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Modelling Legal Documents as Graphs

T. J. M. BENCH-CAPON & P. E. S. DUNNE

Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK

G. STAMFORD

Department of Computer Science, University College Chester, Chester CH1 4BJ, UK

ABSTRACT Managing documents is at the heart of many computer systems designed to
provide support for legal tasks. In this paper, we bring together a number of techniques
developed for handling legal documents based on their representation as graphs. We first
introduce the use of directed acyclic graphs for the representation of conventional linear
documents, and then generalize this to the use of unrestricted graphs for the representa-
tion of hypertexts. We describe techniques for controlling the construction, modification
and transformation of such documents, and illustrate these techniques with some sample
applications.

Introduction

Documents abound in the law. Almost every task involves the use of
one or more documents, and these documents may be of a variety of
kinds. So, if we are interested in providing computer support for legal
tasks, we need an approach to the handling of documents. This paper describes
one approach to handling documents—modelling them as graphs. In the
Introduction, we make some observations on the requirements on an
effective approach to modelling legal documents, and offer some general
remarks as to how our graph theoretic approach can meet them.
We then describe in detail how conventional paper-based documents can be
represented as directed graphs. We demonstrate how different classes of docu-
ments can be represented within this formalism so as to bring out their differing
logical structures. The usefulness of this is illustrated by showing how the
resulting graph grammars can be used to control the construction and
modification of documents, and by showing how they can be used to relate
documents of different types, and transform between them. We generalize the
notion of graph to accommodate what is becoming the standard electronic
representation, hypertext, introducing the notion of a linearization of a hyper-
text, so as to represent a reading of a hyperdocument, or the production of a
paper version of a selection of its material. Techniques for achieving lineariza-
tions according to desired criteria are described. We further illustrate the
potential of our approach by describing two applications of the techniques: the
presentation of documents on the World Wide Web and the preparation of
briefs.

1360-0834/97/020103-18 © 1997 Carfax Publishing Ltd



104 T. J. M. Bench-Capon et al.

One feature of documents in the legal domain is their diversity. In Social
Security Law, for example, we can find all of the following:

• legislation—both primary and secondary;
• procedures and guidelines issued to those charged with applying the law;
• handbooks and leaflets directed at those to whom the law applies, published

both by the Department and various advisory organizations;
• commentaries written by legal scholars;
• case reports, both in full versions and in digests.

Typically, a legal task will involve using and relating several of these docu-
ments: the legislation must be understood in the light of cases which have been
decided, commentaries need to be read in conjunction with the legislation on
which they are commenting, and so on. An effective treatment of legal docu-
ments must therefore be able to relate documents of different types.

A second important feature of legal documents is that they have structure.
Different classes of documents will have different structures typical of their
class. In some cases—such as legislation—the structure is rather rigidly defined.
In others it will be looser, but still present. This structure is important for the
proper understanding of the text and it is therefore important that the represen-
tation of legal documents be capable of capturing the structures. This is an
important defect in conventional Boolean keyword style retrieval systems:
because they view the document simply as a succession of words and phrases
they lose the notion of structure, and the possibility of relating documents
according to their structure.

When a document is represented as a graph, the text is divided into meaning-
ful units, which become the nodes of the graph, and the edges represent
relationships between these text units. In a very simple form, applicable to any
document, nodes could be paragraphs, and the edges could represent the
'follows' relationship. This is not, however, very interesting. The power of the
formalism comes when we distinguish between types of nodes, and label the
edges to represent different kinds of relationship between the textual units. This
is what allows us to capture the structure of documents, by describing the
different nodes that a given class of document can contain and the relations that
can exist between them in the given class of document. Moreover, given graphs
representing different documents we can combine them into a single graph by
adding some linking edges, and these will show the interrelationships between
the two documents. The above is a brief sketch of how modelling the documents
as graphs enables us to fulfil the requirements noted above. In the next section
we will describe our formalism in detail.

Representing document structures by directed graphs

Directed graphs are one of the most commonly used mechanisms for formally
modelling the logical organization of a structured document. Examples of such
models may be found in approaches such as hypertext (Stotts & Furuta, 1988;
Brown, 1988; Conklin, 1987) in which documents are represented by arbitrary
directed graphs; Koo (1989), Kimura and Shaw (1984), Delisle and Schwartz
(1986) and Meyrowitz (1986) used directed acyclic graph structures, and Thomas
et al. (1985), Christodoulakis et al. (1986) and Bertino et al. (1988), restricted to
tree structures.
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We employ the term document graph to refer to a graph-theoretic representa-
tion of a document. In such models a document is viewed as a collection of
(textual) objects: a node of the graph corresponds to a particular object and
edges in the graph describe logical relations between objects, e.g. that a particu-
lar section must precede another section. Nodes may also be labelled to describe
the function of a textual object, e.g. that it is a section title or a definition, etc.
The use of node labelling permits sections of the document to be compressed, so
that, for example, a node which is labelled as a table can subsequently be
expanded into a subgraph describing the table in terms of its constituent entries.
Among the benefits of this technique is that it allows for the logical connections
between sections of a document to be represented simply and directly. More-
over, the problem of encapsulating those documents having a particular logical
structure becomes equivalent to specifying the class of document graphs whose
linkage and labelling conventions correspond to this logical organization. This
specification will essentially describe a set of constraints on the form of graph
which can be used to represent a particular class of document.

Documents are, however, often modified, both when they are being written
and when they are subsequently revised. This gives rise to the possibility that a
graph, initially meeting the constraints describing the form of a document in a
specific class, will cease to satisfy these after several modifications have been
made. Koo (1989) proposed the concept of graph modification rules as a means of
handling this problem. These rules, which are formally production rules of a
graph grammar, are employed to control modifications to a document graph in
order that it should reflect changes made to the underlying document: thus,
rules may encapsulate how to modify the graph in the event of sections being
added to or deleted from the document or rules may indicate how new logical
links in the document structure are to be reflected in the document graph form.
Such rules can provide a formal basis for a tool to support the construction and
modification of documents.

The concepts introduced by Koo were developed in Bench-Capon and Dunne
(1989), using as a starting point a formal definition of a document graph adapted
from Koo (1989).

Definition 1. A document graph is a directed acyclic graph, G (V, E). The nodes
in V denote objects in a document and the edges in E depict logical connections
between objects. Objects in V may have an associated label.

One important feature of such graphs is that there are only a fixed number of finite
paths from source nodes to terminal points permitted by the graph structure. Each
of these paths will represent a sensible reading of the final document, to be
reflected in the computer representation used for amending it. The ability to
capture several readings within the same abstract structure is important because
legal documents are not often read straight through from beginning to end, but are
rather read selectively to extract specific desired information.

In Bench-Capon and Dunne (1989), we addressed three principal issues:

(1) Document specification: given a particular class of structured documents,
define the associated class of document graphs.

(2) Modification systems: given a class of document graphs, define graph
modification rules appropriate to the class.
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(3) Consistency: define graph modification systems to ensure that these do not
transform a 'valid' document graph to one that does not satisfy the class
specification.

The consistency problem had been raised, in a very restricted sense, by Koo
(1989), wherein a graph modification system was considered consistent if it
preserved acyclicity. Bench-Capon and Dunne (1989) introduced the following
ideas, in order to address these questions.

Definition 2. A document specification consists of a pair DS = (C, Init). Here C is
a finite set of constraints

C = {Ci, C2, ... Ck)

where each C, is a (computable) predicate on document graphs. Init is a set of
initial document graphs. Given a document specification DS and a document
graph G, G is said to meet the specification DS if and only if G e Init or Q(G) is
true for each constraint C,.

Definition 3. A graph modification system (or GMS) is a finite set

S = {Ri, R2, ..., Rm]

of graph modification rules. Each graph modification rule, R, is a triple
< P, Gi, Gr > where P is a predicate on document graphs and G\, Gr are
document graphs. A rule R= <P, G/, Gr> acts on a given document graph G
as follows: if P(G) is true and G contains G; as a subdocument graph then G; in
G is replaced by the document graph Gr. In general, applying a rule R to a
document graph G results in a new graph H. We say that G y/e/ds H (denoted
G^>H) in this case. Similarly, if H results from repeated applications of rules to
G we say that G derives H (denoted G^>*H).

Definition 4. Let DS = (C, Jmf) be a document specification. Goorf (DS) is the set
of all document graphs which meet DS. Let S be a GMS. The derivation set of S
is the set of graphs, A(S), defined by

A(S) = {H-3G e /fift suc/z that G^*H}.

S is consistent with respect to DS if and only if A(S)QGood{DS), i.e. every
document graph derived using S meets the specification DS.

In general, given a GMS acting on the initial graph of a specification there may
be infinitely many new document graphs which can be derived by repeatedly
applying the modification rules. In order for the GMS to be 'correct' each
document graph which is derived using it should meet the specification. The
inconsistency problem for graph modification systems is the following. Given
DS = (C, Init) a document specification and S = [Ri, ..., Rm] a GMS operating on
the initial graphs of DS, is there a document graph, G, for which G e A(S) and
G * Good(DS)?

Theorem. (Bench-Capon and Dunne, 1989) The inconsistency problem is
undecidable.

Thus, there is no effective algorithmic method of solving the inconsistency
problem that will be correct for all possible inputs.
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Figure 1. A partial graph modification system for an act.

This result, however, is largely of interest as a theoretical caveat: for the classes
of document graph encountered in applications, one may construct provably-
consistent modification systems, a number of examples being given by Bench-
Capon and Dunne (1989).

This provides a formal basis for the specification of classes of documents with
a common structure, rules for the modification of an instance of that class so as
to preserve its membership of that class and a means of telling whether these
rules are consistent. In the next section, we will show how we can use these
notions in two example applications.

'Example document specifications

Document specifications are usually predicated in a formal notation (see Stani-
ford, 1994) using a set of source classes and a set of target classes. For reasons
of clarity, however, we will use a more familiar notation in this paper. We can
also express the structure using an extended Backus Naur Form (BNF) grammar.
In the Appendix we present such a specification of a UK Statute. In this section,
we present an example partial document modification system for an Act of
Parliament which uses this grammar. This grammar is expressed diagrammati-
cally in Fig. 1.

In Fig. 1 we show seven graphical predicates of the form X| -» Y where, as
above, we say that X yields Y. We see that ACT yields PARTS and both the
source and the target nodes are represented as rectangular boxes to indicate
expandable subgraphs. PARTS yields a PART followed by zero or more PARTs,
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indicated by the dotted arrow and the asterisks in the second PART node. PART
yields a chain consisting of the two unexpandable (ground) nodes PART NUM
and PART TITLE (indicated by circles) plus an expandable subgraph SHORT
PART. The expansion of SHORT PART is developed further in the remaining
predicates. Notice that PART NUM has two dotted arrows connected to it which
should be read to mean that 'if it is possible to replace the dotted arrows by solid
arrows during an expansion then this must be done'. This indicates in the
example that it is legal to add a PART NUM on the left, on the right, or to insert
between other PART NUMs. There are two possible expansions of SECT'N
BODY which indicates that either one or the other or both types of expansion
are legally allowed within one document.

We now have the kernel of a rich and powerful set of predicate types with
which to build complex directed acyclic graphs that, in conjunction with a
relabelling function over PART NUMs may be used to create, maintain and
access Acts of Parliament expressed electronically as directed acyclic graphs.
Because it is represented as a graph, the system to do this can draw on all the
well-understood graph theoretic algorithms for traversal and modification. For a
detailed description of such a system, the reader is referred to Staniford (1994).

Transforming between document structures—the rapporteur system

In this section, we further illustrate the flexibility of graphs for representing
documents by considering a particular application which involves extracting a
document with a specific structure from a document with a different structure.
The particular application is the production of a note of a discussion, but the
principles involved apply equally to other types of summarizing activity.

A report of a discussion is a simple example of the more general document
models described earlier. A report graph, Gr(Vr, Er), is a directed acyclic graph.
The vertices in Vr denote objects in the report and the edges in £r depict logical
connections between the objects. Each object has an associated object type which
consists of two parts: a data type, which specifies the domain of possible data
values for the object (e.g. word, phrase, sentence, etc.); and an attribute type,
which indicates the domain of possible properties that the object may possess
(e.g. font, size, etc.). Objects may also be labelled. A report specification consists of
a pair RS = (C, Init), where C is a finite set of constraints,

C = {Ci,C2..., Ck]

where each Q is a computable predicate on report graphs. Init is a set of initial
report graphs. Given a report specification RS and a report graph Gr, G, is said
to meet the specification RS if and only if Gr e Init or Q(Gr) is true for each
constraint Q.

Report graphs are abstract representations of report structure: the form that is
manipulated during the generation of the report from the raw dialogue graph.
Our objective is to have this abstract representation closely matching the
dialogue participant's conceptual representation of an accurately summarized
discussion.

One common way in which people collaborate is through dialectical dis-
cussion. Dialectical discussion is a form of cooperation, between authors, whose
object is the establishment of high degrees of confidence in the truth of some
more or less doubtful propositions. It is abstract reasoning upon the basis of
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propositions through categorization, definition, drawing out of implications and
exposure of contradictions. Dialectical discussion involves the analysis and
synthesis of fundamental terms in controversial questions: one person tries to
establish a point while his colleague, either because of genuine scepticism or
because he is playing devil's advocate for the purposes of the discussion,
attempts to rebut the point. Such a discussion will help to structure the
argument, clarify the position, and anticipate objections which require either
additional exposition or refutation, or else which require the original position to
be modified or withdrawn. A verbatim account of the discussion is, however,
not the most useful form in which to record the discussion. Instead, it needs to
be summarized so as to capture the essence of the argument that was developed.
In our system, when such dialectical discussion occurs, it is recorded by an
autonomous agent based program (Staniford, 1994) acting as a rapporteur whose
responsibility is to synthesize what may be a rambling discussion into a coherent
document setting out the thrust of the debate. Rapporteur is thus designed to
support two or more colleagues collaborating through dialectic by producing a
report of their discussion.

The discussion itself is in the form of a dialogue game, managed by
the system, which progressively constructs a graph structure representing
a dialectical argument. The notion of such games is discussed by Bench-Capon
et al. (1992a). The particular game used by rapporteur is as follows. One partici-
pant must adopt the role of proposer, making an initial assertion and then
taking turns to provide arguments in support of that assertion. The other
participant adopts an opposition role in which challenges and objections
to the proposer's assertion and supporting premises are put forward.
Rapporteur allows counter objections and makes provision for both sides to
modify earlier arguments. Either side can win the argument; in the case of the
opposition being successful, the original assertion must either be negated or
withdrawn.

Both sides take turn and turn about in presenting their respective cases,
although one member of a side may take several consecutive turns for that side
in order to present a particular line of thought. Game play takes place in a
structured way which reflects the different roles that the two sides bring to the
dialogue. The proposers are required to present an assertion; and are allowed to
modify that assertion, provide supporting premises and modify those premises,
refute objections from the opposition and require the opposition to continue
objections and challenges. In their turn the opposition is allowed to challenge the
assertion or premises, object to premises and modify those objections and
requires the proposers to continue the assertion, premises and refutations. Either
side may accept defeat: the opposition by accepting it has no valid challenge or
objection, the proposers by accepting they have no valid refutation. Rapporteur
oversees the game and will only allow legal moves to be made. The general
dialogue graph model that is realized by rapporteur is presented in Fig. 2.
Sequences of legal moves, representing particular argument graphs, can readily
be worked out from this graph.

Rapporteur has no notion of the semantics of any argument: it provides a way
of imposing a general syntactic structure on a dialogue represented by a graph.
This structure is sufficiently flexible to allow the participants to conduct their
dialogue using deduction, induction or indeed abduction as the mode of
reasoning in their arguments.
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Figure 2. Rapporteur's dialogue control graph. The nodes are labelled with short
forms of the moves in the game: dialogue, claim, challenge, premise, continue,
objection, reference and end. t indicates an edge can always be followed: Cl is the
condition that the last move was continue, and C2 the condition that player whose
turn it is cannot make a move and so must concede the game.

We thus have two graphs, one—a directed cyclic graph—representing the
realized dialogue space, and one—a directed acyclic graph—representing the
model of a report of a dialectic discussion; both graphs containing single sources
and sinks. The main task facing rapporteur is to transform the former into the
latter. This will, for example, enable the digressions common in dialectic, such
as when a person puts forward a definition which is found by a challenge to be
inadequate, and which is consequently modified, to be elided so that the report
will show only the final form of the definition, and the debate which led to the
modification will be included in the justification of that definition.

To this end, during the course of a dialogue, rapporteur explicitly builds a set
of nodes Vd, while implicitly following a set of edges Ed of the dialogue graph
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Gd(Vd, Ed). To achieve a mapping between the two graphs the agent adopts the
strategy of partitioning Vd such that a set of candidate nodes, SPd say, includes
all nodes in Vd that lie on the shortest path through Ed, and then discards nodes
that lie in Vd s= SPd. Depending on which side won the game, the agent partitions

to produce Vr as follows:

(a) Proposer wins—then Vr includes all nodes in SPd that are premises and in
addition the assertion node. SPd — Vr is discarded.

(b) Opposition wins—then Vr includes all nodes in SPd that are accepted
premises, all nodes in SPd that are successful objections and in addition a
node containing the negation of the assertion node. SPd — Vr is discarded.

To complete the report graph G,{Vr, Er) rapporteur produces Er in accordance
with the constraints present in the report specification.

We now give a highly simplified example of a dialectical discussion involving
an ad hominem attack: based upon Walton (1985) in which he cites an example
first discussed by Groarke (1982).

A\: Your government is subjecting dissidents to abuses that contravene the
United Nations charter on human rights.

A?. What do you mean by abuses of human rights?
A\\ Torture, for example.
A?. How can you say that? Your government is guilty of equally bad abuses of

human rights.
Ai: What do you mean by 'equally bad abuses'?
A?. Well you routinely torture all manner of prisoners: political and criminal.
A\: That I cannot deny.

This dialogue is summarized by rapporteur as:

The government of A\ abuses human rights in a manner that contra-
venes the United Nation charter on human rights by using torture.
The government of Ai is guilty of equally bad abuses of human rights
by routinely torturing all manner of prisoners: political and criminal.

Therefore:

The governments of A\ and A2 are subjecting dissidents to abuses that
contravene the United Nations charter on human rights.

The examples presented in this section have not been exhaustive, but we hope
that they enable the reader to envisage how directed acyclic document graphs
may be specified, used and managed, and to give a flavour of their potential for
application. In the next section we consider a significant generalization to the
work so far presented, as we go beyond directed acyclic graphs to richer
structures.

Generalization to hypertext

Although the directed acyclic graph model, discussed in the previous section,
provides considerable flexibility and has a number of advantages compared with
more general structures, it has not been widely adopted in practice. Instead, the
more intricate connectivity of hypertext representation has become a popular
methodology for access to textual data. With this approach, arbitrary directed
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graphs define the underlying structure and both nodes and links may be
labelled, allowing for a richer set of relationships between the elements of the
document. The labelled graph structure, modelling a hypertext, forms a semantic
net.

The approach has a number of advantages. Importantly, it allows the inte-
grated storage of a set of documents. For example, a set of case reports can be
related to legislation by supplying appropriate links between the cases and the
parts of the legislation on which they were decided. Similarly, commentaries can
be integrated by linking their elements to the legislation and cases they discuss.
In this way the whole body of documents can be seen as a single complex
document.

Now, by following different paths through the graph, a browser of a hypertext
can gain different perspectives on the material comprising the hyperdocument.
The original documents can be extracted as sub-graphs, but following the links
relating different documents we can effectively construct a new document
incorporating related parts of several of the original documents.

Given this rich integrated structure we will often wish to read, or to print, a
selection of nodes from the structure. For example, we might wish to extract all
the legislation and cases relevant to a topic such as 'good cause for late claim'
together with any commentary upon it. To do so the document nodes must be
ordered into a sensible linear traversal. The production of such traversals is
termed the 'linearization problem' and is, of course, related to the problem of
navigating a hypertext; in essence any reader navigating a hypertext is con-
structing a linearization on the fly. There are, however, navigational problems
associated with complex hypertexts that many workers have reported (see, for
example, Conklin, 1987; Simpson, 1989, 1990). Typically such problems arise
from the intricacy of the linkage structure that may be present in a hyperdocu-
ment, and result in the inclusion of irrelevant nodes, or the omission of relevant
nodes. In addition, what constitutes an acceptable linearization may depend
heavily on the intended audience for the final linear text. Thus, some readers
may want only a precis of the hypertext content, whereas others may wish to see
an almost complete exposition of the textual material. In the following section,
we will give a formal exposition of the representation of a hypertext as a graph,
and of techniques for achieving particular linearizations of this hypertext.

Hypertext as graphs

Bench-Capon et al. (1992b, 1993) describe approaches to the development of
hypertext linearization algorithms that are capable of dealing with problems
arising from the need to linearize hypertext. The approach insists that a
specification of the target document structure—the desired linearization—be
given as input together with the hypertext to be linearized. The intention of this
specification is to prescribe the relationships between textual nodes in the
hypertext to be included in the actual linear version. The view that linearization
should proceed with respect to a given target document structure thus divides
this task into two separate activities: firstly finding an embedding of the
hypertext information on to a document graph with a specified structure; and
secondly, producing a linearization of the embedded form. If the target docu-
ment graph is sufficiently richly structured, then the task of producing a
linearization of this will be relatively straightforward, cf. the examples in
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Bench-Capon and Dunne (1989). Requiring the target document structure to be
a directed acyclic graph allows the richness of a hypertext linkage to be retained,
while simplifying specific traversal problems to the problem of extracting valid
paths from an acyclic scheme, and ensures that the resulting linearization
constitutes a coherent and sensible document.

To these ends, Bench-Capon et al. (1992b, 1993) introduce a specification
formalism (extended regular expressions) which may be used to define a (family of)
directed acyclic graphs. From this, it is not difficult to exhibit a correspondence
between paths from source to sink nodes in these directed graphs and the strings
in the set generated by the corresponding extended regular expression. Finally,
by viewing a hypertext linearization as a constrained total ordering of a subset
of hypertext nodes, we can define a linearization as conforming to a specification
if the sequence of node and edge labels used within it give rise to a string within
the defined extended regular set of strings.

Definition 5. A hypertext, H, over the character set (or alphabet) 2 is defined by
a quintuple:

where V = [ 1, 2, ..., n] is a finite set of graph nodes; E C V X V i s a finite set of
graph edges; Ay:V->2* is a node-labelling function; AE:E-»2* is an edge-labelling
function; and #:V—»2* is the mapping describing the textual content stored at
each node.

For a mapping XR from some set R on to 2*, we define the set Names(XR) by

Names (XR) = de/W'^x e R such that XR(x) = a}.

Hence, Names(Xv) is the set of node labels used and Namesfa) the set of edge
labels used. We assume throughout that there is a null (empty) label in both sets.

Definition 6. An extended regular expression over an alphabet of terminal sym-
bols, 2 and connection set, A, is any expression built in accordance with the
following:

(1) VCT e 2: a is an extended regular expression.
(2) If S and T are extended regular expressions, then so are:

2.1. S 0 T (alternative)
2.2. S^T (connection)
2.3. SiT, VA e A (labelled connection)
2.4. (S) (bracketing)
2.5. S* (repetition).

(3) All that are extended regular expressions arise by reason of (1) and (2) alone.

ERE(2, A) denotes the set of all extended regular expressions with alphabet 2
and connection set A.

The extended regular expressions that may be produced using this definition can
be mapped on to labelled tree structures; this affords a relatively low level
pattern matching facility for subgraphs of a hypertext. This enables Definition 7
to be used in a mapping from ERE(2, A) on to suitable subgraphs of
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Definition 7. A target graph specification is an extended regular expression with
alphabet Names (Ay) and connection set Names (X), i.e. an element of ERE (Names
(lv); Names (fa).

A linearization of a hypertext, H(V, E), may be viewed as constructing a total
ordering (chain) on some subset of the hypertext nodes, the ordering being
required to be consistent with the link structure of the hypertext, i.e. if a node
v precedes a node w then there is a directed path from v to w in H(V, E). In a
directed acyclic graph there are a finite number of source and sink nodes. When
traversing a path from some source to a sink, the sequence of node and edge
labels occurring on this path can be regarded as a finite string over the alphabet
Names(Xv) U Names{XE). This string always consists of alternating node and edge
labels.

In terms of implementing the procedure the linearization process uses the
target graph specification to extract a maximal portion of the hypertext defining
a directed acyclic graph in conformance with the specified structure. This graph
could then either be linearized automatically (just by selecting any source-to-
sink path) or passed to the end-user who could select a desired linearization by
traversing a source-sink path. We have then a mechanism by which users may
predefine desired patterns of linearization structure and then either use those
patterns to generate automatically reports or use them as an aid in refining
material to be searched.

Experimental studies involving this formalism, however, reveal some weak-
nesses that would arise in practical situations. These may be summarized as
follows.

(1) Specific orderings of hypertext nodes can only be produced if the linkage
structure of the network connects them. Thus, linear orderings that are
implicit in the network linkage cannot be specified. For example, there will
be a link from cases to the justice who presided, but the list of all cases in
which a particular justice presided is only implicit in the network.

(2) Hypertext systems may be constructed as a hierarchy of node classes. Target
graph specifications operate only on the lowest node level and thus cannot
combine sub-levels of different hierarchies together easily. For example, a
case may have a link to a list of cases cited in the decision, but to extract a
list of all cases in which a particular case had been cited would involve
unpacking this structure.

Again, it is not possible to cater for certain natural linear orderings of the
hypertext, since the hierarchical representation is not expanded by the regular
expression formalism.

The two problems illustrated above mean that in order to extract particular
orderings the hypertext representation itself would have to be amended by
the inclusion of extra, rather unnatural, links if target graph specifications
were to be used. Linearization schema were introduced by Bench-Capon et al.
(1993) as a means of overcoming these problems. The central element is the
concept of constructor definitions. Constructors define sub-networks in terms
of hypertext node and edge labels but provide the facility for these to be
combined in a manner that need not mirror the exact linkage structure of the
hypertext.
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Definition 8. A constructor on H(V, E, lv, h, X) is a specification of the form

constructor < constructor-name > is
signature < Source-name, Sink-name > by {< edge-label >}
operator <Source-name>*X<Sink -name>\
operator < Source-name >) -i < Sink -name > *

end

where Source-name and Sink-name are elements of Names(Xv) or previously
defined constructor-names; edge-label is a member of Names^)-

A linearization schema for H is a sequence of constructors

C= <Ci, ..., Cm>

together with an expression

A e ERE (C U Names{Xv)',

Constructor definitions, when executed, return a set of directed acyclic graphs
'implicitly consistent' with the structure of the hypertext being linearized. The
above definition gives a syntactic form for schemata. The mapping from these on
to directed acyclic graphs is rather more complicated and is described in
Bench-Capon et al. (1993).

The mapping from constructors to graphs in the alternative operator definition
is performed in a similar manner.

Presenting a statute in a WWW browser

In this section, we will illustrate the previous material by considering some
different ways of presenting a document on a computer terminal. Suppose we
have a statute represented in the above manner, its grammar given by the
specification in the Appendix. It would be wrong to assume that the best
presentation on a terminal would necessarily be close to the presentation as a
paper document: the act of reading from a physical document is very different
from that of reading an electronic document, and the layout conventions that
support the ready perusal of a physical document may well not be appropriate
in an electronic document.

Finding a section

As an example consider section titles. These are set out in the left margin, in very
small font, possibly running over several lines, alongside their corresponding
section. The font is small, both to distinguish them from the text of the sections
and to avoid them drawing too much attention to themselves once their purpose
of leading the reader to the desired section has been served. Scanning down the
margin reading these titles is an effective way of locating the desired section
relatively rapidly. This function would not, however, be as well served if
reproduced in the electronic display.

• Small text spread across several narrow lines is very difficult to read.
• Paging an electronic document is less time-efficient than rifling through a

physical document.
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• The conventions associated with other electronic documents strongly preju-
dice us in favour of the 'click-unfold' method of obtaining information.

All this suggests that the main mode of access to sections should be through a
table of contents composed from the section titles which can be expanded by
clicking on the desired item to get the expanded text. Thus, a useful linearization
would be one which constructed a table of contents. One possible structure for
such a target document would be

< Contents > : = < Short Title > < Contents Jine > *
<Contents_line>: = <Sectionnumber> <Section_title>

For an act of reasonable size, however, this would give rise to a large number
of entries, and the reader may well prefer to see something at a higher level of
abstraction. The target structure for the most abstract level would be:

< Contents_2 > : = < Short Title > < Contents_2_line > *
< Contents_2_line > : = < Part_Line > * < Schedulejine > *
< Part_Line > : = < Part number > < PartJitle >
< Schedulejine > = < Schedule_number > < Schedule_Title >

A third, intermediate level of abstraction could be obtained by using the group
titles

< Contents_3 > : = < Short_Title > < Part_Content_Line > *
< Schedulejine > *
< Part_Content Line > : = < Long_Part_Lines > | < Short_PartJine >
< Long_Part_Lines > : = < Part_number > < Part_title > < Group Line > *
< Group J i n e > : = < Group_Title >
< ShortJ>artJine > : = < Part_number > < Partjitle >

Which of these would best suit a reader would depend on the reader's prefer-
ences, the reader's knowledge of the act, the size of the act, and so on. It is,
however, possible to leave that choice to the reader, since each of the lineariza-
tions can be achieved by posing the request to extract the required target
document from the source graph, producing a customized table of contents. For
example to extract using the second form, we would use

constructor single_part_line is
signature part_number, part title by null
operator part_number -> partjitle

end constructor

constructor partjinejist is
signature single_part line by null
operator (partjinejist)*
end constructor

constructor single_schedulejine is
signature schedule_number, schedulejitle by null
operator schedule_number -> schedulejitle

end constructor

constructor schedulejinejist is
signature singleschedulejine by null
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operator (schedule_line_list)*
end constructor

Short_title) —> (part_line_list —> schedule_line_list)*

The final line gives the target graph structure in terms of subgraph structures
specified by the four constructor definitions.

Schedules

Schedules relate to one or more sections of the act. These are indicated by one
or more marginal cross references. This is the best that can be done with a
physical document, but in an electronic version we would not wish to be
continually switching between the display of the section(s) and the display of the
schedule. Thus, a better presentation of the schedule would display the text both
of the sections and of the schedule as a single virtual document, rather than
simply giving the sections as anchors.

Thus, a possible linearization for a schedule would be

<Scheduledisplay>: = <Schedule_number> <Scheduletitle>
< sections > < Schedule_parts >

<sections>:= <section> <section>*

where the terminals are as defined in the Appendix to this paper, and the
sections in < sections > are those denoted by the cross-references in the sched-
ule. This could be extracted by

constructor sections is
signature schedule_title, section_body by section_cross_ref

section_cross_ref

operator schedule title -> section body*
end constructor

schedule_number -> sections -4 Schedule_part —»(Schedule_part)*

The constructor sections is used to collect all parts of a section indicated by a
cross-reference within a named schedule.

The above two examples show cases where it is clear that the target document
for electronic display should be in a form different from that of the physical
document. It is, however, likely that there will be many other examples where
particular linearizations will be required by particular readers with particular
tasks to perform on particular hardware platforms. It is unnecessary to antici-
pate all of these in advance, since where the required form can be described as
a target document graph, the query to extract it can be constructed. It is the very
flexibility of our scheme which gives due weight to the structure of the source
document that gives it advantages over systems which would hardwire the
display into the mark-up language.

Preparing a brief

In this section, we will describe another application of the techniques, the
preparation of a brief. When a brief is prepared information from a variety of
sources is organized into a coherent argument for a particular point of view. A
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Figure 3. Modified argument schema.

number of suggestions have been proposed for the representation of an argu-
ment in schematic form, such as those for Toulmin (1958) and Hosking (1994).
We will confine ourselves here to Toulmin's schema, as extended in Bench-
Capon et al. (1991), which is shown in Fig. 3.

It is obvious that Toulmin's representation of an argument forms a particular
kind of graph, which a set of distinct node types connect in a particular way.
When supporting the preparation of a brief, we use this formalism to mediate
between an expert system and the hypertext representing the various legal
sources. This is achieved as follows.

Using the techniques described by Bench-Capon et al. (1991), the expert
system is executed so as to produce its output in the form of a graph
representing an argument represented using the Toulmin structure. The
rules of the expert system used to justify the answer form the warrants
of the graph. The rules themselves are justified by reference to items found
in the legal sources, cases, sections of legislation, etc. The backing nodes
state the sources which justify the particular rule. The backing nodes
therefore give us an entry point into the hypertext of legal sources: the
argument graph can be integrated with the hypertext by making the
backing nodes of the argument graph the corresponding nodes of the
hypertext.

The brief can now be constructed by traversing the argument graph, which
will provide structured access to the relevant sources to support the argument
derived from the expert system. Typically, the argument graph will contain
more detail than is required: in traversing the graph the user will select those
nodes required for an effective argument. Finally, using a specification of the
form required for a brief, the selected nodes can be organized into the desired
format.

This system has been prototyped in a system PLAID: for a fuller description
see Bench-Capon and Staniford (1995).

Conclusions

In this paper, we have described some techniques for the management of legal
documents using a graph theoretic representation. Key elements of this ap-
proach include that we can provide a formal basis for the description of the
structures of various typical classes of document and that we can use these
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structural descriptions to relate documents within a document base or a
hypertext.
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Appendix: A grammar for legislation

In this section we present the specification of a UK Statute below using a stylized
BNF notation.
<Act>

< Short_Title > < Date > < Chapter > < LongJTitle > < Preamble >
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< Parts > < Schedule > *
< Parts > : = < Part > < Part > *
< Part > : = < Part_number > < Partjitle > < Long_Part > | < Short_Part >
< Long_Part > : = < Group > < Group > *
< Short_Part > : = < Section > < Section > *
< Group > : = < Groupjitle > < Short Part >
< Section > : = < Sectionnumber > < Section_Title > < SectionBody >
< Section_Body > : = < SectionJText > | < Sub_section > < Sub_section > *
<Sub_section>:= <Sub section_number> <Sub_section_body>
< Subsectionbody > : = < Sub_section_text > {< sub_sub_section >}
< Sub_sub_section > : = < sub_sub_section_letter > < sub_sub_section_body >
< Sub_sub_section_body > : = < Sub_sub_section_text > |

< subsubsection header > < sub_sub_sub_section >
< sub_sub_sub_section > : = < roman_numeral >
< sub_sub_sub_section_text >

< Schedule >

< Schedule_number > < schedule_title > < section_cross_refs >
< Schedule_parts >
< section_cross_refs > : = < cross_reference > < cross_reference > *
< Schedule_parts > : = < schedule_part > < schedule_part > *.

Terms in bold font indicate that these structures are not sub-divided further, i.e.
are purely textual; such terms are the base node labels occurring in the
document graph. Terms in italic font indicate link labels between given node
types. A term of the form <xxx> denotes a structure that may be expanded
into lower level structures or terminal node labels. For example, < Block > : =
< Title > < Body > indicates that a text node with node label < Title > linked
to a text node with node label < Body > defines a structure called a < Block >.


