
Resolving Ontological Heterogeneity in the
KRAFT Project

P.R.S. Visser, D.M. Jones, M.D. Beer, T.J.M. Bench-Capon, B.M. Diaz and
M.J.R. Shave

CORAL - Conceptualisation and Ontology Research at Liverpool
Department of Computer Science, University of Liverpool

PO Box 147, Liverpool, L69 7ZF
United Kingdom

dean@csc.liv.ac.uk

Abstract. KRAFT is an agent architecture for the integration of heterogeneous
information systems. The focus in KRAFT is on the integration of knowledge
in the form of constraints. In this article we describe the architecture from an
ontological perspective. We start by introducing the agent architecture and
illustrate its application in the telecommunication-network design. We then
describe how we assess the ontological heterogeneity in the domain, which
problems the integration of constraint knowledge pose, and how we construct a
shared ontology. Also, we describe the mapping¸ functions that are used to
translate information between the shared and the local ontologies. Finally, we
look at the direction our research is taking hereafter.

1 Introduction

KRAFT is a research project on the integration of heterogeneous information using an
agent architecture [1]. The project differs from many other integration projects, such
as OBSERVER [2], SIMS [3], Carnot [4], and COIN [5], in that knowledge (in the
form of constraints) is integrated rather than just data or enriched data. The project is
a collaboration between the Universities of Aberdeen, Cardiff and Liverpool in
conjunction with BT and began in May 1996. At present the KRAFT architecture has
been evaluated in the area of student-admission policies and the in the design of a
router configuration in the telecommunications domain.

Information sources in the KRAFT architecture are heterogeneous with respect to
their ontologies, or, domain conceptualisations, and before information can be
integrated this heterogeneity has to be reconciled (here referred to as ontological
mediation). In this article we report on the application of ontologies and ontological
mediation as it is done in the KRAFT architecture. Also, we will briefly address our
ideas on future generation of KRAFT architectures. It is intended as an overview
article of the techniques applied. More details on each of the techniques can be found
in other papers.

Section 2 discusses the KRAFT architecture and its application in the router-
configuration domain. Section 3 contains an assessment of the communication needs
and the heterogeneity between the various ontologies in terms of their ontology

T. Bench-Capon, G. Soda, and A M. Tjoa (Eds.): DEXA’99, LNCS 1677, pp. 668-677, 1999.
 Springer-Verlag Berlin Heidelberg 1999

mismatches. This assessment is then used to develop a shared ontology on the basis of
the local ontologies and WordNet. This is described in section 4. Section 5 addresses
the issues involved in the mapping of expressions between local ontologies and the
shared ontology. Finally, section 6 contains the conclusions.

2 The KRAFT architecture in the Router-Configuration domain

In essence, the KRAFT architecture allows the combination of information from a set
of legacy systems, here referred to as resources. Examples of resources are databases,
knowledge systems, constraint solvers, and web pages. The user interacts with the
middleware architecture via the a user agent which allows him to formulate his
queries and which also presents the results obtained. The agent-middleware
architecture has three types of agents:
Wrapper (W) Links the external resources onto the KRAFT middleware. To do so

it resolves language, protocol and ontology heterogeneity as these
have to be translated into the KRAFT application internal
‘standards’.

Facilitator (F) White and Yellow page facility. Consulted by the other agents to
‘recommend’ services that match their required functionality.

Mediator (M) KRAFT-internal problem solvers. Mediators analyse and
decompose information request¸ and arrange for the required
information to be gathered from the resources. Thereafter,
information is combined if necessary and passed back to the agent
that consulted the mediator.

Communication between the agents is done using our Constraint Command and
Query Language (CCQL, based on KQML [6]). A typical session starts with the
mediators and resources making themselves known to the facilitator (performative:
register). After registration the mediator and resources advertise their capabilities
(performative: advertise), also to the facilitator. The user agent, aiming to have a
query answered, will contact the facilitator via his wrapper with the request to
recommend an agent who can deal with his query (performative: recommend-one or
recommend-all). The facilitator then consults his internal database of advertised
capabilities and replies by forwarding (performative: forward) the appropriate
advertisement(s) to the user agent. This advertisement allows the wrapper (or user
agent) to communicate directly with the agent that made this advertisement. The latter
agent will then be sent the query (performatives: ask-one, ask-all). By contacting the
facilitator every time an agent needs the service of another agent the network can
adopt to situations in which resources are (temporarily) out of service, or, select the
most appropriate agent to deal with the query.

As mentioned earlier, KRAFT differs from other DB integration projects in that
not only data is integrated but also constraints. To express constraints we have
defined a Constraint Interchange Format (CIF), based on the constraint language
CoLan [7].

The router-configuration prototype supports a network designer in his task of
selecting a router that can be used to connect a customer site with a so-called point-
of-presence (POP). The latter is the WAN entry point that the customer site will be
connected to. An example of a typical user query is ‘configure a network connection

669Resolving Ontological Heterogeneity in the KRAFT Project

from a given site to a Frame Relay network for under 2000 pounds’. The KRAFT
architecture will decompose the query into sub queries such as “what is the best POP
to connect the site to’ and ‘which manufacturers have router that supports Frame
Relay and cost less than 2000 pounds’. The prototype has one user agent (UA) for the
network designer and four resources (two databases of router vendors, one database
for the point-of-presence information and one constraint solver). The middleware
architecture has wrappers (W) for the user agent and all resources, one facilitator (F),
a POP mediator (for selecting a POP), and a CPE mediator (for selecting the router).
This is depicted in Fig. 1. Within the grey area there is one agent communication
language (CCQL), one knowledge interchange format (CIF) and one shared ontology
(more on the shared ontology in the following sections). Since in principle all agents
can¸communicate with each other no inter-agent communication links are shown.

The constraints in our prototype domain express metadata about the kind of routers
supplied by the vendors and are used to reduce the problem space of the network
designer in his configuration task.. As an example, suppose a designer needs to
configure a router that supports either the FrameRelay or ISDN protocol. Suppose
that a vendor resource has the following constraint:

constrain each r in router

such that each p in protocol(r)

has name(p) in {"AppleTalk", "X.25", "ip", "FrameRelay",

"Switch56", "SMDS", "PPP", "SLIP"}

Fig. 1. The KRAFT Architecture in the Router-Configuration Prototype

UA

W

W

W
W

CPE
Mediator F

POP-DB

Vendor
DB

Vendor
DB

POP
Mediator

W

Designer
DB

Constraint
Solver

670 P.R.S. Visser et al.

Retrieving this constraint from the vendor database obviously rules out all routers
from this vendor since it does not supply routers that support the ISDN protocol. The
CPE-mediator, on receiving this constraint, can eliminate this vendor’s resource from
this problem. Suppose instead this vendor had the following constraint:

constrain each r in router

such that some p in protocol(r)

to have name(p) = "ISDN"

This constraint effectively states that this vendor only sells routers that support ISDN.
If this vendor also has the following constraint:

constrain each r in router

such that some p in protocol(r)

to have name(p) = "FrameRelay"

then all routers that are sold by this vendor support both FrameRelay or ISDN. Hence,
the initial query can be relaxed as all routers from this vendor satisfy the designers
constraints. This example illustrates how the fusion of a set of constraints can lead to
the relaxation of the initial query or to the narrowing of the solution set. In both cases,
however, the aim is to fuse a set of retrieved constraints in order to allow a more
efficient way of solving the configuration problem.

3 Ontology Heterogeneity

The resources in the router-configuration prototype are heterogeneous with respect to
their ontologies only. In practice this means that the databases have been developed
independently of each other but using the same hardware platform, DBMS and
interaction protocol. In this setting, the role of the wrappers is to perform ontology
translations and to convert between the DB communication style and the agent
communication style as used by the middleware.

In KRAFT we adopt a semi-structured approach to analyse the heterogeneity
between two or more ontologies. This comparison will later be used for the design of
the shared ontology (described in the next section). In the comparison we assume all
ontologies to be defined as a set of (hierarchically related) entities with attributes and
axioms. The idea behind the analysis is to identify the correspondence between the
entities defined in the different ontologies. The existence of such a certain form of
correspondence can be assumed simply since the need to integrate the resources
means that there must be some correspondence in knowledge about the kind of
information that is exchanged.

The first step in the comparison is finding semantically more or less similar entities
across the ontologies. For all entities that have an approximate correspondence we
then compare the attributes that are defined on these entities. We then refine the entity
and attribute correspondences by classifying them in the ontology mismatch
framework as described in [8]. This step allows us to identify mismatches, get an

671Resolving Ontological Heterogeneity in the KRAFT Project

indication for the hardness of resolving these mismatches and finally gives us a
stepping stone for defining mapping functions (see section 5). It thus allows us to
focus in an early stage on the integration difficulties that can be expected. The basic
idea of the refinement is to classify the type of semantic correspondence, or rather the
type of semantic mismatch. The mismatch framework distinguishes three components
of a formal definition: the concept to be defined (C), the term to refer to it (T), and the
definiens or body of definition (D). Two definitions can in principle fail to match in
all combinations of these three components, which implies that the semantic
correspondence between two entity definitions falls in one of seven different
categories (if non of three matches then there is no correspondence). How the entity
and attribute comparison is used in the construction of a shared ontology is described
in the next section.

4 The Construction of the Shared Ontology1

In the KRAFT architecture the resource ontologies are not mapped directly onto each
other. Instead, KRAFT uses shared ontologies which serve as the ontology
counterpart of a lingua franca. Resource ontologies are mapped onto the shared
ontology thus avoiding the potentially large number of individual resource mappings
that may have to be defined. Although not used in the router-configuration domain the
KRAFT architecture allows for multiple shared ontologies, organised in clusters. The
idea behind ontology clusters is that resources do not have to commit to one over-
arching standardised ontology but they can from groups (clusters) of resources that all
want to commit to some standard.

In the router configuration domain there is one shared ontology. The local schemas
in the resources are based on local ontologies. Ideally, the schemas are derived from
their local ontology but this is - in the context of legacy system integration - usually
not achievable. Rather, the ontology will be created after the schema, with the aim of
clarifying the semantics of the entities (objects) used. Here, we will not address the
relation between schemas and ontologies in any more detail. This issue is addressed in
a separate - forthcoming - paper. The mapping functions bridge the gap between the
concepts defined in the local ontologies and the concepts defined in the shared
ontology (see section 5). This situation is depicted in Fig. 2 (the open arrows denote
relation between schema and local ontology, the solid arrows denote mapping
functions). There is not necessarily a one-to-one mapping between concepts in the
local ontology and concepts in the shared ontology. Which concepts are mapped onto
which shared concepts depends on whether a set of preconditions is satisfied. More on
mapping functions in the next section. Before we can map the local ontologies onto
the shared ontology we construct the shared ontology so as to support the definition of
mapping functions.

1 More details on this can be found in [9].

672 P.R.S. Visser et al.

Besides supporting the mapping functions there are other design criteria for the
shared ontology. How the shared ontology will be designed also depends on the
communication needs. On the one hand, one would like the shared ontology to have
the full expressiveness of the ‘union’ of the resource ontologies. The conclusion is of
course that in the design of the shared ontology it is desirable to know what kind of
queries and constraints have to be communicated. Also, the intensity of the
communication plays a role in the design. Ignoring the optimal degree of
expressiveness of the shared ontology we have chosen to make the shared ontology as
expressive as the ‘union’ of the resource ontologies, thus anticipating future
information requests.

The approach taken is the result of an ongoing research effort into
conceptualisation and ontology design [10]. In short, we create the ontology by
linking the required concepts onto the concept structure of an existing top-level
ontology. The required concepts are determined by a text-based analysis of the router
domain together with the results of the analysis that was described in the previous
section. The ontology is thus more a differential theory derived from a corpus of
natural language texts rather than a theory of concepts that are defined as extensions
of a set of individuals in the domain [11]. The top-level ontology we use is WordNet
[12]. In addition to this, we use text-analysis techniques to conceptualise domains
[13] and techniques for the linking of our ontology into the top-level ontology [14].
The approach, which we here describe in condensed form, consists of three phases:
(a) the domain analysis phase, (b) the ontology definition phase, and (c) the resource
tuning phase.

A. Domain Analysis Phase
1. Determine a corpus of text material, such as brochures and technical manuals, that

describe the domain. The advantage of using these documents as basis material is
that we are sure to adopt the vocabulary that is used in the domain.

Fig. 2. Mappings between Local Schema and Local and Shared Ontologies

Local
Schema

Local
Ontology

Shared
Ontology

673Resolving Ontological Heterogeneity in the KRAFT Project

2. Determine the noun (phrases) used in the domain. This requires several processing
steps, such as filtering out verbs, analysing the composite terms, and relating
synonym¸ (here, we will refer to the remaining terms as seed terms after [14].
Tools can be used to assist in these steps (see, for instance [11]). We note that this
way of filtering assumes the domain to be best described from a static perspective.
Processes, actions, events and the like are - as yet - not considered.

3. Locate these terms in their correct interpretation in a top-level ontology (here:
WordNet). This yields two groups: supported seed terms (those terms that do occur
in their correct interpretation in the top-level ontology), and unsupported seed
terms (those terms for which the top-level ontology does not have the correct
interpretation).

4. Decide for the unsupported seed terms which ones will be included in the ontology.
In particular, this may imply filtering out less relevant proper nouns such as names
of brands etc. The decision to include or exclude a proper noun should be based on
their relevance to the domain. For example, protocol names such as Token Ring
and Ethernet are likely to be important in the networking domain and should be
included.

All terms that are selected in step 4 of the analysis phase will be modelled in the
domain ontology during the ontology definition phase. To do this, we need a
specification language. Most ontology-specification languages support entities,
attributes, and values. ONTOLINGUA, LOOM and Classic are examples of such
languages.

For each term determined in the previous phase, it has to be decided whether it will
be modelled as an entity, an attribute, or as a value (or indeed as a combination of
these). For instance, given the terms ‘name’ and ‘customer’, it is common to model
‘name’ as an attribute of entity ‘customer’. This is done during the next phase.

B. Ontology Definition Phase
1. Define a concept for each of the supported seed terms using only terms that occur

in the top-level ontology. The definition should have a unique concept identifier
and the seed term itself should be kept as an attribute. In this stage, the concepts
will not have any other attributes.

2. Define in a similar way concepts for all terms that are used to define the concepts
in steps 1 and 2 and repeat this process until all terms are defined (or until a
primitive term has been reached). If WordNet is used as a top-level ontology this
means that all concepts on the path from the term to be defined until the root
node(s) are modelled.

3. Define in a similar way as above the unsupported seed terms by linking them to the
existing definitions. This may imply defining intermediate concepts. For instance,
if the terms ‘X.21’ and ‘FDDI’ (denoting router interfaces) are to be defined and
the term ‘router interface’ has been defined already, then it might be desirable to
introduce intermediate classes representing LAN and WAN router interface.

4. Extend the ontology by assigning attributes to the defined concepts. This may
involve the definition of additional concepts.

5. Complete the ontology by defining constraints over the defined concepts and their
attributes. Define the constraints so that they exclude incorrect data, but do not use
them to exclude unanticipated (unlikely) data.

674 P.R.S. Visser et al.

The ontology as it stands covers the concepts that are relevant for application domain
but it is not yet tailored to the specific resources. The last phase in the development of
the shared ontology allows for the definition of additional concepts and attributes that
enable a more convenient mapping onto the resources. This means that we extend the
ontology with concepts required for the interoperation but not yet supported in the
shared ontology.

C. Resource Tuning Phase
1. Extend the shared ontology with more specialised concepts that resemble the

concepts defined each of the local ontologies.
2. Extend the shared ontology concepts with attributes and constraints so as to capture

their intended meaning.
After this step, the shared ontology is completed and can be linked onto the resources
via mapping functions. This is addressed in the next section.

5 Ontology Mappings

To overcome the mismatches between a resource and a shared ontology, an ontology
mapping is defined. An ontology mapping is a partial function that specifies
mappings between terms and expressions defined in a source ontology to terms and
expressions defined in a target ontology. To enable bi-directional translation between
a KRAFT network and a resource, two such ontology mappings must be defined.
Here we describe the format that we use to specify ontology mappings.

In defining an ontology mapping, we begin by specifying a set of ordered pairs or
ontological correspondences. An ontological correspondence specifies the term or
expression in the target ontology that represents as closely as possible the meaning of
the source ontology term or expression. For each term in the source ontology, we try
to identify a corresponding term in the target ontology. It may not be possible to
directly map all of the source ontology terms to a corresponding target ontology term.
For some of the terms in the source ontology that cannot be mapped in this way, it
may be possible to include them in the ontology mapping by defining
correspondences between compound expressions. This leads us to the following
classification of ontological correspondences:
class mapping: maps a source ontology class name to a target ontology class

name;
attribute mapping: maps the set of values of a source ontology attribute to a set of

values of a target ontology attribute;
attribute mapping: maps a source ontology attribute name to a target ontology

attribute name;
relation mapping: maps a source ontology relation name to a target ontology

relation name, and
compound mapping: maps compound source ontology expressions to compound

target ontology expressions.
There are many subtypes for each of these types (more details on this can be found
in [14]).

As the local and shared ontologies are not represented in the same format as that
which is used for the CIF, the semantic transformation of CIF expressions by

675Resolving Ontological Heterogeneity in the KRAFT Project

wrappers is not done by directly interpreting the ontology mappings. Rather, the
relevant ontology mappings are used as part of the specification of a wrapper.
Consequently, developers have complete autonomy in the implementation of
wrappers.

A pair of terms and/or expressions in an ontological correspondence are not
necessarily semantically equivalent. However, when a wrapper translates a CIF
expression, we need to ensure that the target CIF expression is semantically
equivalent to the source CIF expression. If this were not the case, constraints passed
to the CPE-mediator using terms defined in the shared ontology could express very
different knowledge about a vendor's products than the original constraints expressed
in terms defined in the local ontology. We ensure that the semantics of CIF
expressions are maintained by defining pre- and post-conditions for each ontological
correspondence. A wrapper that implements an ontology mapping must ensure that
these conditions are satisfied when translating CIF expressions from the source to the
target ontology.

6 Conclusions

KRAFT is an agent architecture that integrates knowledge rather than merely data.
This is different from other resource integration projects such as OBSERVER [2],
SIMS [3], and Carnot [4] in which merely data is interchanged. In the COIN project
[5] the interchanged information consists of semantic values rather than pure data.
Semantic values in COIN consist of a piece of data plus semantic information about
the correct interpretation of the data. The expressiveness of this semantic information
is limited. KRAFT uses the more expressive CIF constraint language to specify the
exchanged knowledge. By translating local constraints into the shared ontology the
design problem space can be reduced before the actual information retrieval. The aim
is to provide the designer with a reduced problem space and to make the information
retrieval itself more efficient.

Acknowledgements

The KRAFT project is funded by the Engineering and Physical Sciences Research
Council (EPSRC) and BT. More information on the KRAFT project can be obtained
from: http://www.csc.liv.ac.uk/~kraft/. The authors wish to express their gratitude to
their colleagues of the KRAFT project and to Valentina Tamma.

References

1. Gray, P.D.M., A. Preece, N.J. Fiddian, W.A. Gray, T.J.M. Bench-Capon, M.J.R. Shave, N.
Azarmi, M.Wiegand, M. Ashwell, M. Beer, Z. Cui, B. Diaz, S.M. Embury, K. Hui, A.C.
Jones, D.M. Jones, G.J.L. Kemp, E.W. Lawson, K. Lunn, P. Marti, J. Shao, and P.R.S.
Visser (1997) “KRAFT: Knowledge Fusion from Distributed Databases and Knowledge
Bases”, Database and Expert System Applications (DEXA' 97), Toulouse, France.

676 P.R.S. Visser et al.

2. Mena, E., V. Kashyap, A. Sheth, A. Illarramendi (1996) “OBSERVER: An Approach for
Query Processing in Global Information Systems based on Interoperation across
Pre-existing Ontologies”, Proceedings of 1st IFCIS International Conference on Cooperative
Information Systems (CoopIS'96), Brussels, Belgium.

3. Arens, Y., C.A. Knoblock, and W. Shen (1996) “Query Reformulation for Dynamic
Information Integration”, Journal of Intelligent Information Systems, 6, 99-130.

4. Woelk, D., W. Shen, M. Huhns and P. Cannata (1992) “Model Driven Enterprise
Information Management in Carnot”, in C.J. Petrie Jr., (ed.), Enterprise Integration
Modelling, Proceedings of the First International Conference, MIT Press, Cambridge, MA,
USA.

5. Daruwala, A., C.H. Goh, S. Hofmeister, K. Hussein, S. Madnick and M. Siegel. (1995) “The
Context Interchange Network”, IFIP WG2.6 Sixth Working Conference on Database
Semantics (DS-6), Atlanta, Georgia.

6. Finin, T., Y. Labrou, and J. Mayfield (1997) “KQML as an agent communication language”,
in Jeff Bradshaw (ed.) Software Agents, MIT Press, Cambridge, MA.

7. Bassiliades, N., and P.M.D. Gray (1994) “CoLan: A Functional Constraint Language and its
Implementation”, Data & Knowledge Engineering, 14, 203-249.

8. Visser, P.R.S., D.M. Jones, T.J.M. Bench-Capon and M.J.R. Shave (1998) “Assessing
Heterogeneity by Classifying Ontology Mismatches”, in N. Guarino (ed.) Formal Ontology
in Information Systems, (Proceedings FOIS'98, Trento, Italy), IOS Press, Amsterdam,
p.148-162.

9. Jones, D.M. (1998) “Developing Shared Ontologies in Multi-agent Systems”, ECAI’98
Workshop on Intelligent Information Integration, Brighton, U.K., August 25th.

10.Jones, D.M., T.J.M. Bench-Capon and P.R.S. Visser, (1998) “Methodologies for Ontology
Development”, Proceedings IT&KNOWS Conference of the 15th IFIP World Computer
Congress, Budapest, Hungary.

11.Assadi, H. (1998) “Construction of a Regional Ontology from Text and its Use within a
Documentary System”, in N. Guarino (ed.) Formal Ontology in Information Systems,
(Proceedings FOIS'98, Trento, Italy), IOS Press, Amsterdam, The Netherlands, p.236-249.

12.Miller, G.A., R. Beckwith, C. Fellbaum, D. Gross, and K.J. Miller (1990) “Introduction to
WordNet; An On-line Lexical Database”, International Journal of Lexicography, 3(4), 235-
244.

13.Bench-Capon, T.J.M., and F.P. Coenen (1992) “Isomorphism and Legal Knowledge Based
Systems”, Artificial Intelligence and Law, 1(1), 65-86.

14.Swartout, B., R. Patil, K. Knight, and T. Russ (1997) “Toward Distributed Use of Large-
Scale Ontologies”, Working notes AAAI-1997 Spring Symposium on Ontological
Engineering, Stanford University, Palo Alto, CA, USA.

15.Jones, D.M. (forthcoming) “Ontology Mappings”, KRAFT Working Paper KPW55.

677Resolving Ontological Heterogeneity in the KRAFT Project

	1 Introduction
	2 The KRAFT architecture in the Router-Configuration domain
	3 Ontology Heterogeneity
	4 The Construction of the Shared Ontology
	5 Ontology Mappings
	6 Conclusions
	References

