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Abstract. Abstract Argumentation Frameworks (AFs) provide a fruitful basis for
exploring issues of defeasible reasoning. Their power largely derives from the ab-
stract nature of the arguments within the framework, where arguments are atomic
nodes in an undifferentiated relation of attack. This abstraction conceals differ-
ent conceptions of argument, and concrete instantiations encounter difficulties as
a result of conflating these conceptions. We distinguish three distinct senses of
the term. We provide an approach to instantiating AF in which the nodes are re-
stricted to literals and rules, encoding the underlying theory directly. Arguments,
in each of the three senses, then emerge from this framework as distinctive struc-
tures of nodes and paths. Our framework retains the theoretical and computational
benefits of an abstract AF, while keeping notions distinct which are conflated in
other approaches to instantiation.

1 Introduction

Abstract Argumentation Frameworks (AFs) ([1,2,3], among others) provide a fruitful
basis for exploring issues of defeasible reasoning.3 Their power largely derives from
the abstract nature of the arguments within the framework, where arguments are atomic
nodes in an undifferentiated relation of attack; such AFs provide a very clean accept-
ability semantics, e.g. [5].

While abstract approaches facilitate the study of arguments and the relations be-
tween them, it is necessary to instantiate arguments to apply the theory. In instantiated
argumentation, arguments are premises and rules from which conclusions are derived.
The objective of such instantiated argumentation is to be able to reason about incon-
sistency of a knowledge base (KB) and derive consistent subsets of the KB. Meth-
ods for instantiation have been proposed which combine AFs with Logic Programs
[2,6,7,3,8,9]. Such systems generally have three steps as in Figure 1 (from [10]), though
for this paper we focus on the formalisation of ASPIC+ [8]. We start with an inconsis-
tent knowledge base (KB) comprised of facts and rules, where the rules typically may
include both strict (SI) and defeasible (DI) inference rules. In Step 1, we construct argu-
ments (nodes) and attacks (arcs) from this KB, resulting in an AF; formalisations differ

3 Corresponding author: Adam Wyner. This paper is a revision of an unpublished paper [4].
Thanks to Federico Cerutti for comments. Errors and misunderstandings rest with the authors.



in just how arguments are constructed from the KB and how attacks between arguments
are determined. In Step 2, we evaluate the AF according to a variety of semantics, re-
sulting in extensions (sets) of arguments. In Step 3, we extract the conclusions from
the arguments, resulting in extensions of conclusions. Thus, from a KB that is initially
inconsistent (or derives inconsistency), we can nonetheless identify consistent sets of
propositions.

Knowledge Base Extensions of 
Arguments

Extensions of 
Conclusions

Step 1:  construct 
arguments and attacks

Argumentation 
Framework

Step 2:  identify sets of 
accepted arguments

Step 3:  identify sets of 
accepted conclusions

Fig. 1. Three Steps of Argumentation

While such an approach to instantiated argumentation is attractive, it is not with-
out issues. We discuss these briefly by way of motivation, then develop them over the
course of the paper. Arguments in ASPIC+ are constructed from the KB as premises
and a rule from which a conclusion is inferred; they may be compounds of strict and
defeasible subarguments [8]. Thus, many arguments with some of the same elements of
the KB may be constructed. An argument may attack a subargument of another argu-
ment. Successful attacks (defeat) are defined relative to a preference ordering amongst
the arguments and used to determine AF extensions. In these respects, ASPIC+ differs
from [1], where arguments are atomic, there is a uniform attack relation between ar-
guments, and a preference ordering plays no role in determining successful attack. As
well, the use of subarguments and attacks between arguments and subarguments gives
rise to some descriptive unclarity in the commonly uses “senses” of the term “argu-
ment” [11]. More essentially, ASPIC+ must ensure that over the course of the three
steps, the rationality postulates of direct consistency, closure, and indirect consistency
of [3] are satisfied. For ASPIC+ to satisfy the rationality postulates, auxiliary definitions
are required and only restricted rebut is available [8], though this seems limited [10].
Stepping back from the particulars of ASPIC+, there is a general question of whether
all three steps are required to attain the goal of extensions of conclusions; after all, Step
1 “packs” a portion of the KB into arguments that have to be “unpacked” in Step 3. In
this way, reasoning with respect to the KB is handled indirectly, with arguments stand-
ing as intermediaries. Finally, we cannot reason with partial information in KBs, where
premises of a rule are missing, for no inference can be drawn, so no argument can be
constructed.

In this paper, we provide a novel, two step approach to instantiating the arguments
of an AF (see Figure 2), where arguments AF are atomic, there are no attacks on subar-
guments, and preferences are not used. It intuitively satisfies the rationality postulates
without restricted rebut while addressing a key, problematic example. The AF “wears
the logic on its sleave”: the KB, mainly classical logic with strict and defeasible modus
ponens to use the rules along with the principles of ex falso quodlibet and tertium non
datum, is directly constructed as an AF with literals and rules as the nodes of the AF, i.e.
the arguments of the AF, with arcs, i.e. the attacks of the AF, specified between them.



Once given the AF so constructed, evaluation proceeds as usual, though the extensions
correlate with models of consistent subsets of the KB. We show how we can represent
and reason with partial, incomplete, and inconsistent KBs. Our approach addresses a
benchmark example of the ASPIC approach. In addition, in our approach, the various
descriptive senses of argument such as found in ASPIC+ and elsewhere emerge from
the framework as distinct structures in an AF; keeping them distinct avoids the confu-
sions that can arise when these different senses are conflated. Our approach retains the
appeal of AFs, evaluates the AF with the well understood semantics, allows reasoning
with respect to knowledge bases, retains the appropriate level of abstraction of the nodes
of the AF, and reasons with partial KBs.

Knowledge Base Extensions of 
Arguments

Step 1:  construct 
arguments and attacks

Argumentation 
Framework

Step 2:  identify sets of 
accepted arguments

Fig. 2. Two Steps of Argumentation

The structure of the paper is as follows. In Section 2 we outline AFs [1] and charac-
terise the types of knowledge base we are working with. We then show how a knowledge
base is represented in a derived AF in Section 3. We illustrate the approach with basic
examples of the definitions, a simple example of a combination of strict and defeasible
rules, a partial KB, and the relationship of extensions to classical logic models. In Sec-
tion 4, we discuss the approach to KB instantiation of [3,8] along with a key example
and the problems it raises. We show how our approach addresses the problems of the
example. The different senses of argument are then characterised in terms of particu-
lar structures within the AF as presented in Section 5. We end in Section 6 with some
concluding remarks and future work.

2 Argumentation Frameworks

An Argumentation Framework AF is defined as follows [1].

Definition 1. An argumentation framework AF is a pair 〈LA,RA〉, where LA is a finite
set of arguments, {p1, p2, . . . , pn} and RA is an attack relation between elements of
LA. For 〈pi, pj〉 ∈ RA we say the argument pi attacks argument pj . We assume that no
object attacks itself.

The relevant auxiliary definitions are as follows, where S is a subset of LA:

Definition 2. We say that p ∈ LA is acceptable with respect to S if for every q ∈
LA that attacks p there is some r ∈ S that attacks q. A subset, S, is conflict-free
if no argument in S is attacked by any other argument in S. A conflict-free set S is
admissible if every p ∈ S is acceptable to S. A preferred extension is a maximal (w.r.t.



⊆) admissible set. The argument p ∈ LA is credulously accepted if it is in at least one
preferred extension, and sceptically accepted if it is in every preferred extension.

There are a variety of other semantics, e.g. grounded, stable, and others, but consid-
ering preferred extensions serves our purposes in this paper.

As we clarify the notion of argument itself and do not want to introduce pre-
sumptions about them, we sometimes prefer to refer to arguments as objects or graph-
theoretic nodes (denoted by LA) and their attack relations as arcs (denoted by RA).
Context makes it clear what is being referred to.

3 Representing a Theory as an AF

The approach has two basic parts (the presentation is a revision of [4]). In the first part,
we represent a Theory Base T , which represents the KB. Then, we construct an AF
from the KB, following Step 1 of Figure 2, where the nodes of an AF are labeled with
respect to the literals and inference rules of the Theory Base, while the attack relation
is partitioned with respect to the nodes. In the second part, we impose conditions on the
assertion of literals with respect to the AF. Following the theoretical presentation, we
provide basic examples, carrying out Step 2 of Figure 2 to evaluate an AF according to
Definitions 1 and 2.

3.1 Theory Base T

Definition 3. A Theory Base, T , comprises a pair (L,R) in which

L = {x1, . . . , xn} ∪ {¬x1, . . . ,¬xn}

is a set of literals over a set of propositional variables {x1, . . . , xn}. We use yi to de-
note an arbitrary literal from {xi,¬xi}.

We have a set of proper names of rules {r1, r2, . . . , rn}. Rules are either strict (r ∈
Rstr) or defeasible (r ∈ Rdfs), andRstr ∩Rdfs = ∅.R = Rstr ∪Rdfs where

R = {r1, r2, . . . , rn}

in which r ∈ R has a body, bd(r) ⊆ L, and a head, hd(r) ∈ L.

We refer to the literals in bd(r) as premises and the literal in hd(r) as the claim.
For easy reference to the “content” of the rule, we assume each rule has an asso-

ciated definite description as follows. For r ∈ Rstr, the definite description of r has
the form r : bd(r) → hd(r), where hd(r) ∈ L and bd(r) ⊆ L. Similarly, the definite
description for r ∈ Rdfs, has the form r : bd(r) ⇒ hd(r). Where a rule has an empty
body, bd(r) = ∅, we have r :→ hd(r) or r :⇒ hd(r), which are strict and defeasible
assertions, respectively. To refer distinctly to the set of rules with non-empty bodies and
those with empty bodies (assertions), we have R = TRules ∪ ARules, where TRules =
{r | r ∈ R ∧ bd(r) 6= ∅} and ARules = {r | r ∈ R ∧ bd(r) = ∅}.

We constrain a Theory Base, which we refer to as a Well-formed Theory.



Definition 4. A Well-formed Theory,W , is a Theory Base, T , abiding Constraints 1-4.

First, the relationship between literals of strict and defeasible rules is constrained:

Constraint 1 For Theory Base (L,R), ∀r ∈ Rstr, there is no rule, r’ ∈ Rdfs with
hd(r) = hd(r’) and bd(r) ⊆ bd(r’).

Furthermore, no literal and its negation can both be strictly asserted.

Constraint 2 For Theory Base (L,R), if r ∈ R, where r :→ hd(r), then r’ 6∈ R, where
r’ :→¬hd(r).

In addition, every literal appears in some rule.

Constraint 3 For Theory Base (L,R), if y ∈ L, then ∃ r ∈ R, y ∈ bd(r) ∨ y = hd(r).

Finally, every rule has a claim.

Constraint 4 For Theory Base (L,R), if r ∈ R, then ∃ y ∈ L, y = hd(r).

Semantically, a rule r ∈ Rstr represents the notion that hd(r) holds if all of the
literals in bd(r) simultaneously hold; with respect to the rule, we say the bd(r) strictly
implies the hd(r). We assume standard notions of truth and falsity of literals along with
the truth-tables of Propositional Logic for material implication which are models under
which the rule is true or false. Semantically, a rule r ∈ Rdfs represents the notion that
hd(r) “usually” holds if all of the literals in bd(r) simultaneously hold, but there are
circumstances where ¬hd(r) holds though all of the literals in bd(r) simultaneously
hold. With respect to the rule, we say the bd(r) defeasibly implies the hd(r).

While the clauses are similar to the Horn Clauses of logic programming, the head
literal can be in a positive or negative form. We only have classical negation, not nega-
tion as failure; we do not allow iterated negation. The rationale for this choice of clauses
is that it naturally supports our analysis of the senses of argument.

3.2 Deriving an AF from a Theory Base

A core element of our approach is the concept of the AF derived from a Theory Base.
The AF uses a set of labels for the nodes in the graph: {x1,. . .,xn} ∪ {¬x1,. . .,¬xn} ∪
{r1,. . .,rn} (or for clarity, the definite description of the rule name). Thus, we can see
how elements of a Theory Base, T , correspond to but are distinct from elements of the
derived AF, indexing the AF to the T .



Definition 5. Let T = (L,R) be a Theory Base with

L = {x1, . . . , xn} ∪ {¬x1, . . . ,¬xn}
R = Rstr ∪Rdfs

The derived framework from T , is the AF, 〈LA
T ,RA

T 〉 in which,

LA
T = { x, ¬x : x,¬x ∈ L}

∪ { r : bd(r)→ hd(r) : r ∈ Rstr}
∪ { r : bd(r)⇒ hd(r) : r ∈ Rdfs}

Furthermore,
∀x ∈ LA

T , x ∈ L, and
∀r ∈ LA

T , r ∈ R

In an AF, the nodes have no internal content.
The attack set RA

T comprises three disjoint sets which describe: attacks by nodes
labeled with names for literals on other nodes labeled with names for literals; attacks
by nodes labeled with names for literals on nodes labeled with names for rules; and
attacks by nodes labeled with names for rules on nodes labeled with names for literals.
We recall that yi ∈ {xi,¬xi} so that ¬yi is the complementary literal to yi.

Definition 6. In the AF 〈LA
T ,RA

T 〉,RA
T =RA

ll ∪RA
lr ∪RA

rl where:

RA
ll = {〈yi,¬yi〉, 〈¬yi, yi〉 : 1 ≤ i ≤ n

and yi,¬yi ∈ LA
T }

RA
lr = {〈¬yi, rj〉 : yi ∈ bd(rj) and ¬yi, rj ∈ LA

T }
∪ {〈¬yi, rj〉 : rj ∈ Rdfs and hd(rj) = yi
and ¬yi ∈ LA

T }
RA

rl = {〈rj ,¬yi〉 : hd(rj) = yi and ¬yi, rj ∈ LA
T }

The following hold for an AF derived from a T :

1. Each literal y in L of Theory Base T corresponds to a node labeled y in LA of the
derived AF; LA of the derived AF contains, in addition, the node labeled ¬y. Nodes
labeled for literals of opposite polarity are mutually attacking.

2. Each rule in r in R of a Theory Base T corresponds one-to-one to a node label r
in LA of the derived AF. Whereas a rule in R is true (or false) in the Theory Base,
in the derived AF we say it has been applied relative to the admissible set where
it appears and otherwise has not been applied. In the AF, a rule node is attacked
by the nodes which correspond to the negation of the body literals and, in addition,
attacks the node which corresponds to the negation of the head literal.

3. For strict rules, if a node which corresponds to the negation of a body literal of a
rule is in an admissible set, we say the rule node has not been applied relative to
that set. In this case, the node which corresponds to the head literal is only credu-
lously admissible. If all the nodes which correspond to the body literals are in an
admissible set, then the rule node has been applied and the node which corresponds
to head literal is admissible in that set.



4. For defeasible rules, if a node which corresponds to the negation of a body literal
or if the node which corresponds to the negation of the head literal of the rule is in
an admissible set, we say the rule node has not been applied relative to that set. In
both instances, the node corresponding to the literal attacks the rule node. Even if
all nodes which correspond to the body literals of a rule are in an admissible set,
the rule node or the node which corresponds to the head literal may not be in that
set, for they can be defeated.

We evaluate the derived AFs only following the definitions of extensions relative to
the standard AF 〈LA

T ,RA
T 〉; that is, while the partitions of nodes or arcs are important for

deriving the AF from T , they are ignored for the purposes of the standard AF evaluation,
so that we have a standard abstract framework. Thus, the fundamental semantics of
abstract AFs are maintained.

For our purposes and relative to our classical logic context, the set of extensions
provided by Dungian AFs must be filtered. In our approach, AFs are derived from a
Theory Base, and the resulting extensions are not homogeneous, for they may contain
both literals and rules. More importantly, we must ensure that the extensions also serve
to satisfy classical logic properties such as closure under strict implication. With these
points in mind, we have the following.

Constraint 5 Consider: a, an admissible set of the derived AF 〈LA
T ,RA

T 〉;A, the set of
admissible sets a; and Rstr ⊆ LA

T . For every r ∈ Rstr and every a ∈ A, if r ∈ a and
every bd(r) ∈ a , then hd(r) ∈ a.

Definition 7. An admissible set of the derived AF 〈LA
T ,RA

T 〉 is a Well-formed Admis-
sible Set (WFAS) iff it satisfies Constraint 5.

The implication is that relative to WFASs, the hd(r) of a rule r is sceptically accept-
able relative to the derived AF. On the other hand, for r′ ∈ Rdfs, hd(r′) is credulously
acceptable relative to the derived AF. We emphasise that we change nothing about Dun-
gian AFs or evaluations, but we do provide a justification to select amongst the resulting
extensions. These points are illustrated with respect to Figure 6.

To this point, we have Theory Bases, corresponding derived AFs, and a constraint
on extensions. Fundamental observations of our approach are:

Observation 1 For the literals and the rules which are true of every model for the
Theory Base T , the corresponding nodes of the WFAS extensions of the derived AF are
sceptically acceptable, otherwise they are credulously acceptable.

Observation 2 For the literals and the rules which are false in any model of a Theory
Base T , the corresponding nodes of the WFAS extensions of the derived AF 〈LA

T ,RA
T 〉

are not an element of any admissible set.

Both of these follow by the evaluation of a derived framework 〈LA
T ,RA

T 〉 relative to
a T . Thus, the derived AF is information-preserving with respect to the Theory Base.
The derived AF is an instantiation of the corresponding Theory Base, and the preferred
extensions of the AF correspond to models of the Theory Base.



3.3 Examples of the Definitions

We now give some examples of the basic definitions, discuss defeasibility, provide a
simple combination of strict and defeasible rules, illustrate reasoning with an assertion
in a partial KB, and comment on the connection between the extensions and the clas-
sical models. In Section 4, we give a more complex, problematic example from the
literature is used to illustrate the advantages of this approach over an ASPIC-type ap-
proach. First, we provide a Theory Base T1 with just one strict rule, the derived AF, a
graphic representation of the derived AF, and then the preferred extensions. Since it is
always clear in context where we have literals and rules (in a Theory Base) and where
we have labels (in an AF), we use one typographic form without confusion.

Example 1. Let T1 be the pair with (L1,R1), where

L1 = {x1, x2} ∪ {¬x1,¬x2}
R1 = {r1}, where r1 has rule name r1 :x1→x2

The derived framework from T1 is 〈LA
T1 ,RA

T1〉 in which,

LA
T1 = {x1, x2} ∪ {¬x1,¬x2} ∪ {r1}

and in whichRA
T1 comprises the union of three disjoint sets:

RA
ll = {〈x1,¬x1〉,〈¬x1,x1〉,〈x2,¬x2〉,〈¬x2,x2〉}
RA

lr = {〈¬x1,r1〉}
RA

rl = {〈r1,¬x2〉}

We graphically represent 〈LA
T1 ,RA

T1〉 as in Figure 3.

x1 ¬x1 r1 ¬x2 x2

Fig. 3. AF of x1 → x2

In 〈LA
T1 ,RA

T1〉, the preferred extensions are:

{x1, r1, x2}, {¬x1, x2}, {¬x1,¬x2}

Each of the nodes is credulously accepted and none is sceptically accepted. The
interpretation of the presence of a rule node in a preferred extension is that the rule has
been applied. Moreover, the rule is not defeated in the sense that where the premises
hold, the conclusion must hold. No admissible set contains both x1 and ¬x2: if x1 is
in the set, then r1 is in the set; r1 attacks ¬x2, leaving x2 in the set; if ¬x2 is in the
set, then r1 must be attacked; r1 can only be attacked by ¬x1, which also attacks x1,
leaving ¬x1 in the set.



There are three related points about the extensions. First, we can provide extensions
in an AF with respect to a rule per se; that is, it is not necessary to provide asserted
premises along with the rule from which we draw the inferred conclusion. By the same
token, we can provide extensions where only some of the premises are asserted, e.g.
the KB has partial, incomplete information of what holds. Suppose a Theory Base with
only the following two rules:→ x1 and r4:x1, x3 → x2. The extensions are:

{x1, x3, r1, x2}, {x1,¬x3, x2}, {x1,¬x3,¬x2}

In this respect, our approach differs markedly from approaches to instantiated AFs that
rely on KBs where inferences are essential to the construction of well-formed argu-
ments. Third, we see that the preferred extensions with respect to an AF correlate with
the models of the Theory Base; in this respect, the AF and Step 2 of Figure 2 can be
viewed as a means to build models for the Theory Base. These three points apply to
strict and defeasible rules alike.

The following is an example of a defeasible rule.

Example 2. Let T2 be the pair with (L2,R2), where

L2 = {x1, x2} ∪ {¬x1,¬x2}
R2 = {r2}, where r2 has rule name r2 :x1⇒x2

We graphically represent the derived AF 〈LA
T2 ,RA

T2〉 as: In 〈LA
T2 ,RA

T2〉, the preferred

x1 ¬x1 r2 ¬x2 x2

Fig. 4. AF of x1 ⇒ x2

extensions are as follows, where we see that each of the nodes is credulously accepted
and none is sceptically accepted.

{x1, r2, x2}, {¬x1, x2}, {¬x1,¬x2}, {x1,¬x2}

The first three preferred extensions are similar to SI. In the last extension, ¬x2 itself
attacks the rule node r2; consequently, either x1 or ¬x1 are in a preferred extension
along with ¬x2. This contrasts with the preferred extension of a derived AF with just
a SI. While defeasible implication might be construed as the trivial logical tautology
[x1 → [x2 ∨ ¬x2]], here we see a key difference, which highlights the utility of some
semantic content to the extensions. To make use of a defeasible rule, one must provide
the means to choose between extensions, for example, by selecting the extension which
maximises the number of applicable defeasible rules, or which uses some notion of
priority or entrenchment on the rules. Different ways of making this choice give rise
to different varieties of non-monotonic logic [12,13]). Circumscription [14] could be
used by including additional designated nodes such as ab(r1) which attack the rule r1



and attack and are attacked by notab(r1). We then choose the extension containing the
most notab(r1) nodes. Using DeLP defeaters [6], we can specify circumstances where
the rule is not applied.

In our third example, we show the interaction of defeasible and strict rules, which
was the root of several of the problems identified in [3].

Example 3. Suppose T3 with rules r2: x1 ⇒ x2 and r3: x2 → x3 which has derived AF
〈LA
T3 ,RA

T3〉 graphically represented as in Figure 5.

x1 ¬x1 r2 ¬x2 x2

x3 ¬x3 r3

Fig. 5. AF derived from T with x1 ⇒ x2 and x2 → x3

AF 〈LA
T3 ,RA

T3〉 has the following six preferred extensions:

1.{x1, r2, x2, r3, x3} 4.{¬x1, x2, r3, x3}
2.{x1,¬x2, x3} 5.{¬x1,¬x2, x3}
3.{x1,¬x2,¬x3} 6.{¬x1,¬x2,¬x3}

Given a strict assertion that x1, we would normally choose the preferred extension (1)
from among (1)-(3), maximising the number of defeasible rules. Thus, normally, we say
that x1 implies x3. However, we are not obliged to make this choice. In particular, if
¬x2 is strictly asserted, r2 and r3 are inapplicable, and x3 is credulously acceptable ((2)
and (3)); thus, in this AF, a strict assertion of x1 does not imply that x3 necessarily holds
as well. Where the claim of a defeasible rule is a premise of a strict rule (x2), we cannot
use the defeasibly inferred claim to draw strict inferences about the claim of the strict
rule (x3). Similarly, the defeasible rule is inapplicable where either the claim of the rule
(¬x2) is false ((2), (3), (5), and (6)) or the claim of the strict rule (¬x3) is false ((3) and
(6)). Whereas in e.g. [12], the defeasible rule is inapplicable only where the claim of
the defeasible rule itself is asserted to be false, here the falsity of any consequences of
that claim, however remote, will also block the application of the rule.

4 Comparison to ASPIC with a Base-case Example

In this section, we briefly review the key components of the benchmark argument in-
stantiation method of [3,8], compare it to our proposal, provide one of the key examples
which showed a flaw in the instantiation method as well as motivated the Rationality
Postulates. We then show how such problems do not arise in our approach.

In constructing arguments, several functions are introduced: Prem is the set of
premisese of the argument, Conc returns the last conclusion of an argument, Sub re-
turns all the subarguments of an argument, DefRules returns all the defeasible rules



used in an argument, and TopRule returns the last inference rule used in the argument.
Theory Bases T are comprised of strict and defeasible implications. Arguments have
a deductive form and are constructed recursively from the rules of the Theory Base.
To distinguish strict or defeasible rules from the deductive form of arguments, we use
short arrows, → and ⇒, for the former and long arrows, −→ and =⇒ for the latter.
For brevity, we only provide the clauses for the construction of strict arguments as the
clauses for the construction of defeasible arguments are analogous (including among
the DefRules the TopRule(A) that is defeasible) [8].

Definition 8. (Argument) Suppose a Theory Base, T , with strict and defeasible rules.
An argument A is:
A1, . . ., An −→ ψ if A1, . . . , An, with n≥ 0, are arguments such that there exists a strict
rule Conc(A1), . . ., Conc(An)→ ψ.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An)
TopRule(A) = Conc(A1), . . ., Conc(An)→ ψ

Consider a Theory Base with strict and defeasible rules from which we construct
arguments according to this definition (see Example 5 [3]).

Example 4. Let T4 be a Theory Base with the following rules:
r21:→ x1; r22:→ x2; r23:→ x3; r24: x4, x5→¬x3; r25: x1⇒ x4; r26: x2⇒ x5.
We construct the following arguments:
A1: [[→ x1]⇒ x4]; A2: [[→ x2]⇒ x5]; A3: [→ x3];
A4: [→ x1]; A5: [→ x2];
A6: [[→ x1]⇒ x4], [[→ x2]⇒ x5]→¬x3.

We see clearly that arguments can have subarguments: A6 has a subargument A1, and
A1 has a subargument A4.

Several additional elements are needed to define justified conclusions. An argument
is strict if it has no defeasible subargument, otherwise it is defeasible (non-strict). An
argument Ai rebuts an argument Aj where the conclusion of some subargument of Ai is
the negation of the conclusion of some non-strict subargument of Aj ; rebuttal is one way
an argument defeats another argument. Admissible argument orderings specify that a
strict argument (containing premises that are axioms and rules that are strict) can defeat
a defeasible argument, but not vice versa. Moreover, one argument can defeat another
argument with respect to subarguments; in effect, defeat of a part is inherited as defeat
of a whole. With respect to our example, the undefeated arguments are A1, A2, A3,
A4, and A5. A3, which is a strict argument, defeats A6 but not vice versa since A6 is a
non-strict argument in virtue of having a defeasible subargument. Given the arguments
and defeat relation between them, we can provide an AF and the different extensions.
The Output of an AF, understood as the justified conclusions of the AF, is given as the
sceptically accepted conclusions of the arguments of the AF.

With respect to the example, [3] claim that the justified conclusions are x1, x2, x3,
x4, and x5 since these are all conclusions of arguments which are not attacked (it ap-
pears not to be an example analysed in [8]). However, ¬x3 is not a justified conclusion,



even though it is the conclusion of a strict rule in which all the premises are justified
conclusions. This is so since the argument A6 of which ¬x3 is the conclusion is de-
feated by but does not defeat A3 because A6 has a subargument which is a non-strict
argument (namely A1 or A2), so making A6 a non-strict argument, while A3 is a strict
argument. Yet, given the antecedents of the strict rule are justified conclusions, it would
seem intuitive that the claim of a strict rule should also be a justified conclusion. This,
they claim, shows that justified conclusions are not closed under strict rules or could
even be inconsistent.

In our view, these notions of argument and defeat are problematic departures from
[1], which has no notion of subargument or of defeat in terms of subarguments. In ad-
dition, they give rise to the problems with justified conclusions: what is a strict rule in
the Theory Base can appear in the AF as a non-strict argument in virtue of subargu-
ments; what cannot be false in the Theory Base without contradiction is defeated in the
AF; thus, what “ought” to have been a justified conclusion is not. In addition, the no-
tion of justified conclusion leads to some confusion: on the one hand, it only holds for
sceptically accepted arguments, which presumably implies that the propositions which
constitute them are sceptically accepted; on the other hand, there is no reason to expect
that ¬x3 is sceptically accepted, given that it only follows from defeasible antecedents.
Clearly the anomaly arises because of the way that arguments can have defeasible sub-
arguments, that the defeat of the whole can be determined by the defeat of a part, and
that justified conclusions depend on these notions.

In our approach, the results are straightforward and without anomaly; we do not
make use of arguments with subarguments, inheritance of defeasiblity, or problematic
notions of justified conclusions. We consider a key example from [3] as the two other
problematic examples cited in [3] follow suit. The Theory Base of Example 4 appears
as in Figure 6, for which all the preferred extensions for the AF are given. For clarity
and discussion, we include undefeated strict and defeasible rules.

x1 x4¬x4¬x1 r25

r21

¬x3 x3 r24r23

x2 x5¬x5¬x2 r26

r22

Fig. 6. Graph of Problem Example



1.{x1, r21, r25, x2, r22, x3, x4, r25,¬x5}
2.{x1, r21, r23, x2, r22, x3,¬x4, x5, r26}
3.{x1, r21, r23, x2, r22, x3,¬x4,¬x5}
4.{x1, r21, r23, r25, x2, r22, r24, r26, x4, x5}

Notice that extensions (1)-(3) are unproblematic with respect to consistency and
closure. They also satisfy Definition 7, so are the relevant extensions to consider. In
contrast, extension (4) is problematic in an argumentation theory without Definition 7
since the conclusions of strict rules are missing, thus violating closure. Yet, (4) does
not satisfy Constraint 5: the premises and rule nodes of strict rules are present, but the
conclusions are not. With respect to those extensions that satisfy Definition 7, x1, x2,
x3 are all sceptically accepted, while x4 and x5 are credulously accepted. ¬x3 is not
credulously accepted given that x3 is strictly asserted. Note that every literal which is
strictly asserted is sceptically acceptable. Therefore, the rule node r24 must be defeated
where one or both of ¬x4 and ¬x5 hold. There is, in our view, no reason to expect ¬x3
to hold in any extension since we have no preferred extension in which both x4 and x5
are justified conclusions. Given admissible sets, we satisfy the consistency rationality
postulate; closure, which is relevant only of strict rules where all the body literals hold,
is not relevant to this problem. Moreover, we can provide machinery to meet Definition
7 in that we can examine the extensions relative to the rules of the AF to determine if
Constraint 5 is satisfied. The analysis also corresponds well with model-building for
classical logic.

We have considered a widely adopted approach to instantiating Theory Bases in AFs
[8] along with the problems that arise. There are other approaches to instantiating a KB
in an AF that may avoid problems with the Rationality Postulates such as Assumption-
based [2] or Logic-based [7] argumentation. We leave further comparison and contrast
to future work. However, these approaches, like the ASPIC approach, follow the three
step structure of Figure 1.

5 Three Senses of Argument

In this section, we discuss the auxiliary point about the various conflated senses of
the term argument as found in the literature. We show how these senses can be formally
articulated in our framework as distinct structures [4] . The term argument is ambiguous
[11]. It can mean the reasons for a claim given in one step (an Argument); or it can mean
a train of reasoning leading towards a claim (a Case), that is, a set of linked Arguments;
or it can be taken as reasons for and against a claim (a Debate), that is a Case for the
claim and a Case against the claim. An additional structure is where the intermediate
claims of the Debate are also points of dispute, but we will not consider this further here.
In the following, we formally define these three senses of argument as structures in the
argumentation framework, starting with Arguments, then providing Cases, and finally
Debates. We provide a graphic, examples, and then definitions for the three different
kinds of attack: Rebuttal, Undercut, and Premise Defeat.

We provide a recursive, pointwise definition of a graph which is constructed relative
to an AF. Since the sets are constructed relative to an AF, we can infer the attack relations
which hold among them. The different senses of argument are defined as subgraphs.



Definition 9. Suppose there is a derived AF = 〈LA,RA〉, where y and z are arbi-
trary literals from LA and r and r’ are arbitrary rules from LA. F abbreviates {r :
r added in ρ2k−1}.

ρ0(y) = {y,¬y}
ρ1(y) = ρ0(y) ∪

⋃
{r:hd(r)=y}{r}

ρ2k(y) = ρ2k−1(y) ∪
⋃
{r∈F}{z,¬z :z ∈bd(r)}

ρ2k+1(y) = ρ2k(y)∪
⋃
{r∈F}{r′ :z ∈hd(r′)∩bd(r)}

ρ2k+2(y) = ρk(y)

ρ0(y) provides the basis for the construction, which are nodes labeled by literals in an
AF that attack one another with respect to the node labeled y. At ρ1(y), we add to the
previous set of rules which have y as their head; depending on whether we have a strict
or a defeasible rule, the rule node attacks and may be attacked by the literal which is
the negation of the head. At ρ2k(y), we add the positive and negative literals relative to
the body of the rules; each of the negative literals associated with literals of the body
of the rule attacks the rule node. At ρ2k+1(y), we link rules: the literals in the body of
a rule added at ρ1(y) serve as the heads of other rules. At ρ2k+2(y), we have iterated
the steps ρ1(y)-ρ2k+1(y) until there is no further change. Constructions for negations
of literals are similarly defined.

Supposing a derived AF, ArgS1 and ArgS2 are subgraphs of that AF. An Argument
for y, ArgS1(y), is defined at ρ2k(y): it is the nodes and their attacks defined at this
step relative to the derived AF. A graph defined as ArgS1(y) can only have one rule in
the set of nodes, namely a rule of the Theory Base with y as head (other rules with
y as head will give rise to distinct arguments for y in sense 1). In ArgS1(y), y is the
claim of ArgS1(y) and the literals in the body of the rule are the premises. A Case
for y, ArgS2(y), is defined where ρk+1(y) = ρk(y). ArgS2(y) is comprised of ArgS1(y)
along with graphs of form ArgS1 for the literals that are bodies of every rule constructed
relative to ArgS1(y). In other words, a Case links together all those graphs of Arguments
for a particular y where the claim of one rule is the premise of another rule.

Definition 10. Suppose an AF derived from Theory Base T , 〈LA
T ,RA

T 〉. We define ArgS1-
ArgS2 as subgraphs of a derived AF:

An Argument for y is ArgS1(y) = 〈LA
S1y

, RA
S1y
〉,

where LA
S1y
⊆ LA

T andRA
S1y
⊆ RA

T ,

∀r, r′ ∈ LA
S1y

r = r′, is a subgraph at ρ2k(y).

A Case for y is ArgS2(y) = 〈LA
S2y

, RA
S2y
〉,

where LA
S2y
⊆ LA

T andRA
S2y
⊆ RA

T , is a subgraph

at ρk+1(y) = rhok(y).

Where we have ArgS2(y) and ArgS2(¬y), we have a Single-point Debate about y,
ArgS3(y). The two graphs share only the literals {y, ¬y}, and no other rules or literals.



Definition 11. Suppose two derived AFs, ArgS2(y) = 〈LA
S2¬y,RA

S2¬y〉 and ArgS2(y) =
〈LA

S2y
, RA

S2y
〉:

A Single− point Debate about y is
ArgS3(y) = 〈LA

S2y
∪ LA

S2¬y,RA
S2y
∪RA

S2¬y〉,
where LA

S2¬y ∩ LA
S2y

= {y,¬y}
andRA

S2¬y ∩RA
S2y

= ∅.

Clearly a debate with subsidiary debates can be constructed to argue pro and con about
other literals in the base debate; we start with a ArgS2(y), then add further Single-point
Debates about some literal in the graph other than y.

Example 5 shows the senses in a derived AF only with SI rules since they restrict
the available preferred extensions.

Example 5. Suppose a Theory Base comprised of the rules (and related literals): r7 :
x6 → ¬x8, r10 : x5, x7 → x8, r11 : ¬x3, x4 → x7. Figure 7 graphically represents the
various senses of argument in an AF derived from this Theory Base.

In Figure 7, we have three subgraphs which represent an Argument; each Argument
is derived from the corresponding rule of the Theory Base. For example ArgS1(¬x8),
the argument for ¬x8, is the graph comprised of nodes {¬x8, x8, r7,¬x6, x6} with
the relations among them as given; the graph is derived from the rule of the Theory
Base which corresponds to r7 : x6 → ¬x8. The other two rules of the Theory Base
are also represented in the graph as subgraphs that represent an Argument. Figure 7
presents two Cases. The Case ArgS2(x8) is derived from the following rules: r10 :
x5, x7 → x8, r11 : ¬x3, x4 → x7. We see how the Arguments in the Case are linked;
for instance, the graph of r11 : ¬x3, x4 → x7 has as claim x7, which is the premise
of r10 : x5, x7 → x8. The Case ArgS2(¬x8) is derived from the following rule (recall
that an Argument can also be a Case): r7 : x6 → ¬x8. The Single-point Debate for x8,
ArgS3(x8), is comprised of the Cases ArgS2(x8) and ArgS2(¬x8).

r10 ¬x8

¬x5

x5

¬x7

x3¬x3 x4¬x4

x6

¬x6x8

r11

r7

x7

Fig. 7. Arguments, Cases, and Single-point Debates

In [4], there are some auxiliary definitions for rebuttal, premise defeat, and under-
cutting in this framework. However, space precludes presenting them here.



6 Concluding Remarks and Future Work

We have discussed in some detail comparison on one developed approach to argument
instantiation [8] and noted other that remain to be compared in depth [7,2] though they
share substantive similarities in terms of the Three Steps of Figure 1. Here we com-
ment briefly on the somewhat different approach of Abstract Dialectical Frameworks
(ADF) [9], which is presented as a generalisation of Dungian AFs but also as a means to
represent instantiated arguments, e.g. logic programs [9]. Broadly, we may distinguish
between approaches based on [1] that make use of nodes (arguments) and arcs (attacks)
alone to determine extensions and those which use auxiliary conditions to specify ex-
tensions with respect to successful attacks such as preferences [8] or values [15]. The
approach of [9] is a generalisation of the latter approach: in addition to nodes (which can
be statements or literals) and links (generalised from arcs as attacks), there are accep-
tance conditions, which are functions for each statement from its parents (those nodes in
a single link) to {in,out}. Given this generic approach to acceptance conditions, many
complex aspects of argumentation can be accommodated. On the other hand, this em-
phasises reasoning with the (presumably correct) acceptance conditions rather than on
the graph per se, which was one of the main advantages of the Dungian abstraction. For
example, ADF remains to demonstrate that it abides by the Rationality Postulates or
can generically reconstruct KBs. It adds the complexity of the acceptance conditions to
the existing complexity of the graph [9]. On the other hand, our approach is compatible
with ADF in the sense that given an AF derived from a KB, we can add auxiliary ADF
acceptance conditions for other aspects of reasoning. In future, we plan to examine
the advantages and disadvantages of the more specific approach to KB representation
proposed here in comparsion with the more generic appoach of [9].

We have presented a method of instantiating a Theory Base which contains strict
and defeasible rules in a Dung-style abstract argumentation framework, building on
and refining [4]. The Theory Base is directly represented in the framework, and the
conclusions of the Theory Base can be computed as extensions of that framework. Our
method avoids the logic dependent step of generating arguments from the Theory Base
and then organising them in a framework for evaluation. It does not introduce prefer-
ences or auxiliary means to determine successful arguments. The sceptically acceptable
arguments of the framework are the consequences of the Theory Base under classical
logic, assuming that the Theory Base is consistent: the consequences under a variety
of non-monotonic logics can be identified as credulously acceptable arguments, with
different non-monotonic logics corresponding to different ways of choosing between
preferred extensions. We believe that this method provides a very clear way of instanti-
ating Theory Bases as abstract argumentation frameworks. By separating the notion of
a node from the ambiguous notion of argument, we have clear criteria for what consti-
tutes a node in the framework. We can explain our reasoning in terms of arguments of
the appropriate granularity. In addition, the variety of senses of “argument” emerge as
structures within the framework, and can be used to explain the consequences.

In future work we will demonstrate the formal properties of our approach. In addi-
tion, we will further compare and contrast approaches to Theory Base instantiation in
AFs. An important avenue of exploration and development is to add values, preferences,
and weights to the KB, which then appear in the graph. In a different vein, we will ex-



plore the potential for improved explanation offered by our distinction between various
senses of the term “argument”.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2) (1995) 321–
358

2. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence 93 (1997) 63–101

3. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial
Intelligence 171(5-6) (2007) 286–310

4. Wyner, A., Bench-Capon, T., Dunne, P.: Instantiating knowledge bases in abstract argumen-
tation frameworks. In: Proceedings of The Uses of Computational Argumentation. AAAI
Fall Symposium (2009)

5. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artificial Intelli-
gence 141(1) (2002) 187–203

6. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. The-
ory and Practice of Logic Programming 4(1) (2004) 95–137

7. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
8. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument

and Computation 1(2) (2010) 93–124
9. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proceedings of the Twelfth

International Conference on the Principles of Knowledge Represetnation and Reasoning (KR
2010). (2010) 102–211

10. Caminada, M., Wu, Y.: On the limitations of abstract argumentation. In Causmaecker,
P.D., Maervoet, J., Messelis, T., Verbeeck, K., Vermeulen, T., eds.: Proceedings of the 23rd
Benelux Conference on Artificial Intelligence, Ghent, Belgium (November 2011) 59–66

11. Wyner, A., Bench-Capon, T., Atkinson, K.: Three senses of “argument”. In Sartor, G.,
Casanovas, P., Rubino, R., Casellas, N., eds.: Computable Models of the Law: Languages,
Dialogues, Games, Ontologies. LNAI 4884. Springer (May 2008) 146–161

12. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980) 81–132
13. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible pri-

orities. Journal of Applied Non-Classical Logics 7(1) (1997)
14. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artificial Intelligence

13 (1980) 27–39
15. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation

frameworks. Journal of Logic and Computation 13(3) (2003) 429–448


	On the Instantiation of Knowledge Bases in Abstract Argumentation Frameworks

