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SUMMARY

Differing types of documents exhibit varying structures. These may arise, at one level,
because of the material comprising the text – thus textbooks will be organized differently
from research papers – and at a lower level as a result of the layout conventions by
which the text is formatted. These structuring regimes may be seen as defining a set of
constraints which a document within a specific class must satisfy. In this paper we
examine the model recently proposed in Reference [1] which is used for representing and
modifying electronic documents. This employs simple graph grammars as a means of
translating changes in the document structure into modifications to the computer
representation. The aim of this approach is to provide computer support which will allow
the appropriate structural conventions to be preserved while the document is being
edited. We consider the following problem with this method: given a set of ‘constraints’
which the document must satisfy and a collection of rules prescribing how the document
representation may be modified, how does one prove that only documents which obey the
constraints can be generated by repeated applications of the rules? We describe one way
in which this question can be more precisely formulated and call this the consistency
checking problem. It is shown that, in general, this problem cannot be solved. We then
outline how, for practical applications, the consistency checking problem may be solved
for certain special cases.
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1. INTRODUCTION
Any meaningful document has a structure, an understanding of which is essential if a
reader is to interpret the text correctly. Over the years conventions for different
classes of documents have developed; thus a textbook will typically comprise a
preface, followed by a table of contents, followed by a series of chapters, followed
by an index. Chapters themselves have structure, being broken down into sections,
paragraphs and sentences. In the same way a mathematical paper is usually organized
into: an abstract summarizing the content; an introduction describing the context in
which the paper is set and outlining the results proved therein with possibly an infor-
mal description of the proof techniques employed; a list of definitions and notational
symbols used; statements and proofs of preliminary results; statements and proofs of
the main results; conclusions; and references. Normally the reader will be expected to
read such documents in a particular order: therefore later sections may presuppose
material in earlier sections. Understanding of the document is enhanced if the reader
is aware of the structural conventions, but this means in turn that the author must be
aware of, and observe, these conventions.
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In recent years the use of computer systems as a mechanism for preparing
documents has increased enormously, even though the final publication form will be
as a hard copy. In such an environment the author interacts with a computer
representation of the text (which we will subsequently call an electronic document)
and this may have a radically different structure from that of the intended document.
The simplest example of this is a standard text editor: here the computer
representation of the document is just as a finite string of ASCII characters without
regard to any higher level structure that may be present. The electronic document on
which the author is working may have a different set of structural conventions from
the intended finished product. In this way there exist two different views of a
document: the author’s conception of the structural organization of the text; and the
model of the document used by the computer system. In a recent paper Furuta [2]
calls the latter the abstract representation of a document and discusses the problems
arising in transforming this, by stages called the physical and page representations, to
a hard-copy form. In this paper we shall use the term conceptual representation to
denote the high-level structural view of a document as seen by its authors and
intended readership and are concerned with abstract representations for electronic
documents which support this conceptual representation. We note that the conceptual
representation may embody formatting constraints, e.g. the instructions for preparing
manuscripts to appear in a conference proceedings might specify a maximum number
of words, and that a particular point size, font and line spacing be used. Furuta, in
Reference [2] notes that it is important to have a well-defined relationship between
the abstract, physical and page representations in order to facilitate the process of
producing the final version. Similarly Koo, in Reference [1], argues that the
conceptual and abstract representations must also be closely linked: it is noted that
document management systems must have some characterization of the documents
dealt with and that how this characterization is made is a significant factor in the
performance of the system with respect to such criteria as functionality and
extensibility. That the conceptual and abstract representations be similar is also
important in the field of collaborative authorship: suppose a number of writers have
agreed upon the overall structure of a document so that there is a single conceptual
representation; unless the abstract representation matches this it may be possible for
one author to distort the structure of the final document. For example, consider a
team of writers producing a user manual for a large item of software, each writer
being responsible for describing some feature of the system. The team must decide
on how much space to dedicate to documenting each feature, they must agree upon
one set of notational and terminological conventions and fix a standard layout for the
manual. If the abstract representation does not support the structure decided upon,
then it is possible that one writer may expand the description of some facility beyond
the space allocated for it, may use different notation and terminology, or may fail to
respect the formatting style. While it is possible to recover from such deviations this
would entail an unnecessary delay in the production of the final manual.

Use of directed graphs

One approach which has been widely studied as a means of linking conceptual and
abstract representations is the use of directed graphs as a document model. These



h

SOME COMPUTATIONAL PROPERTIES OF A MODEL FOR ELECTRONIC DOCUMENTS 233

provide a formal structure with which to represent documents in a computer system.
We will use the term document graph to refer to a graph-theoretic representation of a
document. In such models a document is viewed as a collection of (textual) objects:
a node of the graph corresponds to a particular object and edges in the graph
describe logical relations between objects, e.g. that a particular section must precede
another section in the hard-copy form, that two sections are related by one being a
statement of a theorem and the other being its proof etc. Nodes may also be labelled
to describe the function played by the corresponding object in the text, e.g. that the
object contains the text of an abstract, is a section title, is a definition etc. The use of
node labelling permits sections of the document to be compressed: a node which is
labelled as a table can subsequently be expanded into a subgraph which describes the
table in terms of nodes labelled as table entries. This technique is appealing since it
permits logical connections between sections of a document to be represented simply
and directly. In addition various attributes may be associated with nodes of the
document graph to indicate formatting conventions, e.g. that a particular font or point
size should be used in setting the corresponding text. Examples of such models may
be found in approaches such as hypertext [3–5] in which documents are represented
by arbitrary directed graphs; in References [1, 6–8] where directed acyclic graph
structures are used; and in References [9–12] which are restricted to tree structures.

However, since the document graph does not remain static but may alter as
changes are made to the text, there is the possibility that a graph, which initially
meets the constraints describing the logical structure of a document in a specific
class, will cease to satisfy these after several modifications have been made. As a
possible solution to this problem Reference [1] extends the earlier models of
References [6–8] by introducing (amongst other ideas) the concept of graph
modification rules. These rules, which are formally production rules of a graph
grammar (see Reference[13]), are employed to control modifications to a document
graph in order that it should reflect changes (either in structure or interpretation)
made to the underlying document: thus rules may encapsulate how to modify the
graph in the event of sections being added to or deleted from the document or rules
may indicate how new logical links in the document structure are to be reflected in
the document graph form. Koo’s article illustrates how a simple set of rules may be
applied to create and modify tables of information and he observes that the
correctness of the given rules may be formally verified by a simple inductive proof.

The Koo model

In simple terms Koo’s model of electronic documents involves the following
elements: a specification of the class of documents being manipulated (e.g. a
description of what constitutes a table possibly involving various constraints being
placed on the data contained in the table); a collection of initial document graphs
which will be expanded into full documents by the author (e.g. the initial graph for a
model of tables could just be a single node labelled table); and a set of modification
rules which are the means by which the initial and subsequent document graphs are
modified (e.g. for tabular data such rules would describe the changes made to the
graph when new rows and cells are added to a current table). A more formal
description of this model will be given in the next section of this paper.
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Following the approach in Reference [1], we shall in this paper assume document
graphs to be acyclic. The properties of directed acyclic graphs offer several
advantages over more general document representation methods particularly when
their semantic capabilities are enhanced by the provision of a formal modification
regime. It is important to note that by ‘semantic’ in this context we are referring to
the structural organization of a document and not to its literal textual content. Thus
in terms of the textbook organization described above the mapping of such onto a
graph-theoretic formalism would encapsulate the high-level semantic view of this as:
table of contents; sequence of chapters; index. However, our graph-theoretic model
does not extend to a consideration of the actual words and punctuation contained in
these components. To understand this distinction between what we shall call the
high-level structural semantics of a document and the low-level textual semantics of
the same document, ultimately just a finite sequence of ASCII characters, the
following analogies may prove helpful.

Three examples

Classical imperative programming languages view programs as sequences of
statements describing the precise actions to be performed. The order of the lines
within this sequence is vital: different orderings will give rise to different program
behaviours. The creators of such programs are normally not made aware of this
implicit structure when writing a program since standard text editors handle programs
and other documents in an identical manner: as a finite string of ASCII characters.
Therefore it is entirely up to the program author to recognize the true program
structure and to impose it on the document by physically inserting lines in the
appropriate place. Similarly if the contributions of two or more authors are merged
into a single program this must be achieved by laborious interleaving of the various
contributions. Certain programming languages, provide the means to alleviate such
difficulties: program statements are labelled with numbers; these numbers are
assigned by the programmer(s) and the order of execution is determined by
increasing values of the associated labels and not by the physical location of lines
within the file. Now suppose we consider a program in such a language as a
document and examine the creation and development of this. Then we have (at least)
two different possible perspectives with which to analyse the semantic structure
present: either that we view the document (program) created, as a block of text by
the author, solely in terms of its physical representation as an ASCII character file
within the computer system — this is the low-level description; or we take the
viewpoint, implicitly adopted by the interpreter or compiler of the program, that the
document is a sequence of labelled instructions with this sequence proceeding from
the lowest numbered statement to the highest numbered statement — this is the high-
level description. Note that the writer(s) of such a program must be aware that the
high-level description exists and must construct their program accordingly in order to
ensure its correctness: the individual statements comprising the code must be assigned
numbers in accordance with their intended order of execution. On the other hand the
programmer does not have to worry about physically reproducing this order in the
program text: statements can be typed in any order provided the numbering
convention is correct, so to insert a new statement between two existing ones it
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would be sufficient to add this to the physical end of the file containing the program
provided that the label of the new statement fell between the numerical values of the
two statements it was to be inserted among.

As a second example one can consider the design of VLSI circuits. The low-level
internal representation of such a circuit will be as a collection of, typically, several
hundred thousand geometrical objects (rectangles, circles, lines etc.) corresponding to
different semiconducting materials on the physical chip surface. However, a circuit
designer regards these from a much higher level: groups of objects form transistors,
configurations of transistors are organized into logic gates; collections of logic gates
define complex components such as adders, ALUs, memories, processors etc. Several
VLSI CAD tools are designed to support a structured design philosophy which
represents a chip design as a regular array of cells, a cell being either primitive (i.e.
defined in terms of its elementary physical structure) or composite (i.e. defined in
terms of other cells). In this way the high-level semantic viewpoint treats a chip
design as an array of components each with a well-defined functional behaviour and
relationship to other cells; the low-level semantic view defines only the geometric
layout of the entire chip surface and deals with this in terms of the electrochemical
properties governing the behaviour of the semiconducting materials used.

As a final example of the difference between low-level and high-level
representations one might consider the treatment of abstract data types (ADTs) in
various programming languages. An ADT is defined in two stages: by specifying how
a data structure is to be built using the basic data structures provided by the language
(e.g. a list might be represented as an array of elements); and secondly by defining
the permissible operations on the data structure (e.g. creating a list; adding an
element to the head of the list; removing the head; concatenating two lists etc.). In
most programming languages, particularly Pascal, Modula and Algol68, the
underlying form of a data structure is not hidden from the remainder of the program
and thus the writer of a program can make use of this, for example by accessing an
element in the middle of list by referring directly to an array element instead of
achieving the same effect by use of the ‘allowed’ operations. In other words such
languages do not hide the low-level programming semantics of ADTs and this can
often lead to avoidable errors in programs. In contrast, modern programming
language theory has resulted in the development of languages such as Liskov’s CLU
and Milner’s ML: the ADT mechanisms provided by these are constructed so that
new data types can be created, accessed and changed solely by use of the operations
specified when a structure is defined. Attempts to manipulate a data structure without
the permitted operations result in compile-time errors. Thus these languages provide
a high-level semantic view with the details of how a data structure is built being
hidden from the remainder of the program.

Directed acyclic graphs for document management

It is one of the main contentions of this paper that an appreciation of the high-level
structural semantics underlying any document is essential in the realm of cooperative
authorship ventures and the examples just given provide some support for this claim.
If a number of people are cooperating in the production of a program each individual
will be responsible for contributing some well-defined functional component to the
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final solution; clearly individuals must use labels which are globally consistent for
their own section and by employing a creative tool which supports the high-level
program view posited above this can be easily achieved without each writer having
to know the set of labels employed by co-authors: the program is modelled as a
sequence of nodes — one for each contributor — which are ordered according to the
placement of the relevant blocks within the entire program. Each programmer can
then write his own section of the final program, using whatever labels he wishes, and
the document management system controlling the graph-theoretic representation of the
program can then simply scan over the final code, following the section ordering, and
assign correctly ordered labels to each statement. For example this could be
accomplished by adding a sufficiently large number to each statement label: e.g.
1000 to each label in the ‘first’ block; 2000 to each label in the ‘second’ block etc.
Thus, provided the authors have agreed on a synoptic program structure at the outset,
the program can be merged simply by concatenating files and relying on the system’s
model to sort out the sequence without any need for physical interleaving of lines. In
this case the advantages of using a model of the document appropriate to the
document type and built into the system, over the superficially less constrained model
of the finite text string, are evident. Again in the chip design example, individuals
can concentrate on the low-level design of the specific functional components within
the composite global design: without any high-level view of the design either
cooperative work is impossible or (what amounts to the same thing) the chip surface
is partitioned into physical segments with each designer deciding the content of each
part without regard to the activities of other designers. Similarly, in languages which
strictly control how ADTs may be manipulated, programmers, working cooperatively,
do not have to be concerned with how structures defined by other authors are
formed.

In this paper we are largely concerned with developing an approach capable of
supporting the creation of documents having a highly organized structure. However,
while it is possible to ensure that a high-level semantic form is adhered to, it is
virtually impossible to enforce correctness of the low-level textual semantics: e.g. in
a mathematical paper in which (at a high level) a theorem statement should be
followed by a theorem proof, the document management tool cannot ensure that the
textual contents of the ‘statement’ block are in fact a theorem statement or that the
textual content of the ‘proof’ block do indeed constitute a proof. Accepting this
caveat we contend that directed acyclic graphs provide the strongest basis for a
high-level document management tool.

One important feature of such graphs is that there are only a fixed number of
finite paths permitted by the graph structure from source nodes to terminal points.
This allows the sensible readings of the final document, when produced in an
orthodox hard-copy version, to be reflected in the computer representation used for
writing and revising the document. Here there is an underlying assumption that the
sensible paths through any document are acyclic. Again it is stressed that this
pertains to the high-level structural organization of a document and not to how it
might be read when produced as hard copy: the prerequisite material for a chapter of
a textbook must precede the chapter which assumes a knowledge of it (regardless of
the fact that a reader may wish to pass through it more than once); the supporting
definitions and lemmata for a mathematical theorem must be stated (and possibly
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proved) prior to the announcement of the theorem itself. In fact one may reasonably
contend that every document has a directed, acyclic high-level structure in this sense:
textbooks, mathematical papers, user manuals, works of fiction (pace the exceptional
case of Reference [14] which to treat as acyclic would be to misunderstand the
author’s aims).

These constraints are important in avoiding the confusion that can result from the
more liberal representation methodologies such as hypertext techniques and, in
particular, the semantic shifts and inversions that are characteristic of the hypertext
approach can be prevented. A fuller discussion of such issues is the subject of
Reference [15] Of course it might be contended that by restricting oneself to a subset
of hypertext’s capabilities one can achieve the same ends, and still have in reserve a
battery of techniques for use with more general representations. However, to argue
thus indicates a failure to appreciate the expressive clarity of minimalism: First-order
Logic does not become a redundant theory even though Second-order Logic provides
greater mathematical potency; it is easier to prove properties of systems whose
behaviour is rigidly controlled by a concise set of construction principles than it is to
reason about the outcome of methods which permit great laxity in specification, even
if the latter can be artificially restricted to emulate the former.1 An additional
advantage of the graph modification rule paradigm is that it provides a rigorous
structure with which to regulate cooperative authorship ventures. The modification
rules guarantee that, regardless of how many writers are working on a document and
the specific changes they make to it, the global organization of the text will always
conform to a predefined model so that the conventions of the target document are
observed: while co-authors work on particular sections if changes are made in
accordance with the modification rules then these will ensure that a homogeneous
structure results. Note that this substantially reduces the requirement for multiple
authors to expend considerable efforts in collating individual contributions.

There are two difficulties which arise in implementing the method described
above: first how to construct the appropriate modification rules — ideally one would
wish to do this automatically given some formal specification of the document class;
secondly how to determine if the modification rules are correct in the following
sense: the specification may be given by describing the properties that any document
graph (the abstract representation) must possess in order for it to correspond to a
document in the class considered (the conceptual representation); as a minimal
requirement the modification rules when applied repeatedly to the initial graphs
should generate only document graphs which satisfy the specification conditions. We
shall call a set of modification rules which exhibits this behaviour consistent with
respect to the given specification.2 Thus the second difficulty present is how to
ensure that the modification rules are consistent with the specification of the

1 The ADT example is particularly instructive with regard to these points: in principle one might propose a
methodology for Pascal program development which would assert the necessity of manipulating user-defined
data structures solely by means of the operations specified for them. In practice one could not enforce the use
of such an approach without making corresponding changes to the Pascal language definition (and then, of
course, one is no longer dealing with Pascal per se). In short, when restricting some general set of techniques
to a subset of the same, it is impossible to prevent the conversant user from moving outside the intended
regime and utilizing facilities which were intended to be hidden, e.g. accessing a list element via an array
reference.

2 In Reference [1] Koo defines consistency in a rather narrower sense: a set of rules is consistent if it generates
only graphs which are ‘well-formed’; since the paper requires document graphs to be acyclic, directed graphs
containing cycles are not regarded as well-formed.
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document class: i.e. the abstract representations always agree with the conceptual
representations.

One of the results proved in this paper is that the problem of checking
inconsistency is undecidable. The proof involves a reduction from the Halting
Problem for Turing machines. As a consequence of the proof technique it turns out
that graph modification rules may be viewed as a formal model of computation. This
viewpoint may be used to establish that certain restricted variants of the inconsistency
checking problem, although decidable, are still intractable.

In Sections 2 and 3 we are concerned with results of a theoretical nature: Section
2 reviews the formal definitions of document graph and graph modification rule as
given in Reference [1] and gives a precise formulation of the consistency checking
problem. In Section 3 we show that no general method exists for solving the
consistency checking problem. In that section we show that, despite the theoretical
impossibility of checking consistency in general, for a number of practical cases,
specifications of particular document classes can be defined and a set of consistent
modification rules constructed for them. Then Section 4 presents modification systems
capable of describing abstracts, documents containing tables, and mathematical
papers. It should be noted that here we are concerned with depicting the logical
organization of such documents by specific systems of modification rules. The issue
of designing graph modification systems dealing with structural aspects (in particular
text-formatting conventions) will be dealt with in a subsequent paper.

2. DOCUMENT GRAPHS AND GRAPH MODIFICATION RULES

In this section we set up formal definitions of the concepts introduced in the
introduction. These definitions will allow us to state precisely what it means for a
rule system to be consistent with respect to a specification.
Definition 1: ([1]) A document graph is a directed acyclic graph, G (V, E). The
vertices in V denote objects in a document and the edges in E depict logical
connections between objects. Each object has an associated object type. This consists
of two parts: a data type which specifies the domain of possible data values for the
object (e.g. integers, text strings); and an attribute type which indicates the domain of
possible properties that the object may possess (e.g. font, size). Objects may also be
labelled. For a fuller analysis of object types the reader is referred to Reference
[1]. g

Document graphs are the abstract representations of document structure: the form
that is manipulated by the author when editing the document within a management
system. Recalling that our objective is to have this abstract representation closely
matching the author’s conceptual representation the following definition provides a
method of specifying which documents belong to a particular class in terms of
properties of the graphs representing them.
Definition 2: A document specification consists of a pair DS = (C, Init). Here C is a
finite set of constraints,

C = { C 1, C 2 , . . . , Ck }

where each Ci is a (computable) predicate on document graphs. Init is a set of initial
document graphs. Given a document specification DS and a document graph G, G is
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said to meet the specification DS if and only if G ∈ Init or Ci( G ) is true for each
constraint Ci . g

Note that the specification is defined in terms of document graphs and not
documents themselves. In addition although we have formally defined constraints as a
set of predicates in practice one would envisage the specification as being generated
from some less rigorous description; e.g. our informal structure for mathematical
papers, given in the introduction, could be translated into a set of conditions among
which might be the predicate ‘every node labelled proof has a unique predecessor
which is labelled theorem or lemma’
Definition 3: A graph modification system (or GMS) is a finite set

S = { R 1, R 2 , . . . , Rm }

of graph modification rules. Each graph modification rule, R, is a triple < P, Gl , Gr >
where P is a predicate on document graphs and Gl , Gr are document graphs. A rule
R = < P, Gl , Gr > acts on a given document graph G as follows: if P ( G ) is true and
G contains Gl as a sub-document graph then Gl in G is replaced by the document
graph Gr . In general applying a rule R to a document graph G results in a new graph
H. We say that G yields H (denoted G → H) in this case. Similarly if H results from
repeated applications of rules to G we say that G derives H (denoted G →* H). g

Now, given a document specification there will in general be infinitely many
document graphs which meet that specification; similarly given a GMS acting on the
initial graph of a specification there may be infinitely many new document graphs
which can be derived by repeatedly applying the modification rules. In order for the
GMS to be ‘correct’ each document graph which is derived using it should meet the
specification. Using this approach we can now formally define the concept of
consistency. Our definition subsumes the informal notion of consistency put forward
in Reference [1].
Definition 4: Let DS = ( C, Init ) be a document specification. Good( DS ) is the set of
all document graphs which meet DS. Let S be a GMS. The derivation set of S is the
set of graphs, ∆( S ) defined by

∆( S ) = { H : ∃ G ∈ Init such that G →* H }

S is consistent with respect to DS if and only if ∆( S ) ⊆ Good( DS ), i.e. every
document graph derived using S meets the specification DS.

The inconsistency problem3 for graph modification systems is the following:
The Inconsistency Problem
Input: DS = ( C, Init ) a document specification;
S = { R 1 , . . . , Rm } a GMS operating on the initial graphs of DS.
Output: True if S is inconsistent with respect to DS, i.e. there is a graph in the
derivation set of S which does not meet the specification DS. False otherwise, i.e. if
S is consistent with respect to DS.

3. THE UNDECIDABILITY OF THE INCONSISTENCY PROBLEM

We begin by recalling a few elementary definitions from the field of computability

3 The reasons for phrasing the problem as that of checking inconsistency rather than consistency will become
apparent below.
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theory. For further details and technical proofs the reader is referred to Reference
[16].
Definition 5: A Turing machine consists of a two-way infinite tape divided into cells
which are numbered ...,−3, −2, −1, 0, 1, 2, . . . ; a read/write head which can scan a
single cell of the tape at a time and move one cell left or right after each
computation step; and a processor which controls the head actions according to the
current state and symbol being read. At any time each cell contains exactly one of
the symbols in {0, 1, B}, where B is a special blank symbol. The processor at any
time is in exactly one state, q, taken from a finite set of states, Q. Three special
states in Q are identified: q 0, the initial state which is the state of the processor at
the start of any computation; qA, the accept state: if this is reached then further
computation halts and the result True is returned; qR, the reject state: if this is
reached then computation ceases and the result False is returned. The action of a
Turing machine program, M, is completely described by the state transition function

δ : Q × {0, 1, B} → Q × {0,1} ×{L, R}

Suppose the processor is in state qi and the head is scanning a cell containing the
symbol α ∈ {0,1,B}, then δ( qi , α ) = ( qj , β, D ) for some qj ∈ Q, β ∈ {0,1} and
D ∈ {L, R}. In this case the head prints the symbol β in the cell it is scanning and
moves one cell left (if D = L) or one cell right (if D = R); finally the state of the
processor is changed to qj .

Such a machine checks predicates as follows: initially the input to be tested
(which is a string of n binary symbols) is placed in cells 1 . . . n of the tape all
other tape cells containing the B(lank) symbol. The tape head scans cell 1 and the
processor is in state q 0. The processor modifies the tape and controls the tape head
movement following the prescription of δ. Computation ceases if the processor
enters state qA or qR. `

It is well known that there are predicates which cannot be solved by Turing
machine programs guaranteed to halt for every possible input. Such problems are said
to be undecidable. The following problem is an example.
Definition 6: The Halting Problem for Turing machines is defined by:
Input: Turing machine program, M, and an input x for M
Output: True if M when started with input x eventually halts; False if M never halts
when started with input x. `
Theorem 1: ([17]) The Halting Problem for Turing machines is undecidable. `

We can now prove the main result of this section.
Theorem 2: The Inconsistency Problem is undecidable.
Proof: Given a Turing machine program, M, (for which it is sufficient to describe
only the state transition function δ), and input data x = x 1 x 2

. . . xn ∈ {0,1}n for M
we describe how to construct a document specification, DS ( M, x ), and a graph
modification system, S ( M, x). The graph modification system will be inconsistent
with respect to the specification if and only if M halts on input x. This proves the
result since any effective procedure solving the Inconsistency Problem would yield an
effective procedure solving the Halting Problem for Turing machines and Theorem 1
establishes that no such method exists.

The constraint set of DS( M, x ) contains just a single predicate, C, on directed
graphs: C ( G ) is true of a directed graph G if and only if G is acyclic. Similarly
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DS( M, x ) contains exactly one initial graph, G 0( x ), which we describe below.
The idea behind the proof is to view the contents of the non-blank portion of the

tape and the current state and head position as constituting a document. The graph
modification rules then describe how this graph should be changed in accordance
with steps carried out by the processor obeying the transition function. G 0(x) thus
corresponds to the starting configuration of M on input x. The objects in the
document graphs to which the system S (M, x) applies have attributes drawn from the
set {0, 1, B} ∪ Q where Q is the set of states of the processor executing M. For all
t > 0 the document graph Gt will be the unique graph yielded by the document graph
Gt −1. Gt will contain precisely m +3 vertices, where m is the number of non-blank
tape cells after t moves of M have been executed (thus G 0 contains n +3 nodes: n
nodes of input, one node indicating the head position, and two nodes indicating blank
cells on either side of the input data). In addition Gt has the following properties:
There is a unique source node v 0 which has in-degree 0; a unique sink node vm +2

which has out-degree 0; both of these nodes have attribute B. The nodes vi for
1 ≤ i ≤ m +1 each have in-degree and out-degree equal to 1 and for all 0 ≤ i ≤ m +1
( vi , vi +1 ) is an edge of Gt; no other edges are present. The attributes of each object
in Gt will be constrained as follows: if after t moves the tape head is scanning the
ith non-blank cell (from the left) and the processor state is qj then the node vi has
the attribute qj; the nodes vk for 1 ≤ k < i have the attribute corresponding to the kth
non-blank symbol on the tape at this time; similarly the nodes vl for i +1 ≤ l ≤ m +1
have the attribute corresponding to the (l −1)th non-blank symbol currently on the
tape. Below we say that a document graph, G, is a configuration graph for M if and
only if: G contains p nodes connected in a linear arrangement; the first and last
nodes each have attribute B; exactly one node has attribute q for some q ∈ Q; all
remaining nodes vk have attribute αk for some αk ∈ {0, 1, B}. In the description which
follows vi for 0 ≤ i ≤ p −1 denotes the nodes in a configuration graph in which
( vi , vi +1 ) is an edge for each 0 ≤ i ≤ p −2.

Thus if x = 0011 then G 0( 0011 ) will be the document graph depicted in Figure 1
below:

v0 v1 v2 v3 v4 v5 v6

B q 0 0 0 1 1 B

Figure 1

S (M, x) contains a constructor rule (P, Gl , Gr ) defined as follows: P ( G ) is true if
and only if G is the empty graph; Gl is the empty graph and Gr the graph G 0( x )
defined above. Note that G 0( x ) is a configuration graph for M.

For each move δ( qi , α ) = ( qj , β, D ) of the state transition function for M there
will be 2 graph modification rules present in S ( M, x ). These rules fall into one of
two classes depending on whether D = L or D = R. We describe these in turn:
Case 1: For moves δ( qi , α ) = ( qj , β, L )
Rule 1: < P, Gl , Gr >
P ( G ) is true if and only if: G is a configuration graph for M, v 1 has attribute qi; v 2

has attribute α. In this case Gl and Gr are the sub-graphs in Figure 2. Unlabelled
vertices in Gr are new nodes.
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v0 v1 v2 Gl

B qi α

v0 v2 Gr

B qj B β

Figure 2

Rule 2: < P, Gl , Gr >
P (G) is true if and only if: G is a configuration graph for M; there is a node vk with
attribute qi; a node vk +1 with attribute α and k =c 1 (hence k ≥ 2 by definition of
configuration graph). Gl and Gr are depicted in Figure 3.

vk −2 vk −1 vk vk +1 Gl

qi α

vk −2 vk −1 vk +1 Gr

qj β

Figure 3

Case 2: For moves δ( qi , α ) = ( qj , β, R )
Rule 1: < P, Gl , Gr >
P (G) is true if and only if: G is a configuration graph for M; for some node vp, the
out-degree of vp equals 0; vp has attribute α; the node vp −1 has attribute qi . Gl and
Gr for this case are shown in Figure 4.

vp −2 vp −1 vp Gl

qi α

vp −2 vp Gr

qj Bβ

Figure 4

Rule 2: < P, Gl , Gr >
P (G) is true if and only if: G is a configuration graph for M; there is a node vk such
that vk has out-degree 1 and vk has attribute α; the node vk −1 has attribute qi . Gl and
Gr for this case are shown in Figure 5.
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vk −2 vk −1 vk vk +1 Gl

qi α

vk −2 vk vk +1 Gr

qjβ

Figure 5

Finally there is a rule to handle termination.
Rule 3: < P, Gl , Gr >
P (G) is true if and only if: G is a configuration graph for M and there is vertex vk

of G with attribute qF ∈ { qA, qR } ⊂ Q. In this case Gl and Gr are as Figure 6.

vk −1 vk vk +1 Gl

qF

vk −1 vk vk +1 Gr

qF

Figure 6

This completes the description of the graph modification system S ( M, x ).
We claim that S ( M, x ) derives a graph which is not a document graph from

G 0( x ) if and only if M halts on input x. This follows easily from the observations
below:

(1) If G ∈ ∆( S (M,x) ) is a document graph then there is a unique graph H such that
G → H using S ( M, x ). This holds since the graph modification system S (M, x )
is built on the state transition function so that exactly one modification rule is
applicable to G.

(2) Let G 0( x ) be the graph derived from the empty graph using the constructor
rule and Gt( x ) (for t > 0) denote the graph resulting after t applications of
modification rules to G 0( x ). Then for all t ≥ 0 Gt encodes the tape contents,
head position and current state of the Turing machine M after t moves when
started with input x. To see this note that the sequence G 0, G 1 , . . . , Gt is
uniquely defined from x and that the attributes of each node in Gt describe the
tape contents, head position and current state of M is guaranteed by the
modification rules.

(3) M halts on input x after t moves if and only if Gt +1( x ) contains a directed
cycle. This follows since if M has halted after t moves then some vertex in Gt

has attribute qA or qR. The termination rule of Figure 6 now produces a directed
cycle in Gt +1.



h

244 TREVOR J. M. BENCH-CAPON AND PAUL E. DUNNE

In summary (3) states that M halts on x if and only if the GMS S (M,x) is
inconsistent with respect to DS ( M, x ). Thus the Inconsistency Problem is
undecidable. `

4. PROVABLY CONSISTENT GRAPH MODIFICATION SYSTEMS FOR
SPECIFIC DOCUMENT CLASSES

Although the result of the previous section indicates that there can be no generally
applicable method for checking the consistency of a rule set, in practice this need not
cause any difficulty. The main reason for this is that one can attempt to build
modification rules from the specification directly in such a way that that their
consistency follows automatically. In the remainder of this paper we give informal
specifications for three classes of document and describe modification systems for
these which will be self-evidently consistent. A system for formally specifying
documents and generating consistent rule sets automatically from these is currently
being investigated by the authors and will be the subject of a subsequent paper.

A document graph might be used to perform two possible tasks: as a means of
encoding the internal structure of a document for the purposes of storage, editing and
eventual layout production; and secondly to provide a mechanism for readers to
browse through a document to obtain information concerning its content. Although
these two roles are not mutually exclusive — one may wish to provide facilities for
readers to add information to or correct errors in a document while browsing it — the
differing functional requirements in each case will affect the form of rules provided
in the corresponding modification system. Thus in the former case modification rules
are used to incorporate textual changes and, for formatting purposes, additional rules
will be needed to deal with re-organizing paragraph and page layouts in the event of
page- and line- length parameters, fonts, and hyphenation, widowing and orphaning
conventions being altered. However, the representing graph structure would be in
effect linear without explicit logical links between sections of text being recorded. In
contrast, for browsing purposes, although some elementary editing functions would be
included, the primary requirement of the graph will be to provide an effective
mechanism for traversing the document content. So in this case rules will be present
to indicate logical connections between related sections of a document. As
mentioned above, our intention in this paper is to concentrate on the latter
application.

The fact that document graphs are directed and acyclic implies certain constraints
on how the represented document may be scanned according to the graph. So the
following result summarizes well-known and easily proved properties of directed
acyclic graphs.
Fact 1: In any directed acyclic graph:

(i) There is at least one node v ∈ V which has no incoming edges.
(ii) There is at least one node w ∈ V which has no outgoing edges.
(iii) A directed graph G ( V, E ) is acyclic if and only if it may be topologically

ordered, i.e. each node v ∈ V may be assigned a unique integer label, λ( v ),
with 1 ≤ λ( v ) ≤ | V | so that for all edges ( v, w ) of G the relation λ( v ) < λ( w )
holds. `



h

SOME COMPUTATIONAL PROPERTIES OF A MODEL FOR ELECTRONIC DOCUMENTS 245

Property (i) implies that any document graph has some non-empty set of entry points:
sections in the document from which a reader may start browsing. Similarly property
(ii) implies that any document graph has a non-empty set of terminal points: places
from which no other part of the document can be reached. Finally property (iii)
shows that there are a limited number of defined paths through the document, these
arising from any topological order. The simplest example of the browsing regime
imposed by these properties is the UNIX† command more. In contrast the behaviour
of the command less could not be simulated by a consistent graph modification
system since it provides the facility to re-read portions of a document.

We now describe graph modification systems for some particular classes of
document.

Abstracts and document headers

A document header may be specified as consisting of a Title, Author list, Abstract
and Keyword list in that order. The Title and Abstract are unique (i.e. exactly one
node with these attributes occurs) and only the Keyword list is allowed to be empty.

In describing a modification system for this class we wish to have available as
editing facilities mechanisms for: creating the document graph of an abstract; adding
or removing items from the author list; adding or removing items from the keyword
list. In addition it must be possible to elicit complete information about the document
from the structure of its graph.

We describe rules by giving the sub-graph Gl (which is to be replaced), the
replacing graph Gr , and the predicate, P, which must be satisfied in order for the
replacement to apply. In the diagrams below nodes with the same internal label are
common to both Gl and Gr; nodes with no internal label in Gr are new nodes; finally
the labels adjacent to nodes describe the node attribute.

Rule 1.1: Creating a header

vheader vheader

title author

abstract

Gl

Gr

Figure 7

† UNIX is a trademark of Bell Laboratories.
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The predicate associated with this rule is just the constant value true.
This organization permits a textual traversal starting from the header node through

both author and title (or only one of these) and onto the descriptive abstract.

Rule 1.2: Adding an author
We give only the rule for appending a new author to the end of an author list. The
rules for inserting into the middle or adding to the start may be derived in a
straightforward manner from this.

v

w

u

header

author

abstract

v

w

u

header

author author

abstract

Gl Gr

Figure 8

The predicate associated with this rule is true if and only if the node labelled w in
Gl has exactly one outgoing edge (i.e. connecting it to the abstract node)

Rule 1.3: Deleting an author
These rules just reverse the processes of Rule 1.2.

Rule 1.4: Creating a keyword list

vabstract vabstract

keyword

Gl

Gr

Figure 9

The predicate associated with this rule is true if and only if the abstract node, v, has
no outgoing edges.

Rule 1.5: Adding a keyword
Again we give only the rule for appending a keyword to the end of the list.
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v

w

abstract

keyword

v

w

abstract

keyword keyword

Gl Gr

Figure 10

As with the rule for adding an author, the predicate, P, is true if and only if the
node labelled w no outgoing edge.

Rule 1.6: Deleting a keyword
These merely reverse the processes of Rule 1.5 except in the case of there being just
one keyword when the reverse of Rule 1.4 is applied.
Theorem 4: The graph modification scheme given by the rules (1.1)–(1.6) is
consistent.
Proof: It suffices to show that any graph generated by the rules is acyclic. To see
this observe that any generated graph may be partitioned into three or four levels
corresponding to header, title and authors, abstract and an optional keyword section.
The first and third of these just contain a single node, while the nodes in the second
and fourth are linearly ordered from left to right. It follows that any such graph may
be topologically ordered and hence from Fact(1)(iii) is acyclic. `

It is also easy to see that there is a directed path through any generated graph
which contains every node, thus the rules create graphs which can be applied to
completely scan the corresponding document.

Papers containing tabular information

Reference [1] gives a consistent modification system for maintaining tables and in the
description of graphs representing papers below we shall assume this is the approach
used for tabular data. As such we will not repeat the lengthy details of the rules
given in Reference [1].

A paper may be seen as comprising a header (i.e. title, authors and abstract as
above) followed by some non-zero number of sections which constitute the body of
the paper. At this point we regard a section of a paper as comprising a sequence of
blocks, a block being either a paragraph of text or a table. In principle different
structural analyses are possible: one might take account of the subject matter of the
paper which, as in the case of mathematical papers for example, may conform to a
precisely ordered pattern; alternatively one could impose additional hierarchical levels
by dividing into sub-sections etc.

The modification system below provides: rules for creating a paper; editing rules
for adding and deleting sections or blocks; rules for adding forward reference links
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between textual blocks and tables; and rules for adding section omission links. A
node with attribute header in the graphs below denotes a document graph of the type
described in Section 3 above augmented by an additional terminal node into which an
edge from each keyword is directed (or from the abstract if there are no keywords).
This convention allows us to represent the possibility of there being several different
entry points into a document. Thus, for certain papers, specialists familiar with the
background to the subject matter of a paper may wish to skip those introductory and
definitional sections following the abstract and proceed directly to the technical
exposition in the main body of the paper; other readers may only be interested in the
abstract and introduction/conclusions. Note that below a section is regarded as having
a section header, section body, and section end node in it. The attribute section body
is again used as a shorthand to hide the document graph for a sequence of blocks. As
previously the rules for deleting objects will not be stated explicitly since they are
easily obtained by reversing the corresponding additive rules.

Rule 2.1: Creating a paper

v vpaper paper

header

section head

section body

section end

Gl

Gr

Figure 11

The predicate associated with this rule is just the constant value true. Note that the
initial section body will just be a single block (paragraph or table).

Rule 2.2: Expanding a section body by adding a block
The unattributed nodes in the graphs below will in practice have attributes taken
from: section head, paragraph, table, or section end. The legal combinations are
covered in the predicate associated with this rule. The attribute block is either
paragraph or table.
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u

v

w

u

v

w

block block

block

Gl

Gr

Figure 12

For this rule P ( G ) is true if and only if the following condition holds:

u has attribute section head or block and w has attribute block or section end.

Rule 2.3: Adding a new section

u

v

w

x

header

section head

section body

section end

u header

v

w

x

section head

section body

section end

section head

section body

section end

Gl Gr

Figure 13

For this rule the associated predicate is true if and only if the section head node (v)
has exactly one successor.

Again observe that a complete traversal of the text is possible but that if desired a
particular section can be scanned directly without investigating its predecessors.
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Rule 2.4: Adding a reference between two blocks
It is important to note that only forward references are permitted between blocks in
the same section, e.g. there might be a link from a paragraph to a table but there
would not be any link from the referred object to the referring text. This requirement
is needed to preserve the acyclic nature of the graphs generated.

w

y

block

block

w

y

block

block

Gl Gr

Figure 14

The predicate for this rule is true if and only if there is no directed path from the
node y to the node w and y is not a successor of w.

Rule 2.5 Adding section omission links
A mechanism to bypass the section currently scanned has been provided by the links
connecting successive section head nodes. The rule below allows several sections to
be omitted in a single move through the graph without the need to go through the
section headers. Again, to preserve acyclicity, only sections which are logically
forward of the relevant section may be omitted.

t header

u

v

w

head

body

end

x head y head

t header

u

v

w

head

body

end

x head y head

Gl Gr

Figure 15
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The predicate associated with this rule is true if and only if there is no directed path
from the node y to the node w.

Theorem 5: The GMS described above is consistent.
Proof: Similarly we need only show that derived graphs are acyclic. Suppose the
contrary. Let S denote the set of rules described; H ∈ ∆( S ) be a directed graph
containing a cycle; and G ∈ ∆( S ) be a document graph such that G → H. That G and
H are well-defined is immediate from our initial assumption and the definitions of →
and ∆( S ). Consider the rule R = < P, Gl , Gr > ∈ S such that G → H on applying R. By
the choice of H, R cannot be a rule which deletes a link or an object from G since
such rules cannot create cycles in the given system. Hence R is one of (2.1)–(2.6).
It should be obvious that none of the rules (2.1), (2.2) or (2.3) can yield a cycle.
Each of the rules (2.4)–(2.6) adds a directed link from some node w to some node y.
This could only create a directed cycle in G if there were already a directed path
from y to w, but if this is so then the associated predicate, P, of R prohibits
application of the rule to G. It follows that no rule in R exists with the property
needed hence our opening assumption is contradicted. It follows that S is consistent
as claimed. `

Mathematical papers

The presentation of results in mathematical papers provides one of the best examples
of a highly structured logical organization: a framework of technical definitions is set
up; supporting lemmata are stated and proved, these being arranged in a precise
sequence so that the final lemma may require an appreciation of those preceding it;
then a series of theorems are stated and proved. In addition each theorem may spawn
a related collection of corollaries. The stylistic discipline imposed by these
universally accepted conventions is powerful enough to support structures which, in
their purest form, sustain a mathematical argument without the intrusion of natural
language (see e.g. Reference [18]).

In developing mathematical papers with computer aid it is imperative that the
underlying document representation, at the very least, does nothing which can lead to
this form being undermined: ideally the computer representation should exploit the
organization that will be present in the final paper to assist the writer and greatly
simplify the coordination of multiple author activity. The cult of semantic anarchy
beloved of hypertext and similar ‘methodologies’ indicates that these are singularly ill
suited to cope with such demands. Although a number of coherent readings will be
possible for papers of this nature — one may wish to concentrate on the development
of a single theorem or want to avoid some, possibly all, proofs in the paper — any
valid analysis will follow the progression corresponding to the order in which the
sections of interest would be encountered in a complete reading. At all levels —
from elementary school texts to the most sophisticated specialist expositions — the
reader or author of mathematical work cannot hope to gain or produce anything of
value unless the order imposed by this regime is strictly adhered to. Consequently
those liberal document representation techniques which act against the concept of
order will be worse than useless as tools with which to develop mathematical papers.
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We recall that even though such systems might be constrained to act in a suitable
manner such an approach does not really deal with the fundamental objection being
made for the reasons discussed in the introduction above.

The rules below describe a graph modification system capable of manipulating
mathematical documents. The global structure of the graphs reflects the organization
of such papers described above while facilities are provided to allow a large number
of different partial readings each of which is valid.

In the description below we again omit details of rules for deleting objects. In
addition since the graph structures for handling theorems and corollaries are identical
to those for organizing lemmata we describe only the latter in detail.

Rule 3.1: Creating a mathematical paper
Papers are viewed as containing a header; a body of definitions; followed by a
collection of lemmata; followed by a sequence of theorems and corollaries.

vmath v math

header

definitions

lemmata

theorems

Gl

Gr

Figure 16

The predicate for this rule is the constant value true.
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Rule 3.2: Expanding the definition section

v

w

header

definitions

v header

defn start

definition

defn end

Gl

Gr

Figure 17

Again the predicate for this rule is the constant true.

Rule 3.3: Adding a new definition

v

w

u

defn start

definition

defn end

v

w

u

defn start

definition definition

defn end

Gl Gr

Figure 18

The predicate for this rule is true if and only if the node w has exactly one outgoing
edge.
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Rule 3.4: Expanding the lemma section

v

w

defn end

lemmata

v defn end

lemma start

lemma

proof

lemma end

Gl

Gr

Figure 19

For this rule P ( G ) = true.

Rule 3.5: Adding a lemma

w

x

y

z

lemma start

lemma

proof

lemma end

w

x

y

z

lemma start

lemmalemma

proof proof

lemma end

Gl Gr

Figure 20
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For this rule P ( G ) holds if and only if the node w has exactly two outgoing edges.
A similar set of rules is used for expanding and developing the theorems section.

The proof that the total system is consistent is similar to that of Theorem 5.

CONCLUSION

In this paper we take it as understood that any document management system must
have a characterization of the documents it manages. We also claim that different
classes of documents have different structures, and that a fruitful way of describing
these structures is as a directed acyclic graph together with a consistent set of
modification rules appropriate to that class. Other descriptions could be used; all of
the documents discussed in this paper could be described as a finite string of ASCII
characters, but this would lose the structure characteristic of the different types of
documents, an understanding of which is required by both author and reader. If the
document management system is to assist the creative process it must recognize the
structural conventions and aid the author in their observance. An author using a
system with the finite string of ASCII text model must impose these structures for
himself: this is hard enough for a single author, but is likely to become impossible
with a multi-author document.

One application of these ideas would therefore be an authoring tool to support the
creation of documents of a given class by multiple authors. Enforcement of the
modification rules would ensure that the structure appropriate to the document was
maintained whatever modifications were made and irrespective of the author who
made them.

In summary we believe that the model of documents put forward here, and
exemplified by several typical examples, forms the theoretical basis of an efficient
and extensible document management system, which would support the authorship,
whether individual or collaborative, of a range of document types observing sensible
structural conventions.
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