategies from the available
strategies universe (Line 8). If an agent does not explore then, if defection is the
cause of a low score (Line 12), the agent decreases its boldness, and increases it
otherwise. Similarly, agents decrease their vengefulness if they find that the effect
of punishing is worse than the effect of not punishing (Line 22), and increase
vengefulness if the situation is reversed. As both PS and POS represent the result
of two mutually exclusive actions, their difference for a particular agent determines
the change to be applied to vengefulness. For example, if PS > POS, then
punishment has some value, and vengefulness should be increased.

Finally, given a decision on whether to modify an agent’s strategy, the degree
of the change, or learning step (δ), must also be considered. Since vengefulness
and boldness have eight possible values from 0

7 to 7
7 , we adopt the conservative

approach of increasing or decreasing by one level at each point, corresponding to
a learning rate of δ = 1

7 . Thus, an agent with boldness of 5
7 and vengefulness of

3
7 that decides to defect less and punish more will decrease its boldness to 4

7 and
increase its vengefulness to 4

7 .
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Algorithm 4: learn(γ, δ)

1. Temp = 0
2. for each agent i do
3. TSi = TSi + DSi + PSi + POSi

4. Temp = Temp + TSi

5. AvgS = Temp/no agents
6. for each agent i do
7. if TSi < AvgS then
8. if explore(γ) then
9. Bi = random()

10. Vi = random()
11. else
12. if DSi < 0 then
13. if Bi − δ < 0 then
14. Bi = 0
15. else
16. Bi = Bi − δ
17. else
18. if Bi + δ > 1 then
19. Bi = 1
20. else
21. Bi = Bi + δ
22. if PSi < POSi then
23. if Vi − δ < 0 then
24. Vi = 0
25. else
26. Vi = Vi − δ
27. else
28. if Vi + δ > 1 then
29. Vi = 1
30. else
31. Vi = Vi + δ

5.3 Evaluation

The algorithm is designed to mimic the behaviour of Axelrod’s evolutionary ap-
proach as much as possible, while relaxing Axelrod’s unrealistic assumptions. This
allows us to replicate Axelrod’s results and investigate his approach in more real-
istic problem domains, as shown in Figure 16. The parameter set-up used in all
experiments carried out in this section is shown in Table 4, with the addition of
parameters related to the BV Learning algorithm.

The analysis of a sample run reveals that agents with low vengefulness and
agents with high boldness start changing their strategies. Here, agents with high
boldness defect frequently, and are punished as a result, leading to a very low DS, in
turn causing these agents to decrease their boldness. Agents with low vengefulness
do not punish and are consequently frequently metapunished. As a result, their
PS is much better (lower in magnitude) than their POS, causing them to increase
their vengefulness. The population eventually converges to comprise only agents
with high vengefulness and low boldness. While noise is still introduced via the
exploration rate causing random strategy adoption, the learning capability enables
agents with such random strategies to adapt quickly to the trend of the population.

As before, we also consider the problem of ensuring that an original defection
is observed in order to provide a metapunishment. Introducing this constraint
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Table 4 Parameter initialisation

Term Description Value
i, j Individuals A numerical index to identify indi-

vidual agents
S Probability of a defection being

seen by any given individual
Uniform distribution from 0 to 1

Bi Boldness of i Uniform distribution from 0
7

to 7
7

Vi Vengefulness of i Uniform distribution from 0
7

to 7
7

T Player’s temptation to defect +3
H Hurt suffered by others as a result

of an agent’s defection
−1

P Cost of being punished −9
E Enforcement cost, i.e. cost of ap-

plying punishment
−2

P ´ Cost of being punished for not pun-
ishing a defection

−9

E´ Cost of punishing someone for not
punishing a defection

−2

δ learning step 1
7

γ exploration rate 0.01
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Fig. 16 Strategy improvement (with γ = 0.01), 1,000,000 timesteps

into our new algorithm, we ran experiments over different periods, with results
indicating that norm establishment is robust in all runs. An example run for
1,000,000 timesteps is shown in Figure 17. This is because agents that use this
new learning algorithm only change their strategy incrementally without wholesale
change at any single point. The effect of a mutant with low vengefulness is not
significant since, while the mutant might survive for a short period and cause some
agents to change their vengefulness, any such change will be slight. It thus does
not prevent such agents from detecting the mutant subsequently, in turn causing
the mutant to increase its vengefulness.

Some work has already explored the use of learning in the context of distributed
(non-centralised) punishment where agents are bold and vengeful at the same
time [41]. This is interesting because it shows that punishment does not entail norm
emergence (in the sense of stable collective behaviour coherent with punishments)
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Fig. 17 Strategy improvement with defection observation constraint (with γ = 0.01),
1,000,000 timesteps

even when it is strongly applied. In addition, together with later work that also
considers vicarious reinforcement [40], by which agents observe the behaviour of
others in response to rewards, for example, we can see a different perspective on
some of the same techniques. This vicarious learning of new strategies by which
agents adopt the strategy of better performing agents has been studied (for the
legal domain) where, if combined with reinforcement learning, it tends to increase
the speed of convergence so that agents quickly adopt the most useful behaviours.
Moreover it is not clear that this necessarily supports norm establishment, but this
is a combination of techniques that we have not explored since, in our model it has
not proven necessary to combine them. Nevertheless, this could provide a useful
avenue for future investigation. More generally, while interesting and relevant to
the larger questions surrounding learning in the context of norm emergence, the
underlying model and assumptions in these works are rather different to our own,
in which we have sought to retain some degree of faithfulness to Axelrod’s original
intent, with incremental deviations to better ensure comparability.

6 Conclusion

Axelrod’s original work suggested that without metanorms, whether or not laws
emerge depends on the particular social composition of the initial group of agents
in terms of their boldness and vengefulness. His introduction of metanorms was
aimed at addressing this, enabling societies to guard against normative collapse
and seeing norms emerge from the interactions of the individuals within those
societies. In the context of his model, in which these individuals are characterised
by vengefulness and boldness, this brings about a situation tending to low boldness
and high vengefulness, but with scenarios in which there is susceptibility to the
arrival of a few bold individuals that can bring about norm collapse. While real
societies with metanorms of this sort are rare, compliance (and playing a role in
ensuring compliance) is often seen as a duty. In a low vengefulness society citizens
prefer to discharge this duty by paying someone else to enforce the laws: this is
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cheaper and easier and more congenial, and it spreads the risk of incurring costs
of punishing. In real societies, we thus see the emergence of a social contract with
a central enforcement paid for from a collective levy (initially subscription for this
specific purpose, but as the functions of the state increase, taxation). This leads
to the development of a central authority and the rule of law, but this is difficult
to bring about in computational societies.

Thus, in computational systems of self-interested autonomous agents we often
need to establish cooperative norms to ensure the desired functionality without
this centralisation. Axelrod’s work on norm emergence gives valuable insight into
the mechanisms and conditions in which such norms may be established. However,
there are two major limitations. First, as we have shown, and explained in detail,
norms collapse even in the metanorms game for extended runs. Second, the model
suffers from limitations relating to assumptions of omniscience. In response, this
paper has: (i) provided an in-depth analysis of Axelrod’s results, revealing the
effects of mutation and reproduction; (ii) investigated those aspects of Axelrod’s
model that are unreasonable in real-world domains; and (iii) proposed BV learning

as an alternative mechanism for norm establishment that avoids these limitations.
More specifically, we replaced the evolutionary approach with a learning in-

terpretation in which, rather than remove and replicate agents, we allow them to
learn from others. Two techniques were considered: copying from a single agent
and copying from a group. The former suffers the same problems of long term norm
collapse associated with Axelrod’s approach but, by avoiding strategies that only
perform well in restricted settings, the latter addresses the problems and brings
about norm establishment. In addition, we addressed Axelrod’s assumption of om-
niscience, in which agents considering metapunishment are not explicitly required
to see the original defection. By doing so, however, the metapunishment activity
in the population, for stabilising an established norm, decreases and leads to norm
collapse.

Since learning strategies from others (either individuals or groups) is unable to
establish norms for cooperation (and is, in addition, unrealistic since it assumes
that agent strategies are not private), we have developed an alternative, BV learn-

ing, in which agents learn from their own experiences. Through this approach we
have shown that not only it is possible to avoid the unrealistic assumption of
knowledge of others’ strategies, but also that by enabling individuals to incremen-
tally change their strategies we can avoid norm collapse, even with observation
constraints on metapunishment.

Of course, this model remains a simple one that is still constrained to limited
underlying structures. Our aim is to focus on applying the model to interaction
networks in order to analyse how different network structures can impact on the
achievement of norm emergence. In particular, our current model is limited in that
the algorithm relies on agents comparing their own score to the average score of
all other agents to determine if learning is warranted. This constrains our ability
to move towards making Axelrod’s model more suitable for real-world distributed
systems and, in consequence, future work aims to enable agents to estimate their
learning needs based on their own, individual, experience by monitoring their past
performance. Moreover, we also seek to investigate the possibility of integrating
dynamic punishments, rather than the current static ones (that are fixed regardless
of what has happened), by which agents can modify the punishments they impose
on others according to available information about the severity of violation, or
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according to whether the violating agent is a repeat offender, and if so, how many
times.

There is also another interesting characteristic of this work. The scenarios
discussed in the paper consider some actions that can be seen as stochastically
dependent. In this respect, defecting is largely dependent on the probability of
being seen, and the lower this probability, the greater the possibility that an agent
will defect if it has sufficient boldness. Similarly, the actions of punishment and
metapunishment are stochastically dependent on the probability of being seen,
whereby an agent A can only punish or metapunish another agent B if it ob-
serves the defection of B, and it is sufficiently vengeful. An interesting avenue to
explore, therefore, could be to provide a more detailed and considered analysis
of the correlations here, but this is outside the scope of the current work in this
paper.
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