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Abstract
Abstract Argumentation Frameworks (AFs) provide a
fruitful basis for exploring issues of defeasible reason-
ing. Their power largely derives from the abstract na-
ture of the arguments within the framework, where ar-
guments are atomic nodes in an undifferentiated relation
of attack. This abstraction conceals different concep-
tions of argument, and concrete instantiations encounter
difficulties as a result of conflating these conceptions.
We distinguish three distinct senses of the term. We
provide an approach to instantiating AFs in which the
nodes are restricted to literals and rules, encoding the
underlying theory directly. Arguments, in each of the
three senses, then emerge from this framework as dis-
tinctive structures of nodes and paths. Our framework
retains the theoretical and computational benefits of an
abstract AF, while keeping notions distinct which are
conflated in other approaches to instantiation.

Introduction
Abstract Argumentation Frameworks (AFs) ((Dung 1995),
(Bondarenko et al. 1997), (Caminada and Amgoud 2007),
among others) provide a fruitful basis for exploring issues
of defeasible reasoning. Their power largely derives from
the abstract nature of the arguments within the framework,
where arguments are atomic nodes in an undifferentiated re-
lation of attack; such AFs provide a very clean acceptability
semantics, e.g. (Dunne and Bench-Capon 2002).

While abstract approaches facilitate the study of argu-
ments and the relations between them, it is necessary to
instantiate arguments to apply the theory. Methods for in-
stantiation have been proposed which combine AFs with
Logic Programs ((Prakken and Sartor 1997), (Garcı́a and
Simari 2004), (Besnard and Hunter 2008) and (Amgoud et
al. 2004)). Such systems start with a knowledge base com-
prised of facts and rules, where the rules typically may in-
clude both strict (SI) and defeasible (DI) inference rules. Ar-
guments are generated from this knowledge base using an
appropriate logic and organised into an AF for evaluation.
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While such approaches have attractions, (Caminada and
Amgoud 2007) point out they also have difficulties. Starting
with a benchmark instatiation method as a basis for compar-
ing the approaches, they show the approaches give rise to
counter-intuitive results. More generally, the theories fail to
account for the rationality postulates of consistency and clo-
sure on argumentation frameworks: to satisfy consistency,
the theory must ensure that it does not return both a pos-
tive and negative literal from an extension of arguments; to
satisfy closure, the literals returned by an extension of ar-
guments must be closed such that if the antecedents of a
strict rule are returned, then so too is the claim of that rule.
They suggest ways to amend the knowledge base, allowing
the approaches to account for the problems and satisfy the
rationality postulates.

In our view, the problems of the approaches discussed in
(Caminada and Amgoud 2007) stem from the method of in-
stantiating the knowledge base in an AF along with the no-
tions of argument defeat and justified conclusion. Knowl-
edge bases are instantiated in a two-step process: from the
knowledge base, one constructs the arguments; given the ar-
guments, one determines the relation (defeat) among the ar-
guments, puts the arguments (as nodes) into an AF, and de-
termines the justified conclusions. A two-step process intro-
duces a variable, indirect relationship between the knowl-
edge base and the AF, and different approaches instantiate
the knowledge base in different ways. In the benchmark
approach of (Caminada and Amgoud 2007), arguments can
have sub-arguments, so arguments are no longer atomic as
in (Dung 1995). An argument may attack the subarguments
of another argument, again varying the uniform attack re-
lation of (Dung 1995). In addition, defeat of a subargu-
ment implies defeat of the whole argument. Such attacks
imply that additional, potentially significant, information is
lost when the framework is evaluated, presenting a problem
for the clean acceptability semantics. Finally, we show that
the notion of justified conclusions leads to a misleading ex-
pectation that a conclusion of a strict rule ought to be in an
extension where it is not.

In this paper, we provide a novel approach to instantiating
an AF and to defining arguments which does not have the
problems and concerns just outlined. Our approach gives
correct results on the problems, intuitively satisfies the ra-
tionality postulates, and addresses the concerns. We present



a direct, single-step translation of a knowledge base into an
AF, providing a graph theoretic representation of the knowl-
edge base itself. Every rule in the knowledge base is repre-
sented in the AF. We have a uniform attack relation between
nodes, which is given by incompatibility: complementary
literals are incompatible, the negation of a rule antecedent
is incompatible with the applicability of the rule, and the
applicability of a rule is incompatible with the falsity of its
consequent. The various argumentation attack relations (re-
buttal, premise defeat, and undercut) are derivative on the AF
structure rather than being independently defined and being
required to determine argument attack relations. The admis-
sibility of a node indicates that the literal holds or the rule is
applicable. Thus, we evaluate claims of the theory directly,
without first going through the step of generating arguments.
Given that we derive AFs from consistent knowledge bases
and we only output admissible sets, consistency is ensured.
We indicate how closure is satisfied given the construction of
strict rules in derived AFs. Our approach retains the appeal
of AFs, evaluates the AF with the well understood seman-
tics, allows reasoning with respect to knowledge bases, pro-
vides formal representations of different senses of argument
which supports justification and explanation, and retains the
appropriate level of abstraction of the nodes of the AF.

In (Wyner, Bench-Capon, and Atkinson 2008), several
senses of the term argument were identified and the prob-
lems of conflating them were discussed: a specific reason for
a claim (which we call an Argument), a set of such specific
reasons for a claim (which we term a Case), or a set of rea-
sons for and against a claim (which we refer to as a Debate).
In our approach, these various senses of argument emerge
from the framework as distinctive structures in an AF; keep-
ing them distinct avoids the confusions that can arise when
these different senses are conflated. In particular no Argu-
ment has subarguments. The contribution of this paper is
that it provides an integrated framework in which we repre-
sent a knowledge base with SI and DI within an AF so that
argument generation and evaluation are performed in a sin-
gle step and in which we distinguish the alternative senses
of argument to bring out their distinctive features.

The structure of the paper is as follows. We first outline
AFs (Dung 1995) and characterise the types of knowledge
base we are working with. We then show how a knowledge
base is represented in a derived AF. We provide examples
and discuss non-monotonic reasoning. The different senses
of argument and the various kinds of attack of one argument
by another are then characterised in terms of particular struc-
tures within the AF. We discuss the benchmark approach
to knowledge base instantiation of (Caminada and Amgoud
2007) along with the problems raised by a key example. We
show how our approach addresses the problems of the ex-
ample. We end with some concluding remarks and future
work.

Argumentation Frameworks
An Argumentation Framework AF comprises objects, rela-
tions, and definitions of auxiliary concepts. For our pur-
poses, we take (Dung 1995) as the basis for an AF.

Definition 1 An argumentation framework AF is a
pair 〈LA,RA〉, where LA is a finite set of objects,
{p1, p2, . . . , pn} and RA is an attack relation between
elements of LA. For 〈pi, pj〉 ∈ RA we say the the object pi

attacks object pj . We assume that no object attacks itself.

The relevant auxiliary definitions are as follows, where S
is a subset of LA:

Definition 2 We say that p ∈ LA is acceptable with respect
to S if for every q ∈ LA that attacks p there is some r ∈
S that attacks q. A subset, S, is conflict-free if no object
in S is attacked by any other object in S. A conflict-free
set S is admissible if every p ∈ S is acceptable to S. A
preferred extension is a maximal (w.r.t. ⊆) admissible set.
The object p ∈ LA is credulously accepted if it is in at least
one preferred extension, and sceptically accepted if it is in
every preferred extension.

As we clarify the notion of argument itself, we refer to
the basic objects as nodes (denoted by LA) and their rela-
tions as arcs (denoted by RA); indeed, we do not want to
introduce presumptions about the properties of the objects,
in particular what should count as an argument.

Representing a Theory as an AF

The approach has two basic parts. In the first part, we repre-
sent a Theory Base T , which represents the knowledge base,
directly in an AF: the nodes of an AF are labeled with respect
to the literals and inference rules of the Theory Base, while
the attack relation is partitioned with respect to the nodes.
SI and DI are represented as distinct structures of nodes and
attack relations. In the second part, we impose conditions
on the assertion of literals with respect to the AF. The AF
is then evaluated according to Definitions 1 and 2. We have
used LA and RA in AFs and L and R in Theory Bases to
highlight the correspondence between the nodes of the AF
with the language of the Theory Base as well as the rela-
tionships between the nodes in the AF with the rules in the
Theory Base from which the relationships are derived.

Definition 3 A Theory Base, T , comprises a pair (L,R) in
which

L = {x1, . . . , xn} ∪ {¬x1, . . . ,¬xn}
is a set of literals over a set of propositional variables
{x1, . . . , xn}. We use yi to denote an arbitrary literal from
{xi,¬xi}.

The componentR describes a set of rules

R = {r1, r2, . . . , rn}
whereR = Rstr∪Rdfs, in which r ∈R has a body, bd(r)⊆
L, and a head, hd(r) ∈ L. Rules are either strict (r ∈ Rstr)
or defeasible (r ∈ Rdfs), andRstr ∩Rdfs = ∅.
We informally refer to the literals in bd(r) as premises and
the literal in hd(r) as the claim.

We use {r1, r2, . . . , rn} as proper names of rules. For
easy reference to the “content” of the rule, we assume each
rule has an associated definite description as follows. For
r ∈ Rstr, the definite description of r has the form r :



bd(r) → hd(r), where hd(r) ∈ L and bd(r) ⊆ L. Sim-
ilarly, the definite description for r ∈ Rdfs, has the form
r : bd(r) ⇒ hd(r). Where a rule has an empty body, bd(r)
= ∅, we have r :→ hd(r) or r :⇒ hd(r), which are strict
and defeasible assertions, respectively. To refer distinctly
to the set of rules with non-empty bodies and those with
empty bodies (assertions), we have R = TRules ∪ ARules,
where TRules = {r | r ∈ R ∧ bd(r) 6= ∅} and ARules =
{r | r ∈ R ∧ bd(r) = ∅}.

We constrain a Theory Base. First, the relationship be-
tween literals of strict and defeasible rules is constrained:

Constraint 1 For Theory Base (L, R), ∀r ∈ Rstr, there is
no rule, r’ ∈ Rdfs with hd(r) = hd(r’) and bd(r) ⊆ bd(r’).

Furthermore, no literal and its negation can both be strictly
asserted.

Constraint 2 For Theory Base (L, R), if r ∈R, where r :→
hd(r), then r’ 6∈ R, where r’ :→¬hd(r).

In addition, every literal appears in some rule.

Constraint 3 For Theory Base (L, R), if y ∈ L, then ∃ r ∈
R, y ∈ bd(r) ∨ y = hd(r).

Finally, every rule has a claim.

Constraint 4 For Theory Base (L,R), if r ∈ R, then ∃ y ∈
L, y = hd(r).

Semantically, a rule r ∈ Rstr represents the notion that
hd(r) holds if all of the literals in bd(r) simultaneously hold;
with respect to the rule, we say the bd(r) strictly implies the
hd(r). We assume standard notions of truth and falsity of
literals along with the truth-tables of Propositional Logic for
material implication which are models under which the rule
is true or false. Semantically, a rule r ∈ Rdfs represents
the notion that hd(r) “usually” holds if all of the literals
in bd(r) simultaneously hold, but there are circumstances
where ¬hd(r) holds though all of the literals in bd(r) simul-
taneously hold. With respect to the rule, we say the bd(r)
defeasibly implies the hd(r).

While the clauses are similar to the Horn Clauses of logic
programming, the head literal can be in a positive or negative
form. We only have classical negation, not negation as fail-
ure; we do not allow iterated negation. The rationale for this
choice of clauses is that it naturally supports our analysis of
the senses of argument.

A core element of our approach is the concept of the
AF derived from a Theory Base. The AF uses a set of la-
bels for the nodes in the graph: {x1,. . .,xn}∪{¬ x1,. . .,¬
xn}∪{r1,. . .,rn} (or for clarity, the definite description of the
rule name). Thus, we can see how elements of the Theory
Base correspond to elements of the derived AF; however, the
elements are distinct in terms of their intuitive content and
function.

Definition 4 Let T = (L,R) be a Theory Base with

L = {x1, . . . , xn} ∪ {¬x1, . . . ,¬xn}
R = Rstr ∪Rdfs

The derived framework from T , is the AF, 〈LA
T ,RA

T 〉 in
which,

LA
T = { x, ¬x : x,¬x ∈ L}

∪ { r : bd(r)→ hd(r) : r ∈ Rstr}
∪ { r : bd(r)⇒ hd(r) : r ∈ Rdfs}

Furthermore,

∀x ∈ LA
T , x ∈ L, and

∀r ∈ LA
T , r ∈ R

In an AF, the nodes have no internal content.
The attack set RA

T comprises three disjoint sets which
describe: attacks by nodes labeled with names for literals
on other nodes labeled with names for literals; attacks by
nodes labeled with names for literals on nodes labeled with
names for rules; and attacks by nodes labeled with names
for rules on nodes labeled with names for literals. We recall
that yi ∈ {xi,¬xi} so that ¬yi is the complementary literal
to yi.

Definition 5 In the AF 〈LA
T ,RA

T 〉, RA
T = RA

ll ∪ RA
lr ∪ RA

rl
where:

RA
ll = {〈yi,¬yi〉, 〈¬yi, yi〉 : 1 ≤ i ≤ n

and yi,¬yi ∈ LA
T }

RA
lr = {〈¬yi, rj〉 : yi ∈ bd(rj) and ¬yi, rj ∈ LA

T }∪ {〈¬yi, rj〉 : rj ∈ Rdfs and hd(rj) = yi

and ¬yi ∈ LA
T }

RA
rl = {〈rj ,¬yi〉 : hd(rj) = yi and ¬yi, rj ∈ LA

T }
The following hold for an AF derived from a T :

1. Each literal y in L of Theory Base T corresponds to a
node labeled y in LA of the derived AF; LA of the derived
AF contains, in addition, the node labeled ¬y. Nodes la-
beled for literals of opposite polarity are mutually attack-
ing.

2. Each rule in r inR of a Theory Base T corresponds one-
to-one to a node label r in LA of the derived AF. Whereas
a rule in R is true (or false) in the Theory Base, in the
derived AF we say it has been applied relative to the ad-
missible set where it appears and otherwise has not been
applied. In the AF, a rule node is attacked by the nodes
which correspond to the negation of the body literals and,
in addition, attacks the node which corresponds to the
negation of the head literal.

3. For strict rules, the rule node in the AF has not been ap-
plied relative to an admissible set if a node which cor-
responds to the negation of one of the body literals is in
that set. In this case, the node which corresponds to the
head literal is only credulously admissible. If all the nodes
which correspond to the body literals are in an admissi-
ble set, then the rule node has been applied and the node
which corresponds to head literal is admissible in that set.
This essentially fulfills the closure rationality postulate.

4. For defeasible rules, the rule node has not been applied
relative to an admissible set if a node which corresponds
to the negation of a body is in that set or if the node which
corresponds to the negation of the head of the rule is in
that set. In both instances, the node corresponding to the



literal attacks the rule node. Even if all nodes which corre-
spond to the body literals of a rule are in an admissible set,
the rule node or the node which corresponds to the head
literal may not be in that set, for they can be defeated.
In addition, we have a condition relating to the ARules of

T in the derived AF.
5. Consider r, r′ ∈ ARules (the rules of the theory T which

have empty bodies). For r ∈ Rstr, if hd(r) ∈ A, where
A is an admissible set of the derived AF 〈LA

T ,RA
T 〉, then

the node which represents hd(r) is sceptically acceptable
relative to the derived AF. For r′ ∈ Rdfs, hd(r′) is cred-
ulously acceptable relative to the derived AF. We refer to
these as strict and defeasible assertions in the AF. This
is a constraint on acceptable AF semantics in this frame-
work.
We evaluate the derived AFs only following the definitions

of extensions relative to the standard AF 〈LA
T , RA

T 〉; that is,
while the partitions of nodes or arcs are important for de-
riving the AF from T , they are ignored for the purposes of
evaluation, so that we have a standard abstract framework.
Thus, the semantics of abstract AFs are maintained in evalu-
ation.

To this point, we have Theory Bases and corresponding
derived AFs. Fundamental observations of our approach are:
Observation 1 For the literals and the rules which are true
of a Theory Base T , the corresponding nodes of the derived
AF are elements of some admissible set. For the literals and
the rules which are true of every model for the Theory Base
T , the corresponding nodes of the derived AF are sceptically
acceptable, otherwise they are credulously acceptable.
Observation 2 For the literals and the rules which are false
of a Theory Base T , the corresponding nodes of the derived
AF 〈LA

T ,RA
T 〉 are not an element of any admissible set.

Both of these follow by the evaluation of a derived frame-
work 〈LA

T ,RA
T 〉 relative to a T . Thus, the derived AF

is information-preserving with respect to the Theory Base.
The derived AF is an instantiation of the corresponding The-
ory Base, and the preferred extensions of the AF correspond
to models of the Theory Base.

We now give some examples. First, we provide a Theory
Base T1 with just one strict rule, the derived AF, a graphic
representation of the derived AF, and then the preferred ex-
tensions. Since it is always clear in context where we have
literals and rules (in a Theory Base) and where we have la-
bels (in an AF), we use one typographic form without con-
fusion.
Example 1 Let T1 be the pair with (L1,R1), where
L1 = {x1, x2} ∪ {¬x1,¬x2}
R1 = {r1}, where r1 has rule name r1: x1 → x2

The derived framework from T1 is 〈LA
T1 ,RA

T1〉 in which,

LA
T1 = {x1, x2} ∪ {¬x1,¬x2} ∪ {r1}

and in whichRA
T1 comprises the union of three disjoint sets:

RA
ll = {〈x1,¬x1〉, 〈¬x1, x1〉, 〈x2,¬x2〉, 〈¬x2, x2〉}
RA

lr = {〈¬x1, r1〉}
RA

rl = {〈r1,¬x2〉}

We graphically represent 〈LA
T1 ,RA

T1〉 as in Figure 1.

x1 ¬x1 r1 ¬x2 x2

Figure 1: AF of x1 → x2

In 〈LA
T1 ,RA

T1〉, the preferred extensions are:

{x1, r1, x2}, {¬x1, x2}, {¬x1,¬x2}
Each of the nodes is credulously accepted and none is

sceptically accepted. The interpretation of the presence of
a rule node in a preferred extension is that the rule has been
applied. Moreover, the rule is not defeated in the sense that
where the premises hold, the conclusion must hold. No ad-
missible set contains both x1 and ¬x2: if x1 is in the set,
then r1 is in the set; r1 attacks ¬x2, leaving x2 in the set; if
¬x2 is in the set, then r1 must be attacked; r1 can only be
attacked by ¬x1, which also attacks x1, leaving ¬x1 in the
set.

The following is an example of a defeasible rule.

Example 2 Let T2 be the pair with (L2,R2), where

L2 = {x1, x2} ∪ {¬x1,¬x2}
R2 = {r2}, where r2 has rule name r2: x1 ⇒ x2

We graphically represent the derived AF 〈LA
T2 ,RA

T2〉 as:

x1 ¬x1 r2 ¬x2 x2

Figure 2: AF of x1 ⇒ x2

In 〈LA
T2 ,RA

T2〉, the preferred extensions are as follows,
where we see that each of the nodes is credulously accepted
and none is sceptically accepted.

{x1, r2, x2}, {¬x1, x2}, {¬x1,¬x2}, {x1,¬x2}
The first three preferred extensions are similar to SI. In

the last extension, ¬x2 itself attacks the rule node r2; conse-
quently, either x1 or ¬x1 are in a preferred extension along
with ¬x2. This contrasts with the preferred extension of
a derived AF with just a SI. While defeasible implication
might be construed as the trivial logical tautology [x1 →
[x2 ∨ ¬x2]], here we see a key difference. To make use
of a defeasible rule, one must provide the means to choose
between extensions, for example, by selecting the exten-
sion which maximises the number of applicable defeasible
rules, or which uses some notion of priority or entrench-
ment on the rules. Different ways of making this choice
give rise to different varieties of non-monotonic logic (Re-
iter 1980) and (Prakken and Sartor 1997)). Circumscrip-
tion (McCarthy 1980) could be used by including additional
designated nodes such as ab(r1) which attack the rule r1
and attack and are attacked by notab(r1). We then choose
the extension containing the most notab(r1) nodes. We can
specify circumstances where the rule is not be applied.



In our third example, we show the interaction of defea-
sible and strict rules, which was the root of several of the
problems identified in (Caminada and Amgoud 2007).

Example 3 Suppose T3 with rules r2: x1⇒ x2 and r3: x2→
x3 which has derived AF 〈LA

T3 ,RA
T3〉 graphically represented

as in Figure 3.

x1 ¬x1 r2 ¬x2 x2

x3 ¬x3 r3

Figure 3: AF derived from T with x1 ⇒ x2 and x2 → x3

AF 〈LA
T3 ,RA

T3〉 has the following six preferred extensions:

1.{x1, r2, x2, r3, x3} 4.{¬x1, x2, r3, x3}
2.{x1,¬x2, x3} 5.{¬x1,¬x2, x3}
3.{x1,¬x2,¬x3} 6.{¬x1,¬x2,¬x3}

Given a strict assertion that x1, we would normally choose
the preferred extension (1) from among (1)-(3), maximising
the number of defeasible rules. Thus, normally, we say that
x1 implies x3. However, we are not obliged to make this
choice. In particular, if ¬x2 is strictly asserted, r2 and r3
are inapplicable, and x3 is credulously acceptable ((2) and
(3)); thus, in this AF, a strict assertion of x1 does not imply
that x3 necessarily holds as well. Where the claim of a de-
feasible rule is a premise of a strict rule (x2), we cannot use
the defeasibly inferred claim to draw strict inferences about
the claim of the strict rule (x3). Similarly, the defeasible
rule is inapplicable where either the claim of the rule (¬x2)
is false ((2), (3), (5), and (6)) or the claim of the strict rule
(¬x3) is false ((3) and (6)). Whereas in e.g. (Reiter 1980),
the defeasible rule is inapplicable only where the claim of
the defeasible rule itself is asserted to be false, here the fal-
sity of any consequences of that claim, however remote, will
also block the application of the rule. Finally, when we de-
feasibly derive x3 from x1 as in (1), x2 is not significant in
the chain of argument leading to x3 since r2 attacks ¬x2,
leaving r3 to attack ¬x3.

Three Senses of Argument
We show how arguments emerge from the framework as dis-
tinctive structures. As noted above, the term argument is am-
biguous. It can mean (ArgS1) a set of reasons for a claim; or
(ArgS2) a whole train of reasoning leading towards a claim,
that is, a set of linked ArgS1; or reasons for and against a
claim (ArgS3), that is an ArgS2 for a claim and an ArgS2

against the claim. An additional structure is where the in-
termediate claims of ArgS3 are also points of dispute, but
we will not consider this further here. In the following, we
formally define these three senses of argument as structures
in the argumentation framework, starting with ArgS1 (Ar-
gument), ArgS2 (Case), and ArgS3 (Single-point Debate).
We provide a graphic, examples, and then definitions for
the three different kinds of attack: Rebuttal, Undercut, and
Premise Defeat.

We provide a recursive, pointwise definition of a graph
which is constructed relative to an AF. Since the sets are con-
structed relative to an AF, we can infer the attack relations
which hold among them. The different senses of argument
are defined as subgraphs.

Definition 6 Suppose there is a derived AF = 〈LA,RA〉,
where y and z are arbitrary literals from LA and r
and r’ are arbitrary rules from LA. F abbreviates
“r was added in ρ2k−1”.

ρ0(y) = {y,¬y}
ρ1(y) = ρ0(y) ∪

⋃
{r:hd(r)=y}{r}

ρ2k(y) = ρ2k−1(y) ∪
⋃
{F}{z,¬z : z ∈ bd(r)}

ρ2k+1(y) = ρ2k(y) ∪⋃
{F}{r′ : z ∈ hd(r′) ∩ bd(r)}

ρ2k+2(y) = ρk(y)

ρ0(y) provides the basis for the construction, which are
nodes labeled by literals in an AF that attack one another
with respect to the node labeled y. At ρ1(y), we add to the
previous set of rules which have y as their head; depending
on whether we have a strict or a defeasible rule, the rule
node attacks and may be attacked by the literal which is the
negation of the head. At ρ2k(y), we add the positive and
negative literals relative to the body of the rules; each of the
negative literals associated with literals of the body of the
rule attacks the rule node. At ρ2k+1(y), we link rules: the
literals in the body of a rule added at ρ1(y) serve as the heads
of other rules. At ρ2k+2(y), we have iterated the steps ρ1(y)-
ρ2k+1(y) until there is no further change. Constructions for
negations of literals are similarly defined.

Supposing a derived AF, ArgS1 and ArgS2 are subgraphs
of that AF. An Argument for y, ArgS1(y), is defined at
ρ2k(y): it is the nodes and their attacks defined at this step
relative to the derived AF. A graph defined as ArgS1(y) can
only have one rule in the set of nodes, namely a rule of the
Theory Base with y as head (other rules with y as head will
give rise to distinct arguments for y in sense 1). In ArgS1(y),
y is the claim of ArgS1(y) and the literals in the body of
the rule are the premises. A Case for y, ArgS2(y), is defined
where ρk+1(y) = ρk(y). ArgS2(y) is comprised of ArgS1(y)
along with graphs of form ArgS1 for the literals that are bod-
ies of every rule constructed relative to ArgS1(y). In other
words, a Case links together all those graphs of Arguments
for a particular y where the claim of one rule is the premise
of another rule.

Definition 7 Suppose an AF derived from Theory Base T ,
〈LA
T ,RA

T 〉. We define ArgS1-ArgS2 as subgraphs of a de-
rived AF:

An Argument for y is ArgS1(y) = 〈LA
S1y, RA

S1y〉,
where LA

S1y ⊆ LA
T andRA

S1y ⊆ RA
T ,

r, r′ ∈ LA
S1y r = r′, is a subgraph atρ2k(y).

A Case for y is ArgS2(y) = 〈LA
S2y, RA

S2y〉,
where LA

S2y ⊆ LA
T andRA

S2y ⊆ RA
T , is a subgraph

at ρk+1(y) = rhok(y).

Where we have ArgS2(y) and ArgS2(¬y), we have a
Single-point Debate about y, ArgS3(y). The two graphs



share only the literals {y, ¬y}, and no other rules or liter-
als.

Definition 8 Suppose two derived AFs, ArgS2(y) =
〈LA

S2¬y,RA
S2¬y〉 and ArgS2(y) = 〈LA

S2y, RA
S2y〉:

A Single− point Debate about y is
ArgS3(y) = 〈LA

S2y ∪ LA
S2¬y,RA

S2y ∪RA
S2¬y〉,

where LA
S2¬y ∩ LA

S2y = {y,¬y}
andRA

S2¬y ∩RA
S2y = ∅.

Clearly a debate with subsidiary debates can be constructed
to argue pro and con about other literals in the base debate;
we start with a ArgS2(y), then add further Single-point De-
bates about some literal in the graph other than y.

Example 4 shows the senses in a derived AF only with SI
rules since they restrict the available preferred extensions.

Example 4 Suppose a Theory Base comprised of the rules
(and related literals): r7 : x6 → ¬x8, r10 : x5, x7 →
x8, r11 : ¬x3, x4 → x7. Figure 4 graphically represents
the various senses of argument in an AF derived from this
Theory Base.

In Figure 4, we have three subgraphs which represent an
Argument; each Argument is derived from the correspond-
ing rule of the Theory Base. For example ArgS1¬x8,
the argument for ¬x8, is the graph comprised of nodes
{¬x8, x8, r7,¬x6, x6} the relations among them as given;
the graph is derived from the rule of the Theory Base which
corresponds to r7 : x6 → ¬x8. The other two rules of the
Theory Base are also represented in the graph as subgraphs
that represent an Argument.

Figure 4 presents two Cases. The Case ArgS2(x8) is de-
rived from the following rules: r10 : x5, x7 → x8, r11 :
¬x3, x4 → x7. We see how the Arguments in the Case are
linked; for instance, the graph of r11 : ¬x3, x4 → x7 has as
claim x7, which is the premise of r10 : x5, x7 → x8. The
Case ArgS2(¬x8) is derived from the following rule (recall
that an Argument can also be a Case): r7 : x6 → ¬x8.

The Single-point Debate for x8, ArgS3(x8), is comprised
of the Cases ArgS2(x8) and ArgS2(¬x8).

r10 ¬x8

¬x5

x5

¬x7

x3¬x3 x4¬x4

x6

¬x6x8

r11

r7

x7

Figure 4: Arguments, Cases, and Single-point Debates

Rebuttal, Premise Defeat, and Undercutting
Given these structures we can express the various familiar
notions of attack in different senses of argument: a Premise
Defeat of an Argument is an Argument with claim that is

the negation of the premise of another Argument; a Rebut-
tal of an Argument is an Argument with a claim that is the
negation of the claim of another Argument; the Rebuttal of a
Case is similar to the Rebuttal of an Argument; and an Un-
dercutter of an Argument is an attacker of the rule node of
an argument.
Definition 9
A Premise Defeat of an Argument for y,
ArgS1(y) = 〈LA

S1y, RA
S1y〉, is ArgS1(¬yi), where yi,

r ∈ LA
S1y, and yi ∈ bd(r).

An Undercutter of a Argument for y, ArgS1(y) =
〈LA

S1y, RA
S1y〉, is ArgS1(¬yi), where yi, r ∈ LA

S1y,
and yi ∈ hd(r).

A Rebuttal of an Argument for y, ArgS1(y), is
ArgS1(¬y).

A Rebuttal of a Case for y, ArgS2(y), is ArgS2(¬y).
We refer to RPUS2(y) as the set of rebuttals, premise defeats,
and undercutters relative to ArgS2(y) (keeping the derivative
notions in mind).

Given the definitions of the three senses of “argument”
and various notions of attack, it would be possible to de-
fine a more abstract, derivative AF in which we represent
structures at levels ArgS1 or ArgS2 as nodes in that AF and
which, given the requisite attack relations defined above, are
in a higher level attack relation. However, we leave such
proposals and the analysis of them for future research.

Assertions
So far we have only TRules in a Single-point Debate. Usu-
ally in a Theory Base there are assertions which further re-
strict the preferred extensions. In our framework, assertions
are ARules. A Case such as ArgS2(y) is a directed tree where
y is the root and the literals in the bodies of constituent argu-
ments at the level where ρk+1(y) = ρk(y) are the leaves. If
all the leaves are strictly asserted and all the rules are strict
rules, then the root is sceptically accepted. However, where
even just one of the leaves of ArgS2(y) is defeasibly asserted,
then the root of the tree is only credulously accepted. Such
a Case is vulnerable to attack. Similarly, where there are
defeasible rules, the root is always credulously accepted.
Where we have ArgS2(y) and ArgS2(¬y) for and against a
claim and the leaves of each Case are strictly asserted, then
the resultant Single-point Debate must be adjudicated ac-
cording to some principle for choosing between preferred
extensions. Matters are complex where we have strict and
defeasible assertions of literals at different levels of the tree.
Further investigation would consider how to adopt some no-
tion of accrual in AFs (Prakken 2005) to overcome some
of these limitations. However, these matters are beyond the
scope of this paper.

Discussion
In this section, we briefly review the key components of
the benchmark argument instantiation method of (Caminada



and Amgoud 2007), compare it to our proposal, then provide
one of the key examples which showed a flaw in the instanti-
ation method as well as motivated the Rationality Postulates.

In constructing arguments, they introduce three func-
tions: Conc returns the last conclusion of an argument,
Sub returns all the subarguments of an argument, and
StrictRules and DefRules return all the strict and
defeasible rules used in an argument, respectively. Theory
Bases T are comprised of strict and defeasible implications.
Arguments have a deductive form and are constructed re-
cursively from the rules of the Theory Base. To distinguish
strict or defeasible rules from the deductive form of argu-
ments, we use short arrows, → and ⇒, for the former and
long arrows,−→ and =⇒ for the latter. For brevity, we only
provide the clauses for the construction of strict arguments
as the clauses for the construction of defeasible arguments
are analogous (Caminada and Amgoud 2007).

Definition 10 (Argument) Suppose a Theory Base, T , with
strict and defeasible rules. An argument A is:
A1, . . ., An −→ ψ if A1, . . . , An, with n ≥ 0, are arguments
such that there exists a strict rule Conc(A1), . . ., Conc(An)
→ ψ.
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
StrictRules(A) = StrictRules(A1) ∪ . . . ∪
StrictRules(An) ∪ {Conc(A1), . . ., Conc(An)→ ψ},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An).

Consider a Theory Base with strict and defeasible rules
from which we construct arguments according to this defini-
tion.

Example 5 Let T4 be a Theory Base with the following
rules:
r21: → x1; r22: → x2; r23: → x3; r24: x4, x5 → ¬x3; r25:
x1⇒ x4; r26: x2⇒ x5.
We construct the following arguments:
A1: [[→ x1]⇒ x4]; A2: [[→ x2]⇒ x5]; A3: [→ x3];
A4: [→ x1]; A5: [→ x2];
A6: [[→ x1]⇒ x4], [[→ x2]⇒ x5]→¬x3.

We see clearly that arguments can have subarguments: A6

has a subargument A1, and A1 has a subargument A4.
Several additional elements are needed to define justified

conclusions. An argument is strict if it has no defeasible
subargument, otherwise it is defeasible (non-strict). An ar-
gument Ai rebuts an argument Aj where the conclusion of
some subargument of Ai is the negation of the conclusion of
some non-strict subargument of Aj ; rebuttal is one way an
argument defeats another argument. Note that a strict argu-
ment can defeat a defeasible argument, but not vice versa.
Moreover, one argument can defeat another argument with
respect to subarguments; in effect, defeat of a part is inher-
ited as defeat of a whole. With respect to our example, the
undefeated arguments are A1, A2, A3, A4, and A5. A3,
which is a strict argument, defeats A6 but not vice versa
since A6 is a non-strict argument in virtue of having a defea-
sible subargument. Given the arguments and defeat relation
between them, we can provide an AF and the different ex-
tensions. The Output of an AF, understood as the justified

conclusions of the AF, is given as the sceptically accepted
conclusions of the arguments A of the AF.

With respect to the example, (Caminada and Amgoud
2007) claim that the justified conclusions are x1, x2, x3, x4,
and x5 since these are all conclusions of arguments which
are not attacked. However, ¬x3 is not a justified conclusion,
even though it is the conclusion of a strict rule in which
all the premises are justified conclusions. This is so since
the argument A6 of which ¬x3 is the conclusion is defeated
by but does not defeat A3 because A6 has a subargument
which is a non-strict argument (namely A1 or A2), so mak-
ing A6 a non-strict argument, while A3 is a strict argument.
Yet, given the antecedents of the strict rule are justified con-
clusions, it would seem intuitive that the claim of a strict
rule should also be a justified conclusion. This, they claim,
shows that justified conclusions are not closed under strict
rules or could even be inconsistent.

In our view, these notions of argument and defeat are
problematic departures from (Dung 1995), which has no no-
tion of subargument or of defeat in terms of subarguments.
In addition, they give rise to the problems with justified con-
clusions: what is a strict rule in the Theory Base can appear
in the AF as a non-strict argument in virtue of subarguments;
what cannot be false in the Theory Base without contradic-
tion is defeated in the AF; thus, what “ought” to have been a
justified conclusion is not. In addition, the notion of justified
conclusion leads to some confusion: on the one hand, it only
holds for sceptically accepted arguments, which presumably
implies that the propositions which constitute them are scep-
tically accepted; on the other hand, there is no reason to
expect that ¬x3 as sceptically accepted, given that it only
follows from defeasible antecedents. Clearly the anomaly
arises because of the way that arguments can have defeasi-
ble subarguments, that the defeat of the whole can be deter-
mined by the defeat of a part, and that justified conclusions
depend on these notions.

In our approach, the results are straightforward and with-
out anomaly; we do not make use of arguments with subar-
guments, inheritance of defeasiblity, or problematic notions
of justified conclusions. We consider a key example from
(Caminada and Amgoud 2007) as the two other problematic
examples in follow suit. The Theory Base of Example 5 ap-
pears as in Figure 5, for which the preferred extensions are
given, noting that the strict rules do not appear for simplicity
while the defeasible rules appear only where not defeated.

{x1, x2, x3, x4, r25,¬x5},
{x1, x2, x3,¬x4, x5, r26},
{x1, x2, x3,¬x4,¬x5}

Here x1, x2, x3 are all sceptically accepted, while x4 and x5

are credulously accepted. ¬x3 is not credulously accepted
given that x3 is strictly asserted. Note that every literal
which is strictly asserted is sceptically acceptable. There-
fore, the rule node r24 must be defeated where one or both
of ¬x4 and ¬x5 hold. There is, in our view, no reason to ex-
pect ¬x3 to hold in any extension since we have no preferred
extension in which both x4 and x5 are justified conclusions.
Given admissible sets, we satisfy the consistency rational-
ity postulate; closure, which is relevant only of strict rules



x1 x4¬x4¬x1 r25

r21

¬x3 x3 r24r23

x2 x5¬x5¬x2 r26

r22

Figure 5: Graph of Problem Example

where all the body literals hold, is not relevant.
We have considered a widely adopted approach to in-

stantiating Theory Bases in AFs (Caminada and Amgoud
2007) along with the problems that arise. There are other
approaches not discussed in (Caminada and Amgoud 2007)
which may offer alternative ways of avoiding the problems
such as Assumption-based (Bondarenko et al. 1997) or
Logic-based (Besnard and Hunter 2008) argumentation. We
leave further comparison and contrast to future work.

Concluding Remarks
We have presented a method of instantiating a Theory Base
which contains strict and defeasible rules in a Dung-style
abstract argumentation framework. The Theory Base is di-
rectly represented in the framework, and the conclusions
of the Theory Base can be computed as extensions of that
framework. Our method avoids the logic dependent step of
generating arguments from the Theory Base and then organ-
ising them in a framework for evaluation. The sceptically ac-
ceptable arguments of the framework are the consequences
of the Theory Base under classical logic, assuming that the
Theory Base is consistent: the consequences under a vari-
ety of non-monotonic logics can be identified as credulously
acceptable arguments, with different non-monotonic logics
corresponding to different ways of choosing between pre-
ferred extensions.

A variety of senses of “argument” are presented. Argu-
ments emerge as structures within the framework, and can
be used to explain the consequences. Cases and Debates
are defined in terms of this basic structure. This enables us
to talk meaningfully about the relations between the differ-
ent structures of “argument”. Thus while other approaches
speak of a sub-argument relation, which is not part of normal
discourse about argumentation, we can be more precise and
use more natural expressions: for example, we can say that
two Arguments form part of the same Case, or of indepen-
dent Cases for a given claim. This in turn helps to clarify the
notion of support: we can distinguish between nodes which
support each other by forming part of the same Argument,
the same Case, or by rebutting a Case for negation of the

claim.
We believe that this method provides a very clear way of

instantiating Theory Bases as abstract argumentation frame-
works. By separating the notion of a node from the am-
biguous notion of argument, we have clear criteria for what
constitutes a node in the framework. We can explain our rea-
soning in terms of arguments of the appropriate granularity.

In future work we will demonstrate the properties of our
approach and show formally that our approach complies
with the rationality postulates proposed for the evaluation of
argumentation formalisms in, e.g. (Caminada and Amgoud
2007). In addition, we will further compare and contrast ap-
proaches to Theory Base instantiation in AFs. In a different
vein, we will explore the potential for improved explanation
offered by our distinction between various senses of the term
“argument”
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