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Abstract

One of the key phases in Knowledge Based Systems (KBS) construction is
Knowledge Acquisition. However, human knowledge eout domains is © complex
that without an analysis stage that probes the underlying nature of the red world
problem and hov human experts conceptuali se it, the knowledge incorporated within a
KBS remains shallow and incomplete. In this paper, we highlight foundational detail s
of a structured approac to knowledge analysis and describe its appli cation to domains
asciated with software install ation and reural networks.

1 Introduction: Domain Characterisation and Knowledge Acquisition

In this paper we present the founditions of an approac to the dharaderisation o problem
solving damains for the development of knowledge based systems. These foundations come
from a broadly based, multi-disciplinary perspedive which includes the cognitive sciences,
computer science and the philosophy d science. The breadth of disciplines required refleds
the neal to deal with the mmplexity of knowledge that needs to be aquired when carrying
out knowledge aqyuisition.

Knowledge acquisition shoud be akey stage in any methoddogy which seeks to design
and construct a non-trivial knowledge based system (KBS). However, it represents a major
hurdle in bulding such systems. It usually invalves €eliciting, analysing and interpreting the
language that the expert uses when solving a problem and then transforming it into a suitable
machine language. As auch, knovledge aquisition is crucia since the power and uility of
the resulting knavledge based system depends on the quality of the underlying representation
of expert knowledge (Kidd, 1987%. Furthermore, as a recent comprehensive United Kingdan
survey reported, KBS developers did na consider knowledge dicitation from the expert a
problem in itself, rather, it was making sense of the great mass of detaill and information
obtained, so that it can be organised and represented (O’ Neill & Morris, 1989. We refer to
this process of organising knawvledge (i.e. the raw data) gained from human experts,
literature, manuals, journals and aher sources into a wherent and tnambiguows gructure of
the domain as knowledge analysis; we further agree with O’'Nelll & Morris that it is this
process which can fadlitate a better understanding d the requirements of knowledge
aqquisition. It is pertinent to nde & this point that the process of knowledge acquisition is



complex and fraught with dfficulties. Some of these ae aldressed in this paper and certain
solutions are suggested.

In arder to clarify some of the reasons for problems in knovledge aquisition, it will be
valuable to look kriefly at the history of the subjed. In general terms knowledge acqusition
has focussed primarily on the transfer of problem solving expertise to computer based
software cdl ed a knowledge based system. First generation approaches to the devel opment of
knowledge based systems are mainly of two types. ‘Stage Based’ and the prototyping
approach. Stage based approaches present life ¢ycle definitions based on ideas from
conventional software engineeing. For example, Buchanan et al. (1983 propased alife g/cle
definition including the following stages: identificaion d the problem to be investigated,
conceptualisation d a model to represent the knowledge, formalisation, implementation o
the computer based software and testing/revision. An example of the prototyping approach is
that of Guida & Tas® (1989. They propcse a plausibility study, rapidly followed by a
demonstration prototype, development of the full prototype, development of target system,
operation and maintenance/revision. These gproaches have simil arities to conventional data
anaysis methoddogies of computing such as Structured Systems Analysis and Design
Methoddogy a SSADM (Downs et al., 198§. Clealy, these methoddogies are very general
as they attempt to addressthe entire knowledge engineering endeavour. In so dang, they fail
to adknowledge knowledge aquisition as a separate phase of enqury. Indeed, prototyping,
which has been much used to date, may nat fully utili se the knowledge acquisition process
becaise the underlying assumption is that one can urcover the structure of the expertise of
the domain at avery early stage with littl e or no analysis. A key criticism of these goproaches
is that they do na acknowledge the neal to analyse the domain prior to the development of
the KBS.

A semnd generation d approaches to KBS development are anerging which addressthe
issue of analysis in terms of knowledge-level analysis (Newell, 1982. Knowledge-level
anaysis refers to the modelling d an intelligent system's problem-solving kehaviour
independent of whatever symbals might ultimately be used to program these behavioursin a
computer. These gproadies include: Ontologicd Analysis (Alexander et al., 1986, the
approach through Generic Tasks (e.g., Clancey, 1986 and Chandrasekeran, 1985 and the
KADS (Knowledge Acquisition, Documentation and Structuring) methoddogy (Wielinga et
al., 1989. For example KAD S, which is probably the most establi shed modelli ng approach in
Europe, seeks to develop a cmputer-based model of problem solving behaviour for a
particular set of tasks. The aithors suggest a four layer architedure which describes the
domain, the type of inferences, the tasks, and strategic structures. They also describe a
number of domain-independent conceptual primitives used for representing the inference and
task layers. These primitives, cdled interpretation models in KADS, are similar to Clancey's
(1986 generic tasks which depict the levels where knowledge-level analysisis carried ou (eg



heuristic dasdfication). The common feaure of these gproaches is that they are amncerned

with moddlling at the knowledge level. As such they do nd provide amodel of human

competence & atask nor do they develop a model which relates the human problem solving
behaviour or human communicaion abou the domain in the red world.

We argue that a fuller appredation d the nature of a domain and its relationship to the
red world can assst a knowledge enginea in knowledge acquisition. The descriptions of
domains which are required, must be grounded or contextualised in human social and
cogritive processes (Gaines, 1989 as well as in the real world (Clancey, 1989. We have
suggested that the characterisation of a domain, which provides its context and reference to
the red world, is the central goal of knowledge analysis (Paton & Nwana, 199a). In saying
this we wish to demonstrate that domain characterisation is an important goal in the ealy
stages of a KBS development projed. The nedl for this kind d analysis has emerged from a
variety of industriall y-sporsored knowledge aquisition projeds based at the University of
Liverpod (e.g. Finch, 1989 Hughes, 1986 Watson et al., 1989 and is further suppated by
the requirements of two major industrial coll aborators.

The isaues that have been identified from these investigations, together with many athers
in this areaof research, show why knavledge a@uisition remains difficult. In particular, key
isaues asociated with characterisation have not been addressed. These include:

» Thelad of any deep theory of knowledge aquisition that has an explicit statement about
its philosophicd underpinning (Bradshaw & Woodward, 1989;

 The ned to provide an adequate aogntive definition and understanding o the domain
(Shaw, 1989;

* A means by which an expert and knavledge engineer can harmonise their mental models
(Reogzei & Plantinga, 1987%; espedally as they seek to communicae with each ather
andtalk abou the samethingsin thered world.

* Thened for guiding principles which alow a knowledge engineer to navigate adomain
and make sense of the massof information oliained (O’ Neill & Morris, 1989;

* A way to match dicitation techniques to the nature of a domain. Despite numerous tools
(seeBoose, 1989, amajor obstade is that littl e guidance is avail able in this area (Kitto
& Boose, 1989.

* Thened for knowledge aquisitionin its ealy stagesto focus on the domain, rather than
be driven by tods which are in turn driven by implementation concerns (Woodward,
1989 Paton & Nwana, 199().

Current approades to KBS development often move too quckly to the stages of design and

implementation d a mmputable atefad withou first providing an adequate description

(analysis) of the nature of the domain. In an attempt to provide answers to the problem of

aqquisition, we have proposed, and are developing, a methoddogy for knowledge analysis

which produces detail ed charaderisations of the nature of domains.



By ‘domain’, we refer to that body d knowledge which bears on the underlying
problem, present and future, which isidentified in relation to the task, and which enables that
task to be brough to solution (see Shapere, 1977. It is argued that domains of knowledge
are the produwcts of human abstradion and that, as with any abstradion-product, their
formation depends upon a theory. For the purposes of domain charaderisation, we have
propcsed in Paton & Nwana (1990 that there are seven fundamenta characteristics of a
domain:

* Theory - the mnceptual framework used to construct and maintain adomain.
* Metapha - language used to describe the domain, especialy in gobal terms.
» Metatheoretical constraints - fundamental concepts such astime and causality.
* Rdationswith ather domains - similar bodes of knowledge.

» History - the evolution o thedomainintime.

» Structure - the parts, relations and organisation d the domain.
» Purpose - the problems which the domain addresses, in terms of their solution.

A fuller justification for these seven features and their interrelationships can be foundin
Paton et al (199X). In arder to provide afocus for discusgon, this paper is limited to
particular aspeds of the theoreticd and metaphaicd nature of domains. We present
founcitional detail s of our approach and from this develop certain techniques for analysing
domain knowledge. These techniques are an integra part of a structured approach to
knowledge analysis which is under development.

2 Humans Build Modelsin order to Understand the Real World
" Men think in terms of models." (Deutsch, 1951)

Thisis the fundamental assumption d our approach. In order to manage what we know abou
the red world we must simplify its complexity. We adieve this by abstraction and we cadl
the products of this process models. In saying this, it is important to re-emphasise that a
domain is that body d knowledge required when solving problems. The @gritive products
generated to bring abou particular solutions are models.!

We gproadh knowledge analysis with the observation that humans gructure their
knowledge and that an understanding of how structuring processes take place, what is
produced and hav changes take place over time, will provide dues to the way domains are
organised. Essentially, we agree with Forrester (based onBruner); that atheory:

1 The term model is used because of its consistency with the term used by phil osophers of science (eg.,
Hess, 1963 Harré, 1970; Rothbart, 1984; Aronson, 1991) and by the computing community (e.g., Lehman,
1977 Lewis & Smith, 1979, Kangasslo, H., Ohsuga, S. & Ja&kola, H., 1990). It is also consistent with the
approach to metaphor which we daborate on kelow, see &so, Soskice 1985 Rothbart, 1984; Way,1991). As
such, model is preferred to, for example, ‘belief system’ as the latter carries implicit ideas about the nature of
knowledge which we do na addressin this paper (e.g., the nation of ‘ system’ in the context of belief system).



"...isessentid if we aeto effectively interrelate and interpret our observationsin any field
of knowledge. Withou an integrating structure, information remains a hodge podge of
fragments. Withou an organising structure, knowledge is a mere colledion o
observations, pradices and conflicting incidents." (Forrester, 1968, page 1-2).

Hence, the key feaure of our approach to the nature of domains as conceptualised by human
experts is that they are integrated structures. In saying this we ague that knowledge is
organised into frameworks. This has a profoundimplicaion for our approad in that we can
anticipate possble @nceptualisations which people may have of a domains (i.e. through
knowledge of how they are mnstructed and maintained) before we embark upon knevledge
aqquisition.

We use theory to refer to bah aformal body d knowledge recognised by a ommunity of
people (asin the scientific sense) and to any framework of beliefs which is integrated in some
way so as to provide aperson with solutions to problems. In saying this, we differentiate
model from theory in that the latter is more general than the former and that a model is the
cognitive product of atheory. Theories are essential to the kinds of ontologies we possessand
to the ways we represent or model the world when solving problems (Carey, 1985
Karmill off- Smith, 1988 Keil, 1989. Furthermore, as Medin & Wattenmaker (1987 suggest,
conceptual coherence is theory-based and is derived from both the internal structure of the
conceptual domain and the position d the @ncept in the mmplete knowledge base. This is
extremely important to ou view of how knowledge is organised. What we believe to exist (ie
our ontology) relates to a theory which defines it. The importance of this relationship,
between theory and ortology, is not only suppated by realist philosophers of science (eg
Aronson, 1984 Bhaskar, 1978 but aso by cevelopmenta psychoogists (eg Carey, 1985.
The metapharical nature of knowledge dso provides detail s of theoreticd entities as we seek
to spedfy the nature of a domain (see Black, 1979 so that an abstraction d a red world
complexity is partly constructed by relating what there is to a set of metaphas which are
deegoly embedded in ou though and language (Pepper, 1928 Lakoff & Johnson, 1980.
Thus, ou conceptuaisation d a model shows that it is theory-dependent and an
understanding d its theory-dependency can help us anticipate the structure of a domain. The
emphasis of the goproac to knowledge analysis described in this paper is concerned with the
theories people use to construct, maintain and change problem solving damains. In order to
appreciate certain properties of theories in ou approach, we have imported relevant ideas
from the history and phlosophy d science

3 Towardsa Characterisation of Theories

Theories may be though of as frameworks of concepts tied together by propasiti ons or sets of
propasitions. The purpose of such frameworks is to provide the means for description,
prediction, explanation, identificaion, classfication and dagnasis. They act as the basis for
hypathesis generation and form the intelledual and socially acceptable structures by which



the scientific enterprise cntinues. We now consider some particular features of scientific
theories from which we ae developing analytical techniques for domain characterisation.

3.1 Scientific Realism as a Basisfor the Characterisation of Theories

We alopt aredlist perspedive for understanding the nature of domains. In simple terms, we
believe that there is more to the world than what is perceived by the senses and formed into a
theory, and more than what is present in the mind. In saying this, we do nd seek to refute the
empiricist or idedist paositions nor debate the adequacy of redism in science; these are isales
for philosophers. We @mme with a basic assumption, the world exists independently of our
senses and mind and we use theories to inform us abou its existence and reture (Aronson,
19849.

It is now possble to describe (model) the production d models. In the simplest case a
model is produced by abstrading from what is observable dore (Ieft-hand side of Figure 1).
However, this kind d model will |adk explanatory power because it canna accourt for the
causal relations between its parts. The only explanations available can be no more than
variants of statistica associations. Most scientific models have explanatory power. Thisis
becaise the descriptive or homeomorphic model (see Figure 1) is not only formed by
abstradion from observables but is aso dependent on models of what canna be observed.

Observable Non-observab The Real World
Real\\NorId Rfal World ‘- Domain
\
abstractio common
ontology

The Cognitive
Domain of the
_ causality _ Expert
Homeomorphicg&————— Paramorphic
Model Model
- J

Figure1- A Summary Scheme of Model Relations (adapted from Harré, 1970

These explanatory (paramorphic) models provide the caisa framework necessary for
explanation. Domains which exhibit explanatory capabiliti es in this way will have relational
or iconic properties (due to their causal infrastructure). If an expert can provide explanations
in this way, we can anticipate atheory which will have iconic (relational) properties (Harré,
1986. This is important when the dynamic aspeds of the domain come to be modelled. The
basis for paramorphic (explanatory) models is in interpretations of the unobservable red
world which share cmmmon kinds of entities. It is metaphars which provide the cntext for
such common ortologies (see Aronson, 1984, that is, common kinds of entities, and this is
often nded when ideas are imported from related damains (Paton et al., 199%). Our
adherence to this perspedive provides us with a framework for making certain expedations



abou the ontologicd nature of domains concerned with time, causality, categorisation and
mechanism (see Bhaskar, 1978).

3.2 Properties of Theories
Theories can be typified according to certain basic properties and, following the work of
Harré (1986, weidentify three basic types of theory:

* Type 1 theories are mgntive objeds with pragmatic properties that enable the
constitution, classficaion and prediction d observable phenomena. A typicd
Type 1 theory is Newtonian mechanics. [Note: these theories ladk explanatory
power and are similar to heuristics]. They can be daraderised by the left-hand
side of Figure 1. Thus, in the socia sciences ethnamethoddogy yields Type 1
theories of social interadion bylooking for patterns among olservable adions,
including wverbal actions. The ontologies of Type 1 are, therefore, only
observables.

 Type 2 theories are cogntive objeds with iconic properties that enable the
representation (including sometimes the picturing) of a certain class of
unobservable beings. Typicd Type 2 theories are the baderial theory of disease,
plate tedonics and X-ray stars. These theories involve the representation d a
physicd system and its modes of behaviour, which, at the time of the formulation
of the theory, have nat yet been olserved. The vast majority of scientific theories
are of Type 2. These theories make use of common ortologies whose @ntext is
often suppied by key metaphors. For example, the realist nation o a virus as a
disease-causing particle was postulated in the mid-nineteenth century but was only
confirmed to exist in the mid-twentieth century with the invention d eledron
microscopes. Its basis in theory existed prior to its confirmation with scientific
instruments. The ontologies of Type 2 are both olservable and nan-observable.

* Type 3theories are cogntive obeds with mathematica properties which enable
representations of non-picturable systems of beings and d their behaviour and
interrelations. The ontology kehind abstradions such as symmetry, transformation
and harmony is a case in pant, and we note the importance of what could be
cdled the relationship between ortology and "mathematicd beauty”, from the
Pythagoreans to the present time (see Engler, 1990. Einstein's theory of special
relativity is an example of thistype. The ontologies of Type 3 are both observable
and nonobservable but the non-observable referents may never become
observable.

Hence, from our point of view, theories have certain fundamental properties which we may
identify as pragmatic and/or iconic and/or mathematical. This is not to say that over time a
theory may change so that, for example, the Type 3 nature may become Type 2. For example,



the initial ideaof a virus was Type 3, a disease-causing agent, which was later described in
Type 2 terms as a disease-causing particle. (Note: the difference between agent and particleis
nortrivial).

Kidd (1987 propcsed a dasgfication d domains which bears a resemblance to Harré’'s
caegorisation athough we note that Kidd emphasises the need for a language, i.e. a
knowledge representational medium. Harré focuses on theory which na only gives a means
of representation bu also provides conceptual techniques for analysis. Harré’s categorisation
includes the following impli caions for knowledge analysis.

» Sometimes experts will be a@le to provide no more than type 1 theories, i.e. rules of
thumb o heuristics. The knowledge engineer can anticipate this: it is naive to think
experts can explain al their knowledge. It was indeel the cae we found in an
investigation we caried ou in adomain of neura networks. For example, the number
of units or hidden layers in a neural network had no explanatory basis in any theory.
This may sean a smple observation bu it is worth nding that it is clealy an
implicaion d type 1 theories.

» If thetheory the expert articulates is more of atype 2 theory then iconic properties can
be aticipated and the explanatory models used investigated. It is in this vein that we
have proposed and are using metapharicd graphs and imagery to gain further insights
into the nature of the theory and hence domain. Metapharical graphs are simple paper
representations of the systemic structure of adomain (see Figure 3).

* Type 3 theories are rarer in most red domains we seek to analyse. As sich damains
are non-picturable it is more difficult to gain insights into their nature. However,
cetain important ideas, which appea in experts language, are relevant to ortologies
asociated with Type 3 theories and include, symmetry, harmony, ader, coherence,
unity, elegance and simplicity. Note that these reference some common assumptions
people have a&ou the world. As we have seen, this is manifested in the ontologies
people use.

It isimportant to nae that theories change over time and, their characterisation according to
types is not always clear-cut. However, the value of this clasgficaion to a knowledge
engneq is that it can be used to evaluate models of a domain and to suggest the kinds of
knowledge that are required for further acquisition. In al they provide avauable way of
helping to organise and dacument the large anourt of information acquired from an expert.

3.4 The Importance of Metaphor to Theory Development

The metapharical context in which analogies and inter-theoreticd conceptuaisations are
made is an important aspect of the way domains are organised. Boyd (1979 and Kuhn (1979
highlight a key role metaphar plays in establi shing links between the language of science and



the world it purports to describe. Morgan (1980) notes that scientific theories are cnstructed
as ymbalic forms and the processof metapharical conception is a basic mode of symbalism.
Thus gtientists view the world metapharicdly as they go abou their research. Metaphors help
make up hav we seethe world, hov we set abou studyingit and hawv it can be understoodin
terms of ways of perceiving relationships and situations from different perspectives (e.g.
Genter & Grudin, 19%). As such, they are fundamentally important to the ways people go
about constructing danains. Some metapha's are related to a domain as awhole and provide
global detail s, others are related to spedfics.

We have identified some basic kinds of globa metapha which are important in
knowledge analysis; two in particular are systemic metaphors and spatial metaphars (see dso
Paton et al., 1990. Spedficdly, the former provides information abou the parts, inter-
relations and aganisation d a system and the latter helps us understand its functionality. For
example, a neura network (in the computing sense) may be though of as a machine which
transforms inpus into ouputs through some mecanism athough its behaviour may be
described in terms of changes to alandscape. The two basic kinds of metapha are astrad in
nature and we may identify further metaphars associated with each. A network showing some
of the top-level feaures of our caegorisation d global metaphas is iown in Figure 2. A
concept in bold refers to a global metaphar, and the assciated concepts which are listed are
properties of the metaphar (we call them M-properties).

SYSTEMIC SPATIAL
interading perts position
organisation distance
coll edtive behaviour dimension
purpose boundiry
CIRCUIT ORGANISMIC Other systemic Other spatial
flow organised complexity metaphars include: LANDSCAPE etaphars include:
transfercggnlg(s) a‘gg&“g‘; MACHINE TEXT IOPngtaphy UNIVERSE
edures
transfered thing(s) individuality SOCIETY CULTURE SPACE

Figure 2 - Some Global Metaphars

It was noted in sedion 3.2that type 2 theories have iconic properties. One gplicaion d this
relates to iconic representations of systemic metaphors which we cdl 'metaphoricd graphs.
Some simple forms of these ae shown in Figure 3 to indicae some of their iconic and
metapharicd relations, and an example of their useisreported in section 4.2.



Metaphorical Graph Brief Description
—CO—»CO—CO—> Chain of components as in a

machine

Network or circuit of components ia
S % S acircuit.
Hierarchy of components as in an
organism.

O OO O

O Cluster of components as in a
O society.
O4 T N
O

Figure 3 - Some Simple Metapharicd Graphs and Associated Systemic Metaphors

In order to ill ustrate this we describe an analysis which looks at the systemic nature of the
system (in this case an ecosystem), in the red world. Metaphaiical analysis of this small
pieceof text can revea alarge anourt of detail abou the knowledge of the domain. As such,
we ae not primarily seeking to code the information into some kind d symboalic
representation such as a semantic network. The focus of analysisisthe daraderisation d the
domain, the dhoice of the post-analysis representational formalism foll ows from this.

"An emlogicd system has arichly detail ed budget of inputs and ouputs...An ecosystem as

we use the term, is a basic functional unit of nature comprising both organisms and their

noriving environment ... The living and nodiving comporents interad among themselves

and with ead aher; they influence eab athers properties and bdh are esential for the

maintenance axd development of the system ... An ecosystem (can) be visualised as a

grouping d comporents ... linked together by food webs, flows of nutrients and flows of
energy.” Bormann & Likens (1970, p92.

Firstly, there ae alot of words which referencethe systemic metapha (seeFigure 2), such as:
“gystem”, “interad”, “influence each ather”, “linked together”. “System” is a very common
word in everyday language and we daracterise the systemic metaphas by a set of basic
properties (cdled systemic M-properties (see Paton et al., 19910)): interacting parts,
organisation, colledive behaviour and whoe system functionality. These M-properties
provide aknowledge engineer with a means of anticipating certain aspects of the nature of the
domain. For example, given that the text does not make ideas about organisation explicit, the
knowledge engineer may wish to probe an expert abou this issue in a subsequent elicitation
sesson.

In order to provide the widest discrimination between systems, the systemic M-
properties are asciated with a set of systemic metaphas which inherit al the properties



given above and include machine, organism, society, circuit, game, text and culture. There ae
further properties which typify particular systemic metaphass in the language used when
talking abou them. In terms of the language used in the @owe etract, three systemic
metaphars are identified:

Machine inpu, ouput, functional, comporent;
Organism maintenance and development (note as apair rather than single terms);
Circuit flows.

These are but a smal number of ideas which are assciated with the systemic metaphors.
Given this list a knowledge engineer may subsequently anticipate further ideas in the domain
such as:

Madhine: efficiency, process gaal, pupose, power.
Organism: growth, arganised complexity, level, adaptability, openness
Circuit: transfer, condut, cycle, transferred thing(s), drain.

These can be used to structure further elicitation from the expert throughthe anticipation o
further properties.

The M-properties of the systemic metaphars listed above, though no exclusive to a particul ar
type, are as0ciated most clearly with that type (see Paton, 199). Ancther important feaure
of thisdomain isthe use of ecnamic language (i.e., "budget”). Thislink to another domain is
also very useful in helping to establish the cmmmon ortology and likely paramorphic models
that can be used. A final comment relates to the authors use of 'visualised'. This relates to the
circuit metaphar, and is common to many easystem models. Alternatives, which are not
explicit in the text, bu could be aticipated include a hierarchy o niches, chain of
compartments or complex of factors. These ae directly related to the metapharica graphs of
Figure 3.

Knowledge analysis must place acrucia focus on the metaphaicd nature of the domain
for it provides a knowledge engineer with insight into its ontology, functionality, organisation
and language (Paton & Nwana, 19908). Once we gpredate the metaphas being wsed to
describe adomain as a whale, it may be easier to flush ou the analogicd details in the
knowledge acquisition rocess

3.3 Scientific Theories can have | somor phic Forms

Particular kinds of theory reaur in dfferent areas of scientific knowledge. Put ancther way,
catain damains are related to athers in the kind o theory that produced them. In this dion
we describe two specific examples and also discuss how ead is currently being applied to
issues asociated with ‘emergent computation’ in computer science For example, Darden
(1987 and Darden and Cain (1989 discussthe occurrence of “seledion” theories in the life
sciences. Beginning with Darwin's theory of natural seledion they show how it has been
applied to immundogy (clonal seledion theory) and to the neurobiology d the brain
(including memory and operant condtioning). The successof its applicationis with problems



concerned with adaptation. The implicaion for knowledge analysis is that if generic (and
hence dstrad) theory kinds can be identified, then their feaures may provide valuable
information for characterising damains. For example, we may anticipate that seledion
theories doud have:

. aset of agiven entity type;

. set members which vary according to a particular property (P);

. an environment in which the entity typeisfound

. afactor in the eavironment to which members react differentially dueto their
possesson/nonpossesson d the property (P);

. differential benefits (both short- and longterm) aacording to the
possesson/nonpossesson d the property (P).

If we can identify the occurrence of a selection theory we may thus anticipate important
feaures of adomain. The example dowe ill ustrates the impaad of one type of theory in three
substantial areas of knowledge in the life sciences. Furthermore, we can seethe gplicaion o
seledion to programming methoddogies with the development of genetic (Darwinian)
algorithms (Wilson, 1989, neural networks (Anderson & Rosenfeld, 198§ and the immune
system (Farmer et al., 1986. These approaches share many common abstrad feaures and
spedfic models of one can be gplied to ancther (eg immune system as a parall € distributed
processng retwork (Vertosick & Kelly, 1989).

Another interesting example is that of foraging theory as applied in popuation
biology. Rothbart (1991) presents an analysis of the work of Stephens & Krebs (1986 who
describe amodel of an animal as an ecomomic comnsumer in which the threebasic concepts
of consumer choice theory (utility, income and grice). In this case, we see how a wmmon
theoreticd type can be gplied across domains. Furthermore, ideas from foraging models
amonginseds have been applied to new ideas in computing (e.g., Deneuboug et al, 1989.

4 Some Results from Investigations

In this dion we highlight how some of these fourdational detail s of our view of knowledge
analysis have been applied to two damains of expertise. Human knowledge is dructured
using theory and is metaphaical. We have proposed in Paton & Nwana (199() a
methoddogy for knowledge analysis cdled SAAGS which exploits such emergent idess.
Thisfour stage iterative oy/clical modelling processreceives asinpu a loose spedfication and
outputs a more cmprehensive specificaion that provides the dharaderisation d the domain.
This can be fed into the subsequent design and implementation stages of KBS development.
The principal stages are:

1. SPFECIFICATION by the prodwction d a daraderisation d the domain. The seven top
level features (see section ore) must be acourted for in this gage. Additional detail s



must also include relevant models as well as descriptive details such as the goistemic
boundriesyielded bythe analysis.

2. ANTICIPATION of the nature of the domain. The top-level features alow the
knowledge engineer to anticipate in breadth. The breadth is related to the model of the
nature of adomain described above. As such it includes likely metaphors and theoreticd
frameworks that are expeded to be used together with relations to ather domains and the
domain’'s history. Anticipations of these charaderistics will help structure and gude the
domain-based knowledge acquisition processwhich then takes place.

3. ACQUISITION of knowledge. This includes. knowledge dicitation from experts and
reviewing textbooks, manuals and aher knowledge sources. The outcomes from the
anticipation stage ae used to structure acquisition in away which relates to the emerging
nature of the domain. As such aaquisition is driven by danain-related concerns. (Please
note: in the termindlogy o the SAAGS approadh, acquisition hes this restricted
meaning).

4. GENERATION of modes including the synthesis of al outputs from the
ACQUISITION stage into a olledion d models. These models drive the analysis
forward and provide the explicit means for confirming, refuting a elaborating on
anticipations. This dage is neaded to clarify oupus oud an expert approach a domain
in away that was not anticipated.

The goal of SAAGS is to produce adomain specificaion that is coherent, comprehensive,
consistent and relevant and the o/cle continues until the goal is reached. Thus, knowledge
aqquisition is only one of four stages and is surrounded by stages concerned with the
processng (analysis and synthesis of frameworks of knowledge). We believe these other
three stages are esentia if knowledge acquisition is going to produce a meaningful
description d the domain.

4.1 The Approach in Practice

In pradice, SAAGS has been used as follows. The knowledge engineer (KE) is presented
with an inpu spedficaion (e.g. request to produce aparticular KBS). A decision is made
whether it is sufficient. The first step is to precisely establish a working vocabulary for the
domain of discourse. If the KE knows little &ou the domain, an initial simple acquisition
phase is dore, possbly invaving no more than reading though the wntents, index and
abstrads of relevant papers/books listing the major words used. The KE then generates a
preliminary list of concepts, metaphas, and hypdhesises me relationships within the
domain and with cther domains. The specification is refined, identifying the main top level
concepts in the domain and the KE then anticipates likely metaphors, theories and aher
domainsto which it isrelated. It is appredated that these anticipations do nd provide the KE
with sufficient knowledge to charaderise the domain bu rather helps him/her structure the



aqquisition pocess and povide certain expedations on the knowledge to be gained
subsequently.

The KE now organises the first sesgon with the expert with gaals of establishing some
kind d rappat with him/her, casting a wide net over the domain in arder to appredate its
boundries (as the expert sees it) through €liciting the domain's history, metapha and
theories. At this gage the questions posed to the expert are thus quite grand tour. For
example, the expert will usually be asked to gve astory of what he/she does, together with
discusson abou what isin the domain, what the domain daes and if it is related to any ather
domains. It isimportant to nde here how anticipations have drealy guded the KE to ask the
sort of questions which dlicit aspects of domains proposed including metaphar, theory,
relations to ather domains, history and so forth. This ssgon thus uses both structured and
unstructured techniques. The audio-tape record is transcribed and analysed. Primary (paper)
models are generated from the analysis including a vocabulary of discourse, list of global
metaphars, concept map o related damains, list of sortal types and propertied/attributes and
preliminary relations between the latter. At this gage, the anticipated details are compared
with the generated models. The differences between them furnish further questions for the
next sesson with the expert. The specification is again refined; emerging ouputs $houd
include: organisation d the different sortal types and their properties, relations between the
latter and doba metaphas, identificaion o key tasks (relating to the domain's
functionality), relations between oljects, relations with ather domains. The emerging theories
and metaphas $oud structure the generated models as well as the representation d the
spedficaion/characterisation and hence the domain. Any KE will bring assumptions with
her/him to the knowledge acquisition process SAAGS helps to control them by making them
explicit, and turns them to goodeffea by exploiting them during acquisition.

The gycleiteratesin this manner. After each iteration the gycle returns to specification but
a great ded has been learnt and to some degree structured. The sessons with the expert
becme more structured as wrong anticipations are deared up and details are sought. As
LaFrance (1987 nates, such detail s usually include: categorisation d the expert's conceptsin
a hierarchy (use the laddered-grid technique), ascertaining attributes (use repertory grid type
guestions), questions to determine interrelationships (eg diciting a causa mode for
concepts), questions eeking advice (to elicit expert's recommendations and strategies for
deding with certain condtions) and questions to validate information oliained (use aoss
cheding questions eg., to clea up pasble some wrong anticipations). Metaphaical graph
techniques and imagery (mentioned earlier) are dso used to provide further insights in to the
theoriessmetaphas of the domain; they are dso used in €liciting the expert's reasoning
process which may be intuitively based. The processends when the KE and expert mutually
agree onthe goal specification.

4.2 Knowledge Analysisin a Softwar e I nstallation Domain



With SAAGS at a very formative stage, we investigated the domain of Hewlett Padkard
UNIX (HP-UX) software installation. We found that it was crucial to commence with an
adequate and sufficient spedficaion d the domain. This may require akind d acquisition
from the dient abou what the domain is (nate: not the atifad) and may form the first
iterative g/cle. Following onfrom this, dedsions made &ou the emerging reture of the
domain shoud be exploited to suggest the kinds of analyticd techniques, €licitation methods
and representational schemesto use.

The requirement for disciplined, theoretically relevant and controlled anticipations
prevents time-wasting and establishes important expedations about the vocébulary of
discourse & an ealy stage in a project. One example @mncerned the expert's use of the nation
of the "system”. Analysis of the interview text revealed that he used the term in three
different ways. The nature of the discourse indicaed an iconic asped and so, at the next
interview sesson, we dedded to show him a set of simple metapharical graphs (similar to
those in the left-hand column of Figure 2). His choice dlowed us to clarify the nature of the
different systems he had described.

One important issue we faced could be cdled "the problem of representation”, that is,
how and why we represent outputs from the SAAG S stages in the manner we do? It was clea
we shoud na diredly use a representational medium such as frames, rules, semantic
networks or predicae logic a it would drive or influence the analysis. This is a very
important leson to lean. A key criticism of current knowledge aquisition todls is that they
are governed by representational concerns. We ague that it shoud be the nature of the
domain that shoud gude baoth the knowledge acquisition process and the fina form of the
knowledge base (see dso Woodward, 1989.

Other lesons were learned. For example, we found that using SAAGS alowed us to
appreciate how easy it is to become entangled with the detailed concerns of knowledge
representation formali sms rather than focussng onthe domain knovledge a a whaole (related
to that mentioned ealier). We saw that the text required more than a lexicd anaysis. All
these lesns contributed to the enhancement of the goproach.

4.3 The Analysis of Knowledge in a Neural Networks Domain

A subsequent project which applied the SAAGS approach concerned the goplication d neural
networks to industrial problems. The goal of the analysis was to identify what type of neural
network architedure is most suitable for a given type of application. The gproach as
described in Sedion 4.1was followed and it is important to report how it disciplined, more
than in the software install ation exercise, ou actions and analyses. It would be lengthy and
inappropriate to include the detail ed results of the work (for further information see Nwana
& Paton, 1990,Nwana et al., 1990 & Paton et al., 199Xk). A discusson relating to the
founditional ideas of this paper is provided instead.



The exercise more dearly vindicated the importance of some isaues including metapha,
theory, relations to ather domains and hHstory. During the grand tour sesson, the expert
provided us with his appredation d the domain's history, primarily in physics, statistics and
Operationa Reseach. At the generation stage we were &le to compare the expert's
appreciation with ou more general model, based ontextbook and journal analyses. This gave
us valuable information onlimitations of neural network applications to this gedfic problem
domain. Other domains which he noted as relevant to his knowledge included
neurophysiology, psychoogy and mathematics. This helped to clarify details of network
structure and functionality. It is important to identify such details early in a SAAGS
investigation sinceit is esential to deted what theories underpin an expert's understanding,
so that fruitful anticipations can be made. By the end d the first elicitation sesson we had
obtained a broad view of the domain in terms of basic structural details, purpose, relations to
other domains. We dso found hav important the use of metapharicd thinking was, especialy
as the domain has no common theory (in the sense of a shared body d knowledge). In this
case we were ale to identify the use made of some metaphars; for example, the expert's use
of the machine metaphar.

An appreciation d systemic M-properties (see Figure 2) helped us to anticipate and
charaderise systemic and machine @ncepts. As sich we were ale to begin the second
iterative gycle with the expert with certain hypdheses which needed further investigation.
SAAGS provided us with a disciplined framework for identifying this way of thinking. This
enabled us to probe the expert for spedfic details, such as the machines parts and
interrelations, organisation and functionality (systemic M-properties) as well as inpus,
outputs, medhanism and ogimisation (macine M-properties). We dso found that when
talking about the behaviour of a network (in addition to its gructure) the preferred metaphar
was that of an organism and in this case ideas such as leaning, adaptability and babies-as-
untrained networks were used. When aso probed to explain the details of how neura
networks learn, he dso resorted to using landscape metaphors, in this case bouders rolli ng
down ahill and gettinginto ‘locd minima’.

A lot of detail had been analysed by the end d the second dlicitation sesson with the
expert and it was bemming clear that the domain had explanatory power. Evidence for this
was deduced from the language of the expert's resporse. Spedficaly, ideas asciated with
network configuration, dmensionality and “architedure” were astractions described in
terms of other network comporents (such as the processng unts and topdogy). However, no
iconic detals were made explicit. The SAAGS approach requires that this kind d
information is made available because it allows models, such as those aciated with
inference mechanisms, to be described. The neal for this kind d informationwas therefore
anticipated. Part of the next iterative g/cle sough to elicit information abou underlying



theory througha set of focussed interactive questions. What emerged was very vauable. The
expert noted:

"There are two different attitudes to the neurophysiology analogy...one

is that birds, insects and bats fly. But when the Wright brothers
designed their first aeroplane the wings did not flap and it flew. The

moral of the story is you don't have to do things the way the biological
systems do it in order to be efficient. And the other attitude is that
non-biological systems work very poorly. If you can't do something by
using a physical system, you can mimic it, i.e., the biological system.

| tend to lean to the second view and that's entirely a personal
preference, its a question of background. My background is in physiology

rather than physics."

The @owve text provides a knowledge enginea with the basis of an explanatory model for this
domain. Could thiskind d information have been acquired by dher means? The value of the
SAAGS approad is that it requires that this kind d information is aaquired. How does it
assst in the mode of the domain? To some workers in the neural networks community the
response may seem obwvious. For people building rule based KBSs it will not be necessary.
For SAAGS analysisit is crucia: it underpins the explanatory framework. The value of such
information is that it provides a deegper understanding d the domain and also pants to the
analogies the expert may use when solving problems in the domain such as ®eing to apply
particular architectures to nowel situations. The discusson above provides the mntext and
depth of charaderisation for a rule which the expert provided for deciding onthe gplicaion
of an artificial neural network to a problem:

IF It isdifficult to dlicit knowledge from the expert becaise expert cannot tell youthe
rules, for exampleit istoo basic (eg. smell; what are the relevant rulesto smell or see?
ORIF
rules are extremely many to be tradable (ie cmplex)
ORIF
the problem isnon-linea
THEN

Use Artificial Neural Networks Approac.

5 Concluding Comments

We have atempted to highlight some of the foundhtional ideas needed to provide sufficient
depth to analyse adomain. The central issue in knovledge analysisisthe dharacterisation o a
domain. It is only after such an exercise that design and implementation d a knowledge-
based system shoud proceed. The foundhtional detals we have described gve a
philosophicd and conceptua basis for knowledge acquisition. We describe how the ideas
have been exploited in a methoddogy called SAAGS which, in turn, has been applied
experimentally to two damains with so far interesting and promising results. Further
consolidation d this work is in progress with the analysis of other nonttrivial industrial
domains.
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