
An Analysis of Ontology Mismatches;
Heterogeneity versus Interoperability

Pepijn R.S. Visser, Dean M. Jones, T.J.M. Bench-Capon and M.J.R. Shave

Department of Computer Science, University of Liverpool~

Liverpool, L69 7ZF, United Kingdom
pepijn@csc.liv.ac.uk

Abstract
The growth of the Intemet has revitalised research

on the integration of heterogeneous information
sources. Integration efforts face a trade off between
interoperability and heterogeneity. Important
integration obstacles arise from the differences in the
underlying ontologies of the various sources. In this
paper we investigate the impediments to integration,
focussing on ontologies. In particular, we present a
classification of ontology mismatches (distinguishing
conceptualisation mismatches and explication
mismatches as its main categories), and discuss how
each of the mismatch types can be dealt with. The idea
is that knowing which ontology mismatches are
difficult to deal with may contribute to finding a
balance between heterogeneity and interoperability.

1. Introduction
Heterogeneity is both a welcome and an unwelcome feature
for system designers. On the one hand heterogeneity is
welcomed because it is closely related to system efficiency.
The more a program can be tailored to the problem it is to
solve, the more efficient it will be. Choosing programming
languages and making ontological assumptions are
examples of such ’tailoring’ decisions (e.g., Levesque and
Brachman, 1985). On the other hand, heterogeneity in data
and knowledge systems is considered an unwelcome feature
because it proves to be an important obstacle for the
interoperation of systems (e.g., Gruber, 1995; Sciore et al.,
1994). The lack of standards is an obstacle to the exchange
of data between heterogeneous systems.

This dilemma illustrates the need to find a balance
between heterogeneity and interoperability (cf. Rennet et
al., 1996), a need that is emphasised by the desire to
integrate legacy systems (viz. the legacy problem). In this
article we contribute to finding such a balance. We focus on
heterogeneity at the ontological level (Guarino, 1994). That
is, we compare ontologies instead of representation
language or database schemas. In particular, we study types
of mismatches between two ontologies and the obstacles

they present to system interoperation. The aim is to generate
a collection of ontological-level heuristics that set out the
boundaries of system heterogeneity and interoperability.
Such heuristics could be beneficial in two respects. First,
they would provide a means of assessing whether legacy
systems can be integrated into an existing community of
interoperating systems. Second, they would provide
ontological guidance for the .design of new systems that are
to be integrated into an existing community.

This paper is structured as follows. In section 2 we
introduce some terminology that allows us to define
ontology mismatches. Then, in section 3, we present a
classification of ontology mismatches. In section 4 we
discuss to what extent the ontology mismatches form an
integration obstacle. In section 5 we discuss four issues that
arose in comparing two example ontoiogies on the basis of
the mismatch classification. Finally, in section 6 we draw
some preliminary conclusions.

2. Terminology
Systems are heterogeneous if they have different
characteristics. In determining whether systems are
heterogeneous one can focus on different characteristics.
yielding different types of heterogeneity. A commonly made
distinction is that between semantic heterogeneity and non-
semantic (or syntactic) heterogeneity (e.g, Kitakami et al.,
1996). Here, we distinguish four types of heterogeneity.
There is a paradigm heterogeneity if two systems express
their knowledge using different modelling paradigms (e.g.,
an object-oriented database and a relational database).
There is a language heterogeneity if two systems express
their knowledge in different representation languages (e.g.,
horn-clause logic and production rules). There is an
ontology heterogeneity if two systems make different
ontological assumptions about their domain knowledge
(e.g., one system assuming houses to be composed of
building material, such as bricks and windows, and another
system assuming houses to consist of entities relevant for
room rental, such as rooms, and showers). Finally, there is
content heterogeneity if two systems represent different

The research is part of the KRAFT project (Knowledge Reuse and Fusion / Transformation) conducted by the
Universities of Aberdeen, Cardiff, and Liverpool, and by BT in the United Kingdom. More information on the KRAFT
project can be obtained at: httl~://www.e.sc.liv.ae.uk/-10opijn/krafthtml

164

From: AAAI Technical Report SS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

knowledge but in different formalisms have a language
heterogeneity, but not a content heterogeneity). The last two
types, ontology and content heterogeneity, are instances of
semantic heterogeneity, the first two types are instances of
non-semantic heterogeneity. In this article we focus on
systems with ontology heterogeneity.

Following Gruber in his original definition of an ontology
that an ontology is an explicit conceptualisation of a domain
(Gruber, 1993), we assume the creation of an ontology
involve two sub processes; conceptualising a domain, and
explicating the conceptualisation (this distinction forms the
basis for our classification of ontology mismatches, the idea
being that ontology mismatches may be introduced during
both sub processes).

During the conceptualisation process decisions are made
upon classes, instances, relations, functions and axioms that
are distinguished in the domain. Usually, the process also
involves ordering the classes in a hierarchical fashion, and
assigning attributes to them. We assume the outcome of this
process to be a conceptualisation. In particular, this
conceptualisation consists of a set of ontology concept
descriptions {C,..,Cn} in which Ci is either a class
description, an instance description, a relation description, a
function description or an axiom description. In the
conceptualisation process, we do not specify the form or the
appearance of these descriptions as their specification is the
topic of the explication process (although later on we will,
for practical reasons, assume that it is a natural language
expression).

Explicating the ontology-concept descriptions requires an
ontology language. We do not choose a specific ontology
language but confine ourselves to a generic form of an
ontology. An ontology is defined as a 5-tuple O =
<CD,RD,FD,ID,AD> in which CD is a set of class
definitions, RD is a set of relation definitions, FD is a set of
function definitions, ID is a set of instance definitions, and
AD is a set of axiom definitions 2. In defining ontology
mismatches we confine ourselves to mismatches between
definitions of classes (CD), definitions of relations (RD),
and definitions of instances (ID)3. Relations defined in RD
are divided into relations that contribute to the taxonomic
structure of the domain (viz. structuring relations), and
those which do not (viz. non-structuring relations)
(Guarino, 1995). We consider definitions in CD, RD, and
ID to be 3-tuples Def = <T,D,C> in which T is the
definiendum, D is the definiens (to avoid confusion with the
definiens, we use the letter T- for term - to denote the

These components are the components of an ontology defined
in o~rrOUNGtJA, see Gruber (I 992).

We do not address functions and axioms in our classification
of ontology mismatches since their form is slightly different
from the other definitions.

definiendum), and C is the ontology-concept description to
be defined (distinguished during the conceptualisation
process). For practical reasons, we here assume C to be
expressed in natural language (cf. the DOCUMENTATION
relation which is linked to definitions in ONTOLINGUA). T is
an atomic formula in a formal language and D is a
(compound) formula in a formal language. Distinguishing
the concept description to be defined (C) facilitates the
expression of the intention of the knowledge engineer in
making the definition, thereby allowing us to distinguish
between different definitions with the same term and
definiens components (an example is given in section 3).
example of a definition (in PROLOG format) is the concept
description ’A vessel is taken to be something large and
seagoing’ (C), which is explicated as vessel(X) - seagoing(X).’,
large(X), in which vessel(X) is the definiendum (T),
seagoing(X) A large(X) is the definiens

3. A classification of ontology mismatches
Semantic heterogeneity in databases has been studied
extensively in the database field (e.g., Batini et al., 1986;
March, 1990; Ceri and Widom, 1993; Kitikami et al.,
1996). Ceri and Widom (1993), for instance, list four
categories of semantic conflicts: (1) naming conflicts
(different databases use different names to represent the
same concepts), (2) domain conflicts (different databases
use different values to represent the same concept), (3)
meta-data conflicts (same concepts is represented at the
schema level in one database and at the instance level in
another database), and (4) structural conflicts (different
databases use different data organisation to represent the
same concept).

The classification presented below is not necessarily
restricted to databases. Because we focus on the underlying
ontologies the classification applies to databases as well as
knowledge systems, and in fact, to every information
system. The four conflict categories listed above can be
shown to be contained in the classification of ontology
mismatches below. We do not claim the classification to be
complete nor disjoint. We deem the classification to be a
useful instrument to determine what mismatches are present
between ontoiogies, to determine which mismatches are
hard to resolve, and, to define guidelines for the design of
interoperable systems. As stated before, there are two basic
types of ontology mismatches: (1) conceptualisation
mismatches, and (2) explication mismatches.

(1) Conceptualisation mismatch
Conceptualisation mismatches are mismatches between two
(or more) conceptualisations of a domain. The
conceptualisations differ in the ontological concepts
distinguished or in the way these concepts are related.

165

(1. !) Class mismatch
A class mismatch is a conceptualisation mismatch relating
to the classes distinguished in the conceptualisation. In
particular, this type of mismatch concerns classes and their
subclasses.

(1.1.1) Categorisation mismatch
A categorisation mismatch occurs when two
conceptualisations distinguish the same class but divide
this class into different subclasses. As an example we
consider two conceptualisations that both contain
knowledge about animals. A categorisation mismatch
occurs when one conceptualisation structures its
knowledge around classes mammals and birds, whereas the
second structures its knowledge around classes carnivores
and herbivores.

(1. !.2) Aggregation-level mismatch
An aggregation-level mismatch occurs if two
conceptualisations both recognise the existence of a class,
but define classes at different levels of abstraction. For
instance, one conceptualisation that distinguished persons
and a conceptualisation that distinguishes males and females
but does not have persons as their superclass.

(i.2) Relation mismatch
A relation mismatch is a conceptualisation mismatch
relating to the relations distinguished in the
conceptualisation. Relation mismatches concern, for
instance, the hierarchical relations between two classes or,
the assignment of attributes to classes (cf. Woods, 1985).

(1.2.1) Structure mismatch
A structure mismatch occurs when two conceptualisations
distinguish the same set of classes but differ in the way
these classes are structured by means of relations. An
example is one conceptualisation structuring classes house
and brick with relation is-made-of, and another
conceptualisation structuring the same classes with
relation has-component. In this example, the two relations
have a substantial overlap in their meaning but they are
not equal; usually one does not say a house is made of a
roof, whereas a roof can be a component of a house (the
dependency mismatch of Batini et al., 1986 is covered by
this type of mismatch).

(1.2.2) Attribute-assignment mismatch
An attribute-assignment mismatch occurs when two
conceptualisations differ in the way they assign an
attribute (class) to other classes. Consider, for instance,
two conceptualisations that both distinguish classes
vehicle, car and color that car is an instance of the class
vehicle. The conceptualisations have an attribute-
assignment mismatch if one conceptualisation assigns the

attribute class color to vehicle, and the other
conceptualisation assigns color to car.

(i.2.3) Attribute-type mismatch
An attribute-type mismatch occurs when two
conceptualisations distinguish the same (attribute) class
but differ in their assumed instantiations. An example of
this type of mismatch is when two conceptualisations
distinguishing the class length, assuming its instances to be
a number of miles whereas another conceptualisation with
the same class assumes its instances to be a number of
kilometers.

(2) Explication mismatch
Explication mismatches are not defined on the
conceptualisation of the domain but on the way the
conceptualisation is specified. In section 2 we assumed that
such an explicit conceptualisation (viz. an ontology) consists
of a set of definitions. Recall that each definition in CD, RD
and ID is a 3-tuple Def= <T,D,C> in which T is a term, D is
a definiens, and C is the ontological concept (from the
conceptualisation) that is explicated.

The three components of a definition allow in principle
for eight different relations between two definitions, and
thus eight different types of mismatches. However, if terms,
definiens, and concepts are all different we assume there to
be no mismatch (viz. there is no correspondence). Neither is
there a mismatch if terms, definiens, and concepts are all the
same (viz. there is a complete match). This leaves six
different types of mismatches. We assume an explication
mismatch to occur when two ontologies have different
definitions where their terms, their definiens, or their
ontological concepts are identical.

(2.1) CT mismatch (or Concept and Term mismatch)
ACT mismatch occurs when two ontoiogies use the same
definiens D but differ in both the concept C they define and
the term T linked to the definiens. For instance, if one
ontology contains the definition vessel(X) - seagoing(X) 4
large(X) (tO define the concept of a vessel) and the other
ontology contains the definition whale(X) - seagoing(X) ,^, large{X)
(tO define the concept of a whale).

(2.2) CD mismatch (or Concept and Definiens mismatch)
A CD mismatch occurs when two ontologies use the same
term T but differ in the concept C they define and the
definiens D used for the definition. Consider the term mitre.
One ontology may define the concept of the headgear of a
bishop with the expression: mitre{X) - head dress_of_bishop(X),
whereas a second ontology may define the concept of a
straight angle joint of wood with the expression: mitre(X) -
stralght_angle..joint_of_.wood(X). Although both ontologies use
the same term T it is clear that the ontologies denote a
distinct concept and use a different definiens. Note, that a
CD mismatch implies that T is a homonym.

166

(2.3) C mismatch (or Concept mismatch)
A C mismatch occurs when both ontologies have the same
term T and definiens D but differ in the concept they define.
For instance, both ontologies could use the expression
red_mitre(X) - mitre(X) red(X) while one ontology defines the
concept of a red piece of wood whereas the other ontology
defines the concept of a red hat. Note that, like the CD
mismatch, a C mismatch implies that T is a homonym.

(2.4) TD mismatch (or Term and Definiens mismatch)
A TD mismatch occurs when two ontologies define the
same concept C but differ in the way they define it; both
with respect to the term T and the definiens D. For instance,
two ontologies that define the concept of a ship with
expressions, vessel(X) - floating(X) A big(X) and ship(X)
seagoing(X) ,~, large(X), respectively. Although representing
same concept in the world, these ontologies differ both in
their term T and their definiens D. Note, that the TD
mismatch implies that the two terms are synonyms (possibly
the two definiens contain synonyms as well).

(2.5) T mismatch (or Term mismatch)
A T mismatch occurs when two ontologies define the same
concept C using the same definiens D but refer to it with
different terms. Consider the use of the expression: ship(X)
seagoing(X) A large(X) by one ontology and vessel(X) - seagoing(X)
A large(X) by another ontology, both defining the concept of
ship. Like the TD mismatch, the T mismatch implies that
the two terms are synonyms.

(2.6) D mismatch (or Definiens mismatch)
A D mismatch occurs when two ontologies define the same
concept C and use the same term T to refer to the concept
but use a different definiens. For instance, one ontology
may define the concept of an ecclesiastical mitre with the
expression: mitre(X) - head_gear_of..bishop(X), whereas a second
ontology may define the same term with the expression:
mitre(X) - ecclesiastical_hat(X) A deeply cleft(X).

The two main categories of ontology mismatches reflect
two different perspectives of looking at ontology
mismatches. It should be noted that each conceptualisation
mismatch is also present in the explication of that
conceptualisation. Indeed, some conceptualisation
mismatches are easily recognised as explication
mismatches. Consider, for instance, the attribute-type
mismatch. This conceptualisation mismatch type occurs in
the explication as a D mismatch (or as a CD mismatch,
depending on whether the type is specified in the
description of the ontological concept C). In fact, all
explication mismatches must occur in some form in the
explication (ontology). However, not all explication
mismatches necessarily occur in the conceptualisation. For
instance, the actual terms (identifiers) to denote concepts
are usually chosen in the explication process. This confirms

the idea that certain ontological decisions are made only
when the conceptualisation is explicated, and thus, that
certain ontological mismatches occur only in the
explication.

The reason why we adhere to both sets of ontology
mismatches is twofold. First, it allows us to tell whether
certain types of mismatches arise from the conceptualisation
process, or from the explication process (which forms
basis to resolve them, see section 4). Second, some
mismatches are better understood at a conceptual level (viz.
in terms of classes and their hierarchical relations), whereas
some mismatches are better understood in terms of ontology
components (viz. in terms of terms and definiens). An
example of the former mismatches is the categorisation
mismatch which is clearly understood as a classes with
different subclasses, but less obviously understood when
expressed as a CD or D mismatch. An example of the latter
mismatches is when one term refers to two different
concepts (viz. a C or CD mismatch) which is clearly an
explication mismatch, but maybe not recognised as a
conceptualisation mismatch (for instance, because the terms
are always used in their own context).

4. Ontological mismatches and interoperability
In finding a balance between heterogeneity and
interoperability we have to examine to what extent the
various ontology mismatches form an obstacle for
interoperability. Having presented a classification of
ontology mismatches, we now address the communication
between two systems that have ontology mismatches. For
each type of mismatches listed in the previous section we
discuss whether we can define a mapping function that maps
expressions based on one ontology onto expressions that are
based on a second ontology (and vice versa). As such, the
analysis provides some tentative requirements for adequate
ontology mappings. For the mapping functions, we assume
the formalisms in which the expressions are stated to be the
same.

The scope of this article does not allow us to elaborate on
all mismatch types and their resolution extensively, so all
discussions are necessarily kept brief. Where possible we
have included examples to avoid making the discussions too
abstract. Some examples of ontology mismatches discussed
below are based on a comparison we conducted between
two ontologies of university-student data. The two
ontologies, one created at Liverpool University (henceforth
Ont-L) and the other created at Cardiff University
(henceforth Ont-C) were created for the same purpose and
domain but were created independently of one another.

4.1 Conceptualisation mismatch
As stated in the previous section some conceptualisation
mismatches are not easily recognised from the explicit
ontology definitions. As a result, it is not easy to deal with
such mismatches. However, we show below that some

167

conceptualisation mismatches are easily recognisable in the
explication process and can be dealt with rather easily.

Categorisation mismatch (class mismatch)
The ontological mismatch between two conceptualisations
that divide their entities into different subcategories may be
difficult to resolve. Theoretically, the mismatch can be
resolved by abstracting the knowledge of the two sets of
subcategories to the abstraction level of the common class
(see definition of categorisation mismatch). However, the
common class could be a very abstract class (e.g., the root
of a class hierarchy), which implies that the abstraction
process, and thus the mapping function, is a complicated
and ’knowledge-intensive process’.

Aggregation-level mismatch (class mismatch)
If two conceptualisations express information at different
aggregation levels the mapping process requires the
knowledge to be expressed at the same aggregation level. In
general, this can be done either by abstracting the more
detailed knowledge, or, by specialising the less detailed
knowledge (or indeed by doing both).

Consider an example from Ont-C (the Cardiff ontology)
and Ont-L (the Liverpool ontology). In Ont-C the term
passed is used to denote that a student has passed a year of
study. Ont-L distinguishes both the terms passed and deemed,
the latter to denote that a student is deemed to have passed
his year of study (e.g., if a student has been sick and for that
reason not able to meet all necessary formal requirements).
Apparently, Ont-C uses a more abstract notion of ’having
passed’ than Ont-L. Roughly, we could say that passed (Ont-
C) equals passea (Ont-L) plus deemed (Ont-L). A mapping
from an expression in Ont-L onto an expression in Ont-C
involves abstracting clauses passed (Ont-L) plus deemed (Ont-
L) and mapping them onto the term passed (Ont-C) and is
likely to cause many difficulties (although information is
lost as a result of the mapping, cf. loss-less mappings,
Sciore et al., 1994). However, the other way around,
specialising the knowledge from Ont-C into Ont-L is more
difficult because we do not know (in Ont-C) whether
student who passed his module should be considered as a
passed (Ont-L) or as a deemed (Ont-L). Compare this to
discussion on attribute-type mismatches (see below).

Structure mismatch (relation mismatch)
Providing mapping functions for structure mismatches in the
general case is difficult. Having different relations between
identical classes can be problematic but may not be in
special cases. This depends on the case at hand. Consider,
for instance, two ontologies both with classes warehouse and
bricks. Suppose one ontology links these classes with the
relation stores, and the other ontology links the classes with
relation is-made-of. In this example, it is clear that the two
relations should not be considered equal, and thus, they

should not be mapped onto each other. The mismatch is not
problematic because the two relations denote different
ontological concepts, and so the two relations can coexist
next to each other. Now, consider the house-and-brick
example mentioned in section 3. Here, the two relations has-
component and is-made-of denote different concepts with
substantial overlap. Mapping from relation is-made-of onto
relation ha.s-component is possible, but the mapping in the
other direction is not justified per se.

Attribute-assignment mismatch (relation mismatch)
A mismatch in attribute assignment occurs when two
conceptualisations differ in the way they assign an attribute
class to other classes. Consider, a system s~ that represents
that X is a female student as female_student(X) and a system
s2 that represents this information as student(X) A female(X).
In this case, the mapping between these two systems can be
done by two simple mapping functions mf and my (Ont(s~)
denotes the ontology of system s~):

mf (Ont(s O: female_student(X))
Ont(s2): female(X) A student(X)

mf (Ont(s,): female(X) A student(X))
Ont(st): female_student(X)

A second example, taken from Ont-C and Ont-L, concerns
the representation of the duration of a student’s registration
for a module (a module is a set of university courses).
Ont-C the duration of a ’registration is - implicitly -
derivable from the attributes start-date and end-date linked to
the class module. In Ont-L the duration is stored as a unit of
time in a separate attribute duration linked to the class
registration. Mutual translations between the two
representations is not possible without information loss
because the duration attribute does not state what the start
and end dates are.

Anribute-type mismatch (relation mismatch)
If two systems s~ and .% both use term mark(Module. Value)
but their value parameter is of a different type then a
mapping is required between the value parameters. The
mapping functions between the two systems are rather
straightforward if both systems store exactly the same
information in different formats. For instance, if system s~
stores values as {A, B, C, D, E, F} and system s, stores
values as {’A’, ’B’, ’C’, ’D’, ’E’, ’F’}, then the mapping
would require a function that maps A onto ’A’, B onto ’B’
etc., and a function that maps ’A’ onto A etc. We note that a
mapping function can involve some calculations. For
instance, when two systems communicate, one measuring
distances in miles, and the other measuring distances in
kilometers the mapping function obviously requires some
basic mathematical operators.

If both systems store the same information content then
the mapping functions (both ways) will be rather

168

straightforward. However, it is likely that two systems do
not store precisely the same information content. For
instance, if system st stores percentages (e.g.. 75%) and
system s, stores ratios (e.g., 15/20) then there is a mapping
function from system s2 to system s~, but not vice versa. The
mapping function in such cases is one-directional.

4.2 Explication mismatch
An explication mismatch occurs when two ontologies have
different definitions but their terms, their definiens, or their
ontological concepts are the same. Below, we discuss how
the six types of explication mismatches can be dealt with.

CT mismatch
If two systems use the same definiens D to denote two
different concepts C and C’ and refer to them with different
terms T and T’, respectively, then this mismatch probably
does not require a mapping since the terms should be
considered (and are already) different. However, the fact
that both systems use the same definiens may indicate that
there is another type of mismatch between the ontologies
regarding the terms used in their definiens, for example (see
also the discussion in section 5):

pub(X) :- bar(X)
ingot(X) :- bar(X)

CD mismatch
If two systems use the same term T while using different
concepts C and C’ and different definiens D and D’ then it
is clear that the expressions T should not be considered
equal. To resolve such a mismatch the terms need to be
renamed (at least one of them). For instance, Ont-C and
Ont-L both use the term module but define their concepts
differently. We could rename the terms to Oat-L-module and
Ont-¢-module, respectively (cf. Wiederhoid, 1994).

C mismatch
If two systems use identical terms T and definiens D but
differ in the concepts C, then a mapping is required because
the terms should be kept distinct in a cooperative context.
The mismatch can be resolved by renaming the expressions
(as in the CD mismatch).

TD mismatch
If two systems represent the same concept C but define it
with different terms T and T’ and definiens D and D’ there
are two possibilities. On the one hand, it can be argued that
the terms refer to the same concept C for which reason the
terms T and 7" are considered synonymous and can be
mapped onto each other. On the other hand, it can be argued
that because the definiens D and D’ are different the
concepts denoted C are, in fact, not the same. Hence, there
should be no mapping of the terms. Which solution more
appropriate cannot be stated in the general case. This

depends, among others, on the relative importance of the
differences between D and D’. Consider the following two
ontology definitions (in PROLOG format), defining the
ontological concept ’information of a student comprises a
unique identification, a name, and an address’:

student_inf(I,N,A) :- identification(I), name(N), home_address(A).
student_data(l,N.A) :- id(1), nametN), residential addresslA).

These definitions have a TD mismatch. One can argue
that (because the two definiens appear to define the same
student information) the defined terms should be considered
the same and can be mapped onto each other. However, one
can also argue that a residential address is not necessarily
the same as a home address, which makes the actually
defined concepts different (despite the fact that both
ontologies define the same ontological concept C). Hence,
the terms should not be mapped onto each other. The
problem here is that the conceptualised concept C and the
defined (explicated) concept are not the same.

T mismatch
If two systems use the same definiens D to denote a concept
C but refer to it with different terms T and T’ then the terms
have to be mapped onto each other (T and T’ are synonyms).
In general the mapping functions will be bi-directional. For
instance, Ont-C refers to the university modules with the
term number(X), and Ont-L refers to this concept with the
term code(X). Note, that their definiens are the same as they
are both defined as strings. An example of two mapping
functions (both ways) is:

mf (Ont-C: number(X)) Ont-L: code(X)
mf’(Ont-L: code(X)) Ont-C: number(X)

A potential problem occurs if the terms differ in the
variables they distinguish. For instance, if one system uses
the term student(ld, Name. Address) and another uses the term
student(ld). Mapping the latter term onto the former term may
cause a problem because Name and Address cannot be derived
from the latter term.

D mismatch
It two systems define the same concept C and use the same
term T but differ in their definitions then it can be argued
that the concepts are in fact not the same. Hence, in a
cooperative context, the terms should be kept distinct. A
solution would be to rename the terms. Alternatively, it can
be argued that, because both systems are intended to define
the same concept C, the terms and definiens should be
considered the same, which implies that two straightforward
mapping functions (i.e., one that links the same terms in
different systems) would suffice. This would be the case
with the following two definitions of humans (after Aristotle
and Bergson, respectively):

169

human(X) :. featherless(X), biped(X)
human(X) :- animal(X), laughs(X)

5. Discussion
In this section we discuss four issues that arose as a result of
an experiment performed with the Liverpool and Cardiff
ontologies,

A first issue concerns the inheritance of mismatches.
Consider the following situation in which we have
ontologies A and B (assume FAIX) and FBIX) to be
formula, for which FA(X) * FB(X)):

A-I: a(X) :- b(X)
A-2: b(X) :- c(X)
A-3: c(X) :- FA(X)

B-I: a(X) :- b(X)
B-2: b(X) :- c(X)
B-3: c(X) :- FB(X)

Both ontologies have three definitions, the first two of
which are identical, but the last ones (i.e. definitions A-3
and B-3) have an explication mismatch. This mismatch is
either of type D or of type CD (as we do not yet know
whether the intended concepts are the same). Because there

is no mismatch between definitions A-I and B-I we would -
at first glance - say that a(X) in ontology A denotes the same
concept as a(X) in ontology B. However, since a(X) is defined
in terms of b(X), and b~X) is defined in terms of c(x) we
that a(X) refers to different extensions (concepts?)
ontology A and B. We refer to this as inheritance of
mismatches. There are two possibilities now. As a first
possibility, consider the following instantiations of the
ontologies given above:

A-I: animal(X) bird(X)
A-2: bird(X) cormorant(X)
A-3: cormorant(X) :- eats_fish(X), flying(X)

B-l: animal(X) bird(X)
B-2: bird(X) cormorant(X)
B-3: cormorant(X) :- fish eating(X), flies(X), dives(X)

For these ontologies, we may assume that the categories
of animals in A and in B denote the same concept (there is
D mismatch between A-3 and B-3). Hence, the mapping
between animal(X) in system A and animal(X) in system
straightforward. In contrast to this instantiation, another
possibility is that we have the following two ontologies, a
heraldic and a biological instantiation of the two ontologies
mentioned above:

A-I: animal(X) bird(X)
A-2: bird(X) cormorant(X)
A-3: cormoranffX) :- liver_bird(X)

B-I: animal(X):-
B-2: bird(X)
B-3: cormorant(X)

bird(X)
cormorant(X)
fish_eating(X), flies(X), dives(X)

These ontologies are different in that the denoted set of
entities that satisfies predicate animal(X) are likely to
different in ontology A and ontology B (as liver-birds

bronze sculptures from which there are only two in "the
world - cannot fly, eat or dive there is a CD mismatch
between A-3 and B-3). Whereas in the first instantiation of
the ontologies, the concepts defined in A-3 and B-3 are the
same (which makes it a D mismatch), in the second
instantiation the concepts defined are not the same (which
makes it a CD mismatch). Thus, dependent on the type of
mismatch between A-3 and B-3, A-I and B-I have a C
mismatch or do not have a mismatch at all. We conclude
that the syntax of the ontology does not provide enough
information to tell whether an inherited mismatch is a
problematic (i.e. easily mappable) mismatch or not.

A second - and related - issue concerns the relations
between different mismatch types. Consider two ontologies
which both have a definition of a class, referred to with the
term class. The two classes have the following attributes
(and attribute types), for instance:

Ontology. A: cl~¢s
attribute. 1: String
attribute-2: Integer
attribute-3: String
attribute-4: String

Ontology B: class
attribute-l: String
attribute-2: Integer
attribute-3: String
attribute-5: String

Assume that the concept (C) that is defined here is the
same in both ontologies. The definiens of the two classes
are identical except for their last attributes. Thus, there is a
D mismatch between the classes because both terms are
equal (viz. class) yet attribute-4 and attribute-5 are not the
same. Assuming these attributes to denote the same concept
the mismatch between these attributes is a T mismatch.
Note, that the D mismatch between the two classes is caused
by a T mismatch between their attributes. Also, we may
conclude that the mismatch is relatively easy to solve,
namely by mapping the contents of the attributes that cause
the mismatch. However, if there is no correspondence in the
concepts denoted by these attributes, for instance, if
attribute-4 denotes the concept ’previous address’ and
attribute-5 denotes ’current address’ then there is a CT
mismatch between the attributes 4. Also, there is no obvious
mapping between the two attributes (and thus, between the
two classes). In conclusion, we remark that a D mismatch is
easily solved if it is caused by a T mismatch, but not if it is
caused by a CT mismatch (compare this with our findings in
the first issue).

A third issue concerns our notion of definitions. We
defined mismatch types assuming that an ontology contains

One could argue that in that case, there is a CD mismatch
between the entities and not a D mismatch. This is not
necessarily true. For instance, if attribute-4 denotes the date of
birth of a person, and attribute-5 denotes the age of a person.
then one could say that the attributes denote different
concepts, but the (more general) classes denote the same
concept. Note, that this depends on how the concept is
described (e.g., in natural language).

170

definitions, which consisted of a term, a definiens, and a
concept. We loosely defined the mismatches by saying that
the definitions ’differ in their term’ (or concept, or
definiens). What exactly is to be considered different in this
respect has not been defined. Consider the two following
definitions of the term r(X):

r(X) :- q(X)
r(Y) :- q(Y)

Intuitively, one would say that these two definitions do
not differ in their term and definiens (although one could
argue that they are different because they are not fully
identical), we assume the terms (and indeed the definiens
and hence the definition) to be the same since variable
names are not considered to be relevant in identifying terms
or definiens. However, we have to be careful in applying
this as a guideline. Consider the following definitions:

r(X:lnteger) q(X:Integer)
r(Y:Real) q(Y:Real)

In this case we do have a relevant mismatch. There is an
attribute-type mismatch and hence, the definitions should
not be considered identical. Note that we would not even
have to use a typed logic to illustrate this problem, simply
assuming the types to be different in different systems
would suffice. Differences in the possible instantiations of x
and Y could also be determined by differences in the
definitions of q(X). In that case, we would have an inherited
mismatch. In conclusion, we state that we can only detect a
mismatch between two expressions given the context in
which the expressions are used, again we note that syntax
does not suffice. Also, whether two expressions cover the
same concepts (and thus, whether they can be mapped onto
each other) depends in the end, on the textual descriptions
of all terms that directly or indirectly contribute to the
meaning of the expressions (cf. inherited mismatches).

A final - and related - issue also concerns our notion of
definitions. In particular, we note that our explication
mismatch types are defined on form, rather than on content.
This means that two definitions expressed in one language
could have different mismatch types if they were expressed
in another language. Consider the following two sets of
definitions, the first expressed in P/FDM (Embury, 1995),
and the second expressed in PROLOG:

content(module) -> string
content(module_desc) -> string

content(X,Y)
content(X.Y)

module(X), string(Y)
module_desc(X), string(Y)

The two definitions in P/FDM format have a mismatch in
terms but not in their definiens, whereas the two definition
in PROLOG format have a mismatch in the definiens, but not
in their terms. Thus, by translating a P/FDM expression into

a PROLOG expression, a T mismatch becomes a D mismatch.
Although we illustrate this issue with two different
languages, even within one language there are several
possibilities to explicate a conceptualisation. This means
that even within a language we can, dependent on the way
we explicate, get different (explication) mismatches.

6. Conclusions
The idea behind the study di’scussed here is to identify a set
of heuristics that allow us to determine whether systems can
join a cooperative community, or, to provide guidance for
the design of such systems. In this section we present some
tentative conclusions with respect to the difficulty of dealing
with ontological mismatches. We list the ontological
mismatches of our classification and divide them into three
categories: (a) manageable, (b) hard, and (c) unknown (the
latter meaning that the difficulty depends on the case at
hand). The list reflects a first impression of the authors on
the solvability of the mismatches. It is therefore tentative.

(a) manageable:

(b) hard:

(c) unknown:

T mismatch, CT mismatch,
attribute-type mismatch,
CD mismatch, C mismatch
categorisation mismatch,
structure mismatch
attribute-assignment mismatch,
aggregation-level mismatch,
TD mismatch, D mismatch

Not all mismatches are equally likely to occur. For
instance, a CT mismatch is not likely to occur, but a
categorisation mismatch is Very likely to occur. Also, the
mismatches differ in the ease with which one can detect
them. For instance, a C mismatch is probably difficult to
detect, whereas T and CT mismatches are easy to detect.
Finally, we recap five conclusions that we derive from our
analysis.

The syntax of the knowledge base does not provide
enough information to tell whether an inherited
mismatch is an easily mappable mismatch.
A D mismatch is easily solved if it is caused by a T
mismatch, but hard to solve if it is caused by a CT
mismatch.
Certain mismatches between two expressions can
only be detected from the context in which the
expressions are used, as the syntax does not suffice
to detect all mismatches.
Whether two expressions cover the same concepts
(and thus, whether they can be mapped onto each
other) depends in the end on the natural language
descriptions of all terms that directly or indirectly
contribute to the meaning of the expressions.

171

Translating ontologies which have a T mismatch
from one language into another language, may cause
the resulting knowledge bases to have a D mismatch.

Acknowledgements
This research was conducted as part of the KRAFT project.
KRAFT (Knowledge Reuse and Fusion / Transformation)
a collaborative project of the Universities of Aberdeen,
Cardiff, and Liverpool, and of BT which aims to investigate
the feasibility of heterogeneous information bases. The
project, which started in May 1996, is funded by the
partners and by the British research council (EPSRC). More
information on the KRAFT project can be obtained at:
http://www.csc.liv.ac.ukJ-pepijn/kraft.html. The authors thank Martin
Beer, Ken Chan, Bernard Diaz and Ken Lunn for their
contribution to this article.

References
Batini, C., M. Lenzerine, and S.B. Navathe (1986).

Comparison of Methodologies for Database Schema
Integration, ACM Computing Surveys, Vol. 18., No. 4,
pp.323-364.

Ceri, S., and J. Widom (1993). Managing Semantic
Heterogeneity with Production Rules and Persistent
Queues, Proceedings of the 19th VLDB Conference,
Dublin, Ireland, pp. 108-119.

Embury, S.M. (1995). User Manual for P/FDM V9.0,
Technical Report AUCS/TR9501, Dept. of Computing
Science, University of Aberdeen, Aberdeen, Scotland.

Gruber, T.R. (1992). Ontolingua: A Mechanism to Support
Portable Ontologies, Version 3.0, Knowledge Systems
Laboratory, Stanford University, Stanford, California,
United States.

Gruber, T.R. (1995). Toward principles for the Design
Ontoiogies Used for Knowledge Sharing, Int. Journal of
Human-Computer Studies, Vol.43, pp.907-928.

Guarino, N. (1994). The Ontological Level, Philosophy and
the Cognitive Sciences, Vienna, HOlder-Pichler-
Tempsky.

Guarino, N. (1995). Formal Ontology, Conceptual Analysis
and Knowledge Representation, International Journal of
Human-Computer Studies, International Journal of
Human and Computer Studies, special issue on The Role
of Formal Ontology in Information Technology, N.
Guarino and R. Poli (eds.), Vol 43, No. 5/6.

Kitakami, H., Y. Mori, and M. Arikawa (1996).
Intelligent System for Integrating Autonomous
Nomenclature Databases in Semantic Heterogeniety,
Database and Expert System Applications, DEXA ’96,
Z0rich, Switzerland, pp. 187- i 96.

Levesque, H.J., and R.J. Brachman (1985). A Fundamental
Tradeoff in Knowledge Representation and Reasoning
(Revised Version), Readings in Knowledge
Representation, R.J. Brachman, and H.J. Levesque
(eds.), pp.42-70, Morgan Kaufmann, San Mateo,
California, United States.

March, S.T. (1990). Special Issue on Heterogeneous
Databases, ACM Computing Surveys, ACM Press, Vol.
22, No. 3.

Renner, S.A., A.S. Rosenthal, and J.G. Scarano (1996).
Data Interoperability: Standardization or Mediation, The
MITRE organisation: http://www.nml.org/resources/misc/
metadata/proceedings/metadata/renner/.

Sciore, E., M Siegel, and A. Rosenthal (1994). Using
Semantic Values to Facilitate Interoperability Among
Heterogeneous Information Systems, ACM Transactions
on Database Systems, Vol. 19, No.2, pp.254-290.

Wiederhold, G. (1994). Interoperation, Mediation, and
Ontologies, Proceedings International Symposium on
Fifth Generation Computer Systems (FGCS94),
Workshop on Heterogeneous Cooperative Knowledge
Bases, Voh W3, pp.33-48, ICOT, Tokyo, Japan.

Woods, W.A. (1985). What’s in a Link: Foundations for
Semantic Networks, Readings in Knowledge
Representation, R.J. Brachman, and H.J. Levesque
(eds.), pp.217-241, Morgan Kaufmann, San Mateo,
California, United States.

172

