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Abstract

Although reasoning about what is the case has been the historic focus of logic, reasoning about what should be done is an equally
important capacity for an intelligent agent. Reasoning about what to do in a given situation—termed practical reasoning in the
philosophical literature—has important differences from reasoning about what is the case. The acceptability of an argument for an
action turns not only on what is true in the situation, but also on the values and aspirations of the agent to whom the argument is
directed. There are three distinctive features of practical reasoning: first, that practical reasoning is situated in a context, directed
towards a particular agent at a particular time; second, that since agents differ in their aspirations there is no right answer for all
agents, and rational disagreement is always possible; third, that since no agent can specify the relative priority of its aspirations
outside of a particular context, such prioritisation must be a product of practical reasoning and cannot be used as an input to it.
In this paper we present a framework for practical reasoning which accommodates these three distinctive features. We use the
notion of argumentation frameworks to capture the first feature. An extended form of argumentation framework in which values
and aspirations can be represented is used to allow divergent opinions for different audiences, and complexity results relating to the
extended framework are presented. We address the third feature using a formal description of a dialogue from which preferences
over values emerge. Soundness and completeness results for these dialogues are given.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Reasoning about what should be done in a particular situation—termed practical reasoning in the philosophical
literature—is carried out through a process of argumentation. Argumentation is essential because no completely com-
pelling answer can be given: whereas in matters of belief, we at least should be constrained by what is actually the
case, in matters of action no such constraints apply—we can choose what we will attempt to make the case. Even a
norm as universal and deep seated as thou shalt not kill is acknowledged to permit of exceptions in circumstances of
self defence and war. Thus whether arguments justifying or urging a course of action are acceptable will depend on
the aspirations and values of the agent to which they are addressed: the audience for the argument. The importance of
the audience for arguments was recognised and advocated by Perelman [28].
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Arguments in practical reasoning provide presumptive reasons for performing an action. These presumptive argu-
ments are then subject to a process of challenge, called critical questioning in [31]. These critical questions may take
the form of other arguments, which can in turn be challenged, or may be answered by further arguments, resulting
in a set of arguments constructed as the debate develops. An extension of Walton’s account of practical reasoning is
given in [2,6], which proposes an elaborated argument scheme for practical reasoning, which incorporates the value
promoted by acceptance of the argument, and identifies all the ways in which it can be challenged. Although most
of our discussion will treat arguments at a very abstract level, where we have need of a more particular structure for
arguments, we will have this account in mind.

In this paper we will propose and explore a framework for the representation and evaluation of arguments in prac-
tical reasoning. Any such framework must account for some important phenomena associated with such reasoning.
We will review these features in this section, and will structure the development of our framework in the remainder of
this paper around them.

First, as is clear from the brief sketch of practical reasoning above, arguments cannot be considered in isolation.
Whether an argument is acceptable or not depends on whether it can withstand or counter the other arguments put
forward in the debate. Once the relevant arguments have been identified, whether a given argument is acceptable will
depend on its belonging to a coherent subset of the arguments put forward which is able to defend itself against all
attackers. We will call such a coherent subset a position. This notion of the acceptability of an argument deriving from
membership of a defensible position has been explored in AI through the use of argumentation frameworks [9,19],
and our account will be based on a framework of this sort. Dung’s framework [19] will be recapitulated in Section 2,
and then extended as the paper proceeds. The reasoning involved in constructing argumentation frameworks and
identifying positions within them is naturally modelled as a dialogue between a proponent and a critic. Dialogues for
this purpose have been proposed in [8,13,22], and we will make use of the way of exploring argument frameworks.
Dialogues are discussed in Section 5.

A second important feature of practical reasoning is that rational disagreement is possible, the acceptability of
an argument depending in part on the audience to which it is addressed. Within Dung’s framework it is possible
for disagreement to be represented since argumentation frameworks may contain multiple incompatible defensible
positions. The abstract nature of arguments, however, means that there is no information that can be used to motivate
the choice of one option over another. Searle states the need to recognise that disagreement in practical reasoning
cannot be eliminated as follows [29]:

Assume universally valid and accepted standards of rationality, assume perfectly rational agents operating with
perfect information, and you will find that rational disagreement will still occur; because, for example, the rational
agents are likely to have different and inconsistent values and interests, each of which may be rationally acceptable.

What distinguishes different audiences are their values and interests, and in order to relate the positions acceptable
to a given audience to the values and interests of that audience we need a way of relating arguments to such values
and interests. Hunter [25] makes a proposal in terms of what he calls resonance, but we will build on Value Based
Argumentation Frameworks (VAFs) proposed in [9], in which every argument is explicitly associated with a value
promoted by its acceptance, and audiences are characterised by the relative ranking they give to these values. We
will describe VAFs in Section 3, their properties in Section 4, and discuss the relationship between our proposal and
Hunter’s in Section 7.

The above machinery can allow us to explain disagreement in terms of differences in the rankings of values between
different audiences, but it does not allow us to explain these rankings. This brings us to the third feature of practical
reasoning for which we wish to account—that we cannot assume that the parties to a debate will come with a clear
ranking of values: rather these rankings appear to emerge during the course of the debate. We may quote Searle again:

This answer [that we can rank values in advance] while acceptable as far as it goes [as an ex post explanation],
mistakenly implies that the preferences are given prior to practical reasoning, whereas, it seems to me, they are
typically the product of practical reasoning. And since ordered preferences are typically products of practical
reason, they cannot be treated as its universal presupposition. [29]
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The question of how value orders emerge during debate is explored in Section 6, in which we define a dialogue
process for evaluating the status of arguments in a VAF, and in which we show how this process can be used to
construct positions. In the course of constructing a position, the ordering of values will be determined.

Although it is not reasonable to assume that participants in a debate come with a firm value order, and so we wish
to account for the emergence of such an order, neither do participants usually come to an debate with a completely
open mind. Usually there will be some actions they are predisposed to perform, and others which they are reluctant
to perform, and they will have a tendency to prefer arguments which match these predispositions. For example a
politician forming a political programme may recognise that raising taxation is electorally inexpedient and so must
exclude any arguments with the conclusion that taxes should be raised from the manifesto, while ensuring that argu-
ments justifying actions bringing about core objectives are present: other arguments are acceptable in so far as they
enable this. This kind of initial intuitive response to arguments will be used to drive the construction of positions and
formation of a value order. A similar technique for constructing positions on the basis of Dung’s framework has been
proposed in [11]. Because this treatment does not make use of values, however, it cannot use these reasons for action
to motivate choices, and there is no relation between the arguments which can be exploited to demand that choices
are made in a consistent and coherent manner. Our extensions to include values enable us to impose this requirement
of moral consistency on the reasoners.

Our overall aim is to provide a framework for modelling practical reasoning, which is based on sets of arguments
together with information as to the other arguments they attack, and the values promoted by their acceptance. Our
framework will account for three key features of practical reasoning: that evaluation of arguments is always in the
context of a debate; that there is always potential for disagreement, explicable in terms of the different interests and
values of the audiences; and that values are ordered in the course of the debate.

2. Dung’s argumentation frameworks

We recall the following basic concepts that were introduced in Dung [19].

Definition 1. An argument system is a pair H = 〈X ,A〉, in which X is a finite set of arguments and A ⊂ X × X is
the attack relationship for H. A pair 〈x, y〉 ∈A is referred to as ‘y is attacked by x’ or ‘x attacks y’. For R, S subsets
of arguments in the system H(〈X ,A〉), we say that

(a) s ∈ S is attacked by R if there is some r ∈ R such that 〈r, s〉 ∈A.
(b) x ∈X is acceptable with respect to S if for every y ∈X that attacks x there is some z ∈ S that attacks y.
(c) S is conflict-free if no argument in S is attacked by any other argument in S.
(d) A conflict-free set S is admissible if every argument in S is acceptable with respect to S.
(e) S is a preferred extension if it is a maximal (with respect to ⊆) admissible set.
(f) S is a stable extension if S is conflict free and every argument y /∈ S is attacked by S.
(g) H is coherent if every preferred extension in H is also a stable extension.

An argument x is credulously accepted if there is some preferred extension containing it; x is sceptically accepted if
it is a member of every preferred extension.

The concepts of credulous and sceptical acceptance motivate the following decision problems that have been con-
sidered in [17,21].

Credulous Acceptance (CA)
Instance: Argument System, H = 〈X ,A〉, x ∈X .
Question: Is x credulously accepted in H?

Sceptical Acceptance (SA)
Instance: Argument System, H = 〈X ,A〉, x ∈X .
Question: Is x sceptically accepted in H?
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The results of [17] establish that CA is NP-complete, while [21] have proven SA to be �
p

2 -complete.1 Abstracting
away concerns regarding the internal structure and representation of arguments affords a formalism which focuses
on the relationship between individual arguments as a means of defining several different notions of acceptability.
In this paper preferred extensions are of particular interest as these represent maximal coherent positions that can be
defended against all attackers.

3. Value based argument frameworks

As explained in the introduction, whether a particular audience is persuaded by an argument depends on the attitude
of that audience to the values on which the argument is founded. Values are used in the sense of fundamental social or
personal goods that are desirable in themselves, and should not be confused with any numeric measure of the strength,
certainty or probability of an argument. Such values are recognised as important influences on choices. In the UK and
US people are increasingly said to base their voting intentions on values rather than specific policies. The National
Forensic League, which conducts debating competitions throughout the USA uses the “Lincoln-Douglas” (LD) debate
format which is based on the notion of a clash of values. Guideline 1 [27] stresses the central importance of values:

“A decision should be based on
1. Clear use of value argumentation throughout the round.

(a) Establishing of a value premise to support the debater’s position in the round.
(b) Establishing of values criteria to support the debater’s position in the round. Values criteria are a system

upon which to judge values. These criteria may range in format, but the relationship between the value
premise and criteria should be clear so that the resolution can be evaluated.

(c) Clash in the debate based upon the values criteria and/or the value premise.”

So what are values? It may help to give a few examples. In the original debate between Abraham Lincoln and Stephen
Douglas on which LD debates are based, Douglas championed the rights of states to legislate for their particular
circumstances, whereas Lincoln argued on the basis that were certain inviolable human rights that all states had to
respect. A perennial political choice is whether to raise taxes, promoting the value of social equality, or to reduce
them, said to encourage personal freedom and enterprise. In [9] a moral dilemma centring on whether a person has
the right to use the property of another if his life is endangered is discussed. Here the value clash is between property
rights and the right to life. This scenario is used in Appendix B to provide a detailed illustration of the approach of
this paper. In [4] a legal controversy is analysed with values of clarity of the law, property rights, economic benefits
and animal rights. As a final example [5] analyses a political debate in terms of arguments based on national security,
world peace, democracy and respect for human life. In all these analyses, the importance of the audience, and which
values it chooses to prefer is clearly demonstrated. It is such “value clashes” that are at the heart of LD debate, as
stated in 1(c) of the guidelines.

These examples show that the values used in a debate will be particular to that debate. The relevant values are
introduced along with the arguments put forward, as indicated by 1(a) of LD debate guidelines above. An argument
scheme for reasoning about what should be done which associates arguments with values and a method for con-
structing arguments using this scheme is fully described in [2]. In the remainder of this section we will introduce a
framework for reasoning about arguments associated with values.

Value Based Argument Frameworks (VAFs), were introduced in [8,9] as a mechanism with which to provide an
interpretation of multiple preferred extensions in a single argument system. Thus, the basic formalism of Dung’s
framework as captured in Definition 1 is extended to provide a semantics for distinguishing and choosing between
consistent but incompatible belief sets through the use of argument values: arguments are seen as grounded on one
of a finite number of abstract values and, where there are multiple preferred extensions, the interpretation of which
to “accept” is treated in terms of preference orderings of the underlying value set according to the views held by
a particular audience. Thus while in the standard Argumentation system the choice between preferred extensions is

1 Assuming that the argument system is coherent, SA is CO-NP-complete. While the problem of testing coherence is itself shown to �
p
2 -complete

in [21], there are polynomial-time verifiable properties which ensure coherence, e.g. if the directed graph structure defined by 〈X ,A〉 contains no
odd-length cycles.
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arbitrary, in a VAF we are able to motivate such choices by reference to the value ordering of the audience. The formal
definition of such value-based argumentation frameworks is given below.

Definition 2. A value-based argumentation framework (VAF), is defined by a triple 〈H(X ,A),V, η〉, where H(X ,A)

is an argument system, V = {v1, v2, . . . , vk} a set of k values, and η :X → V a mapping that associates a value
η(x) ∈ V with each argument x ∈ X .

Central to the development presented in [8,9] and to the main themes of the present article is the concept of an
audience.2 The definition presented below refines the original form presented in [9].

Definition 3. An audience for a VAF 〈X ,A,V, η〉, is a binary relation R⊂ V×V whose (irreflexive) transitive closure,
R∗, is asymmetric, i.e. at most one of 〈v, v′〉, 〈v′, v〉 are members of R∗ for any distinct v, v′ ∈ V . We say that vi is
preferred to vj in the audience R, denoted vi 
R vj , if 〈vi, vj 〉 ∈R∗.

Viewing R∗ in graph-theoretic terms, if R is an audience then R∗ induces an acyclic directed graph over the vertex
set V . Unless otherwise stated, we identify audiences R with their closure R∗, e.g. for R⊂ V ×V given as part of an
instance to some problem involving VAFs, we assume R= R∗.

Typically, an audience, R, will not describe a unique total ordering of V , but will be “compatible” with several
distinct such orderings, i.e. all total orders, σ , for which 〈vi, vj 〉 ∈ R∗ implies that vi 
σ vj . Hence, if σ is a total
ordering of V then σ is compatible with the audience R only if every preference 〈vi, vj 〉 described by R∗ is also
expressed within σ , i.e. vi 
σ vj . Formally, this set of compatible total orderings corresponds to the set of linear
extensions of the (strict) partial order induced by R∗.

Definition 4. Let R be an audience, α is a specific audience (compatible with R) if α is a total ordering of V and

∀v, v′ ∈ V 〈v, v′〉 ∈R∗ ⇒ 〈v, v′〉 ∈ α.

We use χ(R) to denote the set of specific audiences compatible with R.

Example 1. For V = {A,B,C}.

1. If R = ∅ then R∗ = ∅ and so χ(∅) contains every possible specific audience. Reflecting this property, we refer
to the special case R = ∅ as the universal audience. In addition when the term specific audience is used without
explicit reference to some audience R, the underlying audience will be understood to be the universal audience.

2. If R = {〈A,B〉, 〈B,C〉} then R∗ = {〈A,B〉, 〈B,C〉, 〈A,C〉} so that χ(R) = {R∗}, i.e. χ(R) contains exactly one
specific audience: that corresponding to the ordering A 
σ B 
σ C.

3. If R= {〈A,B〉, 〈C,B〉} then R∗ = R and

χ(R) = {{〈A,B〉, 〈C,B〉, 〈A,C〉}; {〈A,B〉, 〈C,B〉, 〈C,A〉}}
corresponding to the orderings A 
σ C 
σ B and C 
σ A 
σ B .

We adopt the convention of using lower case Greek letters—α, β , γ , etc.—when referring to specific audiences,
whilst reserving upper case calligraphic symbols—R, S , T , etc.—for audiences in the sense of Definition 3.

Using VAFs, ideas analogous to those of admissible argument in standard argument systems can be defined. Note
that these notions are now relative to some audience. The key concept is that of an attack, 〈x, y〉 being successful.

Definition 5. Let 〈X ,A,V, η〉 be a VAF and R an audience. For arguments x, y in X , x is a successful attack on y

(or x successfully defeats y) with respect to the audience R if: 〈x, y〉 ∈A and it is not the case that η(y) 
R η(x).

2 The term “audience”, the use of which derives from [28] is also used in Hunter [25], although he distinguishes between audiences only in terms
of beliefs, whereas [9] distinguishes them in terms of values, while also accommodating differences in beliefs.
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Thus, by replacing “attack” in Definition 1(b)–(f) with “successful attack” we obtain formal parallels of the con-
cepts: “argument acceptable to a set”, “conflict-free”, “admissible set”, “preferred extension” and “stable extension”.
For example “x is acceptable to a subset S with respect to an audience R if: for every y ∈X that successfully attacks
x with respect to R, there is some z ∈ S that successfully attacks y with respect to R”.

Note that with such definitions a preferred extension for an audience may contain an argument, x, and an argument
which attacks it, y, provided the audience concerned prefers the value of x to that of y. The sense of this is something
like “even though y, I will accept x”. For example we might say “even though lowering taxes would increase enter-
prise, we should still not lower them because social equality is more important”. In such cases, of course, we cannot
perform all the actions recommended by arguments in the preferred extension: the actions to be performed are those
recommended by the effective arguments, namely those in the preferred extension which additionally do not fail in
any of their attacks.

We observe that in the case of R being the universal audience the forms arising from Definition 5 (as outlined
following this definition) match exactly the corresponding structures in Dung’s framework as described in Defini-
tion 1(a)–(f).

A standard consistency requirement which we assume of the VAFs considered is that every directed cycle of ar-
guments in these contains at least two differently valued arguments. We do not believe that this condition is overly
restricting, since the existence of such cycles in VAFs can be seen as indicating a flaw in the formulation of the frame-
work. While in standard argumentation frameworks cycles arise naturally, especially if we are dealing with uncertain
or incomplete information, in VAFs odd length cycles in a single value represent paradoxes and even length cycles in
a single value can be reduced to a dilemma which must be resolved by choosing one of the alternatives. Given the
absence of cycles in a single value the following important property of VAFs with respect to specific audiences was
demonstrated in [9].

Fact 6. For every specific3 audience, α, 〈X ,A,V, η〉 has a unique non-empty preferred extension, P(〈X ,A,V, η〉, α)

which can be constructed by an algorithm that takes O(|X | + |A|) steps. Furthermore P(〈X ,A,V, η〉, α) is a stable
extension with respect to α.

From Fact 6 it follows that, when attention is focused on one specific audience, analogues of many decision ques-
tions known to be intractable in the standard setting become significantly easier.

There are, however, a number of new issues that arise in the value-based framework from the fact that the relative
ordering of different values promoted by distinct specific audiences results in arguments falling into one of three
categories.

(C1) Arguments, x, that are in the preferred extension P(〈X ,A,V, η〉, α) for some specific audiences compatible
with R but not all. Such arguments being called subjectively acceptable with respect to R.

(C2) Arguments, x, that are in the preferred extension P(〈X ,A,V, η〉, α) for every specific audience compatible
with R. Such arguments being called objectively acceptable with respect to R.

(C3) Arguments, x, that are not in any preferred extension P(〈X ,A,V, η〉, α) no matter which specific audience, α,
compatible with R is used. Such arguments being called indefensible with respect to R.

While we have introduced these in terms of arbitrary audiences, R, the ideas presented in (C1)–(C3) are partic-
ularly of interest in the case of the universal audience: subjective acceptability indicating that there is at least one
specific audience (total ordering of values) under which p is accepted; objective acceptability that p must be accepted
irrespective of the value ordering described by a specific audience; and, in contrast, p being indefensible indicating
that no specific audience can ever accept p.

As we indicated in the introductory discussion, one may often find in practical reasoning contexts that participants
disagree on value priorities yet nonetheless have a “common stance” regarding the acceptability or otherwise of
particular arguments. We may model such behaviours in terms of the following formalism.

3 Recall that specific audiences induce a total ordering of the value set V . It is, of course, not the case that Fact 6 holds for audiences in general.
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Definition 7. Let 〈X ,A,V, η〉 be a VAF and R, S audiences. Given x ∈ X we say that R and S have grounds for
agreement over x if either

(1) There are specific audiences α ∈ χ(R), β ∈ χ(S) such that

x ∈ P(〈X ,A,V, η〉, α) and x ∈ P(〈X ,A,V, η〉, β)

or
(2) For all specific audiences α ∈ χ(R) ∪ χ(S), x /∈ P(〈X ,A,V, η〉, α).

We say that R and S are at issue over x if R and S do not have grounds for agreement over x, e.g. x ∈
P(〈X ,A,V, η〉, α) for some α ∈ χ(R), but x /∈ P(〈X ,A,V, η〉, β) for all β ∈ χ(S).

We observe, in passing, that while it may seem more natural to define R and S as having “grounds for agreement
over x” via the existence of some α ∈ χ(R) ∩ χ(S) for which x ∈ P(〈X ,A,V, η〉, α), such a choice turns out to be
rather too restrictive: there could be no specific audience compatible with both R and S , e.g. if v 
R v′ and v′ 
S v,
however, this need not prevent x being subjectively acceptable with respect to both, i.e. the disagreement of the relative
ordering of {v, v′} is irrelevant to either audience’s view of x.

In the following section we consider the computational complexity of some naturally arising decision questions
regarding VAFs, audiences, and these classes of acceptability.

4. Audience related properties of VAFs

In this section4 we review some complexity-theoretic and algorithmic issues related to a number of natural decision
questions arising in VAFs.

4.1. Complexity results

We consider the following decision problems:

Subjective Acceptance (SBA)
Instance: A VAF 〈X ,A,V, η〉; argument x ∈ X ; audience R.
Question: Is there a specific audience, α ∈ χ(R) for which x ∈ P(〈X ,A,V, η〉, α)?

Objective Acceptance (OBA)
Instance: A VAF 〈X ,A,V, η〉; argument x ∈ X ; audience R.
Question: Is x ∈ P(〈X ,A,V, η〉, α) for every specific audience α ∈ χ(R)?

Audiences at Issue (AAI)
Instance: A VAF 〈X ,A,V, η〉; argument x ∈ X ; audiences R, S .
Question: Is there a specific audience α ∈ χ(R) for which x ∈ P(〈X ,A,V, η〉, α) but no specific audience β ∈ χ(S)

with x ∈ P(〈X ,A,V, η〉, β)?

Regarding these three decision problems we have the results below.

Theorem 8. SBA is NP-complete, even if R is the universal audience.

Theorem 9. OBA is CO-NP-complete, again even if R is the universal audience.

Theorem 10. AAI is Dp-complete,5 even in the special case R= {〈v, v′〉}, S = {〈v′, v〉} for distinct values v, v′ ∈ V .

4 The results described here are extended and revised treatments of work originally presented in [23,24]. We give statements of the main theorems
in Section 4.1 only here: proofs may be found in Appendix A.

5 We recall that Dp is the class of languages that may be expressed as the intersection of some language L1 ∈ NP with a language L2 ∈ CO-NP.
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4.2. Efficient algorithms on VAFs

We have now arrived at the position where we can detect efficiently the arguments acceptable to any specific
audience, but cannot guarantee that we will be able to determine the status of an argument with respect to the universal
audience. We now consider another problem relating to VAFs which does admit an efficient solution, namely finding
an audience for whom a subset of arguments represents a preferred extension, if one exists.

We begin by giving a formal statement of our problem:

Set Acceptance (SAC)
Instance: A VAF 〈X ,A,V, η〉; a subset S of X .
Question: Is there an audience R such that ∀α ∈ χ(R), S = P(〈X ,A,V, η〉, α)?

In this section we address this problem and some related applications. On first inspection, it might appear that,
given the status of SBA, this too would be an intractable problem. We will show, however, that this pessimistic view
is ill-founded: the critical difference between the two problems is that subjective acceptance concerns the existence
of a specific audience with respect to which a single given argument is accepted; whereas the current problem asks
for an audience with respect to which a given set of arguments defines the totality of what that audience is capable of
accepting.

Consider the following algorithm:

FIND AUDIENCE

Instance: VAF 〈X ,A,V, η〉; S ⊆ X .
Returns: Audience R such that ∀α ∈ χ(R), S = P(〈X ,A,V, η〉, α) or FAIL if no such audience exists.

1. R := ∅;
2. for each 〈x, y〉 ∈ S × S:

2.1. if 〈x, y〉 ∈A then
a. if η(x) = η(y) then report FAIL else

R := R∪ {〈η(y), η(x)〉}
3. R := R∗, i.e. replace R with its transitive closure.
4. if R is not an audience (i.e. contains 〈v, v′〉 and 〈v′, v〉 for some v and v′) then report FAIL else

5. for each z /∈ S

a. if η(z) = η(x) for some x ∈ S then
Find some y ∈ S for which 〈y, z〉 ∈ A and 〈η(z), η(y)〉 /∈R.
report FAIL if no suitable y ∈ S is found.

b. else—η(z) does not occur as the value of any x ∈ S

Choose any y ∈ S with 〈y, z〉 ∈A;
R := R∪ {〈η(y), η(z)〉}
report FAIL if no y ∈ S attacks z.

6. R := R∗.
7. return R

Theorem 11. Given an instance 〈X ,A,V, η〉 and S ⊆ X the algorithm FIND AUDIENCE returns an audience R
such that ∀α ∈ χ(R), S = P(〈X ,A,V, η〉, α) or reports FAIL if no such audience exists. Furthermore the time taken
is O(|X |2).

Proof. Steps (2) and (3) of FIND AUDIENCE construct a partial ordering of the values in S that satisfies the requirement
that S must be conflict-free with respect to the audience: thus each 〈x, y〉 ∈ A for which both x and y are in S forces an
ordering of the values {η(x), η(y)} according to the constraints described in the discussion following Definition 5. All
constraints arising thus are added by the loop comprising (2), resulting in the set of constraints R upon completion.
At step (3), this set is extended to include all of the additional pair-wise orderings arising through the property that
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if 〈η(x), η(y)〉 ∈R and 〈η(y), η(z)〉 ∈R then any audience consistent with R must have η(x) 
R η(z): constructing
all of the pair-wise orderings that should be included simply involves computing the (irreflexive) transitive closure of
the relations identified after (2) has completed. Step (4) deals with the requirement that since the audience relation
must be asymmetric the set of pairs R cannot contain both 〈vi, vj 〉 and 〈vj , vi〉: this would happen if, for example,
there were {x, y, z} ∈ S with 〈x, y〉 ∈ A, 〈y, z〉 ∈ A and η(x) = η(z). Since (3) has formed the transitive closure of
the constraint relationship identified in (2), the “consistency” test in (4) involves checking that for each x ∈ S the pair
〈η(x), η(x)〉 has not been added. Step (5) is concerned with checking that S is maximal with respect to the audience
that has been constructed in the earlier stages. Again, via Definition 5, this simply involves testing for each argument
z /∈ S, that z cannot be added to S without creating a conflict. There are two possibilities. Firstly, the value η(z) is
among those considered in S: in this case it suffices to ensure that z is successfully attacked by some y ∈ S. Secondly,
the value η(z) is distinct from any value used in S: in this case it suffices to find any y ∈ S that attacks z. �
4.3. Discussion: Algorithms and complexity in Dung’s framework and VAFs

Turning to the relative complexity of seemingly related problems within VAFs and Dung’s framework, it could
appear that the result presented in Theorem 11 is at odds with that of Theorem 8. That this is not the case is easily
seen by noting that should the algorithm analysed in Theorem 11 return FAIL given some set S ⊆ X then this does
not imply that each argument in S is indefensible. For example, consider the extreme case where S contains a single
argument x: each of the following is possible

(1) x is subjectively acceptable and FIND AUDIENCE reports FAIL.
(2) x is objectively acceptable and FIND AUDIENCE reports FAIL.
(3) {x} is admissible w.r.t some R and FIND AUDIENCE reports FAIL.

The algorithm FIND AUDIENCE returns R (rather than FAIL) only if S is both maximal and admissible: thus, the
first two cases will arise whenever x is attacked by another argument; the final case would occur whenever S was not
maximal, i.e. there is some z /∈ S that is not successfully attacked by any member of S.

We note that changing the loop condition governing (5) in this algorithm to

for each 〈z, y〉 ∈A for which z /∈ S and y ∈ S

(with the remainder of (5) unaltered) gives an algorithm to construct an audience with respect to which S is an
admissible set. It is well-known that checking if a given set of arguments is admissible or defines a stable extension
(in the schema of [19]) can be done efficiently. In VAFs the unique preferred extension with respect to a specific
audience is a stable extension, so we may interpret FIND AUDIENCE (and its modification) as confirming that testing
if S is admissible or stable remains tractable within VAFs, despite the additional constraints arising from the concept
of audience.

The concepts of subjective and objective acceptance have a (superficial) similarity to those of credulous and
sceptical acceptance. In this light, coupled with the facts that deciding if an argument is credulously accepted is
NP-complete [17], deciding if an argument is sceptically accepted is �

p

2 -complete [21] the intractability of SBA and
OBA is unsurprising.6

We note, however, that there are a number of differences between the two groups of problems. One obvious distinc-
tion is in the form of the search-space structures: CA and SA ranging over subsets of X ; SBA and OBA over possible
(total) orderings of V . In addition, we have the following,

Theorem 12.

(a) SBA(〈X ,A,V, η〉, x,∅) �⇒ CA(〈X ,A〉, x).
(b) OBA(〈X ,A,V, η〉, x,∅) �⇒ SA(〈X ,A〉, x).

6 In addition one can note the structural similarity of the VAF constructed in the reduction from 3-SAT of Theorem 8 to the argument system
constructed in reductions from 3-SAT to credulous acceptance, e.g. [22, Definition 7, p. 234].
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Fig. 1. Example VAFs in proof of Theorem 12.

(c) OBA(〈X ,A,V, η〉, x,∅) �⇒ CA(〈X ,A〉, x).
(d) SA(〈X ,A〉, x) �⇒ OBA(〈X ,A,V, η〉, x,∅).
(e) CA(〈X ,A〉, x) �⇒ SBA(〈X ,A,V, η〉, x,∅).
(f) SA(〈X ,A〉, x) �⇒ SBA(〈X ,A,V, η〉, x,∅).

Proof. Consider the three VAFs within which V = {A,B} shown in Fig. 1.
For the system of Fig. 1(a), the unique preferred extension is the empty set. When interpreted as a VAF, however,

the argument x is objectively acceptable, and the argument z is subjectively acceptable as witnessed by the specific
audience B 
 A. These establish cases (a)–(c) of the theorem.

In the system of Fig. 1(b), there is (again) a unique preferred extension comprising the arguments {y, z} (thus both
are sceptically accepted). For the specific audience A 
 B the associated preferred extension is {x, z}: this does not
contain y thus proving (d).

Finally noting that (f) subsumes (e), in the system depicted in Fig. 1(c), the preferred extension is {u,w,x}. The
argument x, however, is indefensible in the VAF interpretation: the specific audience A 
 B leaves no counterattack
to the attack by z on x since w does not successfully attack z with respect to the audience A 
 B . Similarly, for the
remaining specific audience B 
 A, the attack by y on x can no longer be countered since u does not successfully
attack y with respect to the audience B 
 A. �

Thus, it is not generally possible to deduce acceptance by specific audiences or indefensibility from corresponding
acceptance classes in the underlying argument system produced by abstracting away references to values.

5. Dialogue processes for determining argument status

Given a standard argument system—〈X ,A〉—and an argument x ∈X resolving the question of whether or not x is
credulously accepted can be viewed, in a natural way, as a dialogue between a proponent of x (whom we shall denote
PRO) and an opposing player (denoted as OPP): the latter advancing attacking arguments, y; the former selecting,
in turn, arguments that counterattack these. This high-level abstraction of dialogue in argument systems is already
proposed within Dung’s original presentation [19, p. 332], but is not subsequently developed therein. Subsequently,
however, a number of formalised dialogue processes building on standard argument systems have been developed and
analysed. In this section we review such approaches and, informally, present the notion of a “position” within a VAF:
positions and dialogue mechanisms for constructing these are treated in depth in Section 6.

An important generic formalism for defining dialogue schemes was introduced by Jakobovits and Vermeir [26].
The model defined presents dialogue games on argument systems—〈X ,A〉—as a sequence of moves, μ0μ1 · · ·μr · · ·
made by the players PRO and OPP. A specific instantiation of this generic scheme must provide a repertoire of move
types (with particular move types involving parameters such as, e.g. individual arguments); and a legal move function
that defines for any “partial” dialogue μ0 · · ·μr which of {PRO,OPP} should contribute the next move, μr+1 and
the instantiations of available moves for the player concerned. While it is, usually, the case that PRO makes the
initial move and that players alternate turns thereafter, it is convenient to relax this under certain conditions, e.g.
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when the case being set out by PRO involves advancing a number of separate arguments prior to the dialogue proper
commencing: such a convention is adopted in the dialogue mechanisms presented in Section 6. The formalism of
[26] has been used to specify dialogue procedures for credulous reasoning and determination of preferred sets in
work of Cayrol et al. [12,13]. As has been shown in Amgoud and Cayrol [1] the formalism is general enough to
accommodate models that develop Dung’s frameworks: [1] describing instantiations yielding dialogue mechanisms in
Preference-based argument frameworks.

In addition to these schemes, one dialogue process—the class of Two Party Immediate response disputes (TPI-
disputes)—has been the subject of detailed analysis. This approach was introduced by Vreeswijk and Prakken [30],
and one feature is that it attempts to restrict the arguments that may be used by PRO and OPP to those that directly
attack the most recent argument advanced: thus if x is the argument put forward by PRO in move μr then the argument
y played by OPP in μr+1 must be such that 〈y, x〉 ∈ A. As was, however, noted in [30, p. 247] some provision must
be made for both PRO and OPP to “backtrack” to some earlier point in the dialogue. The resulting dialectic proof
procedures described in [30] are proven to be sound and complete for deciding credulous acceptance. In the case of
proving sceptical acceptance, TPI-disputes are sound and complete when applied to coherent argument systems. The
development of sound and complete proof mechanisms for sceptical argumentation raises a number of difficulties
as discussed in [21, pp. 201–202]. An alternative formalisation of TPI-disputes is described and studied in [22]: this
analyses the “efficiency” of TPI-disputes when applied as a propositional proof theory, showing it to be polynomially-
equivalent7 to the CUT-free Gentzen calculus. Thus, there are examples in which demonstrations that an argument is
not credulously accepted require exponentially many moves in the total number of arguments in the system. Finally,
there is the recent work of Dung et al. [20], proposing a novel approach to the synthesis of dialectic proof procedures
within the assumption-based framework of [10]: in this the use of “backward reasoning” is promoted as a means of
resolving whether an argument is admissible.

In Section 6 our aim is to develop similar dialogue based mechanisms to those outlined above, but tailored to
the characteristics of value-based argument frameworks.8 We note here that starting from the basis of a VAF and
the universal audience, player PRO has available options in addition to simply bringing forward “new” arguments
to counterattack those proposed by OPP: PRO can also render an attack ineffective by expressing a suitable value
ordering. In fact we wish to consider such dialogues as not so much concerned with “individual” arguments but rather
as considering whether a set of arguments could be collectively acceptable to some audience. Thus in Section 6 our
principal interest is in whether a subset S ⊆ X in a VAF defines a position: that is, whether there is some set T

containing S and an audience R for which T is admissible.

6. Dialogue processes for position construction in VAFs

We now turn to one of the central issues addressed in this paper: the concept of positions and the construction of
such by dialogue procedures: the first is formally presented in Section 6.1 with dialogue mechanisms then presented
in depth in Section 6.2.

6.1. Definition of a position

The notion of a position given at the end of the last section already addresses two of the crucial features for practical
reasoning identified in the introduction: we are dealing with sets of arguments within an argumentation framework, and
so considering the context, and the fact that different positions will be acceptable to different audiences captures the
desired notion of rational disagreement. In this section we will address the remaining requirement: that the ordering
of values should emerge from the debate, on the basis of some intuitive predisposition towards certain actions and
reluctance to perform others.

First, to allow reasoners to have certain arguments they wish to include in a position, and others they wish to
exclude, while they are indifferent to the rest, we extend the definition of a VAF as follows:

7 The concept of “polynomial-equivalence” of proof systems derives from Cook and Reckhow [16].
8 A very brief overview of the ideas presented in this section was given in [18].
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Definition 13. A VAF 〈X ,A,V, η〉 is DOR-partitioned if X = D ∪ O ∪ R for disjoint sets D, O and R, which denote
respectively a set of desired arguments, a set of optional arguments and a set of rejected arguments. We use Des(X )

to denote D, Opt(X ) to denote O and Rej(X ) to denote R. A DOR-partitioned VAF is called a DOR-VAF.

An admissible set which can be adopted as a position in a DOR-VAF, is a set that contains the desired arguments
and possibly some optional arguments, whose role is to help a desired argument to be acceptable to the position, by
“defending” it against its attackers. Formally:

Definition 14. Given a VAF 〈X ,A,V, η〉, an argument y is a defender of an argument x with respect to an audience
R if and only if there is a finite sequence a0, . . . , a2n (n > 0) such that x = a0, y = a2n, and ∀i,0 � i � (2n− 1), ai+1
successfully attacks ai with respect to R.

The new notion of a position is defined via:

Definition 15. Given a DOR-VAF 〈X ,A,V, η〉, a set S = Des(X ) ∪ Y where Y ⊆ Opt(X ), is a position if and only if
there exists at least one audience R w.r.t. which S is admissible and ∀y ∈ Y , ∃x ∈ Des(X ) such that y is a defender
of x. An audience w.r.t. which S is a position is said to be a corresponding audience of S.

This new notion of a position accommodates the third feature of practical reasoning: the preferences between
values are not given as an input on the basis of which the position is constructed, but are a result of constructing the
position.

6.2. Development of a position

Having formalised the concept of position in the previous section, we now consider processes for constructing
these. An overview of the approach is given in Section 6.2.1, then in Section 6.2.2, we present a formal dialogue
framework that we instantiate in Section 6.2.3 in order to check if a set of desired arguments is conflict-free for at
least one audience. We instantiate the dialogue framework in Section 6.2.4 to check if a conflict-free set of desired
arguments can be made acceptable. Finally, in Section 6.2.5 we combine these two instantiations of the dialogue
framework to construct positions, and we give an example of such a construction.

6.2.1. General idea
In order to build a position, one may start by considering the set of desired arguments. This set must be first tested

to demonstrate that there is at least one audience w.r.t. which it is conflict-free. It may be that this condition can only
be satisfied by imposing some value preferences. If we can satisfy this test we must next ensure that any defeated
argument in the set has a defender in the set w.r.t. at least one audience. To this end, some optional arguments may
be added to the set as defenders of defeated arguments and/or some additional constraints on the ordering of values
may be imposed. We would like such extensions of the position under development to be kept to a minimum. If the
process succeeds, then the set developed is a position and the set of constraints determined by the construction can
be extended into a corresponding audience of this position, by taking its transitive closure. Otherwise, the user has to
reconsider the partition of the set of arguments; such issues are the subject of ongoing research.

This construction can be presented in the form of a dialogue between two players. One, the opponent, outlines
why the set under development is not yet a position, by identifying arguments which defeat members of the set.
The other, the proponent, tries to make the set under development a position by extending it with some optional
arguments and/or some constraints between values. If the opponent has been left with no legal move available, then
the set of arguments played by the proponent is a position and the set of constraints advanced can be extended into
a corresponding audience. On the other hand, if the proponent has no legal move available then the set of desired
arguments cannot be extended into a position.

This presentation in a dialogue form has the main advantage of making clear why some constraints between values
must be imposed, and why some optional arguments must belong to the position. Moreover, it is highly appropriate to
the dialectical nature of practical reasoning identified above.
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6.2.2. Dialogue framework
A dialogue framework to prove the acceptability of arguments in Dung’s argument system has been developed

by [26] and refined in [13]. We extend this last framework to deal with the development of positions in a DOR-VAF.
Informally, a dialogue framework provides a definition of the players, the moves, the rules and conditions under

which the dialogue terminates, i.e. those situations wherein the current player has no legal move in the dialogue. In
order to capture the construction of positions, the dialogue framework we define comprises two players, PRO and
OPP. The rules are expressed in a so-called ‘legal-move function’. Regarding the definition of a move, since playing
an argument may be possible only if some preferences between values hold, a move must comprise an argument
and a set of value preferences. In particular, a player may propose some ordering of values, i.e. without any specific
argument being involved (for example, when he wants to make a set of desired arguments conflict-free for at least
one audience). To this end, it is convenient to extend the set of arguments of a DOR-VAF 〈X ,A,V, η〉 with an ‘empty
argument’ that we denote by _. This argument can be used if the proponent’s move is only to advance a value ordering.
We denote by X− the set X ∪ {_}.

Definition 16. Let 〈X−,A,V, η〉 be a DOR-VAF. A move in X− is a pair [P, 〈X,V 〉] where P ∈ {PRO,OPP}, X ∈X−,
and V ⊆ V × V . PRO denotes the proponent and OPP denotes the opponent.

For a move μ = [P, 〈X,V 〉], we use pl(μ) to denote P , arg(μ) to denote X, and val(μ) to denote V . The set of
moves is denoted by M with M∗ being the set of finite sequences of moves.

Let φ :M∗ → 2X
−×2V×V

be a legal-move function. A dialogue (or φ-dialogue) d about S = {a1, a2, . . . , an} ⊆ X
is a countable sequence μ01μ02 . . .μ0nμ1μ2 . . . of moves in X− such that the following conditions hold:

(1) pl(μ0k
) = PRO, arg(μ0k

) = ak , and val(μ0k
) = ∅ for 1 � k � n

(2) pl(μ1) = OPP and pl(μi) �= pl(μi+1), for i � 1
(3) 〈 arg(μi+1),val(μi+1)〉 ∈ φ(μ01μ02 . . .μ0nμ1 . . .μi).

In a dialogue about a set of arguments, the first n moves are played by PRO to put forward the elements of the set,
without any constraint on the value of these arguments (1), and the subsequent moves are played alternately by OPP
and PRO (2). The legal-move function defines at every step what moves can be used to continue the dialogue (3). We
do not impose the requirement that arg(μi+1) must attack arg(μi), because we want a dialogue to be sequential, so
we need to let OPP try all possible answers to any of PRO’s arguments, but only one at a time.

Let 〈X−,A,V, η〉 be a DOR-VAF, S ⊆ X and d = μ01 . . .μ0nμ1μ2 . . .μi be a finite φ-dialogue about S. We denote
μi by last(d) and write φ(d) for φ(μ01 . . .μ0nμ1μ2 . . .μi). In addition, argPRO(d) (resp. valPRO(d)) will denote the
set of arguments (resp. values) played by PRO in d .

Now that we have a way to define a dialogue and the rules of a dialogue, let us define when a dialogue terminates
(i.e. cannot be continued).

Definition 17. Let 〈X−,A,V, η〉 be a DOR-VAF, φ be a legal-move function, and d be a finite φ-dialogue. d cannot
be continued if φ(d) = ∅. d is said to be won by PRO if and only if d cannot be continued, and pl(last(d)) = PRO.

We introduce the notion of a definite attack and additional notations to instantiate the dialogue framework to
develop positions.

Definition 18. Let 〈X ,A,V, η〉 be a VAF, R be an audience, and x and y be two arguments of X . We say that x

definitely attacks y with respect to R if: 〈x, y〉 ∈ A and, η(x) = η(y) or 〈η(x), η(y)〉 ∈R∗.

Notice that, if x definitely attacks y, then x successfully attacks y. Now, given an audience R and x ∈ X−:

• A+
R(x) = {y ∈X | x successfully attacks y w.r.t. R},

• A++
R (x) = {y ∈X | x definitely attacks y w.r.t. R},

• A−
R(x) = {y ∈X | y successfully attacks x w.r.t. R},

• A−−(x) = {y ∈X | y definitely attacks x w.r.t. R},
R
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• A±
R(x) = A+

R(x) ∪A−
R(x).

Note that A+
R(_) = A−

R(_) = A−−
R (_) = A++

R (_) = ∅. Moreover, given a set S ⊆ X and ε ∈ {+,−,±,++,−−},
Aε
R(S) = ⋃

x∈S Aε
R(x).

6.2.3. Checking conflict-freeness
Let 〈X−,A,V, η〉 be a DOR-VAF and R be an audience. Des(X ) is not conflict-free w.r.t. R if there are two

desired arguments x and y such that y successfully attacks x, that is, 〈y, x〉 ∈ A and 〈η(x), η(y)〉 /∈ R. In order to
make Des(X ) conflict-free, the value of x should be made preferred to the value of y, that is, 〈η(x), η(y)〉 added to R.
This is possible only if R∪ {〈η(x), η(y)〉} is an audience.

Consider a dialogue d about Des(X ), based on a legal-move function where OPP plays moves using arguments
such as y and the value ordering is empty, and where PRO only exhibits constraints on the value of these arguments.
Then the set of arguments played by PRO in d (i.e. argPRO(d)) is Des(X ), possibly along with {_}. The value
orderings played by PRO in d (i.e. valPRO(d)) must be the audience w.r.t. which moves are made. Formally:

Definition 19. Let 〈X−,A,V, η〉 be a DOR-VAF, d be a dialogue about Des(X ) and R = valPRO(d). φ1 :M∗ →
2X

−×2V×V
is defined by:

• if the last move of d is by PRO (next move is by OPP),

φ1(d) =
⋃

y∈A−
R(argPRO(d))∩argPRO(d)

{〈y,∅〉};

• if the last move of d is by OPP (next move is by PRO), let y = arg(last(d)), V = ⋃
x∈A+

R(y)∩argPRO(d){〈η(x),

η(y)〉},
φ1(d) =

{ {〈_ ,V 〉} if R∪ V is an audience,
∅ otherwise.

In informal terms, the moves available to OPP under φ1 are to choose an argument (y) that is not only in the set of
arguments currently supported by PRO but also successfully attacks with respect to the audience R (another) argument
that PRO supports. If OPP can identify such an argument then the set argPRO(d) cannot be conflict-free with respect
to R. The response available to PRO requires such conflicts to be resolved by committing to value orderings under
which the previously successful attacks will now fail. Thus the moves available to PRO under φ1 are to indicate value
preferences V formed by the collection 〈η(x), η(y)〉 of arguments x it supports but are successfully attacked (w.r.t.
R) using the argument y advanced by OPP in the previous move. In this case, PRO will only be able to continue d ,
i.e. φ1(d) �= ∅, if it is still the case that the resulting value ordering relation, R∪ V , remains an audience.

The dialogue framework instantiated with the legal-move function φ1, is sound and complete w.r.t. the determina-
tion of an audience w.r.t. which a set of arguments is conflict-free as shown by the two following properties.

Property 1 (Soundness of φ1). Let 〈X ,A,V, η〉 be a VAF and S ⊆ X . If d is a φ1-dialogue about S won by PRO, then
S is conflict-free w.r.t. audience valPRO(d).

Lemma 1. Let 〈X ,A,V, η〉 be a VAF and S ⊆ X . If d is a φ1-dialogue about S, the last move of which is played by
PRO, then valPRO(d) is an audience.

Proof. Let S = {a1, . . . , an} ⊆ X . Let d be a φ1-dialogue about S, the last move of which is played by PRO. If the
length of d is lower than or equal to n, then all the moves of d have the form [PRO, 〈ai,∅〉] where ai is an argument of
S (1 � i � n). So valPRO(d) = ∅, and then valPRO(d) is obviously an audience. If the length of d is strictly greater
than n, then d has the form d = d ′.[OPP, 〈y,∅〉].[PRO, 〈_,V 〉], where V is, by definition, a set of value preferences
such that valPRO(d ′.[OPP, 〈y,∅〉])∪V is an audience. Since valPRO(d ′.[OPP, 〈y,∅〉])∪V = valPRO(d), valPRO(d)

is an audience. �
Lemma 2. Let 〈X ,A,V, η〉 be a VAF. Let d be a φ1-dialogue about a set S ⊆ X .
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• If d is of length strictly lower than |S| then argPRO(d) ⊆ S.
• If d is of length |S| or |S| + 1 then argPRO(d) = S.
• If d is of length strictly greater than |S| + 1 then argPRO(d) = S ∪ {_}.

Proof. Obvious, since by definition, the first |S| moves of d are by PRO and contain S’s arguments; all the following
moves by PRO contain the empty argument. �
Proof of Property 1. Let S ⊆ X . Let d be a φ1-dialogue about S won by PRO. Let R = valPRO(d). R is an audience
according to Lemma 1. Let us show that S is conflict-free w.r.t. R. Since d is won by PRO, the length of d is equal to
or greater than |S| and so, according to Lemma 2, S = argPRO(d) \ {_}. Moreover, since d is won by PRO, we have:

φ1(d) = ∅ =
⋃

y∈A−
R(argPRO(d))∩argPRO(d)

{〈y,∅〉}

so A−
R(argPRO(d)) ∩ argPRO(d) = ∅. In other words, no argument of argPRO(d) is successfully attacked by

argPRO(d) w.r.t. R. Therefore argPRO(d), and then S, is conflict-free w.r.t. audience valPRO(d). �
Property 2 (Completeness of φ1). Let 〈X ,A,V, η〉 be a VAF. If S ⊆ X is conflict-free w.r.t. at least one audience, and
S �= ∅, then there exists a φ1-dialogue about S won by PRO.

Notation 1. Let 〈X ,A,V, η〉 be a VAF. Let S ⊆ X . V(S) denotes the set of value preferences which makes ‘unsuccess-
ful’ any successful (but not definite) attack between arguments of S, that is: V(S) = ⋃

x∈S,y∈S s.t. 〈y,x〉∈A{〈η(x), η(y)〉}.

Lemma 3. Let 〈X ,A,V, η〉 be a VAF. A set S ⊆ X is conflict-free w.r.t. an audience R if and only if V(S) ⊆ R∗.

Proof. Let R be an audience such that V(S) ⊆ R∗. Let x ∈ S and y ∈ S such that 〈y, x〉 ∈ A. y does not successfully
attack x w.r.t. R since 〈η(x), η(y)〉 ∈ V(S). So S is conflict-free w.r.t. R. Now, let S be a conflict-free set w.r.t. an
audience R. For any x ∈ S and y ∈ S, if 〈y, x〉 ∈ A, then 〈η(x), η(y)〉 ∈ R∗. So V(S) ⊆ R∗. �
Lemma 4. Let 〈X ,A,V, η〉 be a VAF. Let d be a φ1-dialogue about a set S ⊆ X , of the form d = d ′.[OPP, 〈y,∅〉],
and let R= valPRO(d). Then

⋃
x∈A+

R(y)∩argPRO(d){〈η(x), η(y)〉} ⊆ V(S).

Proof. The length of d is greater than |S| + 1 since the last move of d is by OPP. So, according to Lemma 2,
argPRO(d) = S ∪ {_}. By definition, y belong to argPRO(d) and is not the empty argument, so y ∈ S. Any ar-
gument x ∈ argPRO(d) successfully attacked by y w.r.t. R, is not the empty argument, and belongs to S. So⋃

x∈A+
R(y)∩argPRO(d){〈η(x), η(y)〉} ⊆ ⋃

x∈S,y∈S s.t. 〈y,x〉∈A{〈η(x), η(y)〉}. �
Lemma 5. Let 〈X ,A,V, η〉 be a VAF and S ⊆ X . If d is a φ1-dialogue about S, then valPRO(d) ⊆ V(S).

Proof. Let S = {a1, . . . , an} ⊆ X . Let d be a φ1-dialogue about S. If the length of d is lower than or equal to n, then
all the moves of d have the form [PRO, 〈ai,∅〉] where ai is an argument of S (1 � i � n). So valPRO(d) = ∅, and then
valPRO(d) ⊆ V(S). Assume that if d is of a length k, with k > n, then valPRO(d) ⊆ V(S). Let us show that the prop-
erty is true if d is of length k + 1. d can have two forms. (1) If d = d ′.[OPP, 〈y,∅〉], then valPRO(d) = valPRO(d ′).
Since d ′ is of length k, valPRO(d ′) ⊆ V(S), and then valPRO(d) ⊆ V(S). (2) If d = d ′.[PRO, 〈_,V 〉], then d ′ is of
length k, and so valPRO(d ′) ⊆ V(S). According to Lemma 4, V ⊆ V(S). Consequently, since valPRO(d ′) ∪ V =
valPRO(d), we have valPRO(d) ⊆ V(S). �
Lemma 6. Let 〈X ,A,V, η〉 be a VAF. Let S ⊆ X be a conflict-free set for at least one audience, such that S �= ∅.
Let d be a φ1-dialogue about S of length equal to or greater than |S|, the last move of which is played by PRO.
If V(S) � (valPRO(d))∗, then there exist y ∈ X and V ⊆ V × V such that d.[OPP, 〈y,∅〉].[PRO, 〈_ ,V 〉] is a φ1-
dialogue.



T.J.M. Bench-Capon et al. / Artificial Intelligence 171 (2007) 42–71 57
Proof. Let d be a φ1-dialogue about S of length equal to or greater than |S|, the last move of which is played by
PRO. Let R = valPRO(d). According to Lemma 1, R is an audience. According to Lemma 3, since V(S) � R∗, S is
not conflict-free w.r.t. R. Consequently, there exists y ∈ argPRO(d) that successfully attacks some x ∈ argPRO(d)

w.r.t. R. In other words, there is some 〈y,∅〉 ∈ φ1(d), and d ′ = d.[OPP, 〈y,∅〉] is a φ1-dialogue. Now, let

V =
⋃

x∈A+
R(y)∩argPRO(d ′)

{〈η(x), η(y)〉}.

Let us show that valPRO(d ′)∪V is an audience. According to Lemma 5, valPRO(d ′) ⊆ V(S). According to Lemma 4,
V ⊆ V(S). So valPRO(d) ∪ V ⊆ V(S). Let T be an audience w.r.t. which S is conflict-free. According to Lemma 3,
V(S) ⊆ T ∗. So valPRO(d ′) ∪ V ⊆ T ∗ and then, (valPRO(d ′) ∪ V )∗ ⊆ T ∗. Consequently, valPRO(d ′) ∪ V is an
audience. Hence, 〈_ ,V 〉 ∈ φ1(d

′), and then d.[OPP, 〈y,∅〉].[PRO, 〈_ ,V 〉] is a φ1-dialogue. �
Proof of Property 2. Assume that S is a conflict-free set for at least one audience, and that S �= ∅. Let d1 =
[PRO, 〈a1,∅〉] . . . [PRO, 〈a|S|,∅〉] be the sequence of the first |S| moves of a dialogue about S. Let, for i � 2,

di = di−1.[OPP, 〈y,∅〉].[PRO, 〈_ ,V 〉]
where, given that Ri−1 = valPRO(di−1) = valPRO(di−1.[OPP, 〈y,∅〉]):

• y ∈A−
Ri−1

(argPRO(di−1)) ∩ argPRO(di−1),
• V = ⋃

x∈A+
Ri−1

(y)∩argPRO(di−1.[OPP,〈y,∅〉]){〈η(x), η(y)〉}, and

• valPRO(di) is an audience.

Lemma 6 proves that the sequence is well-defined. Let us show that function φ1 is strictly decreasing, that is, φ1(di) ⊂
φ1(di−1). Let Ri = valPRO(di). First, let us show that φ1(di) ⊆ φ1(di−1). Let

• Zi = {z ∈X | 〈z,∅〉 ∈ φ1(di)} = A−
Ri

(argPRO(di)) ∩ argPRO(di),

• Zi−1 = {z ∈X | 〈z,∅〉 ∈ φ1(di−1)} = A−
Ri−1

(argPRO(di−1)) ∩ argPRO(di−1).

According to Lemma 2, we have Zi = A−
Ri

(S) ∩ S and Zi−1 = A−
Ri−1

(S) ∩ S. Since valPRO(di−1) ⊆ valPRO(di),

A−
Ri

(S) ⊆ A−
Ri−1

(S). So Zi ⊆ Zi−1 and hence φ1(di) ⊆ φ1(di−1).
Second, let us show that there exists some pair in φ1(di−1) that does not belong to φ1(di). Consider the pair 〈y,∅〉

which is in φ1(di−1). We have y ∈A−
Ri−1

(argPRO(di−1))∩argPRO(di−1). According to Lemma 2, y ∈ A−
Ri−1

(S)∩S.
Hence there exists some x ∈ S such that 〈y, x〉 ∈ A and 〈η(x), η(y)〉 /∈ Ri−1

∗. Since Ri = Ri−1 ∪ V , for any x ∈ S

such that 〈y, x〉 ∈ A, 〈η(x), η(y)〉 ∈ Ri
∗. Consequently, y /∈ A−

Ri
(S) ∩ S, and hence 〈y,∅〉 /∈ φ1(di). So φ1(di) ⊂

φ1(di−1).
The empty set is the minimum of function φ1, and for this set, the dialogue is won by PRO. �
This instance of the dialogue framework can indeed be used to check if the set of desired arguments of a DOR-

partitioned VAF is conflict-free for at least one audience, and if so, to give such an audience. It is a corollary of the
two previous properties.

Corollary 1. Let 〈X ,A,V, η〉 be a DOR-VAF. If d is a φ1-dialogue about Des(X ) won by PRO, then Des(X ) is
conflict-free w.r.t. audience valPRO(d). If Des(X ) �= ∅ is conflict-free w.r.t. at least one audience, then there exists a
φ1-dialogue about Des(X ) won by PRO.

6.2.4. Making the arguments acceptable
Given a DOR-VAF 〈X ,A,V, η〉, let us assume that the set Des(X ) is conflict-free in the most restricted sense, that

is, there are no arguments x and y in Des(X ) such that x attacks y. For R be an audience we call the set containing the
desired arguments which aims at being a position the ‘position under development’. The reason why the position under
development would not be admissible w.r.t. R is that some arguments in it would not be acceptable to it w.r.t. R, i.e.
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there is (at least one) argument x in the position under development such that some argument y successfully attacks x

w.r.t. R and no argument z in the position successfully attacks y w.r.t. R.
Let us consider a dialogue d about the conflict-free set Des(X ), based on a legal-move function where OPP plays

moves in which the argument is y and the value ordering is empty, and where PRO plays in a way to make an argument
such as x acceptable. The arguments of the position under development are those played by PRO. The value orderings
played by PRO (i.e. valPRO(d)) must be the audience w.r.t. which the moves are made.

We identify four ways to make an argument x acceptable to the position under development:

(W1) Add to the position under development an optional argument z which definitely attacks y and which is not in
conflict with any argument of the position under development.

(W2) Make the value of x preferred to the value of y, if x is not definitely attacked by y.
(W3) Add to the position under development an optional argument z which successfully but not definitely attacks y

and which is not in conflict with any argument of the position under development.
(W4) Add to the position under development an optional argument z which successfully attacks y, and which might

be successfully but not definitely attacked by the position under development or which might successfully but
not definitely attack the position under development; the addition of value preferences to the current audience
in order for the addition of z to the position to be correct must form an audience.

The following definition gives the formal translations of (W1) through (W4) as dialogue moves.

Definition 20. Let 〈X−,A,V, η〉 be a DOR-VAF, d be a dialogue about Des(X ), R = valPRO(d). φ2 : M∗ →
2X

−×2V×V
is defined by:

• if pl(last(d)) = PRO (next move is by OPP), then

φ2(d) =
⋃

y∈(A−
R(argPRO(d))\A+

R(argPRO(d)))

{〈y,∅〉};

• if pl(last(d)) = OPP and arg(last(d)) = y (next move is by PRO), let:

Z1 = (Opt(X ) ∩A−−
R (y)) \A±

R(argPRO(d)),

Z2 = argPRO(d) ∩ (A+
R(y) \A++

R (y)),

Z3 = (Opt(X ) ∩ (A−
R(y) \A−−

R (y))) \A±
R(argPRO(d)),

Z4 = {z ∈ Z′
4 |R∪ VXY(z) is an audience} with:

Z′
4 = (Opt(X ) ∩A−

R(y)) ∩ ((A+
R(argPRO(d)) \A++

R (argPRO(d)))

∪ (A−
R(argPRO(d)) \A−−

R (argPRO(d)))),

and, given z ∈ Z′
4:

X(z) = argPRO(d) ∩ (A−
R(z) \A−−

R (z)),

Y (z) = argPRO(d) ∩ (A+
R(z) \A++

R (z)),

VXY(z) =

⎧⎪⎨
⎪⎩

(
⋃

x∈X(z){〈η(z), η(x)〉} ∪ ⋃
w∈Y(z){〈η(w),η(z)〉}

∪ {〈η(z), η(y)〉}) if η(z) �= η(y) and 〈η(z), η(y)〉 /∈ (R)∗,
(
⋃

x∈X(z){〈η(z), η(x)〉} ∪ ⋃
w∈Y(z){〈η(w),η(z)〉}) otherwise.

Then:

(W1) if Z1 �= ∅, then φ2(d) =
⋃
z∈Z1

{〈z,∅〉},

or

(W2) if Z2 �= ∅, then φ2(d) =
⋃

{〈_ , {〈η(z), η(y)〉}〉},

z∈Z2
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or

(W3) if Z3 �= ∅, then φ2(d) =
⋃
z∈Z3

{〈z, {〈η(z), η(y)〉}〉},

or

(W4) if Z4 �= ∅, then φ2(d) =
⋃
z∈Z4

{〈z,VXY(z)〉},

or

if Z1 ∪ Z2 ∪ Z3 ∪ Z4 = ∅, then φ2(d) = ∅.

Each of these four ways would be tried in turn. In responding to an attack, the proponent will wish to maintain
as much flexibility to respond to further attacks as possible. The order in which the four ways are tried is thus deter-
mined by the desire to make the least committal move at any stage. Flexibility is limited in two ways. If the position
is extended by including an additional argument, as in W1, W3 and W4, the potential attackers of the position is
increased since this argument must now also be defended by the position. If a commitment to a value ordering is
made, as in W2, W3 and W4, this must be subsequently respected, which restricts the scope to make such moves
in future responses. We regard this second line of defence as more committal that the first. Therefore W1 should be
tried first since it imposes no constraints on the audience, although it does extend the position. W2 should be selected
next because, although it does constrain the audience to adopt a certain value preference, it does not introduce any
additional arguments to the position, and so does not give rise to any additional attackers. If W3 is resorted to, both
the position is extended and a value ordering commitment is made, but the argument introduced is compatible with the
existing position. W4 should be the final resort because it extends the position, constrains the audience, and requires
further constraints to be imposed to enable it to cohere with the existing position.

The dialogue framework instantiated with the legal-move function φ2, is correct and complete w.r.t. the determina-
tion of an audience for which the conflict-free set of desired arguments is admissible for at least one audience:

Property 3 (Soundness of φ2). Let 〈X−,A,V, η〉 be a DOR-VAF such that Des(X ) is conflict-free. If d is a φ2-dialogue
about Des(X ) won by PRO, then argPRO(d) \ {_} is a position such that valPRO(d) is a corresponding audience.

Lemma 7. Let 〈X ,A,V, η〉 be a VAF. Let v1, v2 ∈ V and R an audience. If 〈v1, v2〉 /∈ R∗ and v1 �= v2, then R ∪
{〈v2, v1〉} is an audience.

Proof. Let us assume that 〈v1, v2〉 /∈ R∗ and v1 �= v2. If 〈v2, v1〉 ∈ R, then obviously, R ∪ {〈v2, v1〉} is an audience.
If 〈v2, v1〉 /∈ R, let us assume that R ∪ {〈v2, v1〉} is not an audience. Therefore, there would exist v ∈ V such that
〈v, v〉 ∈ (R ∪ {〈v2, v1〉})∗. Since v1 �= v2, we know that 〈v2, v1〉 �= 〈v, v〉. So 〈v, v〉 /∈ R ∪ {〈v2, v1〉}, but 〈v, v〉 ∈
(R∪ {〈v2, v1〉})∗. Hence, there would be in R a set of pairs such that:

{〈v, x1〉, 〈x1, x2〉, . . . , 〈xi−1, xi〉, 〈xi, v2〉, 〈v1, xi+1〉, 〈xi+1, xi+2〉, . . . , 〈xn, v〉}
for some n � 0. Then R∗ would contain 〈v, v2〉, 〈v1, v〉, and 〈v1, v2〉. This is not possible since we have made the
assumption that 〈v1, v2〉 /∈ R∗. Consequently, such a sequence does not exist and R∪ {〈v2, v1〉} is an audience. �
Lemma 8. Given a DOR-VAF 〈X−,A,V, η〉 such that Des(X ) �= ∅ is conflict-free, and a finite φ2-dialogue d ,
argPRO(d) is conflict-free w.r.t. the audience valPRO(d).

Proof. We prove the result by induction on the number of elements of argPRO(d). If argPRO(d) only contains
Des(X ), valPRO(d) = ∅, then argPRO(d) is conflict-free w.r.t. the audience valPRO(d). Suppose now that the prop-
erty is true for any φ2-dialogue d such that argPRO(d) contains at most n−1 elements, for some n > |Des(X )|. Let d

be a φ2-dialogue such that argPRO(d) contains n elements. Suppose first that the last move of d is played by PRO: d

has the form d = d ′.[OPP, 〈y,∅〉].[PRO, 〈z,V 〉], where y ∈ A−
valPRO(d ′)(argPRO(d ′)) \A+

valPRO(d ′)(argPRO(d ′)) and,
given R= valPRO(d ′) = valPRO(d ′.[OPP, 〈y,∅〉]) and d ′′ = d ′.[OPP, 〈y,∅〉], either:
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• 〈z,V 〉 is played according to W1; in this case, z ∈ (Opt(X ) ∩ A−−
R (y)) \ A±

R(argPRO(d ′′)) and V = ∅. Since
z /∈ A±

R(argPRO(d ′′)), z is conflict-free w.r.t. R with argPRO(d ′′), and R ∪ V = R is an audience. Moreover,
since y /∈ A+

R(argPRO(d ′)) and y ∈ A++
R (z), z /∈ argPRO(d ′). Consequently, d ′ contains strictly less than n

elements. Thus, by induction hypothesis, argPRO(d ′) is conflict-free w.r.t. R. Hence, argPRO(d ′)∪{z} is conflict-
free w.r.t. R∪ V .

• 〈z,V 〉 is played according to W2; in this case, z = _ and V = 〈η(t), η(y)〉 for some t ∈ argPRO(d ′′) ∩ (A+
R(y) \

A++
R (y)). z is obviously conflict-free with argPRO(d ′′) w.r.t. R and R∪V . Moreover, since t ∈A+

R(y)\A++
R (y),

we have 〈η(y), η(t)〉 /∈ (R)∗ and η(t) �= η(y). So, by Lemma 7, R∪V is an audience. Assuming that the argument
z is different from any argument played in argPRO(d ′) (and especially any _), then d ′ contains strictly less than n

elements. Thus, by induction hypothesis, argPRO(d ′) is conflict-free w.r.t. R. Hence, argPRO(d ′)∪{z} is conflict-
free w.r.t. R∪ V .

• 〈z,V 〉 is played according to W3; in this case, z ∈ (Opt(X ) ∩ (A−
R(y) \ A−−

R (y))) \ A±
R(argPRO(d ′′)), and

V = 〈η(z), η(y)〉. Since z /∈ A±
R(argPRO(d ′′)), z is conflict-free w.r.t. R with argPRO(d ′′). Moreover, since z ∈

A−
R(y) \ A−−

R (y), 〈η(y), η(z)〉 /∈ (R)∗ and η(y) �= η(z). So, by Lemma 7, R ∪ V is an audience. Now, since
y /∈ A+

R(argPRO(d ′)) and y ∈ A+
R(z), z /∈ argPRO(d ′). Consequently, d ′ contains strictly less than n elements.

Thus, by induction hypothesis, argPRO(d ′) is conflict-free w.r.t. R. Hence, argPRO(d ′)∪{z} is conflict-free w.r.t.
R∪ V .

• 〈z,V 〉 is played according to W4; in this case, z ∈ (Opt(X )∩A−
R(y))∩((A+

R(argPRO(d ′′))\A++
R (argPRO(d ′′)))

∪ (A−
R(argPRO(d ′′)) \A−−

R (argPRO(d ′′)))) and V = VXY(z) such that R∪ VXY(z) is an audience. z is in conflict
with argPRO(d ′′) w.r.t. R, but not w.r.t. R ∪ V : actually, for any argument x ∈ argPRO(d ′′) that successfully
but not definitely attacks z w.r.t. R (i.e. x ∈ X(z)), 〈η(z), η(x)〉 ∈ V , and for any argument w ∈ argPRO(d ′′)
that is successfully but not definitely attacked by z w.r.t. R (i.e. w ∈ Y(z)), then 〈η(w),η(z)〉 ∈ V . Now, since
y /∈ A+

R(argPRO(d ′)) and y ∈ A+
R(z), z /∈ argPRO(d ′). Consequently, d ′ contains strictly less than n elements.

Thus, by induction hypothesis, argPRO(d ′) is conflict-free w.r.t. R. Hence, argPRO(d ′)∪{z} is conflict-free w.r.t.
R∪ V .

Since argPRO(d ′) ∪ {z} = argPRO(d), and R ∪ V = valPRO(d), argPRO(d) is conflict-free w.r.t. the audience
valPRO(d). Suppose now that the last move is played by OPP. Then d has the form d = d ′.[OPP, 〈y,∅〉] where d ′
is a φ2-dialogue such that argPRO(d ′) = argPRO(d) and valPRO(d ′) = valPRO(d). Therefore, argPRO(d ′) contains
n elements. We have just proved that in this case, argPRO(d ′) is conflict-free w.r.t. valPRO(d ′), hence argPRO(d) is
w.r.t. valPRO(d). �
Proof of Property 3. Let d be a φ2-dialogue about Des(X ) won by PRO. According to Lemma 8, argPRO(d) is
conflict-free w.r.t. audience valPRO(d). Since d is won by PRO, φ2(d) = ∅, and hence:

A−
valPRO(d)(argPRO(d)) \A+

valPRO(d)(argPRO(d)) = ∅.

In other words, every argument in argPRO(d) is acceptable to argPRO(d) w.r.t. valPRO(d). Consequently, argPRO(d)

is admissible w.r.t. valPRO(d). Since d is a φ2-dialogue about Des(X ), Des(X ) ⊆ argPRO(d). Any optional argument
played by PRO in d is used to make acceptable another argument of argPRO(d) that would not be otherwise acceptable
to argPRO(d). No rejected argument is played by PRO. The empty argument has no role in the admissibility of
argPRO(d). Consequently, argPRO(d) \ {_} is a position, and valPRO(d) is a corresponding audience. �
Property 4 (Completeness of φ2). Let 〈X−,A,V, η〉 be a DOR-VAF such that Des(X ) �= ∅ is conflict-free. If
〈X−,A,V, η〉 has at least one position, then there exists a φ2-dialogue about Des(X ) won by PRO.

Lemma 9. Let 〈X−,A,V, η〉 be a DOR-VAF such that Des(X ) �= ∅ is conflict-free. Let d be a φ2-dialogue of
length greater than |Des(X )|, the last move of which is played by PRO. Let S be a minimal position that contains
argPRO(d) \ {_}, and R be a minimal corresponding audience of S. If S �= argPRO(d) \ {_} or (R)∗ �= (valPRO(d))∗,
then there exist y ∈ X , z ∈ X− and V ⊆ V × V such that the dialogue d ′ = d.[OPP, 〈y,∅〉].[PRO, 〈z,V 〉] is a φ2-
dialogue and S is minimal such that S is a position and contains argPRO(d ′) \ {_}, and R is a minimal corresponding
audience of S that contains valPRO(d ′).
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Proof. Since argPRO(d) \ {_} �= S or (valPRO(d))∗ �= R∗, and since argPRO(d) \ {_} ⊆ S, (valPRO(d))∗ ⊆ R∗,
the minimality of S and the corresponding audience R imply that argPRO(d) is not admissible w.r.t. valPRO(d).
From Lemma 8, we know that argPRO(d) is conflict-free w.r.t. valPRO(d). Thus A−

valPRO(d)(argPRO(d)) \
A+

valPRO(d)(argPRO(d)) �= ∅. Hence, φ2(d) �= ∅. Let y ∈ A−
valPRO(d)(argPRO(d)) \ A+

valPRO(d)(argPRO(d)). Since
argPRO(d) \ {_} ⊆ S, (valPRO(d))∗ ⊆ R∗, and S admissible w.r.t. R, ∃z ∈ {_} ∪ (S ∩ Opt(X )) and ∃V ⊆ R∗ such
that, either:

• y ∈A++
valPRO(d)(z); in this case, z ∈ Z1, V = ∅.

• V = 〈η(t), η(y)〉 for t ∈ argPRO(d) ∩ (A+
valPRO(d)(y) \A++

valPRO(d)(y)) = Z2 and z = _.

• y ∈A+
valPRO(d)(z) \A++

valPRO(d)(z) and V = 〈η(z), η(y)〉; in this case, z ∈ Z3.

• y ∈A+
valPRO(d)(z) and z is in conflict with argPRO(d) w.r.t. valPRO(d), but, for any argument x that successfully

but not definitely attacks z, 〈η(z), η(x)〉 ∈ V , for any argument w that is successfully but not definitely attacked
by z, 〈η(w),η(z)〉 ∈ V , and if η(z) �= η(y), 〈η(z), η(y)〉 ∈ V ; in this case, z ∈ Z4.

Consequently, 〈z,V 〉 ∈ φ2(d.[OPP, 〈y,∅〉]). Thus, d ′ = d.[OPP, 〈y,∅〉].[PRO, 〈z,V 〉] is a φ2-dialogue.
We know that argPRO(d ′) = argPRO(d) ∪ {z}, argPRO(d ′) \ {_} ⊆ S, and (valPRO(d ′))∗ = (valPRO(d) ∪ V )∗ ⊆

R∗. There remains to prove that no set S′ ⊂ S that contains argPRO(d ′) \ {_}, and no R′ ⊆ V × V such that
(valPRO(d ′))∗ ⊆ (R′)∗ ⊂ R∗, are such that:

• S′ is admissible w.r.t. R. Suppose that such a set S′ exists. Then argPRO(d) \ {_} ⊆ argPRO(d ′) \ {_}. Hence,
argPRO(d) \ {_} ⊂ S. Since S is minimal such that S contains argPRO(d) \ {_} and S is admissible w.r.t. R, S′ is not
admissible w.r.t. R.

• R′ is an audience w.r.t. which S is admissible. Suppose that such an R′ exists. Then (valPRO(d))∗ ⊆
(valPRO(d ′))∗, and hence (valPRO(d))∗ ⊂ R∗. Since R is minimal such that R∗ contains (valPRO(d))∗ and R
is an audience w.r.t. which S is admissible, R′ is not an audience. �
Proof of Property 4. Let S be a minimal subset of X such that S is a position, and R be a minimal corre-
sponding audience of S. Given Des(X ) = {a1, . . . , an}, let d1 = [PRO, 〈a1,∅〉] . . . [PRO, 〈an,∅〉]. Given j > 1, let
dj = dj−1.[OPP, 〈y,∅〉].[PRO, 〈z,V 〉] if argPRO(dj−1) �= S and (valPRO(dj−1))

∗ �= R∗; 〈y,∅〉 ∈ φ2(dj−1) and
〈z,V 〉 ∈ φ2(dj−1.[OPP, 〈y,∅〉]). Lemma 9 proves that the sequence is well defined, and that, when argPRO(dj ) = S

and (valPRO(dj ))
∗ = R∗, there exists j � 1 such that dj is a φ2-dialogue about Des(X ) won by PRO (since S is

admissible w.r.t. R, A−
valPRO(dj ) \A+

valPRO(dj ) = ∅). �
6.2.5. Development of positions

Let us consider the following legal-move function:

Definition 21. Let 〈X−,A,V, η〉 be a DOR-VAF, d be a dialogue about Des(X ). φ3 :M∗ → 2X
−×2V×V

is defined by:

• if pl(last(d)) = PRO (next move is by OPP), then, if φ1(d) �= ∅, then φ3(d) = φ1(d) else φ3(d) = φ2(d);
• if pl(last(d)) = OPP (next move is by PRO), if arg(last(d)) ∈ Des(X ) then φ3(d) = φ1(d), else φ3(d) = φ2(d).

Property 5. Let 〈X ,A,V, η〉 be a DOR-VAF. If d is a φ3-dialogue about Des(X ) won by PRO, then argPRO(d) \ {_}
is a position such that valPRO(d) is a corresponding audience. If Des(X ) �= ∅ is contained in a position, then there
exists a φ3-dialogue about Des(X ) won by PRO.

Proof. Consequence of Corollary 1, Properties 3 and 4. �
Example 2. Consider the following VAF 〈X ,A,V, η〉 shown in Fig. 2.

The arguments are the vertices of the graph and the edges represent the elements of the attack relation. The set
of values is V = {v1, v2, v3, v4, v5}. The value associated to an argument is indicated just below or just above the
argument. The desired arguments are plain-circled, the optional arguments are dot-circled, and the rejected arguments
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Fig. 2. VAF example for position development.

are not circled. Let us develop a position. We start a φ3-dialogue d about Des(X ). The first moves of d contain the
desired arguments, i.e. μ01μ02μ03μ04μ05μ06μ07μ08 = [PRO, 〈c,∅〉][PRO, 〈f,∅〉] [PRO, 〈i,∅〉] [PRO, 〈l,∅〉][PRO,

〈m,∅〉][PRO, 〈n,∅〉][PRO, 〈o,∅〉][PRO, 〈p,∅〉]. Then, to ensure the conflict-freeness of Des(X ) w.r.t. one audience:

μ1 = [OPP, 〈m,∅〉]
μ2 = [PRO, 〈_, {〈v3, v1〉}〉].

Now, to make the arguments of Des(X ) acceptable:

μ3 = [OPP, 〈b,∅〉]
μ4 = [PRO, 〈a,∅〉] (W1)

μ5 = [OPP, 〈e,∅〉]
μ6 = [PRO, 〈_, {〈v2, v1〉}〉] (W2)

μ7 = [OPP, 〈h,∅〉]
μ8 = [PRO, 〈g, {〈v4, v2〉}〉] (W3)

μ9 = [OPP, 〈j,∅〉]
μ10 = [PRO, 〈_, {〈v4, v3〉}〉] (W2)

μ11 = [OPP, 〈k,∅〉]
μ12 = [PRO, 〈j, {〈v3, v2〉, 〈v3, v5〉}〉]. (W4)

d = μ01 . . .μ08μ1μ2μ3μ4μ5μ6μ7μ8μ9μ10μ11μ12 is a φ3-dialogue won by PRO. The set argPRO(d) = Des(X ) ∪
{a,g, j} is a position, and valPRO(d) = {〈v4, v3〉, 〈v3, v2〉, 〈v4, v2〉, 〈v2, v1〉, 〈v3, v1〉, 〈v3, v5〉} is one of its corre-
sponding audiences.

At certain points we may be presented with a choice of arguments to use with W1–W4. For example b may be
attacked by a or, if v1 is not preferred to v2, q . Similarly there are choices when we declare value preferences: in the
example we can either prevent the attack of j on g succeeding, or choose preferences which lead to i or o defeating
j . Such choices may, if badly made, lead to backtracking. Some heuristics seem possible to guide choices: it is better
to attack an undesired argument with an argument of its own value where possible, as with a and b above, as this
attack will succeed even if the value order changes. Also, when a value preference is required, a choice which keeps
an optional argument available is better than one which defeats it, as the argument may be required to defeat a future
attack, as in the example where j is required to defeat k.

We have illustrated our approach with an abstract example, as producing a VAF substantial enough to illustrate all
the features requires a thorough consideration of the details of the scenario to be represented, and of the arguments
relevant to that scenario. Substantial VAFs have been reported in the legal domain [7], for ethical reasoning [3], and
for political debate [5]. A more extensive example, summarising the analysis fully presented in [3], may be found in
Appendix B. Although these papers used the VAFs to analyse and explain disagreement, they are equally open to the
identification of audiences using the techniques described here. Law, in particular, gives a very natural partitioning
of arguments: there are typically arguments that must be accepted if the party is to win its case, and others that
represent well established precedents that also must be accepted. Equally the arguments which would be decisive for
the opposing party must be rejected. The remaining indifferent arguments derive from precedents of lesser weight, and
from controversial interpretations. Our technique will enable an interested party to identify which of these debatable
precedents and interpretations are needed to support his case, and identifies the key value clashes. Moreover it shows



T.J.M. Bench-Capon et al. / Artificial Intelligence 171 (2007) 42–71 63
how the value clashes were implicitly resolved in past cases, and how they need be resolved if the current case is to
be won.

7. Related work

7.1. Acceptance

In this subsection our main purpose is to clarify the relation between the concepts of subjective (objective) ac-
ceptance and credulous (sceptical) acceptance as used in standard argument systems. In addition we consider the
behaviour of the algorithm FIND AUDIENCE in rather more discursive terms relating it to the problems of testing a set
arguments for admissibility or stability as defined in Definition 1.

In earlier work, e.g. [23, p. 369], the Argument Systems of Dung [19] have been considered as VAFs in which a
single value is associated with all arguments (e.g. “truth”). We argue that a rather more subtle interpretation—also
relevant to comparisons with the preference-based schema introduced by Amgoud and Cayrol [1]—is appropriate.

We remarked earlier that Definitions 1 and 5 describe equivalent structures when the underlying audience is R= ∅,
i.e. the universal audience. Thus one could view the apparent shift from intractability in Dung’s framework, e.g. as
evidenced by the results of [17,21,22], to the polynomial-time procedures available for VAFs, e.g. as described in
Fact 6, Theorem 11 as indicative of how increased awareness of the underlying relationships offering reasons for
acceptance of arguments within an argument system can assist in resolving issues. In order to amplify this point, rather
than treating the standard systems of [19] as “VAFs in which only a single value is present”, we may consider these
as VAFs (in the sense of Definition 2) but in which one has (initially) no knowledge regarding the values associated
with arguments or the relative orderings of these values that are held by protagonists. Thus, while one has (it may
be presumed) agreement on the set of values (V) germane to the framework and on the manner in which these relate
to individual arguments—the mapping η :X → V—in the absence of any indication of value priorities, the case for
some argument, x say, being acceptable can only be “rationalised” in terms of the assumption that “every attack is
successful”. In other words the effective audience is R = ∅—the universal audience—and an attack by y on x must,
ceteribus paribus, be deemed to succeed, even when η(y) �= η(x), since a rational disputant has no basis to reject the
attack 〈y, x〉 in itself : to promote x its defenders must subsequently resort to finding attacks on y. Within the VAF

framework, however, defenders of x have a rationale for rejecting the attack by y when η(y) �= η(x): by indicating
that they subscribe only to audiences wherein η(x) 
R η(y) so that the attack 〈y, x〉 is unsuccessful with respect to
such audiences. In this way further debate concerning x takes place not in the context of the universal audience but in
the context of the audience R= {〈η(x), η(y)〉}.

In summary, the revelation of successive value orderings, assuming these to be consistent in that R remains an
audience, may lead eventually to R being a specific audience: from the initial analysis of 〈X ,A,V, η〉, knowledge and
conditions on R have evolved from the state where nothing is assumed—R= ∅—to one in which a specific audience
has been revealed, yielding exactly one (rational with respect to this audience) interpretation of which arguments are
acceptable. We observe that in moving from R = ∅, the computational effect of adding 〈v, v′〉 to R is modelled by
removing from the directed graph structure 〈X ,A〉 all edges 〈x, y〉 for which η(x) = v′ and η(y) = v, so that (given
the presence of at least two different values in any directed cycle of 〈X ,A〉) specific audiences will result in some
directed acyclic graph structure:9 that such forms have a unique, non-empty preferred extension is immediate from
[19, Theorem 30], whose proof easily yields a polynomial-time algorithm for its construction.

We note that the preference-based approach of [1] can also be treated as a mechanism to explain progression from
an unrestricted argument system to an acyclic form: the response to an attack by y on x being that the argument x

“is preferred to” the argument y and thence the attack 〈y, x〉 may be eliminated from 〈X ,A〉 so that following the
declaration of some finite number of preferences the resulting graph is acyclic. Unlike the interaction between Defini-
tions 1 and 5 which we may relate via VAFs and the universal audience, analogues between VAF and preference-based
schemes are less clearly defined: while it is certainly the case that preference-based frameworks can be interpreted in
terms of VAFs in which every argument is associated with a unique value10 such an approach is unappealing, although

9 It is, of course, possible that the reduction of A induced by an audience R defines an acyclic graph without R being a specific audience.
10 In the same way, VAFs can be considered as preference-based frameworks where the argument preference relation is determined via the value
orderings. Where the preference relation supplies a total order, each argument will need to have a distinct value.
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it does emphasise that in such frameworks, unlike VAFs, the expression of a preference for one argument over another
has no implications for other choices that need to be made: in scenarios where VAF structures have been used, e.g. the
suite of legal examples presented in [9], typically the number of distinct values is “small” relative to the number of
arguments. A further important distinction between these two models can be seen in terms of our earlier discussion of
mechanisms for responding to an attack on x by y. Thus, in all three schemes, i.e. those of [1,8,19]—one option is to
counterattack y; in [1,8] there is the further possibility of “not recognising” the attack 〈y, x〉. In [1] a preference for x

over y is expressed: these, however, are not “explained” and do not have implications for subsequent preferences that
might be indicated.11 The VAF approach, however, requires an additional rationale for such a preference to be given:
the attack by y on x fails because the defender of x regards its associated value, η(x), as having greater importance
than that of its attacker. One significant consequence of this implicit justification is that its speaker must act consis-
tently regarding other attacks, e.g. an argument z with η(z) = η(y) can not be used to counterattack an argument w

with η(w) = η(x).

7.2. Hunter’s notion of impact for an audience

Another approach in which computational use is made of the notion of audience is that of Hunter [25]. Hunter
adopts a notion of argument in which an argument is a pair comprising a set of formulae (the support) and a formula
(the consequent) which can be classically derived from the support. Different arguments will have different resonances
for different audiences. To calculate this each agent has a desideratabase comprising a set of propositional formulae
desiderata which the agent wishes to be satisfied, and a weighting which can be seen as a ranking over the set of
possible worlds representing the set of classical interpretations given by the propositional language of the desiderata.
Now an argument will have resonance for an agent if one or more desiderata (or their negations) can be derived from
the support, and the weighting will determine the degree of resonance. Hunter uses this, together with the propositional
cost of an argument (lengthier arguments are more expensive) to determine the impact of an argument.

Hunter’s notion of arguments differs from ours in that we ascribe values to arguments. One form of argument
that would link arguments to values is that of [6]. In their approach an argument justifying an action instantiates the
following argument scheme:

• in the current circumstances S
• performing action A
• will result in new circumstances R
• which include goal G
• which promotes value V.

Viewed in Hunter’s terms we can see G as a desideratum derivable from the support comprising the theory which
states that R is a consequence of performing A in S. Additionally we now also have V, the reason why the goal is
desired. Introducing V has two important effects:

(1) it can distinguish two different arguments when agents wish to bring about the same state of affairs for different
reasons: for example, one may wish to restore fox hunting on the economic grounds of protecting livestock, or
simply for the hedonistic pleasure the activity affords.

(2) it can relate two states of affairs in so far as they promote the same value: for example poverty can be alleviated
either by distributing food, or by distributing money.

It is in this ability to relate desirable states of affairs that values show their worth. It means that we can work
with a smaller number of values than desiderata, that we can add a desired state of affairs without need to extend our
set of values, and most importantly that desiring one state of affairs means that, in order to be consistent, we must
also and equally desire other states of affairs. This greatly simplifies the weighting, and additionally means that some

11 That is, other than the requirement that the irreflexive transitive closure of the preference relation be asymmetric, e.g. given three arguments x,
y, and z with A = {〈x, z〉, 〈z, y〉, 〈y, x〉} it cannot be claimed (within the schema of [1]) that “x is preferred to y and y is preferred to z and z is
preferred to x”.
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weightings can be seen as inconsistent since they differentially weight states of affairs relating to the same value. This
is essential if arguments attempting to change audience membership, which are often required for persuasion, are to be
possible. We would therefore argue that the use of values significantly enhances Hunter’s representation with respect
to practical reasoning. Moreover by replacing his notion of a desideratabase with a set of values and their ranking we
can still make use of his theoretical notion of resonance to assess the impact of an argument for an audience.

7.3. Concluding remarks

In this paper we have put forward a framework in which practical reasoning—reasoning about what should be
done in a given situation—may be addressed. The distinctive features of practical reasoning derive from the accept-
ability of such arguments depending on the importance given to the values and purposes advanced if the argument
is accepted by the audience to whom it is addressed. Accordingly we have extended the Argumentation Framework
of Dung by associating arguments with the values advanced by their acceptance. From this property we can derive
preferences between arguments with respect to particular audiences, and thus account for disagreements between dif-
ferent audiences. We have explored the decision problems that arise in this extended framework, presented a number
of complexity results relating to these decision problems, and discussed the relation of the extended framework to the
underlying abstract framework.

Another important question concerns how priorities between values can be determined by an agent in the course
of practical reasoning. We have presented a dialogue mechanism for determining these priorities, and shown it to be
sound and complete.

Practical reasoning is a crucial activity for any intelligent agent, since it is through action that intelligence manifests
itself. The importance of the topic merits more investigation than it has so far been given, and we believe that we have
provided a rich framework in which further investigation can be carried out.

Appendix A

We present here proofs of the complexity results stated in Section 4.1.

Proof of Theorem 8. For membership in NP simply non-deterministically choose an audience α from the k! available
then test if α ∈ χ(R) and x ∈ P(〈X ,A,V, η〉, α), the latter test being accomplished by a polynomial-time algorithm,
such as that given in [9].

We prove that SBA is NP-hard for the special case of R being the universal audience, using a reduction from 3-SAT.
Given an instance Φ(Zn) = ∧m

i=1(yi,1 ∨ yi,2 ∨ yi,3) of this we construct a VAF 〈XΦ,AΦ,VΦ,η〉 and argument x such
that 〈〈XΦ,AΦ,VΦ,η〉, x,∅〉 is a positive instance of SBA if and only if Φ(Zn) is satisfiable.

The framework uses 4n + m + 1 arguments which we denote {Φ,C1, . . . ,Cm} ∪ ⋃n
i=1{pi, qi, ri , si}. The rela-

tionship AΦ contains attacks 〈Cj ,Φ〉 for each 1 � j � m and attacks {〈pi, qi〉, 〈qi, ri〉, 〈ri , si〉, 〈si ,pi〉} for each
1 � i � n. The remaining attacks in AΦ are as follows. For each clause yi,1 ∨ yi,2 ∨ yi,3 of Φ(Zn) if yi,j is the literal
zk , the attack 〈pk,Ci〉 is included in AΦ ; if yi,j is the literal ¬zk , then the attack 〈qk,Ci〉 is added.

The final part of the construction is to describe the value set VΦ and association of arguments with values prescribed
by η. The set VΦ contains 2n + 1 values {con} ∪ ⋃n

i=1{posi ,negi} and the mapping η assigns the value con to Φ and
each argument in {C1, . . . ,Cm}. Finally the arguments {pi, ri} are mapped to the value posi and the arguments {qi, si}
to the value negi . To complete the instance we set x to be Φ . We note that the constructed system satisfies the
requirement that all cycles contain at least two distinct values.

Fig. 3 illustrates the construction for the CNF.

Φ(x,y, z) = (x ∨ y ∨ z)(¬x ∨ y ∨ ¬z)(x ∨ ¬y ∨ z).

We claim that 〈〈XΦ,AΦ,VΦ,η〉,Φ,∅〉 is a positive instance of SBA if and only if Φ(Zn) is satisfiable.
Suppose first that Φ(Zn) is satisfied by an instantiation 〈a1, a2, . . . , an〉 of Zn. Consider any specific audience

α for which posi 
α negi if ai = �, negi 
α posi if ai = ⊥, and v 
α con for all v ∈ VΦ/{con}. Since Φ(Zn)

is satisfied, for each Ci there is some literal yi,j that is assigned � in the instantiation 〈a1, . . . , an〉. Consider the
arguments {pk, qk, rk, sk} for which yi,j ∈ {zk,¬zk}. If yi,j = zk then pk is acceptable in {pk, rk} and, in addition,
pk successfully attacks Ci with respect to α; if yi,j = ¬zk then qk is acceptable in {qk, sk} and, again, successfully
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Fig. 3. VAF constructed for Φ(x,y, z) = (x ∨ y ∨ z)(¬x ∨ y ∨ ¬z)(x ∨ ¬y ∨ z).

attacks Ci with respect to α. Thus every argument Ci is successfully attacked by an argument pk or qk and thence
Φ together with these form an admissible set with respect to α. Thus we have a specific audience, α, with respect to
which Φ is subjectively accepted.

On the other hand, suppose α is a specific audience for which Φ belongs to P(〈XΦ,AΦ,VΦ,η〉, α). It cannot be
the case that Ci ∈ P(〈XΦ,AΦ,VΦ,η〉, α) since η(Φ) = η(Ci) = con and so the presence of any Ci would suffice
to eliminate Φ . The specific audience α must therefore be such that every Ci is successfully attacked by one of its
three possible attackers with respect to α. Let 〈t1, t2, . . . , tm〉 be the choices which give these successful attacks on
〈C1, . . . ,Cm〉. First observe that we cannot have ti = pk and tj = qk for any 1 � k � n and distinct Ci and Cj : under
α either η(pk) 
α η(qk) and so qk would not succeed in its attack or η(qk) 
α η(pk) with the attack by pk failing. It
follows that the instantiation of Zn by zi = � if pi ∈ 〈t1, t2, . . . , tm〉, zi = ⊥ if qi ∈ 〈t1, t2, . . . , tm〉 is well-defined and
yields a true literal in every clause, i.e. results in a satisfying instantiation of Φ(Zn). This completes the proof. �
Proof of Theorem 9. Membership in CO-NP follows by the algorithm which tests for all k! specific audiences, α,
whether α ∈ χ(R) ⇒ x ∈ P(〈X ,A,V, η〉, α).

We again establish CO-NP-hardness for the special case of R being the universal audience, via a reduction from
3-UNSAT: the problem of deciding if a 3-CNF formula Φ(Zn) = ∧m

i=1(yi,1 ∨ yi,2 ∨ yi,3) is unsatisfiable.
The reduction constructs an identical VAF to that of the previous theorem, but with one additional argument, {test},

having η(test) = con and whose sole attacker is the argument Φ . Letting 〈XΦ,AΦ,VΦ,η〉′ denote the resulting sys-
tem, we claim that 〈〈XΦ,AΦ,VΦ,η〉′, test,∅〉 defines a positive instance of OBA if and only if Φ is unsatisfiable. From
the proof of Theorem 8, test will fail to be acceptable with respect to any specific audience α for which Φ is admissi-
ble. Such an audience exists if and only if Φ(Zn) is satisfiable. We therefore deduce that 〈〈XΦ,AΦ,VΦ,η〉′, test,∅〉
is accepted as an instance of OBA if and only if Φ(Zn) is unsatisfiable. �
Proof of Theorem 10. For membership in Dp , define the language L1 to be

{〈〈X ,A,V, η〉,R,S, x〉: ∃α ∈ χ(R) such that x ∈ P(〈X ,A,V, η〉, α)}.
Similarly, define L2 as

{〈〈X ,A,V, η〉,R,S, x〉: ∀α ∈ χ(S)x /∈ P(〈X ,A,V, η〉, α)}.
Then 〈〈X ,A,V, η〉,R,S, x〉 is accepted as an instance of AAI if and only if it belongs to the set L1 ∩ L2. Since it is
immediate that L1 ∈ NP and L2 ∈ CO-NP this suffices to give AAI ∈ Dp .

We prove that AAI is Dp-hard for the special case of R = {〈v, v′〉} and S = {〈v′, v〉} for v, v′ distinct values in V .
We first show that the problem Critical Variable (CV) is Dp-hard: instances of this comprise a CNF formula Φ(Zn)

and a variable z ∈ Zn with instances accepted if there is a satisfying instantiation in which z = � but no satisfying
instantiation in which z = ⊥. To see that CV is Dp-hard we use a reduction from the Dp-complete problem SAT-
UNSAT. Given an instance 〈Φ1(Zn),Φ2(Zn)〉 of this, the instance 〈�,z〉 of CV is simply 〈(¬z ∨ Φ1) ∧ (z ∨ Φ2), z〉
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where z is a new variable. We note that for Φ in CNF, z ∨ Φ translates to the CNF formula in which every clause C of
Φ is replaced by the clause z ∨ C. It is easy to see that 〈(¬z ∨ Φ1) ∧ (z ∨ Φ2), z〉 is a positive instance of CV if and
only if 〈Φ1(Zn),Φ2(Zn)〉 is a positive instance of SAT-UNSAT: if Φ1 is satisfiable then (¬z ∨ Φ1) ∧ (z ∨ Φ2) has a
satisfying instantiation with z = � since it reduces to Φ1; if Φ2 is unsatisfiable then there is no satisfying instantiation
with z = ⊥ since the formula now reduces to Φ2, hence if 〈Φ1,Φ2〉 accepted as an instance of SAT-UNSAT then
〈(¬z ∨ Φ1) ∧ (z ∨ Φ2), z〉 is accepted as an instance of CV. Similarly, if 〈(¬z ∨ Φ1) ∧ (z ∨ Φ2), z〉 is a positive
instance of CV then (¬z ∨ Φ1) ∧ (z ∨ Φ2) is satisfiable when z = �, i.e. Φ1 is satisfiable, and (¬z ∨ Φ1) ∧ (z ∨ Φ2)

is unsatisfiable when z = ⊥, i.e. Φ2 is unsatisfiable.
The proof that AAI is Dp-hard now follows easily, using the reduction of Theorem 8: given an instance 〈Φ(Zn), z〉

of CV form the VAF 〈XΦ,AΦ,VΦ,η〉 described in the proof of Theorem 8 (where we note that this trivially extends
to arbitrary CNF formulae). Set the audiences in the instance of AAI to be R = {〈posz,negz〉} and S = {〈negz,posz〉}.
Finally fix the argument x to be Φ . Consider the resulting instance 〈〈XΦ,AΦ,VΦ,η〉,R,S,Φ〉. If it is a positive
instance of AAI then there is a specific audience α ∈ χ(R) for which Φ ∈ P(〈XΦ,AΦ,VΦ,η〉, α): this specific
audience must have posz 
α negz (since 〈posz,negz〉 ∈ R): it has already been seen that this indicates Φ(Zn) has
a satisfying instantiation with z = �. Similarly, if 〈〈XΦ,AΦ,VΦ,η〉,R,S,Φ〉 is a positive instance of AAI, then
Φ /∈ P(〈XΦ,AΦ,VΦ,η〉, α) for any specific audience in χ(S), i.e. all specific audiences within which negz 
α posz.
From our earlier analysis, Φ(Zn) has no satisfying instantiation with z = ⊥.

On the other hand should 〈Φ(Zn), z〉 be a positive instance of CV then the argument of Theorem 8 yields a specific
audience α with posz 
α negz i.e. α ∈ χ(R) for which Φ ∈ P(〈XΦ,AΦ,VΦ,η〉, α) from a satisfying instantiation of
Φ(Zn) with z = �. Similarly, the unsatisfiability of Φ(Zn) when z = ⊥ indicates that no specific audience α having
negz 
α posz, i.e. those in χ(S), will result in Φ ∈ P(〈XΦ,AΦ,VΦ,η〉, α). We deduce that 〈Φ(Zn), z〉 is a positive
instance of CV if and only if 〈〈XΦ,AΦ,VΦ,η〉,R,S,Φ〉 is a positive instance of AAI, thereby establishing that AAI

is Dp-complete. �
Appendix B. Practical reasoning with values

In this appendix we will work through a detailed example of practical reasoning based on values. We will base our
considerations on a well-known problem intended to explore a particular ethical dilemma discussed by Coleman [15]
and Christie [14], amongst others, and which has also been explored in full detail in [3]. The situation involves two
agents, called Hal and Carla, both of whom are diabetic. Hal, through no fault of his own, has lost his supply of insulin
and urgently needs to take some to stay alive. Hal is aware that Carla has some insulin kept in her house, but Hal does
not have permission to enter Carla’s house. The question is whether Hal is justified in breaking into Carla’s house
and taking her insulin in order to save his life. It also needs to be considered that by taking Carla’s insulin, Hal may
be putting her life in jeopardy. One possible response is that if Hal has money, he can compensate Carla so that her
insulin can be replaced. Alternatively if Hal has no money but Carla does, she can replace her insulin herself, since
her need is not immediately life threatening. There is, however, a serious problem if neither have money, since in
that case Carla’s life is really under threat. Coleman argued that Hal may take the insulin to save his life, but should
compensate Carla. Christie’s argument against this was that even if Hal had no money and was unable to compensate
Carla he would still be justified in taking the insulin by his immediate necessity, since no one should die because of
poverty. Thus, argues Christie, he cannot be obliged to compensate Carla even when he is able to.

The values of interest here are life and wealth. Life is demoted if Hal dies or if Carla dies, denoted as LH and LC

respectively. Wealth is demoted if Hal or Carla have to spend their money, denoted by WH and WC respectively. We
will assume that everyone prefers life to wealth, but this still leaves a number of plausible value orderings to allow the
arguments to be assessed differently by different audiences. These audiences are

Aud1 (LH=LC) 
 (WH=WC)

Aud2 LH 
 LC 
 WH 
 WC

Aud3 LH 
 WH 
 WC 
 LC

Aud4 LC 
 LH 
 WC 
 WH

Aud5 LC 
 WC 
 LH 
 WH.
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For audience 1, neither agent is preferred over the other: this may be seen as the standpoint of a neutral observer,
or perhaps the “moral” audience. For audience 2, Hal is preferred to Carla, but Carla’s life is preferred to Hal’s
wealth. Adopted by Hal, this can been seen as self interested, preferring his own interests, but respecting Carla’s more
important interests over his own lesser interests. If Carla is this audience she may been seen as rather noble, giving
way to Hal’s interests. Audience 3 prefers Hal to Carla in all respects: adopted by Hal this is purely selfish, adopted by
Carla it is sacrificial. Audience 4 is like audience 2 but Carla is preferred, so that is can be adopted by a self interested
Carla or a noble Hal. Finally audience 5 represents a selfish Carla or a sacrificial Hal.

Now let us consider the arguments that can be advanced in this scenario. In [3] the arguments are generated using
a particular argument scheme and critical questions, but here we will simply summarise the arguments.

A1 Hal should take the insulin to avoid demoting LH.
A2 Hal should not take the insulin to avoid demoting LC.
A3 Hal should compensate Carla to avoid demoting LC.
A4 Carla has money.
A5 Carla should buy insulin to avoid demoting WH.
A6 Carla has no money.
A7 Carla should not buy insulin to avoid demoting WC.
A8 Hal has money.
A9 Hal has no money.

A10 Even if Carla has money, Hal should not take the insulin to avoid demoting WC.
A11 Even if Hal has money, Hal should not compensate Carla to avoid demoting WH.
A12 Carla should buy insulin to avoid demoting LC.

Arguments A4 and A6 and arguments A8 and A9 are simply assertions of the fact. Carla will know which of A4
and A6 is true and Hal will know which of A8 and A9 are true. Since all arguments are associated with some value,
cf. Definition 2, following [7], a value “�” (for true) is associated with such factual assertions, the value � always
being preferred to any other value. The attack relationships are shown in Table 1.

This can be represented diagrammatically as shown in Fig. 4.
We can now consider how this might be worked out in practice. Consider first the case where both have money.

First we need to partition the arguments.
All parties will need to accept what they know to be true: thus Hal must accept argument A8 and Carla will need

to accept argument A4. In addition Hal will desire to accept argument A1 to avoid dying, and Carla will wish to
be compensated and so will desire to accept A3. Hal will wish to reject A2 and A10. To find an audience which is
acceptable to both therefore we must have {A1,A3,A4,A8} as desired and {A2,A10} as rejected.

We can now play the dialogue game to determine the audiences of which Hal and Carla will form part if they are
to be in agreement.

Table 1
Attack structure (〈row, column〉 = X denotes Arow is attacked by Acol)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 X X
A2 X X X X
A3 X X
A4 X
A5 X X X
A6 X
A7
A8 X
A9 X

A10
A11
A12 X X
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Fig. 4. VAF generated by Hal–Carla example.

μ01 = [PRO, 〈A1,∅〉]
μ02 = [PRO, 〈A3,∅〉]
μ03 = [PRO, 〈A4,∅〉]
μ04 = [PRO, 〈A8,∅〉]
μ1 = [OPP, 〈A10,∅〉]
μ2 = [PRO, 〈_, 〈LH, WC〉〉] (W2)

μ3 = [OPP, 〈A11,∅〉]
μ4 = [PRO, 〈_, 〈LC, WH〉〉]. (W2)

The set {A1,A3,A4,A8} is hence a position with respect to the audience that contains LH
WC and LC
WH. This
will exclude selfish and sacrificial agents.

Suppose, however, that Hal additionally desires to hold on to his money and so moves arguments A5 and A11 to
his desired set, whilst removing A3. Now the audience (which will not now be able to include Carla, who rejects A11
and desires A3) following the dialogue

μ01 = [PRO, 〈A1,∅〉]
μ02 = [PRO, 〈A4,∅〉]
μ03 = [PRO, 〈A5,∅〉]
μ04 = [PRO, 〈A8,∅〉]
μ05 = [PRO, 〈A11,∅〉]
μ1 = [OPP, 〈A7,∅〉]
μ2 = [PRO, 〈_, 〈WH, WC〉〉] (W2)

μ3 = [OPP, 〈A10,∅〉]
μ4 = [PRO, 〈_, 〈LH, WC〉〉] (W2)

becomes LH
WC and WH
WC; the set {A1,A4,A5,A8,A11} is thus a position with respect to this audience. Now
Hal must be either selfish or self-interested.

Finally we can return to the positions of Coleman and Christie mentioned above. Recall that Coleman wished to
insist that Hal should compensate Carla or not take the insulin. Now, when Hal has no money (i.e. argument A9 holds),
Hal should not, on Coleman’s view, take the insulin. Thus the desired arguments for Coleman in this situation will be
{A2,A9} and he will wish to reject {A1}. Christie, in contrast, thinks that Hal should take the insulin even if he cannot
compensate: his desired arguments when Hal has no money are therefore {A1,A9}, and he will want to reject {A2}.
Playing the dialogue game with Coleman’s partitioning we get
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μ01 = [PRO, 〈A2,∅〉]
μ02 = [PRO, 〈A9,∅〉]
μ1 = [OPP, 〈A5,∅〉]
μ2 = [PRO, 〈_, 〈LC, WH〉〉] (W2)

μ3 = [OPP, 〈A4,∅〉]
μ4 = [PRO, 〈A6,∅〉] (W1)

that is, argument A6 (Carla has no money) is part of Coleman’s position along with A2 and A9, and Coleman’s
audience is LC
WH. This excludes only selfish Hals and sacrificial Carlas.

And with Christie’s

μ01 = [PRO, 〈A1,∅〉]
μ02 = [PRO, 〈A9,∅〉]
μ1 = [OPP, 〈A10,∅〉]
μ2 = [PRO, 〈_, 〈LH, WC〉〉] (W2)

μ3 = [OPP, 〈A2,∅〉]
μ4 = [PRO, 〈A12,∅〉] (W1)

μ5 = [OPP, 〈A6,∅〉]
μ6 = [PRO, 〈A4,∅〉] (W1)

that is, argument A4 (Carla has money) and A12 (Carla should buy insulin to avoid demoting LC) form part of
Christie’s position along with A1 and A9, and Christie’s audience is LH 
 WC. This excludes selfish Carlas and
sacrificial Hals. Thus the point of contention between Coleman and Christie is whose interests we might be allowed
to favour. If it is necessary to choose, Coleman will favour Carla and Christie will favour Hal.

This small example shows how our approach can be applied to a situation in which agents have competing interests,
and in which commentators have expressed different intuitions. These different intuitions can be understood in terms
of the differing audiences represented by the different orderings on values.
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