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Abstract 

 
Data Minining is a relatively new term for the discovery of knowledge in large data sets. Essentially the idea is 

to extract relationships from a mass of data. In this paper we will suggest that opportunities for data mining 

exist in the legal domain, and we will begin by suggesting some of the uses to which it might be put. We then 

briefly discuss some of the constraints that must be placed on a data mining tool in the legal domain. The bulk 

of the paper is concerned with a particular data mining tool, which is designed to identify the characteristics of 

typical members of a legal category. We describe the theory of the tool, and discuss some potential pitfalls with 

respect to its application. We then work through a simple example to illustrate how the tool operates, and 

briefly present the results from a more complicated example. Finally we draw some conclusions and make some 

suggestions for future work. 

 

1. Introduction 
 

Many organisations hold large sets of data from which they believe useful information can be extracted. The 

process of extraction is termed "data mining" or "knowledge discovery". Such large data sets do exist in the 

field of law, particularly where cases are processed in a routine adminstrative manner, such as many welfare 

benefits, and we see applications for data mining particularly in the following areas: 

  

1) Monitoring adherence to guidelines: in areas such as sentencing, guidelines are issued which are supposed to 

govern the way in which decisions are made. Since the guidelines may require a number of factors to be 

weighed, and there may be discretion within the guidelines, it can be difficult to see whether they are being 

in general complied with. The idea here is to extract the relationships from data relating to such decisions to 

see to what extent the discovered relationships reflect the guidelines. 

2) Investigation of legal theories: some jurisprudes attempt to explain legal decisions in a particular area from a 

particular theoretical standpoint. See for example Edwards (1994). Often support for such views is anecdotal 

and debatable. Data mining a relevant set of past decisions would allow us to see whether the predicted 

relationships emerge. 

3) Validation of elicited knowledge: often the rules elicited from an expert during knowledge acquisition will be 

incomplete, or possibly even incorrect. Data mining could be used to confirm the existence of the posited 

rules, or to suggest refinements. 

4) First cut knowledge elicitation: alternatively data mining could be used to produce an initial set of rules 

which could then be inspected and refined by an expert. We have placed this - perhaps the most obvious 

application - last, since we believe that usually there will be prior opinion or theory as to what the 

relationships are, and this can be used to focus the data mining process. 

  

2.  Data Mining in Law 

 

Almost any technique developed for machine learning can be applied to data mining as well. There are, 

however, some constraints imposed by the legal domain, which make particular demands on the tool. 

  

First the output must be transparent. In some typical data mining applications - identification of likely 

purchasers of a product, for example - the classification itself is all that matters. In contrast the applications cited 

above require that we extract the principles used to classify. Some techniques which are successful in other 

domains, such as neural networks, do not provide the principles used to classify in an easily accessible form. 

  

Second the technique must be resilient to noise. In any legal dataset there will be "rogue" decisions: either 

because they are genuinely aberrant, or because there were special features of the case which are not fully 

reflected in the recorded features. It is important that such decisions do not hide the relationships we wish to 

uncover. 

  

 In other words we require our data mining tool to 

  

1) Produce symbolic descriptions 

2) Describe characteristic members of the class of interest, so that we focus on the core of the concept without 

being distracted by special cases. 

  

Limiting ourselves to descriptions of typical members does not harm any of the four applications described in 

section 1.  In none of these are we using the tool to classify individual cases: rather we are trying to find a broad 



picture. Thus in monitoring and investigation of legal theories, we have to accept that there will be special cases 

- what matters is is whether the guidelines are in general followed, and whether the theory correctly identifies 

the main run of cases. In validation and elicitation, we are using the tool in conjuction with an expert, who is 

responsible for providing special cases and refining the boundaries of the classification. 

 

In this paper we describe a simple data mining tool which has the characteristics given above. The tool is 

adapted from the work of Stephan (1996). 

  

 3. Theory of the Tool. 
  

In this section we describe the theory underlying the technique we have implemented. We begin by discussing 

the case of boolean data, where the principles are clearest, and then describe how the technique extends to 

continous data and enumerated data types. 

 

3.1 Basic Operation 

 

Let us suppose that we have a data base of cases, with their outcomes. Let us suppose also, for the moment, that 

all the attributes of the cases are booleans. What we are interested in is: 

  

1) whether any combinations of particular values for particular attributes provide necessary conditions for a 

given outcome; 

2) whether any combinations of particular values for   particular attributes provide sufficient conditions for a 

given outcome. 

  

Suppose that it is a necessary condition that attribute A have value V for the outcome O. This means that 

outcome O is a sufficient condition for attribute A to have value V. Now if we select from the database all 

records with outcome O, all of them  will have value V for attribute A. 

  

Suppose that it is a sufficient condition for outcome O that attribute A have value V. Now if we select all the 

records from the database with outcome NOT-O, none of them will have value V for attribute A. That is V will 

be the complement of the values possessed by A in the selection with respect to the values A can take. In the 

case of a boolean, if A is true is a sufficient condition for outcome O, the value of A for all records with 

outcome NOT-O will be false. 

  

Note that if the necessary condition is a conjunction of several attributes, all will be identified from the records 

with outcome O. Similarly, if the sufficient condition is a disjunction of several attributes all will be identified 

by considering the records with outcome NOT-O. 

  

The picture is more complicated, however, if a necessary condition is formed by a disjunction of two or more 

attributes, or a sufficient condition is formed by the conjunction of two or more attributes. For example if  A v 

B is a necessary condition, A may be either true or false in the selection of records with outcome O, with B either 

true or false in case that A is true, and with B true in case that A is false. Similarly with a sufficient condition of  

A & B, A will be constrained to false in records with outcome NOT-O only in cases where B is true. 

  

If we are to detect these combinations, therefore we need to further partition the data into cases where there is a 

given outcome, and a given value for a particular attribute, and examine what constraints, if any, are placed on 

the values of the other attributes in these partitions. In the above example where A v B is a necessary condition 

for outcome O, the partition with O and A false, will contain only records where B is true. Similarly the partition 

with outcome O and B false will contain only records with A true. 

  

If we create these additional partitions, fixing the value of  each attribute in turn, we will be able to detect any 

necessary and sufficient conditions formed by pairs of attributes. If we further partition these partitions by fixing 

the values of a second attribute we can find all necessary conditions formed by a disjunction of three attributes 

and sufficient conditions formed by a conjunction of three attributes. Repeated partitioning in this way will find 

necessary and sufficient conditions of any length. This, of course, supposes that we start from a sufficiently 

large data set to allow the repeated partitioning to generate partitions with enough records to give meaningful 

results. We will return to this point in 4.3. 

  

3.2 Continuous Values for Attributes 

 



Suppose now that the attributes are not boolean, but continuous values. Here we will be trying to find some 

range of values for the attribute which contribute to a necessary or sufficient condition for the outcome. Now 

what we will be interested in is the maximum and minimum values for attributes in particular partitions. 

Suppose we have an attribute (call it "age") which in the database as a whole can take values from 0 to 100. If in 

the selection with outcome O it occupies only the range 65 to 100, we can deduce that age >= 65 is a 

necessary condition for outcome O. Obviously we will be interested only in cases where the range so produced 

represents a significant curtailment of the original range. Similar considerations applied to the set of records 

with outcome NOT-O suggest that we can find ranges which indicate sufficient conditions, by taking the 

complement of the range of values which appear for the attribute in that partition with respect to the full range it 

exhibits in the whole database. Repeated partitioning, in the manner described above, will also find 

combinations of such attributes with other continuous attributes, with booleans and with a mixture of the two. 

  

It is important to note that the range delivered may not contain the exact boundary, since this relies on a record 

with the precise borderline value being present in the database. It will, however, deliver a safe range, in the 

sense that the range will be too narrow rather than too wide. Since, however, our aim is to detect the 

characteristics of typical members, the potential absence of the borderline cases is perhaps not crucial. 

Moreover, given a large data set, we may expect the borderline values to be present in practice. 

  

Where we need to partition on a continuous attribute we must select some threshold value to partition on. We 

will discuss how we might arrive at such a threshold in Section 4.4. 

  

3.3 Enumerated Values for Attributes. 

  

In the case where an attribute can take one of a enumerated set of values, we will be interested in the subset of 

the possible values which appears in the selection with outcome O and in the complement of the subset which 

appears in the selection with outcome NOT-O. If either of these subsets are significantly smaller than the 

original set, the attributes will be interesting. In this case also we can repeatedly partition on such attributes, by 

selecting a subset of the possible vallues to act as the criterion for partitioning. We will discuss how such 

partitioning subsets may be chosen in 4.4. 

  

3.4 Other Attributes 

 

Some attributes will have values which are not boolean, do not form a numeric ranges, and are not taken from 

an enumerated set of reasonable size. Names and addresses are an obvious example. It is unlikely that we will 

find any meaningful relationships featuring such items using our technique, and so they are best stripped from 

the data at the outset. This is not to say that such attributes may not have significance: for example, post code is 

often significant in data mining applications. Our technique is not, however, useful for such attributes. 

Arguably, such attributes will have less impact in the legal domain than in a marketing application. In some 

particular cases, however, for example if a legal theory was making use of socio-economic status, of which 

postcode is a good indicator, the use of our technique might well be inappropriate. As with any statistically 

based tool, it is important to be aware of any particular features of the problem which may affect the choice of 

the tool to use. 

 

4 Some problems with the Above Technique. 
 

There are a number of questions that need to be asked about the above technique. In this section we will discuss 

some of them, and indicate our solutions.  

  

4.1 Computational Complexity.  
 

If we are to partition on every combination of attribute, so that we can find disjunctions forming necessary and 

conjunctions forming sufficient conditions irrespective of their length, we will need to generate a very large 

number of partitions. For n attributes the first partitioning will generate 2n partitions, the next 4n(n-1) partitions, 

and so on. Clearly this is worse than order n factorial, and hence infeasible for large n. 

  

We hypothesise, however, that interesting conditions will be conjunctions/disjunctions of relatively few terms. 

If this is so, we need not produce every partition, but only say the first m levels, giving all 

disjunctive/conjunctive combinations of m+1 variables. For this the computation is of order n
m
. For all realistic 

expected values of n (say less than 100) this makes computation feasible for combinations of reasonable size, 

perhaps up to 6 or 7. Of course if n is small, m can be larger, and if we are prepared to employ more 



computation time m can be increased. Diminishing returns are, however, likely to set in, especially if we believe 

that the the irreducible disjunctions/conjunctions are likely to be relatively short. 

  

4.2 Sample Sizes.  
 

Clearly the method relies on having a representative sample of cases in a given partition: otherwise false 

positives will proliferate. Suppose that the chance of an attribute having the value true were 0.9: then in a 

sample of 10, the probability that all examples should be true by chance is 0.35; in a sample of 20, this falls to 

0.12; and in a sample of 50, to 0.005. However, even on a sample of 10, if there were an even chance of A being 

either true or false, the probability of a false positive would be no more than 0.00098. Since we can can discover 

the relative numbers of trues and falses for a given attribute by examining the database we can determine the the 

likelihood of  false positive for any given sample size. This means that we can accompany our report of a 

relationship with a measure of our confidence that it is not spurious. If desired we can impose a threshold level 

of confidence and only report examples which meet a given standard of confidence. 

  

4.3 Partitioning and sample size.  
 

The sample size will be radically affected by the amount of partitioning that has occurred. Obviously each time 

we partition we reduce the sample size, and some partitions will have too few records to form a meaningful 

sample, or even no records. This enforces a limit on the partitioning - so that we don't go below a sensible 

sample size - and provides the effective constraint on the level of partitioning. In practice the partitions will 

reduce to too small a size before the complexity of repeated partitioning becomes a problem. As we suggested 

above, however, our belief is that significant relationships will combine relatively few attributes, in which case 

this limit on partitioning will not result in missing any significant relationships. 

  

4.4 Choice of Thresholds for Continuous and Enumerated Values.  
 

When partitioning on a boolean we have no choice - true will go into one partition and  false into the other. If, 

however, the attribute can take a numeric range, we must decide where the line will be drawn - there is no 

reason to suppose that the midpoint of the range will be the correct place. However for the purposes of the 

technique it does not matter if the ranges chosen for partitioning do not cover the whole range the attribute can 

take: in the case of an attribute in range 0 - 100 with a "correct" threshold of, say, 65, partitioning on 0 to 10 for 

failure and 90 to 100 for success will serve as well as finding the exact range. Our approach therefore is to adopt 

conservative thresholds giving small safe ranges as the basis for partitioning, even though this means losing data 

from the middle of the range. The crucial thing is that the range chosen for partitioning does not include the 

threshold. The one caveat that must be applied is that the partition must contain enough examples to represent a 

sample of meaningful size. We therefore apply a range from the smallest/biggest point up/down to a value that 

will give a sensibly sized partition. This will, of course, miss attributes which should be of interest where the 

range we are trying to find is a band in the middle of the range of the attribute: it is, however, difficult to see 

how such a band could be found without prior knowledge, and the technique is probably not appropriate for 

these cases. Note, however, that in some potential applications, we will have a theory or an expect to guide us. 

Here a range from the middle may be suggested, and we can use that as our partition. 

  

Similar considerations apply to attributes with an enumerated set of values. Here we should partition on any 

single value that gives a sensibly sized partition. If we have expert advice, it may be possible to order the 

enumerated values in some  way (e.g. colours could be ordered as in the spectrum). If this is so we can get larger 

partitions by taking a subset from either end of the order. Provided, however, the dataset is large enough relative 

to the number of enumerated values, we believe that best results are obtained by partitioning on individual 

values. 

 

An alternative treatment of attributes with enumerated values is to assign a boolean attribute for each of the 

potential values. Thus instead of colour withe values {red, green, blue} we have colour-red, colour-green, and 

colour-blue, and in each record one of these will be true and the other two false. This move is often made when 

neural networks, and may well be apprpriate for our technique also. 

  

4.5 Noise 
  

The technique as it stands is extremely sensitive to noise. A single aberrant decision, (or a typing error in the 

database) may cause the apparent range of values that an attribute can take in a given partition to extend across 

the whole range, thus completely obliterating the significance of that attribute. Clearly, since we have no 



assurance that our data is clean and consistent, we need to take account of this. Our approach again is based on 

that of Stephan (1996). 

  

At every point within the range there will be a certain number of "hits". Let us therefore plot a cumulative 

frequency diagram from the bottom (B) of the range to the top (T). Let us assume that the "hits" include noise so 

that the real bottom of the range  is some R , where B < R < T. Provided that there are relatively few noise "hits" 

compared with true "hits", the frequency of hits in B to R will be significantly less than the hits in R-T. 

Examination of the frequency diagram will therefore show a significant discontinuity at point R, allowing us to 

regard hits in range B to R as noise. Of course, this makes certain assumptions about the distribution of terms 

across the range in the database as a whole, but these assumptions can be confirmed by comparing the 

cumulative frequency diagram with one drawn for the complete database. 

  

This analysis can be performed once an attribute has been identified as being of interest. In order to so identify 

it, however, we need to consider the partition without outliers. Determining the minimum and maximum values 

for attributes in the partition is therefore performed not on the whole partition, but on the records in the partition 

which do not have extreme values for the attribute under consideration. The number of disregarded values can 

be set at a level according to the amount of noise anticipated. Note that the selection of records for consideration 

is performed with respect to attributes individually: thus an outlying value on one attribute will not prevent a 

record being considered with respect to its other attributes. Once an attribute is flagged as interesting, this can be 

confirmed by plotting the cumulative frequency as described above. 

  

By calling the outlying examples "noise". we have implied that they represent mistakes, either in the decision or 

in the data. But there is another way of looking such examples, which is especially appropriate in the legal 

domain. It may be that the concept is not appropriately defined by necessary and sufficient conditions at all, but 

rather there are special cases to which the concept is quite properly applied. Consider basketball players. A 

typical basketball player is over 6 foot tall, but there are professional players as short as five foot six. Suppose 

that in our database we have 1000 people, ranging in height from five foot to six foot six of whom 100 are 

basketball players. Of the basketball players, 98 are above six foot, one is five foot six and one is five foot ten. 

The technique would identify "height greater than five foot six" as a necessary condition. Thus to get all the 

basketball players we need a range of twelve inches. But cutting this to eight inches - a reduction of a third - still 

gives us 99% of the players, and cutting it to six inches - a reduction of 50% - still gives us 98% coverage. The 

idea here is that there is a trade off between the extent of the range and the coverage the range gives. If a 

substantial reduction in the range gives only a small loss of coverage, we may consider the reduction useful. At 

some point the trade off will become adverse, however, and at this point we may consider that we have 

identified a condition describing a "typical" member. Stephan herself prefers this interpretation of outlying 

examples, calling the condition so arrived at a "characteristic description". With reference to the legal domain, 

where open textured concepts abound, we may also prefer to interpret the results in this way, seeing the refined 

description as a means of homing in on the "core" of the concept. 

  

5. Empirical results 
 

The technique described above has been implemented in C. Essentiially there are three modules: one to partition 

the data, one to identify the maxima and minima of ranges, and one to produce cumulative frequency ploits for 

interesting attributes. 

  

5.1 A simple example 

  

To illustrate the technique consider the simple example of retirement age in UK Social Security law. A person is 

retired if they are a man over 70, a woman over 65, a man over 65 who has elected to retire, or a woman over 60 

who has elected to retire. We can produce a data set by generating records with a random number between 0 and 

100 for age, a random 0 or 1 to represent sex, and a random 0 or 1 to represent whether they have elected to 

retire. We call these attributes age, sex and elected respectively. A fourth attribute, retired, will be 

set to 1 if they are considered retired and to 0 if they are not. 

 

We now construct two partitions of the data set, according to the value of the fourth attribute. We now get a 

report for the partition with retired = 1. 

 

Retired = 1 

feature     min   max 

age          60   100 



  

for the partition with retired = 0 

  

Retired = 0 

feature     min   max 

age          0    69 

  

Note that sex and elected are not reported since their range has not been constrained. 

  

This identifies age as an interesting attribute: with age>=60 a necessary condition and age>69 as a sufficient 

condition for being retired. 

  

Now we partition each of these partitions on age>80, age<20, sex = 0 and sex=1, and elected=0 

and elected=1. Two partitions will be empty: those with retired = 1 and age < 20, and with 

retired = 0 and age > 80. Where all the data has gone into one partition, we know that that partition 

will yield nothing of interest not discovered previously. The remaining reports for retired = 1 are: 

  

Retired = 1 and sex = 0 

feature    min  max 

age        60    100 

 

Retired = 1 and sex = 1 

feature    min  max 

age        65   100 

 

Retired = 1 and elected = 1 

feature   min  max 

age       60   100 

 

Retired = 1 and elected = 0 

feature   min  max 

age        65   100 

   

Of these two show features of interest: in the case of men, age >= 65 is a necessary condition, and in the case 

of those who have not elected to retire, age>65 is again a necessary condition. The other two do not 

strengthen conditions already found. In the rest of our description such reports will be supressed. 

 

For retired = 0, the following reports are produced: 

  

Retired = 0 and sex = 0 

feature    min  max 

age          0  64 

 

Retired = 0 and sex = 1 

feature    min  max 

age         0    69 

 

Retired = 0 and elected = 0 

feature    min  max 

age         0   69 

 

Retired = 0 and elected = 1 

feature    min  max 

 age        0   64 

  

In two cases we have identified further sufficient conditions: for a woman, or for someone who has elected to 

retire, it is a sufficient condition that age>64. In the other two cases, again no extra information is given. 

  

At this point we could record the rules governing retirement as a prolog program - using only the sufficient 

conditions: 

  

retired(X):- age(X,A),A > 69. 

retired(X):- sex(X,f),age(X,A), 

             age > 64. 



retired(X):- elected(X),age(X,A), 

           age > 64. 

  

Only one sufficient condition is now missing: that where a woman has elected to retire. This can be found by a 

further level of partitioning, where we will receive the report: 

  

Retired = 0 sex 0 elected = 1 

feature    min  max 

age        59    100 

 

This allows us to add the final clause to our Prolog program: 

 

retired(X):- sex(X,f),elected(X), 

             age(X,A),A > 59. 

  

5.2 Adding Noise 

  

We then added noise, extending the data set by giving 6% of the records the incorrect value for retired. Now the 

reports were not on the basis of the whole partitions, but instead the top and bottom 5% of values were ignored. 

This safe over-estimate of noise meant that all the noise records were excluded from consideration, and the same 

reports were generated, except that the maximum values which had been 100 were now 98 and the minimum 

values which had been 0 were now 2. The booleans were, of course, unaffected. At the first level of partitioning 

this meant age was interesting, and so the cumulative frequency diagram in Figure 1 was produced. 

 

 

 

Note that there are in fact three discontinuities, the curve steepening at age = 60 where retired women are 

counted, and again at age = 65, when all women and men who have elected to retire are included, and again at 

age = 70, when everyone is included. This is in itself interesting, since it identifies the three significant age 

points: analysis of the various finer grained partitions eventually produces only a single appropriate 

discontinuity in each: at age = 60 for retired women, at age 65 for women who have not elected to retire and 

men who have, and at age = 70 for men who have elected to retire. 

 

5.3 A Second Example 
 

The above simple example illustrates the technique. For a second example we will consider the data set used  in 

Bench-Capon (1993) to examine properties of neural networks. 

 

This example was based on a fictional welfare benefit paid to pensioners to defray expenses for visiting a spouse 

in hospital. The conditions were: 

  

1) The person should be of pensionable age (60 for a woman, 65 for a man) 

2) The person should have paid contributions in four out of the last five relevant contribution years 

3) The person should be a spouse of the patient 

4) The person should not be absent from the UK 

 

Figure 1 



5) The person should have capital resources not amounting to more than £3,000 

6) If the relative is an in-patient the hospital should be within a certain distance: if an out-patient, beyond that 

distance. 

  

These conditions represent a range of typical condition types: (3) and (4) are Boolean  necessary conditions, (5) 

is a threshold on a continuous variable representing a necessary condition, and (2) relates five variables, only 

four of which need be satisfied, effectively giving rise to a disjunctive necessary condition. (1) and (6) are 

perhaps the most interesting since the relevance of a variable depends on the value of another: in (1) sex is 

relevant only for ages between 60 and 65, and in (6) the effect of the distance variable depends on the Boolean 

saying whether the patient is an in-patient or an out-patient. We have therefore 12 attributes which can 

contribute to satisfaction of the conditions. 

 

The data sets were generated from a LISP program. The data set consisted of 50% satisfying cases, where the 

outcome of each condition was generated randomly within the range which would satisfy the relevant condition, 

and other values generated randomly across the full range. The other cases were generated so that an equal 

number would specifically fail on each of the conditions, other values being generated at random. A number of 

"noise" attributes with no effect on the outcome were also included: in the experiments there were 52 such noise 

attributes, giving a total of 64 input factors. 

  

The first level partition, on whether or not the benefit was payable, gave four necessary conditions: 

 

1) The spouse attribute was constrained to 1; 

 

2) The absence attribute was constrained to 0; 

 

3) Age was constrained to > = 60; 

  

4) Capital was constrained to <= 3000. 

 

The next level of parttioning of those qualifying for benmefit identified the rest of the necessary conditions: 

 

1) Partioning on sex constrained age to >=65 in the case of males; 

 

2) Partioning on in-patient contrained distance to be <50 if true and >= 50 if false; 

 

3) Partitioning on each of the contribution conditions = false, constrained all of the other four contribution 

conditions to true. 

 

Thus two levels of partitioning successfully identified all the necessary conditions. To obtain the sufficient 

condition it is necessary for all the necessary conditions to be satisfied. This was not discovered, as too deep a 

partioning was required. 

 

 

6. Concluding Remarks 

   

In this paper we have described a simple but effective tool for data mining large legal data sets so as to extract 

symbolic descriptions of the characteristics members of some class of interest. 

 

Of course, what is needed now is for the tool to be evaluated  on some real data set., since this is the only way to 

become convinced that the various assumptions made about  distributions and in particular the distribution of 

noise can be confirmed. 

 

The particular appeal of this technique lies in its treatment of special cases, whether noise, or genuinely special.  

In law it is often useful to identify the core of a concept, without being misled by the fascination of the hard 

cases which give rise to leading decisions. 

 

We believe that data mining will become an increasingly important topic in the legal domain, and that the 

simple technique described may provide an interesting contribution. 
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