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Abstract
One of the key phases in Knowledge Based Systems (KBS) construction is

Knowledge Acquisition. However, human knowledge about domains is so complex
that without an analysis stage that probes the underlying nature of the real world
problem and how human experts conceptualise it, the knowledge incorporated within a
KBS remains shallow and incomplete. In this paper, we highlight foundational details
of a structured approach to knowledge analysis and describe its application to domains
associated with software installation and neural networks.

1 Introduction: Domain Characterisation and Knowledge Acquisition

In this paper we present the foundations of an approach to the characterisation of problem

solving domains for the development of knowledge based systems. These foundations come

from a broadly based, multi -disciplinary perspective which includes the cognitive sciences,

computer science and the philosophy of science. The breadth of disciplines required reflects

the need to deal with the complexity of knowledge that needs to be acquired when carrying

out knowledge acquisition.

Knowledge acquisition should be a key stage in any methodology which seeks to design

and construct a non-trivial knowledge based system (KBS). However, it represents a major

hurdle in building such systems. It usually involves eliciting, analysing and interpreting the

language that the expert uses when solving a problem and then transforming it into a suitable

machine language. As such, knowledge acquisition is crucial since the power and utilit y of

the resulting knowledge based system depends on the quality of the underlying representation

of expert knowledge (Kidd, 1987). Furthermore, as a recent comprehensive United Kingdom

survey reported, KBS developers did not consider knowledge elicitation from the expert a

problem in itself, rather, it was making sense of the great mass of detail and information

obtained, so that it can be organised and represented (O’Neill & Morris, 1989). We refer to

this process of organising knowledge (i.e. the raw data) gained from human experts,

literature, manuals, journals and other sources into a coherent and unambiguous structure of

the domain as knowledge analysis; we further agree with O’Neill & Morris that it is this

process which can facilit ate a better understanding of the requirements of knowledge

acquisition. It is pertinent to note at this point that the process of knowledge acquisition is



complex and fraught with diff iculties. Some of these are addressed in this paper and certain

solutions are suggested.

In order to clarify some of the reasons for problems in knowledge acquisition, it will be

valuable to look briefly at the history of the subject. In general terms knowledge acqusition

has focussed primarily on the transfer of problem solving expertise to computer based

software called a knowledge based system. First generation approaches to the development of

knowledge based systems are mainly of two types: ‘Stage Based’ and the prototyping

approach. Stage based approaches present li fe cycle definitions based on ideas from

conventional software engineering. For example, Buchanan et al. (1983) proposed a li fe cycle

definition including the following stages: identification of the problem to be investigated,

conceptualisation of a model to represent the knowledge, formalisation, implementation of

the computer based software and testing/revision. An example of the prototyping approach is

that of Guida & Tasso (1989). They propose a plausibilit y study, rapidly followed by a

demonstration prototype, development of the full prototype, development of target system,

operation and maintenance/revision. These approaches have similarities to conventional data

analysis methodologies of computing such as Structured Systems Analysis and Design

Methodology or SSADM (Downs et al., 1986). Clearly, these methodologies are very general

as they attempt to address the entire knowledge engineering endeavour. In so doing, they fail

to acknowledge knowledge acquisition as a separate phase of enquiry. Indeed, prototyping,

which has been much used to date, may not fully utili se the knowledge acquisition process

because the underlying assumption is that one can uncover the structure of the expertise of

the domain at a very early stage with littl e or no analysis. A key criti cism of these approaches

is that they do not acknowledge the need to analyse the domain prior to the development of

the KBS.

 A second generation of approaches to KBS development are emerging which address the

issue of analysis in terms of knowledge-level analysis (Newell , 1982). Knowledge-level

analysis refers to the modelli ng of an intelli gent system's problem-solving behaviour

independent of whatever symbols might ultimately be used to program these behaviours in a

computer. These approaches include: Ontological Analysis (Alexander et al., 1986), the

approach through Generic Tasks (e.g., Clancey, 1986 and Chandrasekeran, 1985) and the

KADS (Knowledge Acquisition, Documentation and Structuring) methodology (Wielinga et

al., 1988). For example KADS, which is probably the most established modelli ng approach in

Europe, seeks to develop a computer-based model of problem solving behaviour for a

particular set of tasks. The authors suggest a four layer architecture which describes the

domain, the type of inferences, the tasks, and strategic structures. They also describe a

number of domain-independent conceptual primitives used for representing the inference and

task layers. These primitives, called interpretation models in KADS, are similar to Clancey's

(1986) generic tasks which depict the levels where knowledge-level analysis is carried out (eg



heuristic classification). The common feature of these approaches is that they are concerned

with modelli ng at the knowledge level. As such they do not provide a model of human

competence at a task nor do they develop a model which relates the human problem solving

behaviour or human communication about the domain in the real world.

We argue that a fuller appreciation of the nature of a domain and its relationship to the

real world can assist a knowledge engineer in knowledge acquisition. The descriptions of

domains which are required, must be grounded or contextualised in human social and

cognitive processes (Gaines, 1989) as well as in the real world (Clancey, 1989). We have

suggested that the characterisation of a domain, which provides its context and reference to

the real world, is the central goal of knowledge analysis (Paton & Nwana, 1990a). In saying

this we wish to demonstrate that domain characterisation is an important goal in the early

stages of a KBS development project. The need for this kind of analysis has emerged from a

variety of industrially-sponsored knowledge acquisition projects based at the University of

Liverpool (e.g. Finch, 1989; Hughes, 1986; Watson et al., 1989) and is further supported by

the requirements of two major industrial collaborators.

The issues that have been identified from these investigations, together with many others

in this area of research, show why knowledge acquisition remains diff icult. In particular, key

issues associated with characterisation have not been addressed. These include:

• The lack of any deep theory of knowledge acquisition that has an explicit statement about

its philosophical underpinning (Bradshaw & Woodward, 1989);

• The need to provide an adequate cognitive definition and understanding of the domain

(Shaw, 1989);

• A means by which an expert and knowledge engineer can harmonise their mental models

(Recogzei & Plantinga, 1987); especially as they seek to communicate with each other

and talk about the same things in the real world.

• The need for guiding principles which allow a knowledge engineer to navigate a domain

and make sense of the mass of information obtained (O’Neill & Morris, 1989);

• A way to match elicitation techniques to the nature of a domain. Despite numerous tools

(see Boose, 1989), a major obstacle is that littl e guidance is available in this area (Kitto

& Boose, 1989).

• The need for knowledge acquisition in its early stages to focus on the domain, rather than

be driven by tools which are in turn driven by implementation concerns (Woodward,

1989; Paton & Nwana, 1990a).

Current approaches to KBS development often move too quickly to the stages of design and

implementation of a computable artefact without first providing an adequate description

(analysis) of the nature of the domain. In an attempt to provide answers to the problem of

acquisition, we have proposed, and are developing, a methodology for knowledge analysis

which produces detailed characterisations of the nature of domains.



By ‘domain’ , we refer to that body of knowledge which bears on the underlying

problem, present and future, which is identified in relation to the task, and which enables that

task to be brought to solution (see Shapere, 1977).  It is argued that domains of knowledge

are the products of human abstraction and that, as with any abstraction-product, their

formation depends upon a theory. For the purposes of domain characterisation, we have

proposed in Paton & Nwana (1990) that there are seven fundamental characteristics of a

domain:
• Theory - the conceptual framework used to construct and maintain a domain.
• Metaphor - language used to describe the domain, especially in global terms.
• Metatheoretical constraints - fundamental concepts such as time and causality.
• Relations with other domains - similar bodies of knowledge.
• History - the evolution of the domain in time.
• Structure - the parts, relations and organisation of the domain.
• Purpose - the problems which the domain addresses, in terms of their solution.

A fuller justification for these seven features and their interrelationships can be found in

Paton et al (1991c). In order to provide a focus for discussion, this paper is limited to

particular aspects of the theoretical and metaphorical nature of domains. We present

foundational details of our approach and from this develop certain techniques for analysing

domain knowledge. These techniques are an integral part of a structured approach to

knowledge analysis which is under development.

2 Humans Build Models in order to Understand the Real World

" Men think in terms of models." (Deutsch, 1951)

This is the fundamental assumption of our approach. In order to manage what we know about

the real world we must simpli fy its complexity. We achieve this by abstraction and we call

the products of this process models.  In saying this, it is important to re-emphasise that a

domain is that body of knowledge required when solving problems. The cognitive products

generated to bring about particular solutions are models.1

We approach knowledge analysis with the observation that humans structure their

knowledge and that an understanding of how structuring processes take place, what is

produced and how changes take place over time, will provide clues to the way domains are

organised. Essentially, we agree with Forrester (based on Bruner); that a theory:

                                                
1 The term model is used because of its consistency with the term used by philosophers of science (e.g.,

Hesse, 1963; Harr-, 1970; Rothbart, 1984; Aronson, 1991) and by the computing community (e.g., Lehman,
1977; Lewis & Smith, 1979, Kangassalo, H., Ohsuga, S. & Jaakkola, H., 1990). It is also consistent with the
approach to metaphor which we elaborate on below, see also, Soskice, 1985; Rothbart, 1984; Way,1991). As
such, model is preferred to, for example, ‘belief system’ as the latter carries implicit ideas about the nature of
knowledge which we do not address in this paper (e.g., the notion of ‘ system’ in the context of belief system).



"... is essential i f we are to effectively interrelate and interpret our observations in any field
of knowledge. Without an integrating structure, information remains a hodge podge of
fragments. Without an organising structure, knowledge is a mere collection of
observations, practices and conflicting incidents." (Forrester, 1968, page 1-2).

Hence, the key feature of our approach to the nature of domains as conceptualised by human

experts is that they are integrated structures. In saying this we argue that knowledge is

organised into frameworks. This has a profound implication for our approach in that we can

anticipate possible conceptualisations which people may have of a domains (i.e. through

knowledge of how they are constructed and maintained) before we embark upon knowledge

acquisition.

We use theory to refer to both a formal body of knowledge recognised by a community of

people (as in the scientific sense) and to any framework of beliefs which is integrated in some

way so as to provide a person with solutions to problems. In saying this, we differentiate

model from theory in that the latter is more general than the former and that a model is the

cognitive product of a theory. Theories are essential to the kinds of ontologies we possess and

to the ways we represent or model the world when solving problems (Carey, 1985;

Karmilloff-Smith, 1988; Keil , 1989). Furthermore, as Medin & Wattenmaker (1987) suggest,

conceptual coherence is theory-based and is derived from both the internal structure of the

conceptual domain and the position of the concept in the complete knowledge base. This is

extremely important to our view of how knowledge is organised. What we believe to exist (ie

our ontology) relates to a theory which defines it. The importance of this relationship,

between theory and ontology, is not only supported by realist philosophers of science (eg

Aronson, 1984; Bhaskar, 1978) but also by developmental psychologists (eg Carey, 1985).

The metaphorical nature of knowledge also provides details of theoretical entities as we seek

to specify the nature of a domain (see Black, 1979) so that an abstraction of a real world

complexity is partly constructed by relating what there is to a set of metaphors which are

deeply embedded in our thought and language (Pepper, 1928; Lakoff & Johnson, 1980).

Thus, our conceptualisation of a model shows that it is theory-dependent and an

understanding of its theory-dependency can help us anticipate the structure of a domain. The

emphasis of the approach to knowledge analysis described in this paper is concerned with the

theories people use to construct, maintain and change problem solving domains. In order to

appreciate certain properties of theories in our approach, we have imported relevant ideas

from the history and philosophy of science.

3 Towards a Characterisation of Theories

Theories may be thought of as frameworks of concepts tied together by propositions or sets of

propositions. The purpose of such frameworks is to provide the means for description,

prediction, explanation, identification, classification and diagnosis. They act as the basis for

hypothesis generation and form the intellectual and socially acceptable structures by which



the scientific enterprise continues. We now consider some particular features of scientific

theories from which we are developing analytical techniques for domain characterisation.

3.1 Scientific Realism as a Basis for the Characterisation of Theories

We adopt a realist perspective for understanding the nature of domains. In simple terms, we

believe that there is more to the world than what is perceived by the senses and formed into a

theory, and more than what is present in the mind. In saying this, we do not seek to refute the

empiricist or idealist positions nor debate the adequacy of realism in science; these are issues

for philosophers. We come with a basic assumption, the world exists independently of our

senses and mind and we use theories to inform us about its existence and nature (Aronson,

1984).

It is now possible to describe (model) the production of models. In the simplest case a

model is produced by abstracting from what is observable alone (left-hand side of Figure 1).

However, this kind of model will l ack explanatory power because it cannot account for the

causal relations between its parts. The only explanations available can be no more than

variants of statistical associations. Most scientific models have explanatory power.  This is

because the descriptive or homeomorphic model (see Figure 1) is not only formed by

abstraction from observables but is also dependent on models of what cannot be observed.

Observable 
Real World 

Non-observable 
Real World

The Real World 
      Domain

The Cognitive  
Domain of the 
          Expert

Homeomorphic 
      Model

Paramorphic  
    Model

abstraction

causality

 common  
 ontology

Figure 1 -  A Summary Scheme of Model Relations (adapted from Harr-, 1970)

These explanatory (paramorphic) models provide the causal framework necessary for

explanation. Domains which exhibit explanatory capabiliti es in this way will have relational

or iconic properties (due to their causal infrastructure). If an expert can provide explanations

in this way, we can anticipate a theory which will have iconic (relational) properties (Harr-,

1986). This is important when the dynamic aspects of the domain come to be modelled. The

basis for paramorphic (explanatory) models is in interpretations of the unobservable real

world which share common kinds of entities. It is metaphors which provide the context for

such common ontologies (see Aronson, 1984), that is, common kinds of entities, and this is

often noted when ideas are imported from related domains (Paton et al., 1991a). Our

adherence to this perspective provides us with a framework for making certain expectations



about the ontological nature of domains concerned with time, causality, categorisation and

mechanism (see Bhaskar, 1978).

3.2 Properties of Theories

Theories can be typified according to certain basic properties and, following the work of

Harr- (1986), we identify three basic types of theory:

• Type 1 theories are cognitive objects with pragmatic properties that enable the

constitution, classification and prediction of observable phenomena. A typical

Type 1 theory is Newtonian mechanics. [Note: these theories lack explanatory

power and are similar to heuristics]. They can be characterised by the left-hand

side of Figure 1. Thus, in the social sciences ethnomethodology yields Type 1

theories of social interaction by looking for patterns among observable actions,

including verbal actions. The ontologies of Type 1 are, therefore, only

observables.

• Type 2 theories are cognitive objects with iconic properties that enable the

representation (including sometimes the picturing) of a certain class of

unobservable beings. Typical Type 2 theories are the bacterial theory of disease,

plate tectonics and X-ray stars. These theories involve the representation of a

physical system and its modes of behaviour, which, at the time of the formulation

of the theory, have not yet been observed. The vast majority of scientific theories

are of Type 2. These theories make use of common ontologies whose context is

often supplied by key metaphors. For example, the realist notion of a virus as a

disease-causing particle was postulated in the mid-nineteenth century but was only

confirmed to exist in the mid-twentieth century with the invention of electron

microscopes. Its basis in theory existed prior to its confirmation with scientific

instruments. The ontologies of Type 2 are both observable and non-observable.

• Type 3 theories are cognitive objects with mathematical properties which enable

representations of non-picturable systems of beings and of their behaviour and

interrelations. The ontology behind abstractions such as symmetry, transformation

and harmony is a case in point, and we note the importance of what could be

called the relationship between ontology and "mathematical beauty", from the

Pythagoreans to the present time (see Engler, 1990). Einstein's theory of special

relativity is an example of this type. The ontologies of Type 3 are both observable

and non-observable but the non-observable referents may never become

observable.

Hence, from our point of view, theories have certain fundamental properties which we may

identify as pragmatic and/or iconic and/or mathematical. This is not to say that over time a

theory may change so that, for example, the Type 3 nature may become Type 2. For example,



the initial idea of a virus was Type 3, a disease-causing agent, which was later described in

Type 2 terms as a disease-causing particle. (Note: the difference between agent and particle is

non-trivial).

Kidd (1987) proposed a classification of domains which bears a resemblance to Harr-’s

categorisation although we note that Kidd emphasises the need for a language, i.e. a

knowledge representational medium. Harr- focuses on theory which not only gives a means

of representation but also provides conceptual techniques for analysis. Harr-’s categorisation

includes the following implications for knowledge analysis:

• Sometimes experts will be able to provide no more than type 1 theories, i.e. rules of

thumb or heuristics. The knowledge engineer can anticipate this: it is naive to think

experts can explain all their knowledge. It was indeed the case we found in an

investigation we carried out in a domain of neural networks. For example, the number

of units or hidden layers in a neural network had no explanatory basis in any theory.

This may seem a simple observation but it is worth noting that it is clearly an

implication of type 1 theories.

• If the theory the expert articulates is more of a type 2 theory then iconic properties can

be anticipated and the explanatory models used investigated. It is in this vein that we

have proposed and are using metaphorical graphs and imagery to gain further insights

into the nature of the theory and hence domain. Metaphorical graphs are simple paper

representations of the systemic structure of a domain (see Figure 3).

• Type 3 theories are rarer in most real domains we seek to analyse. As such domains

are non-picturable it is more difficult to gain insights into their nature. However,

certain important ideas, which appear in experts language, are relevant to ontologies

associated with Type 3 theories and include, symmetry, harmony, order, coherence,

unity, elegance and simplicity. Note that these reference some common assumptions

people have about the world. As we have seen, this is manifested in the ontologies

people use.

It is important to note that theories change over time and, their characterisation according to

types is not always clear-cut. However, the value of this classification to a knowledge

engineer is that it can be used to evaluate models of a domain and to suggest the kinds of

knowledge that are required for further acquisition. In all they provide a valuable way of

helping to organise and document the large amount of information acquired from an expert.

3.4 The Importance of Metaphor to Theory Development

The metaphorical context in which analogies and inter-theoretical conceptualisations are

made is an important aspect of the way domains are organised. Boyd (1979) and Kuhn (1979)

highlight a key role metaphor plays in establishing links between the language of science and



the world it purports to describe. Morgan (1980) notes that scientific theories are constructed

as symbolic forms and the process of metaphorical conception is a basic mode of symbolism.

Thus scientists view the world metaphorically as they go about their research. Metaphors help

make up how we see the world, how we set about studying it and how it can be understood in

terms of ways of perceiving relationships and situations from different perspectives (e.g.

Genter & Grudin, 1985). As such, they are fundamentally important to the ways people go

about constructing domains. Some metaphors are related to a domain as a whole and provide

global details, others are related to specifics.

We have identified some basic kinds of global metaphor which are important in

knowledge analysis; two in particular are systemic metaphors and spatial metaphors (see also

Paton et al., 1990). Specifically, the former provides information about the parts, inter-

relations and organisation of a system and the latter helps us understand its functionality. For

example, a neural network (in the computing sense) may be thought of as a machine which

transforms inputs into outputs through some mechanism although its behaviour may be

described in terms of changes to a landscape. The two basic kinds of metaphor are abstract in

nature and we may identify further metaphors associated with each. A network showing some

of the top-level features of our categorisation of global metaphors is shown in Figure 2. A

concept in bold refers to a global metaphor, and the associated concepts which are listed are

properties of the metaphor (we call them M-properties).

interacting parts
organisation

collective behaviour
purpose

position
distance

dimension
boundary

flow
conduit

transfer agents(s)
transfered thing(s)

organised complexity
autopoiesis

openness
individuality

Other systemic
metaphors include:

topography
features

Other spatial
metaphors include:

 SYSTEMIC  SPATIAL

CIRCUIT   ORGANISMIC

MACHINE  TEXT
SOCIETY  CULTURE

LANDSCAPE

UNIVERSE
SPACE

Figure 2 - Some Global Metaphors

It was noted in section 3.2 that type 2 theories have iconic properties. One application of this

relates to iconic representations of systemic metaphors which we call 'metaphorical graphs'.

Some simple forms of these are shown in Figure 3 to indicate some of their iconic and

metaphorical relations, and an example of their use is reported in section 4.2.



Metaphorical Graph Brief Description

   Chain of components as in a
machine.

Network or circuit of components as in

Hierarchy of components as in an
organism.

Cluster of components as in a 
 society.

a circuit.

Figure 3 - Some Simple Metaphorical Graphs and Associated Systemic Metaphors

In order to ill ustrate this we describe an analysis which looks at the systemic nature of the

system (in this case an ecosystem), in the real world. Metaphorical analysis of this small

piece of text can reveal a large amount of detail about the knowledge of the domain. As such,

we are not primarily seeking to code the information into some kind of symbolic

representation such as a semantic network. The focus of analysis is the characterisation of the

domain, the choice of the post-analysis representational formalism follows from this.

"An ecological system has a richly detailed budget of inputs and outputs...An ecosystem as
we use the term, is a basic functional unit of nature comprising both organisms and their
nonliving environment ... The living and nonliving components interact among themselves
and with each other; they influence each others properties and both are essential for the
maintenance and development of the system ... An ecosystem (can) be visualised as a
grouping of components ... linked together by food webs, flows of nutrients and flows of
energy." Bormann & Likens (1970),  p92.

Firstly, there are a lot of words which reference the systemic metaphor (see Figure 2), such as:

“system”, “ interact” , “ influence each other” , “ linked together” . “System” is a very common

word in everyday language and we characterise the systemic metaphors by a set of basic

properties (called systemic M-properties (see Paton et al., 1991b)): interacting parts,

organisation, collective behaviour and whole system functionality. These M-properties

provide a knowledge engineer with a means of anticipating certain aspects of the nature of the

domain. For example, given that the text does not make ideas about organisation explicit, the

knowledge engineer may wish to probe an expert about this issue in a subsequent elicitation

session.

In order to provide the widest discrimination between systems, the systemic M-

properties are associated with a set of systemic metaphors which inherit all the properties



given above and include machine, organism, society, circuit, game, text and culture. There are

further properties which typify particular systemic metaphors in the language used when

talking about them. In terms of the language used in the above extract, three systemic

metaphors are identified:

Machine input, output, functional, component;

Organism maintenance and development (note as a pair rather than single terms);

Circuit flows.

These are but a small number of ideas which are associated with the systemic metaphors.

Given this li st a knowledge engineer may subsequently anticipate further ideas in the domain

such as:

Machine: eff iciency, process, goal, purpose, power.

Organism: growth, organised complexity, level, adaptabilit y, openness.

Circuit: transfer, conduit, cycle, transferred thing(s), drain.

These can be used to structure further elicitation from the expert through the anticipation of

further properties.

The M-properties of the systemic metaphors listed above, though not exclusive to a particular

type, are associated most clearly with that type (see Paton, 1991). Another important feature

of this domain is the use of economic language (i.e., "budget"). This link to another domain is

also very useful in helping to establish the common ontology and likely paramorphic models

that can be used. A final comment relates to the authors' use of 'visualised'. This relates to the

circuit metaphor, and is common to many ecosystem models. Alternatives, which are not

explicit in the text, but could be anticipated include a hierarchy of niches, chain of

compartments or complex of factors. These are directly related to the metaphorical graphs of

Figure 3.

Knowledge analysis must place a crucial focus on the metaphorical nature of the domain

for it provides a knowledge engineer with insight into its ontology, functionality, organisation

and language (Paton & Nwana, 1990b). Once we appreciate the metaphors being used to

describe a domain as a whole, it may be easier to flush out the analogical details in the

knowledge acquisition process.

3.3 Scientific Theories can have Isomorphic Forms

Particular kinds of theory recur in different areas of scientific knowledge. Put another way,

certain domains are related to others in the kind of theory that produced them. In this section

we describe two specific examples and also discuss how each is currently being applied to

issues associated with ‘emergent computation’ in computer science. For example, Darden

(1987) and Darden and Cain (1989) discuss the occurrence of “selection” theories in the li fe

sciences. Beginning with Darwin's theory of natural selection they show how it has been

applied to immunology (clonal selection theory) and to the neurobiology of the brain

(including memory and operant conditioning). The success of its application is with problems



concerned with adaptation. The implication for knowledge analysis is that if generic (and

hence abstract) theory kinds can be identified, then their features may provide valuable

information for characterising domains. For example, we may anticipate that selection

theories should have:

• a set of a given entity type;
• set members which vary according to a particular property (P);
• an environment in which the entity type is found;
• a factor in the environment to which members react differentially due to their 

possession/non-possession of the property (P);
• differential benefits (both short- and long-term) according to the 

possession/non-possession of the property (P).

If we can identify the occurrence of a selection theory we may thus anticipate important

features of a domain. The example above ill ustrates the impact of one type of theory in three

substantial areas of knowledge in the li fe sciences. Furthermore, we can see the application of

selection to programming methodologies with the development of genetic (Darwinian)

algorithms (Wilson, 1989), neural networks (Anderson & Rosenfeld, 1988) and the immune

system (Farmer et al., 1986). These approaches share many common abstract features and

specific models of one can be applied to another (eg immune system as a parallel distributed

processing network (Vertosick & Kelly, 1989)).

Another interesting example is that of foraging theory as applied in population

biology. Rothbart (1991) presents an analysis of the work of Stephens & Krebs (1986) who

describe a model of an animal as an ecomomic comnsumer in which the three basic concepts

of consumer choice theory (utilit y, income and price). In this case, we see how a common

theoretical type can be applied across domains. Furthermore, ideas from foraging models

among insects have been applied to new ideas in computing (e.g., Deneubourg et al, 1986).

4 Some Results from Investigations

In this section we highlight how some of these foundational details of our view of knowledge

analysis have been applied to two domains of expertise. Human knowledge is structured

using theory and is metaphorical. We have proposed in Paton & Nwana (1990a) a

methodology for knowledge analysis called SAAGS which exploits such emergent ideas.

This four stage iterative cyclical modelli ng process receives as input a loose specification and

outputs a more comprehensive specification that provides the characterisation of the domain.

This can be fed into the subsequent design and implementation stages of KBS development.

The principal stages are:

1. SPECIFICATION by the production of a characterisation of the domain. The seven top

level features (see section one) must be accounted for in this stage. Additional details



must also include relevant models as well as descriptive details such as the epistemic

boundaries yielded by the analysis.

2. ANTICIPATION of the nature of the domain. The top-level features allow the

knowledge engineer to anticipate in breadth. The breadth is related to the model of the

nature of a domain described above. As such it includes likely metaphors and theoretical

frameworks that are expected to be used together with relations to other domains and the

domain's history. Anticipations of these characteristics will help structure and guide the

domain-based knowledge acquisition process which then takes place.

3. ACQUISITION of knowledge. This includes: knowledge elicitation from experts and

reviewing textbooks, manuals and other knowledge sources. The outcomes from the

anticipation stage are used to structure acquisition in a way which relates to the emerging

nature of the domain. As such acquisition is driven by domain-related concerns. (Please

note: in the terminology of the SAAGS approach, acquisition has this restricted

meaning).

4. GENERATION of models including the synthesis of all outputs from the

ACQUISITION stage into a collection of models. These models drive the analysis

forward and provide the explicit means for confirming, refuting or elaborating on

anticipations. This stage is needed to clarify ouputs should an expert approach a domain

in a way that was not anticipated.

The goal of SAAGS is to produce a domain specification that is coherent, comprehensive,

consistent and relevant and the cycle continues until the goal is reached. Thus, knowledge

acquisition is only one of four stages and is surrounded by stages concerned with the

processing (analysis and synthesis of frameworks of knowledge). We believe these other

three stages are essential i f knowledge acquisition is going to produce a meaningful

description of the domain.

4.1 The Approach in Practice

In practice, SAAGS has been used as follows. The knowledge engineer (KE) is presented

with an input specification (e.g. request to produce a particular KBS). A decision is made

whether it is suff icient. The first step is to precisely establish a working vocabulary for the

domain of discourse. If the KE knows littl e about the domain, an initial simple acquisition

phase is done, possibly involving no more than reading though the contents, index and

abstracts of relevant papers/books listing the major words used. The KE then generates a

preliminary list of concepts, metaphors, and hypothesises some relationships within the

domain and with other domains. The specification is refined, identifying the main top level

concepts in the domain and the KE then anticipates li kely metaphors, theories and other

domains to which it is related. It is appreciated that these anticipations do not provide the KE

with suff icient knowledge to characterise the domain but rather helps him/her structure the



acquisition process and provide certain expectations on the knowledge to be gained

subsequently.

The KE now organises the first session with the expert with goals of establishing some

kind of rapport with him/her, casting a wide net over the domain in order to appreciate its

boundaries (as the expert sees it) through eliciting the domain's history, metaphor and

theories. At this stage the questions posed to the expert are thus quite grand tour. For

example, the expert will usually be asked to give a story of what he/she does, together with

discussion about what is in the domain, what the domain does and if it is related to any other

domains. It is important to note here how anticipations have already guided the KE to ask the

sort of questions which elicit aspects of domains proposed including metaphor, theory,

relations to other domains, history and so forth. This session thus uses both structured and

unstructured techniques. The audio-tape record is transcribed and analysed. Primary (paper)

models are generated from the analysis including a vocabulary of discourse, li st of global

metaphors, concept map of related domains, li st of sortal types and properties/attributes and

preliminary relations between the latter. At this stage, the anticipated details are compared

with the generated models. The differences between them furnish further questions for the

next session with the expert. The specification is again refined; emerging outputs should

include: organisation of the different sortal types and their properties, relations between the

latter and global metaphors, identification of key tasks (relating to the domain's

functionality), relations between objects, relations with other domains. The emerging theories

and metaphors should structure the generated models as well as the representation of the

specification/characterisation and hence the domain. Any KE will bring assumptions with

her/him to the knowledge acquisition process. SAAGS helps to control them by making them

explicit, and turns them to good effect by exploiting them during acquisition.

The cycle iterates in this manner. After each iteration the cycle returns to specification but

a great deal has been learnt and to some degree structured. The sessions with the expert

become more structured as wrong anticipations are cleared up and details are sought. As

LaFrance (1987) notes, such details usually include: categorisation of the expert's concepts in

a hierarchy (use the laddered-grid technique), ascertaining attributes (use repertory grid type

questions), questions to determine interrelationships (eg eliciting a causal model for

concepts), questions seeking advice (to elicit expert's recommendations and strategies for

dealing with certain conditions) and questions to validate information obtained (use cross

checking questions eg., to clear up possible some wrong anticipations). Metaphorical graph

techniques and imagery (mentioned earlier) are also used to provide further insights in to the

theories/metaphors of the domain; they are also used in eliciting the expert's reasoning

process, which may be intuitively based. The process ends when the KE and expert mutually

agree on the goal specification.

4.2 Knowledge Analysis in a Software Installation Domain



With SAAGS at a very formative stage, we investigated the domain of Hewlett Packard

UNIX (HP-UX) software installation. We found that it was crucial to commence with an

adequate and suff icient specification of the domain. This may require a kind of acquisition

from the client about what the domain is (note: not the artifact) and may form the first

iterative cycle. Following on from this, decisions made about the emerging nature of the

domain should be exploited to suggest the kinds of analytical techniques, elicitation methods

and representational schemes to use.

The requirement for disciplined, theoretically relevant and controlled anticipations

prevents time-wasting and establishes important expectations about the vocabulary of

discourse at an early stage in a project. One example concerned the expert's use of the notion

of the "system". Analysis of the interview text revealed that he used the term in three

different ways. The nature of the discourse indicated an iconic aspect and so, at the next

interview session, we decided to show him a set of simple metaphorical graphs (similar to

those in the left-hand column of Figure 2). His choice allowed us to clarify the nature of the

different systems he had described.

One important issue we faced could be called "the problem of representation", that is,

how and why we represent outputs from the SAAGS stages in the manner we do? It was clear

we should not directly use a representational medium such as frames, rules, semantic

networks or predicate logic as it would drive or influence the analysis. This is a very

important lesson to learn. A key criti cism of current knowledge acquisition tools is that they

are governed by representational concerns. We argue that it should be the nature of the

domain that should guide both the knowledge acquisition process and the final form of the

knowledge base (see also Woodward, 1989).

Other lessons were learned. For example, we found that using SAAGS allowed us to

appreciate how easy it is to become entangled with the detailed concerns of knowledge

representation formalisms rather than focussing on the domain knowledge as a whole (related

to that mentioned earlier). We saw that the text required more than a lexical analysis. All

these lessons contributed to the enhancement of the approach.

4.3 The Analysis of Knowledge in a Neural Networks Domain

A subsequent project which applied the SAAGS approach concerned the application of neural

networks to industrial problems. The goal of the analysis was to identify what type of neural

network architecture is most suitable for a given type of application. The approach as

described in Section 4.1 was followed and it is important to report how it disciplined, more

than in the software installation exercise, our actions and analyses. It would be lengthy and

inappropriate to include the detailed results of the work (for further information see, Nwana

& Paton, 1990, Nwana et al., 1990 & Paton et al., 1991c). A discussion relating to the

foundational ideas of this paper is provided instead.



The exercise more clearly vindicated the importance of some issues including metaphor,

theory, relations to other domains and history. During the grand tour session, the expert

provided us with his appreciation of the domain's history, primarily in physics, statistics and

Operational Research. At the generation stage we were able to compare the expert's

appreciation with our more general model, based on textbook and journal analyses. This gave

us valuable information on limitations of neural network applications to this specific problem

domain. Other domains which he noted as relevant to his knowledge included

neurophysiology, psychology and mathematics. This helped to clarify details of network

structure and functionality. It is important to identify such details early in a SAAGS

investigation since it is essential to detect what theories underpin an expert's understanding,

so that fruitful anticipations can be made. By the end of the first elicitation session we had

obtained a broad view of the domain in terms of basic structural details, purpose, relations to

other domains. We also found how important the use of metaphorical thinking was, especially

as the domain has no common theory (in the sense of a shared body of knowledge). In this

case we were able to identify the use made of some metaphors; for example, the expert's use

of the machine metaphor.

 An appreciation of systemic M-properties (see Figure 2) helped us to anticipate and

characterise systemic and machine concepts. As such we were able to begin the second

iterative cycle with the expert with certain hypotheses which needed further investigation.

SAAGS provided us with a disciplined framework for identifying this way of thinking. This

enabled us to probe the expert for specific details, such as the machines parts and

interrelations, organisation and functionality (systemic M-properties) as well as inputs,

outputs, mechanism and optimisation (machine M-properties). We also found that when

talking about the behaviour of a network (in addition to its structure) the preferred metaphor

was that of an organism and in this case ideas such as learning, adaptabilit y and babies-as-

untrained networks were used. When also probed to explain the details of how neural

networks learn, he also resorted to using landscape metaphors, in this case boulders rolli ng

down a hill and getting into ‘ local minima’ .

A lot of detail had been analysed by the end of the second elicitation session with the

expert and it was becoming clear that the domain had explanatory power. Evidence for this

was deduced from the language of the expert's response. Specifically, ideas associated with

network configuration, dimensionality and “architecture” were abstractions described in

terms of other network components (such as the processing units and topology). However, no

iconic details were made explicit. The SAAGS approach requires that this kind of

information is made available because it allows models, such as those associated with

inference mechanisms, to be described. The need for this kind of informationwas therefore

anticipated. Part of the next iterative cycle sought to elicit information about underlying



theory through a set of focussed interactive questions. What emerged was very valuable. The

expert noted:

"There are two  different attitudes to the neurophysiology analogy...one
is that birds, insects and bats fly. But when the  Wright brothers
designed their  first aeroplane the wings did not flap and it flew. The
moral of the story is you don't have to do things the  way the biological
systems do it in order to be efficient. And the other  attitude is that
non-biological systems work very poorly. If you can't do  something by
using a physical system, you  can mimic it, i.e., the biological system.
I tend to lean to the second view  and that's entirely a personal
preference, its a question  of background. My background is in physiology
rather than physics."

The above text provides a knowledge engineer with the basis of an explanatory model for this

domain. Could this kind of information have been acquired by other means?  The value of the

SAAGS approach is that it requires that this kind of information is acquired. How does it

assist in the model of the domain? To some workers in the neural networks community the

response may seem obvious. For people building rule based KBSs it will not be necessary.

For SAAGS analysis it is crucial: it underpins the explanatory framework. The value of such

information is that it provides a deeper understanding of the domain and also points to the

analogies the expert may use when solving problems in the domain such as seeking to apply

particular architectures to novel situations. The discussion above provides the context and

depth of characterisation for a rule which the expert provided for deciding on the application

of an artificial neural network to a problem:

IF It is diff icult to elicit knowledge from the expert because expert cannot tell you the 
rules, for example it is too basic (eg. smell; what are the relevant rules to smell or see?)

OR IF
rules are extremely many to be tractable (ie complex)

OR IF
the problem is non-linear

THEN
Use Artificial Neural Networks Approach.

5 Concluding Comments

We have attempted to highlight some of the foundational ideas needed to provide suff icient

depth to analyse a domain. The central issue in knowledge analysis is the characterisation of a

domain. It is only after such an exercise that design and implementation of a knowledge-

based system should proceed. The foundational details we have described give a

philosophical and conceptual basis for knowledge acquisition. We describe how the ideas

have been exploited in a methodology called SAAGS which, in turn, has been applied

experimentally to two domains with so far interesting and promising results. Further

consolidation of this work is in progress with the analysis of other non-trivial industrial

domains.
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