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Abstract. Extended Argumentation Frameworks (EAFs) are a
recently proposed formalism that develop abstract argumentation
frameworks (AFs) by allowing attacks between arguments to be at-
tacked themselves: hence EAFs add a relationship D ⊆ X ×A to the
arguments (X ) and attacks (A ⊆ X × X ) in an AF’s basic directed
graph structure 〈X ,A〉. This development provides a natural way to
represent and reason about preferences between arguments. Studies
of EAFs have thus far focussed on acceptability semantics, proof-
theoretic processes, and applications. However, no detailed treatment
of their practicality in computational settings has been undertaken. In
this paper we address this lacuna, considering algorithmic and com-
plexity properties specific to EAFs. We show that (as for standard
AFs) the problem of determining if an argument is acceptable w.r.t. a
subset of X is polynomial time decidable and, thus, determining the
grounded extension and verifying admissibility are efficiently solv-
able. We, further, consider the status of a number of decision ques-
tions specific to the EAF formalism in the sense that these have no
counterparts within AFs.

1 Introduction

Dung’s abstract model of argumentation [11] has become firmly es-
tablished as a basis for research on computational aspects of argu-
mentation (see, e.g. the survey of Bench-Capon and Dunne [8]). The
central element in Dung’s approach is an argumentation framework
(AF) comprising a pair 〈X ,A〉 wherein X represents a set of abstract
atomic arguments and A ⊆ X ×X defines the so-called attack rela-
tion. This relation describes a view of two arguments being “incom-
patible” in the sense that if 〈x, y〉 ∈ A then the argument x attacks
the argument y. A major emphasis of subsequent study has been in
defining divers formalisms describing intuitive ideas of “collections
of acceptable arguments”. Typically such proposals are formulated
in terms of some predicate σ : 2X → 〈�,⊥〉 so that acceptable
collections are those S ⊆ X for which σ(S) holds. In addition to the
canonical forms presented in [11] – grounded, admissible, preferred
and stable sets – a number of alternatives have been put forward: a
detailed review of such argumentation semantics may be found in the
survey of Baroni and Giacomin [5].

Recently, Modgil [16] has proposed developing the structure
〈X ,A〉 of AFs by incorporating arguments that eliminate attacks.
The resulting Extended Argumentation Frameworks (EAFs) are de-
fined as triples 〈X ,A,D〉 whereby D ⊆ X ×A. Modgil [16] builds
on the standard Dung acceptability semantics to provide analogous
concepts in EAFs and demonstrates that EAFs admit a unifying se-
mantic treatment of earlier proposals – notably Preference-based ar-
gumentation [1] and Value-based frameworks (VAFs) from [6] – in
which mechanisms for disregarding attacks in A on the basis of
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the relative strengths of arguments had been proposed: the former
through explicit specification of preferences for an argument over an
attacker, the latter through the concepts of the value promoted by
an argument and ordering of such values w.r.t. an audience. Further-
more, by incorporating arguments that eliminate attacks, EAFs addi-
tionally accommodate argumentation based reasoning about (possi-
bly contradictory) preferences, values and audiences, which are ex-
ternal to the frameworks of [1] and [6]. EAFs thus provide for prin-
cipled integration of meta and object level argumentation based rea-
soning, as has been shown in application domains such as agent rea-
soning [14], normative reasoning [18], and case law [9].

Subsequently, in [15], Modgil presented EAF argument game
proof procedures and argument labelling schemes for selected EAF

semantics. The principal concerns of [16, 15] have thus been to for-
malise acceptability concepts in EAFs; questions of algorithmic and
complexity properties are not considered. However, such questions
have been treated in depth – see the recent survey of Dunne and
Wooldridge [13] for an overview – not only within Dung’s orig-
inal frameworks but also within developments such as VAFs, the
resolution-based model of Baroni and Giacomin from [4] in [3], and
the weighted argument system model of [12]. While it is trivially
the case that complexity lower bounds established for the various se-
mantics in AFs continue to be lower bounds in EAFs (by the simple
expedient of fixing D = ∅), the extent to which upper bounds are
preserved is far from clear. In total, the distinctive features and range
of application of EAFs, and the volume of established studies on al-
gorithms and complexity in related AF contexts, strongly motivate
examining similar questions within EAFs. The contribution of this
paper is to provide a preliminary treatment of these issues.

In Section 2 we reprise the basic concepts from [11], and the com-
ponents and analogous structures in EAFs as given in [16]. A signifi-
cant distinction between AFs and EAFs is found in how the core con-
cept “x is acceptable w.r.t. a set S” is treated: for reasons discussed at
length within [16], this has a rather more intricate character in EAFs
than its AF counterpart. As such, while the definition of “acceptabil-
ity” (in AFs) leads in a straightforward manner to polynomial time
decision procedures, it is less clear whether similar efficient methods
follow for acceptability in EAFs. In Section 3 we show that it is, in-
deed, the case that acceptability in EAFs is decidable in polynomial
time. Immediate consequences of this result are that EAF analogues
of deciding if a set is admissible as well as construction of an EAF’s
grounded extension are polynomial time computable, so mirroring
the status of these in AFs. In Section 4 we consider a number of de-
cision problems that arise specifically in EAFs in the sense that these
reflect behavioural characteristics not featuring in standard AFs. For
these problems we establish that deciding whether given EAFs ex-
hibit the characteristics in question is, typically, NP–hard. We con-
clude Section 4 by examining a problem whose definition while spe-
cific to EAFs, has natural analogues not only within classical AFs but
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also within variants such as value-based frameworks: specifically the
problem of constructing a (maximal) conflict free set of arguments
containing a given subset of arguments. In Section 5 we briefly dis-
cuss our results in the context of the EAF+ model proposed by Baroni
et al. [2]. We conclude and discuss further work in Section 6.

2 Preliminary Background and Notation

The following concepts were introduced in Dung [11]:

Definition 1 An argumentation framework (AF) is a pair 〈X ,A〉, in
which X is a finite set of arguments and A ⊆ X × X is the attack
relationship. A pair 〈x, y〉 ∈ A is referred to as ‘y is attacked by x’
or ‘x attacks y’.
x ∈ X is acceptable with respect to S ⊆ X if for every y ∈ X
that attacks x there is some z ∈ S that attacks y. The characteristic
function, F : 2X → 2X is the mapping which, given S ⊆ X ,
reports the set of y ∈ X for which y is acceptable w.r.t. S.
S ⊆ X is conflict free if no argument in S is attacked by any other
argument in S. A conflict free set S is:

• an admissible set if every y ∈ S is acceptable w.r.t. S;
• a preferred extension if it is a maximal (with respect to ⊆) admis-

sible set;
• a stable extension if every y 
∈ S is attacked by some x ∈ S;
• a complete extension if x ∈ S if and only if x is acceptable w.r.t.

S (i.e., a fixed point of F );
• a grounded extension if it is a minimal (w.r.t. ⊆) complete exten-

sion. It is shown in [11] that every 〈X ,A〉 has a unique grounded
extension which is obtained as the least fixed-point of F .

The preference based approach of [1] and value-based frameworks of
[6] allow the notion of “conflict free” set to be modified by describing
conditions under which attacks in A are discounted. Modgil [16]’s
Extended Argumentation Frameworks generalise and extend (in that
they accommodate argumentation about preferences, values, audi-
ences etc.) such approaches:

Definition 2 An Extended Argumentation Framework (EAF) is a
triple 〈X ,A,D〉 where 〈X ,A〉 is an AF and D ⊆ X ×A describes
the property of “an argument x attacking an attack 〈y, z〉”. The fol-
lowing condition is imposed: if {〈x, 〈y, z〉〉, 〈x′, 〈z, y〉〉} ⊆ D then
{〈x, x′〉, 〈x′, x〉} ⊆ A.
Given S ⊆ X , an attack 〈x, y〉 ∈ A succeeds w.r.t. S (written
x →S y) if there is no z ∈ S for which 〈z, 〈x, y〉〉 ∈ D.
S ⊆ X is (EAF) conflict free if for all x, y ∈ S, if 〈x, y〉 ∈ A then
〈y, x〉 /∈ A and there is some z ∈ S for which 〈z, 〈x, y〉〉 ∈ D. Note
that mutually attacking pairs of arguments are disqualified from both
being members of the same conflict free set.

Thus in EAFs, while S ⊆ X may fail to be conflict free (in the
literal sense of Defn. 1), it becomes so after eliminating attacks be-
tween members of S. For example, if S = {x, y}, 〈x, y〉 ∈ A, then
S is not (EAF) conflict free, but S′ = {x, y, z} is (EAF) conflict free
if 〈z, 〈x, y〉〉 ∈ D.

The analogue of “x is acceptable w.r.t. S” in EAFs requires the
idea of a reinstatement set.

Definition 3 Given 〈X ,A,D〉, let S ⊆ X and v →S w. Then
RS = {y1 →S z1, . . . , yn →S zn} defines a reinstatement set
for v →S w if RS satisfies all of the following:

R1. v →S w ∈ RS .

R2. yi ∈ S for each 1 ≤ i ≤ n.
R3. For every y →S z ∈ RS and every 〈z′, 〈y, z〉〉 ∈ D there is
some y′ →S z′ ∈ RS .

The argument x ∈ X is said to be (EAF) acceptable w.r.t. S ⊆ X
if whenever z →S x there exists y →S z and a reinstatement set RS

for y →S z.

Via the formalism of reinstatement sets we obtain direct analogues
of admissible, complete, preferred and stable extensions:

Definition 4 Given 〈X ,A,D〉, and the EAF conflict free set S ⊆ X :
S is (EAF) admissible if every x ∈ S is EAF acceptable w.r.t. S; S
is an EAF preferred extension if it is a maximal admissible set; S is
an EAF stable extension if for every y 
∈ S there is some x ∈ S such
that x →S y; S is an EAF complete extension if x ∈ S if and only if
x is EAF acceptable w.r.t. S.
For S ⊆ X which is EAF conflict free, the EAF characteristic func-
tion F〈X ,A,D〉(S) reports the set of arguments which are EAF ac-
ceptable w.r.t. S.

In contrast to Defn. 1, the domain of the EAF characteristic func-
tion is limited to conflict free sets and furthermore (even within fini-
tary frameworks) F〈X ,A,D〉 is not guaranteed to have a least fixed
point. However it is the case ([16, Propn. 6]) that iterating F〈X ,A,D〉
starting from the empty set provides a fixed point, i.e. defining
F0

〈X ,A,D〉 = ∅, F i+1
〈X ,A,D〉 = F〈X ,A,D〉(F i

〈X ,A,D〉), for any finite
EAF not only is F i

〈X ,A,D〉 EAF conflict free but also there is a finite
value k for which Fk+1

〈X ,A,D〉 = Fk
〈X ,A,D〉. These properties lead to

the EAF grounded extension being defined as

GE(〈X ,A,D〉) =

∞[

k=0

Fk
〈X ,A,D〉

The formulation of EAF conflict free, EAF acceptable w.r.t. a set S,
and that of GE(〈X ,A,D〉), occasions some significant differences
between AFs and EAFs. In the former setting we have:

Fact 1

a. Let 〈X ,A〉 be an AF, S ⊆ X be an admissible set and x ∈ X be
acceptable w.r.t. S. The set S∪{x} is an admissible set of 〈X ,A〉.

b. Given 〈X ,A〉 let GE(〈X ,A〉) be its grounded extension and
Epr(〈X ,A〉) the set of preferred extensions.

GE(〈X ,A〉) ⊆
\

S∈Epr(〈X ,A〉)
S

c. Let 〈X ,A〉 be an AF, S, T subsets of X with S ⊆ T and x ∈ X .
If x is acceptable w.r.t. S then x is acceptable w.r.t. T .

d. If S ⊆ X is a stable extension of 〈X ,A〉 then S is also a preferred
extension of 〈X ,A〉.

e. If S ⊆ X is not conflict free then every superset of S also fails to
be conflict free.

In EAFs only Fact 1(a) holds in general: that is, given an EAF

〈X ,A,D〉, S an EAF admissible set, and arguments x, y both of
which are EAF acceptable w.r.t. S, the sets Sx = S ∪ {x} and
Sy = S ∪ {y} are both EAF admissible; furthermore, x is EAF

acceptable w.r.t. Sy and y is EAF acceptable w.r.t. Sx. Regarding
Fact 1(b), [16] offers examples of EAF preferred extensions that do
not have the EAF grounded extension as a subset. Similarly, in con-
trast to Fact 1(c), cases are illustrated with S ⊂ T ⊆ X and x ∈ X
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for which x is EAF acceptable w.r.t. S but is not EAF acceptable w.r.t.
T . Also, if S is EAF stable and x →S y (x ∈ S, y 
∈ S), then if
no other attacks on y are present, S ∪ {y} will be EAF admissible if
〈y, 〈x, y〉〉 ∈ D, so that S is not maximal (and so preferred). Hence,
Fact 1(d) does not hold within EAFs 2. Finally, as discussed earlier,
Fact 1(e) does not hold within EAFs.

The formal definition of EAF acceptability motivates considera-
tion of the following decision problem for EAFs:

Acceptability (ACC)
Instance: EAF 〈X ,A,D〉; S ⊆ X , x ∈ X .
Question: Is x EAF acceptable w.r.t. S?

In addition, the analogues of Fact 1 (b)–(e) failing to hold in gen-
eral, motivate consideration of the following decision problems spe-
cific to EAFs:

Grounded-Scepticism (GS)
Instance: EAF 〈X ,A,D〉.
Question: Is GE(〈X ,A,D〉) ⊆ S for all EAF preferred extensions
S of 〈X ,A,D〉?
Monotonicity Failure (MF)
Instance: EAF 〈X ,A,D〉.
Question: Are there sets S and T with S ⊂ T ⊆ X and an argu-
ment x ∈ X for which x is EAF acceptable w.r.t. S but x is not EAF

acceptable w.r.t. T ?

Semi-Coherence3 (SC)
Instance: EAF 〈X ,A,D〉.
Question: Is it the case that every EAF stable extension of 〈X ,A,D〉
is also an EAF preferred extension of 〈X ,A,D〉?
Conflict free extension (CFE)
Instance: EAF 〈X ,A,D〉; S ⊆ X
Question: Is there a subset T of X for which S ⊆ T and T is EAF

conflict free?

We consider these questions in the next sections of this paper.

3 Acceptability in EAFs

Our main result in this section establishes that, just as acceptabil-
ity w.r.t. a set is polynomial time decidable in AFs, so too EAF ac-
ceptability w.r.t. a set is decidable efficiently. Consider Algorithm 1
which takes a subset S and argument x of an EAF 〈X ,A,D〉 as its
parameters. Before dealing with its correctness, some informal dis-
cussion of the rationale underlying the algorithm may be helpful. The
argument x will fail to be EAF acceptable w.r.t. S unless it is possi-
ble to counterattack (using arguments within S) each attack 〈y, x〉.
Having removed those attacks which do not succeed w.r.t. S (in l. 2)
such attacks are singled out (by colouring these BLUE in l. 3). In
order to confirm that x is EAF acceptable w.r.t. S we need to identify
(for each y →S x) some z ∈ S for which z →S y and a reinstate-
ment set for z →S y can be found. If such a collection exists then
it will be a subset of the attacks coloured RED (notice that every
u →S v coloured RED must have u ∈ S from l. 6). The final loop
(ll. 12–20) eliminates from D and A attacks which are “irrelevant”
to determining the final status of x w.r.t. S.

We illustrate this in Fig. 1

Theorem 1 Given 〈X ,A,D〉, S ⊆ X and x ∈ X
2 Fact 1(d) is said to hold in [16]. Thanks to Dung (personal communication)

for pointing out this is not the case.
3 The term is by analogy with the property of coherence as defined in [11],

whereby an AF is said to be coherent whenever every preferred extension
is also stable.

Algorithm 1 Deciding EAF Acceptability
1: Input: 〈X ,A,D〉, S ⊆ X ; x ∈ X ;
2: A := A \ {〈y, z〉 : ¬(y →S z)};
3: Colour each attack y →S x BLUE;
4: repeat

5: for y ∈ X s.t. y →S x or 〈y, 〈u, v〉〉 is BLUE do

6: Colour z →S y RED for each z ∈ S s.t. z →S y;
7: end for

8: for z →S y coloured RED do

9: Colour each attack 〈v, 〈z, y〉〉 ∈ D BLUE

10: end for

11: until No change in attack colours
12: repeat

13: if ∃y ∈ X s.t. 〈y, 〈v, w〉〉 is BLUE and there is no u →S y
coloured RED then

14: A := A \ {〈v, w〉};
15: D := D \ {〈y, 〈v, w〉〉};
16: end if

17: if ∃z ∈ S s.t. (〈z, y〉 is RED with 〈y, 〈u, v〉〉 BLUE) and
there is no 〈p, 〈z, y〉〉 ∈ D then

18: D := D \ {〈y, 〈u, v〉〉};
19: end if

20: until No change in D
21: Report whether x is acceptable w.r.t. S in the AF 〈X ,A〉

Attacks removed by 
1.14 and 1.15

Attack removed by 
1.18

Attack removed by 1.2

z1 z2 z3 z4 z5

S

y1 y2 y3 y4

 x y5

Figure 1. x is EAF-acceptable w.r.t. {z1, . . . , z5} via Alg. 1. Note that x
would not be EAF-acceptable w.r.t. {z1} via Alg. 1.

a. Alg. 1 reports true if and only if x is EAF acceptable w.r.t. S.
b. Alg. 1 reports in time polynomial in |X |.

Proof: (Outline) For part (a), first suppose that x is EAF acceptable
w.r.t. S and consider any y1 for which y1 →S x. Then there is some
z1 ∈ S with z1 →S y1 and RS = {z1 →S y1, . . . , zk →S yk}
defining a reinstatement set for z1 →S y1. It is easy to see that each
of these is coloured RED in l. 6 of Alg. 1. Thus, letting 〈X ,B〉 be
the AF against which acceptability of x w.r.t. S is tested in l. 21, it
suffices to argue that 〈z1, y1〉 ∈ B. Suppose this were not so. Then
〈z1, y1〉 must have been removed at l. 14: this, however contradicts
the form of RS as a reinstatement set and, hence, we deduce that if
x is EAF acceptable w.r.t. S then Alg. 1 reports true.

On the other hand, suppose that the algorithm returns true at l. 21.
Consider the AF, 〈X ,B〉 tested in l. 21 and any y1 →S x ∈ A.
From the assumption that Alg. 1 reported true we find z1 ∈ S and
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〈z1, y1〉 ∈ B so that z1 →S y1. It follows that 〈z1, y1〉 cannot have
been removed from A at l. 14 so that either no attack 〈y2, 〈z1, y1〉〉
is in D (i.e. {z1 →S y1} is a reinstatement set for itself) or there is
some z2 ∈ S with z2 →S y2 ∈ A that also survives as an attack in
B. Continuing thus we identify a reinstatement set for some counter-
attack z →S y on y with z ∈ S for every y →S x. It follows that x
is EAF acceptable w.r.t. S.

Part (b) follows easily by observing that for each 〈p, q〉 ∈ A and
〈r, 〈p, q〉〉 ∈ D only a constant number of operations are ever per-
formed. Since |D| + |A| is polynomially bounded in |X | the upper
bound follows. �

Corollary 1 Given an EAF 〈X ,A,D〉

a. The EAF grounded extension of 〈X ,A,D〉 can be constructed in
polynomial time.

b. Determining if S ⊆ X is EAF admissible can be decided in poly-
nomial time.

c. Deciding if x ∈ X is credulously accepted w.r.t. EAF admissibility
is NP–complete.

d. Deciding if S ⊆ X is an EAF preferred extension is coNP–
complete.

e. Deciding if x ∈ X is sceptically accepted w.r.t. EAF preferred
extensions is Πp

2–complete.

Proof: Parts (a) and (b) follow immediately from Thm. 1 with the
definitions of EAF admissibility and EAF grounded extension. The
lower bounds for (c)–(e) follow from analogous lower bounds in AFs:
simply choose D = ∅. As regards upper bounds: for (c) it suffices to
guess a subset S of X and verify both x ∈ S and S is EAF admissi-
ble; for (d), the complementary problem is in NP simply by guessing
T ⊆ X with S ⊂ T and verifying that either T is EAF admissible or
S is not so. Finally (e) follows by testing that for all S ⊆ X that if
x 
∈ S then S is not an EAF preferred extension. �

Corollary 1 establishes that there is no computational overhead in
moving from standard AF semantics to EAFs as regards admissibility
or grounded semantics.

4 Decision Problems Specific to EAFs

We have seen that the extended concepts of acceptability and admis-
sibility in EAFs raise no additional computational overheads in com-
parison with AF concepts. However, it turns out that the EAF specific
properties described in the decision problems GS and MF raise rather
more challenging computational issues.

Theorem 2 GS is coNP–hard.

Proof: (Outline) We use a reduction from CNF unsatisfiability (UN-
SAT). Let Ψ(Zn) = C1 ∧ . . . Cm be an instance of UNSAT where,
without loss of generality it may be assumed that each clause, Cj

is defined using at most three literals over Zn = {z1, . . . , zn}. We
construct an EAF, 〈XΨ,AΨ,DΨ〉 as follows given Ψ(Zn). The set
XΨ contains 5n + m + 2 arguments

{zi, ¬zi, +i,¬i, si : 1 ≤ i ≤ n} ∪ {Cj : 1 ≤ j ≤ m} ∪ {Ψ, Φ}

The set of attacks, AΨ contains

{〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n} ∪
{〈+i, zi〉, 〈¬i,¬zi〉 : 1 ≤ i ≤ n} ∪
{〈Φ, zi〉, 〈Φ,¬zi〉 1 ≤ i ≤ n} ∪
{〈si, +i〉, 〈si,¬i〉 : 1 ≤ i ≤ n} ∪
{〈si, Ψ〉 : 1 ≤ i ≤ n} ∪
{〈yk, Cj〉 : when yk ∈ {zk,¬zk} occurs in Cj} ∪
{〈Cj , Ψ〉 : 1 ≤ j ≤ m} ∪ {〈Ψ, Φ〉}

Finally DΨ contains

{〈+i, 〈si, +i〉〉, 〈¬i, 〈si,¬i〉〉 1 ≤ i ≤ n} ∪
{〈zi, 〈+i, zi〉〉, 〈¬zi, 〈¬i,¬zi〉〉 : 1 ≤ i ≤ n} ∪
{〈Ψ, 〈si, Ψ〉〉 : 1 ≤ i ≤ n}

The construction is illustrated in Fig. 2 (note that, in order to improve
clarity, some attacks are not shown).

�

�

C1 Cj Cm

z1

+1

s1

¬z1 zn ¬zn

¬1 +n ¬n

sn

Figure 2. The EAF used in reduction from UNSAT

We claim that 〈XΨ,AΨ,DΨ〉 is accepted as an instance of GS if
and only if Ψ(Zn) is unsatisfiable.

First observe that GE(〈XΨ,AΨ,DΨ〉) contains exactly
{s1, . . . , sn} ∪ {Φ}: the si arguments are unattacked, hence
form F〈XΨ,AΨ,DΨ〉(∅); the only argument that is EAF acceptable
w.r.t. {s1, . . . , sn} is Φ the attack 〈Ψ, Φ〉 being countered by
〈s1, Ψ〉 (noting that s1 →{s1,...,sn} Ψ is its own reinstatement set).
Now noting that no EAF admissible set can contain both Ψ and Φ
(and every preferred extension exactly one of these), in order to
complete the proof it suffices to show that there is an EAF admissible
set containing Ψ if and only if Ψ(Zn) is satisfiable. Thus, suppose
〈α1, . . . , αn〉 ∈ 〈�,⊥〉n is a satisfying assignment. Then the set

Sα = { zi : αi = �} ∪ {¬zi : αi = ⊥} ∪ {Ψ} ∪ {s1, . . . , sn}

is both EAF conflict free (since 〈Ψ, 〈si, Ψ〉〉 ∈ DΨ for each 1 ≤
i ≤ n) and admissible: each Cj must be succesfully attacked by
some z ∈ Sα (α satisfies Ψ(Zn)) and these are the only (remaining)
attackers of Ψ. Furthermore the only attacks on z ∈ Sα are from
¬z (defended by z itself) and Φ (countered by Ψ →Sα Φ). Notice
that if zi ∈ Sα then it is not the case that +i →Sα zi. We deduce
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that should Ψ(Zn) be satisfiable then there is an EAF admissible set
containing Ψ (thus an EAF preferred extension that does not contain
Φ) and 〈XΨ,AΨ,DΨ〉 fails to be a positive instance of GS.

For the converse direction suppose that 〈XΨ,AΨ,DΨ〉 is not a
positive instance of GS. We show that in this case there is an EAF

admissible set containing Ψ whence we deduce that Ψ(Zn) is satisfi-
able. It is immediate that {s1, . . . , sn} ⊆ S for every EAF preferred
extension of 〈XΨ,AΨ,DΨ〉 since these arguments are unattacked.
From our assumption that 〈XΨ,AΨ,DΨ〉 is not a positive instance
of GS there must be some EAF preferred extension, S say, for which
Φ 
∈ S. Were it the case that Ψ 
∈ S such would contradict S being
maximal since Φ is EAF acceptable w.r.t. any EAF conflict free subset
that does not contain Ψ and does contain {s1, . . . , sn}. Hence from
the premise it follows that Ψ ∈ S and thus each attack Cj →S Ψ
must be countered. The only arguments available for this purpose,
however, must come from {z1, . . . , zn,¬z1, . . . ,¬zn}. From this
subset a satisfying assignment for Ψ(Zn) is easily formed. We de-
duce that 〈XΨ,AΨ,DΨ〉 is accepted as an instance of GS if and only
if Ψ(Zn) is unsatisfiable. �

Corollary 2

a. MF is NP–complete.
b. SC is coNP-complete.

Proof: (Outline) For (a) membership in NP follows from the fact that
〈X ,A,D〉 is accepted as an instance of MF if and only if

∃ S, T ⊆ X , x ∈ X s.t. S ⊂ T , x is EAF acceptable w.r.t. S
and x is not EAF acceptable w.r.t. T

From Thm. 1 validating 〈S, T, x〉 satisfy such conditions is polyno-
mial time computable. To establish MF is NP–hard, it suffices to use a
similar reduction (from SAT) to that described in the proof of Thm 2:
fixing S = {s1, . . . , sn} there is a (strict) superset T of S with Φ
not EAF acceptable w.r.t. T – the set T containing, in addition to
S, {Ψ} and arguments from {z1, . . . , zn,¬z1, . . . , zn} defining a
satisfying assignment of Ψ(Zn). The upper bound for part (b) fol-
lows since the complementary problem is in NP: guess subsets, S
and T of X and verify that S ⊂ T , S is stable and T is admissi-
ble.4 The lower bound uses a simplification of the construction in
Fig. 2 (without the {si, +i,¬i} arguments and with 〈yi, 〈Φ, yi〉〉 for
each literal yi ∈ {zi,¬zi}, 〈Φ, 〈Ψ, Φ〉〉 added to DΨ). We omit the
straightforward argument that Ψ(Zn) is unsatisfiable if and only if
the constructed EAF is semi-coherent. �

Finally, we address the CFE problem. Firstly, recall that the anal-
ogous problem in AFs is trivial since the property of S being non-
conflict free is monotonic, i.e. if S ⊆ X fails to be conflict free in
〈X ,A〉 then every superset of S also fails to be conflict free. This
property does not hold for VAFs, weighted argument systems [12],
and EAFs. The corresponding problems in VAFs – given S ⊆ X in
the VAF 〈X ,A,V, η〉 is there an audience, R, and subset T of X con-
taining S, such that T is conflict free w.r.t. the audience R – are poly-
nomial time decidable [7], as is the related formulation for weighted
argument systems.

The capability of constructing a conflict free extension of S (or
deciding that none such is possible) is a prerequisite for determining
the scope for S to be part of an EAF admissible set. Thus consid-
eration of the computational complexity of CFE is well motivated.
Perhaps surprisingly – in view of the polynomial time procedures in

4 The authors thank the anonymous reviewer who observed this.

VAFs and weighted argument systems – CFE turns out to be computa-
tionally intractable: including justifications for preferences within the
framework results in complexity akin to that of finding a particular
audience in a VAF for which a given argument is acceptable.

Theorem 3 CFE is NP–complete.

Proof: Membership in NP is immediate simply by guessing T ⊆ X
and verifying that both T is EAF conflict free and S ⊆ T hold.
For NP–hardness we use a reduction from CNF SAT. Given an in-
stance Φ(Zn) of CNF SAT with clauses {C1, . . . , Cm}, form the EAF

〈XΦ,AΦ,DΦ〉 in which

XΦ = {zi, ¬zi : 1 ≤ i ≤ n} ∪ { Cj : 1 ≤ j ≤ m} ∪ {Φ}
AΦ = {〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n} ∪

{〈Cj , Φ〉 : 1 ≤ j ≤ m}
DΦ = {〈yk, 〈Cj , Φ〉〉 : yk ∈ {zk,¬zk} is a literal in Cj}

The instance of CFE is completed by fixing S = {Φ, C1, . . . , Cm}.5

We claim that there is an EAF conflict free extension of
{Φ, C1, . . . , Cm} in 〈XΦ,AΦ,DΦ〉 if and only if there is an assign-
ment α ∈ 〈⊥,�〉n to Zn that satisfies Φ.

Suppose first that T with {Φ, C1, . . . , Cm} ⊆ T is an EAF con-
flict free set. Consider the set T ∩ {zi, ¬zi : 1 ≤ i ≤ n} and the
assignment 〈α1, . . . , αn〉 for which αi = � if zi ∈ T and αi = ⊥
if ¬zi ∈ T . Noting that we cannot have both zi and ¬zi in T , the
assignment 〈α1, . . . , αn〉 is well defined. We claim that this assign-
ment satisfies Φ(Zn). To see this it suffices to observe that since T
is EAF conflict free and {Φ, C1, . . . , Cm} is not (by reason of the
attacks {〈Cj , Φ〉 : 1 ≤ j ≤ m}) it must be the case that each attack
〈Cj , Φ〉 fails with respect to some yi ∈ T ∩{zi, ¬zi : 1 ≤ i ≤ n}.
This can only happen if the corresponding literal occurs in the clause
Cj so that the chosen assignment to zi will render Cj true. From the
fact that T is EAF conflict free, every attack 〈Cj , Φ〉 must fail; thus
the assignment 〈α1, . . . , αn〉 will satisfy every clause of ϕ(Zn), i.e.
ϕ(Zn) is satisfiable as required.

Conversely, suppose 〈α1, . . . , αn〉 satisfies ϕ(Zn). Consider the
subset, Tα of {zi, ¬zi : 1 ≤ i ≤ n} given by

Tα = { zi : αi = �} ∪ { ¬zi : αi = ⊥}

With this, {Φ, C1, . . . , Cm} ∪ Tα is EAF conflict free: each attack
〈Cj , Φ〉 fails given 〈yi, 〈Cj , Φ〉〉 where yi ∈ {zi,¬zi} is the literal
in Cj that takes the value � under 〈α1, . . . , αn〉.

�

5 Relationship to EAF+

Before addressing developments of our results, we briefly discuss a
recently proposed alternative approach: the treatment of EAFs (re-
ferred to as EAF+) deriving from the argumentation framework with
recursive attacks (AFRA) formalism from Baroni et al. [2]. This, as
with EAFs, develops the concept of D (a subset of X ×A) to one in
which arguments in X may also attack elements of D. Formally,

Definition 5 ([2]) An EAF+ is described by 〈X ,R,D+〉 where X
is a set of arguments, R ⊆ X × X , and D+ is a set of pairs 〈x, δ〉
5 It may be noted that the structure of 〈X ,A,D〉 is similar to that in the stan-

dard translation of CNF to an AF originally presented in [10] to show de-
ciding credulous acceptance (w.r.t. admissibility) is NP–complete: instead
of literal arguments attacking the clause arguments in which the literal ap-
pears, such arguments attack the attack by the clause on Φ.
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in which x ∈ X and (δ ∈ R or δ ∈ D+). Given α = 〈x,H〉 ∈ D+,
the source (src) and target (trg) of α are described by, src(α) = x
and trg(α) = H. Letting C = R∪D+, for x, y ∈ X ∪ C, x is said
to defeat y (x →C y) whenever any of the following hold

1. x, y ∈ X and 〈x, y〉 ∈ R.
2. x ∈ X , y ∈ C and 〈x, y〉 ∈ C
3. x, y ∈ C and trg(x) = y.
4. x ∈ C, y ∈ X and trg(x) = y

The basic structures of interest within an EAF+ are derived from the
so-called self-contained pairs: 〈S, T 〉 for S ⊆ X and T ⊆ C being a
self-contained pair whenever src(α) ∈ S for all α ∈ T . Analogues
of conflict free, acceptability and admissibility are presented w.r.t.
self-contained pairs.

Definition 6 ([2]) Given an EAF+ 〈X ,A,D+〉, a self-contained
pair 〈S, T 〉 is conflict free if

a. ∀ x, y ∈ S should x →C y (i.e. α = 〈x, y〉 ∈ A) then ∃β ∈ T
s.t. β →C α.

b. ∀γ ∈ T , ∀δ ∈ S ∪ T ¬(trg(γ) = δ).

An argument x ∈ X is acceptable w.r.t. a self-contained pair
〈S, T 〉 if ∀ y ∈ X s.t. 〈y, x〉 ∈ A there is some α ∈ T s.t. α →C y
or α →C 〈y, x〉.
In a related way, α ∈ C is acceptable w.r.t. a self-contained pair
〈S, T 〉 if src(α) ∈ X is acceptable w.r.t. 〈S, T 〉 and ∀β ∈ D+ s.t.
β →C α, ∃γ ∈ T for which γ →C src(β) or γ →C β.
A self-contained pair, 〈S, T 〉, is admissible if it is conflict free, and
every x ∈ S, α ∈ T is acceptable w.r.t. 〈S, T 〉. Using the (par-
tial) ordering of self-contained pairs, under which 〈S, T 〉 is included
in 〈S ′, T ′〉 if S ⊆ S ′ and T ⊆ T ′ gives rise to the concept
of preferred extensions of 〈X ,A,D+〉 as maximal admissible self-
contained pairs.

Acceptability is defined without recourse to the notion of reinstate-
ment set. However, [2] do not present proposals for defining charac-
teristic functions of self-contained pairs mirroring Defn. 4. Thus a di-
rect comparison of issues such as, e.g. membership in the “grounded
extension” and sceptical acceptance are, at present, not possible.
We note that by considering the EAF constructed in the proof of
Thm. 2, formulations of grounded extension of an EAF+ (even with
the constraint D+ = D imposed) will either result in different
S ⊆ X forming the EAF (resp. EAF+) “grounded” extensions or
exhibit behaviours whereby membership of this does not guarantee
sceptical acceptance w.r.t. preferred extensions. We note that given
〈〈X ,A,D+〉,S〉, by a near identical construction to Thm. 3, decid-
ing if 〈S, ∅〉 can be extended to a conflict free self-contained pair
〈S′, T 〉 (with S ⊆ S ′) is NP–hard (and in NP for finite D+)

6 Conclusions

We have considered a number of computational issues arising in the
EAF model of Modgil [16] from both an algorithmic and computa-
tional complexity viewpoint. In particular it has been demonstrated
that, in keeping with Dung’s abstract AF model and other develop-
ments of Dung [11], such as those from [4, 6, 12], the central ques-
tion of deciding acceptability of x w.r.t. a subset S is polynomial
time decidable and so, consequently, verifying if S is EAF admis-
sible and construction of the EAF grounded extension may also be
carried out by polynomial time procedures. However, in contrast to

these positive properties, a number of questions specifically arising
from properties of EAF semantics have been shown to be unlikely to
admit efficient decision algorithms: in particular determining if the
EAF grounded extension is a subset of every EAF preferred exten-
sion is coNP–hard; as well as problems relating to acceptability w.r.t.
subsets S, T for which S ⊂ T , and the relationship between stable
and preferred extensions. In addition, one problem whose analogues
in AFs, VAFs, and weighted systems is polynomial time decidable,
turns out to be hard within EAFs: that of deciding if a given set S can
be extended to an EAF conflict free set.

There are a number of natural directions in which our results can
be pursued. In addition to exact complexity bounds on GS, it would
be of some interest to characterise forms of EAFs that are free from
the extreme behaviours giving rise to GS, MF, and SC, or, find classes
of EAF in which their presence can be decided efficiently. Finally,
there is considerable scope for exploring detailed semantic and al-
gorithmic issues arising from the interaction of the EAF+ and EAF

approaches: given suitable formulations for concepts of “grounded
extension” in EAF+ may well provide valuable insights not only with
respect to purely computational concerns but also into the metalevel
modelling of argumentation that is the focus of [17].
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