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Abstract. This paper argues that accrual should be modelled in terms of reason-
ing about the application of preferences to sets of arguments, and shows how such
reasoning can be formalised within metalevel argumentation frameworks. These
frameworks adopt the same machinery and level of abstraction as Dung’s argu-
mentation framework. We thus provide a dialectical argumentation semantics that
integrates accrual, and illustrate our approach by instantiating our framework with
the arguments and attacks defined by an object level formalism that accommodates
reasoning about priorities over sets of rules.

1. Introduction

Argumentation has been applied to formalisation of non-monotonic reasoning, conflict
resolution, decision making, and dialogue [3]. Many applications build on Dung’s semi-
nal theory [4] and its various developments. A Dangumentation frameworf&F) con-

sists of a binary conflict basexdtackrelation R on a set4 of arguments. A ‘dialectical
calculus’ is then applied to evaluate the justified and rejected arguments. Amongst devel-
opments ofd F's are those that evaluate arguments only w.r.t successful attEfka(,
wherez defeatsy only if z attacksy, andy is not stronger tham [1,2,7].

The continuing impact of Dung'’s theory can be attributed to its level of abstraction,
and encoding of intuitive general principles of commonsense reasoning in the dialectical
calculus. One defines what constitutes an argument and attack for adpgi that
an AF can be instantiated by the arguments and attacks defined by a thedrylive
theory’s inferences are then defined in terms of the claims of the justified arguments,
as has been shown for logic programming formalisms and a humber of non-monotonic
logics such as default and defeasible logic.(Dung’s theory can therefore be viewed as a
dialectical semanticfor these logics).

However, this dialectical mode of argumentation fails to accommodate the intuition
that the strengths of arguments magcrue whereby, while an argument claiming
c is justified at the expense of arguments and y2 independently claiming-c, the
combinedstrength ofyl andy2 can mean that they should collectively prevail ower
Accrual may apply when evidence for and against is used to establish the truth of the
matter. While in some areas it may be sensible to use Bayesian reasoning to come to an
overall estimate of the probability of the hypothesis, in other cases this is not appropriate.
Consider a witness testifying th&t One does not adduce some quantifiable probability
of the truth of P; rather one presumptively believés If another witness testifies the



opposite, and neither witness can be discredited, then one must njaéigesnenias

to who will be believed. If several witnesses are involved, then the witness judged to
be individually the most credible may be rejected on the basis of the cumulative weight
of conflicting testimony from a number of individually less credible witnesses. Accrual
may also apply in decision making contexts requiring a subjective judgemehbime
Consider arguments supplying reasons for alternative holiday destinations. These do not
force a decision, but additionally need a subjective commitment to the relative worth of
the reasons they supply. It may be that the ideal destination would have good weather,
food and cultural facilities. But if a paradise offering all three cannot be found, one may
need tochoosebetween a place with good weather and one with culture and food. One
may prefer good weather to either culture or food individually, butdtwabinationof

the latter two may incline one towards the second possibility. We are thus interested
in cases involving judgement of evidence for which a probability based treatment is
not sensible, and cases requiring a choice, where a decision must be made on the basis
of weighing arguments for and against. While techniques such as Multiattribute Utility
Theory have been applied to such problems, they have proved problematical in practice,
and fail to model actual decision-making which typically takes place in circumstances of
relative ignorance as to both options, effects and utilities. Like [11] we see the need for
a treatment reflecting ‘quick-and-dirty’ commonsense reasoning, where people reason
under resource limitations and with coarse qualitative approximations to the truth.

In [11], both theknowledge representatidir) andinferenceapproaches to accrual
are reviewed. In the former (e.g. [10,12]) accruals are encoded in the knowledge base, so
that as well as distinct rules (and thus arguments) expressing that P is a reason for R and
Q is areason for R, there is an additional rule (and hence argument)iod ® being
a reason for R, and the strength of the various accruals is expressed through a priority
relation on the rules. In the inference approach (e.g., [5,6,11,13]), that [11] argues has
advantages over thHe approach, the object level inference rules permit construction of
‘super-arguments’ that combine individual rules that yield the same conclusion.

In this paper we argue for, and formalise, an approach to accrual that is distinct from
existing approaches in two important respects. Firstly, accrual is not handled through
additional arguments, whether deriving from explicit rules or from the inference mech-
anism. Rather, we argue that the effect of accrual is more properly located in the (sub-
jective) evaluation of arguments; specifically in the reasoning about and application of
preferences. We thus avoid the proliferation of rules required bkitla@proach, many
of which are somewhat artificial given that their premises are entirely independent of one
another. In contrast to the inference approach we respect the individuality of the accrued
arguments; they continue to provide separate, orthogonal, reasons for the conclusions
rather than a combined super-reason. Secondly, our approach provides an abstract inte-
gration of accrual and dialectical argumentation. We make use of the recently introduced
Metalevel Argumentation FrameworKsg|AFs) [8] to integrate argumentation based rea-
soning about preferences and their application, with the object level arguments being
evaluated. SincMAFs adopt the same basic machinery of a DuIg, we thus integrate
accrual within the dialectical mode of argumentation, and therefore provide an abstract
dialectical semantics for object level logical formalisms incorporating mechanisms for
accrual.

In Section 2 we review background concepts. Section 3 formalises integration of
accrual inMAFs, and relates the formalisation to [11]'s principles of accrual. In Section



4, we show how our formalism provides both a dialectical and accrual based semantics
for an object level logic in which one can reason about priorities over sets of rules. We
conclude with a discussion of related and future work in Section 5.

2. Background

A Dung AF'is a tuple(4, R), whereR C (A x A) is an attack relation on arguments
A.xz € Ais said to beacceptablew.rt. S C A iff Yy € A s.tyRx, implies3z € S
s.t.zRy. If S is conflict free (i.e.vx,y € S, (z,y) ¢ R), and all arguments ¥ are
acceptable w.r.tS, thenS is said to be aadmissibleextension. The status of arguments
is then evaluated w.r.t. extensions defined under different semantics:

Definition 1 Let .S be an admissible extension @, R).

¢ S is completdff S contains all arguments iA which are acceptable w.iSt grounded
iff .S is the minimal (w.r.t. set inclusiorgompleteextensionpreferrediff .S is a maximal
completeextension, andtableiff vy ¢ S, 3z € Ss.t.(x,y) € R

e Fors € {complete, preferred, grounded, stgble
If z € Aisin atleast one, respectively adlextension(s) of A, R), thenz is said to be
credulously, respectively sceptically, justified under slsemantics.

For the examples in this paper, we will assume justified arguments as evaluated under
the sceptical preferred semantics (although these will always coincide with the grounded
semantics), and will also refer to the labelling based evaluation of arguments [9] to assist
the reader’s processing of the examgl&'s shown. A legal labelling assigns toc A:

i) 1iff Vy s.t.yRzx, y = 0;ii) 0iff Jy s.t.yRx andy = 1, and, iii) u (for undecided) iff
neither i) or ii) hold. The arguments in a preferred extension are then those labéilled

a legal labelling with a maximal number of arguments labelled

More recently, Metalevel Argumentation FrameworRdAFs) [8] categorise meta-
arguments according to the claims they malkeut object level arguments and their
properties and relations. These meta-arguments are organised into aAlbungnose
meta-attack relation obeys constraints imposed by the claim based characterisation.

Definition 2 A M AF is atupleA, = (A4, R, C, L, D), where(A,R) is a DUngAF,

and: . . .
e L consists of a countable set of constant symbols and includes the predicates:

{ justified, defeat, rejected, preferred }. The setwf f(L) is defined by the
following BNF (z, x; range over constant symbdis)
L:X =z {x1,...,2,} | justified(X) | rejected(X) | defeat(X,X") |
preferred(X, X')
e The claim functiorC is defined ag : A s 2w/ /(£)
e Dis a set of constrains oR of the form:
if l € C(«) andl’ € C(B) then(a, B) € R

e R is said to balefined byD if whenever(«, 3) € R then the claims oft andg satisfy
the antecedent of some constrainfin

Un [8] £ also includesal, val_pref, audience and wif constructed from these predicates.



e The extensions and justified arguments’of, are the extensions and justified argu-
ments of @, R).

Henceforth, we may use abbreviatioins, d andp for justi fied, rejected, de feat
and preferred respectively. We may also denote an argument by its claims. E.g,
if C(v) = {defeat(preferred({al,a2},{b}),defeat(b,al)) }, we may denotey by
d(p({al,a2},0),d(b,al)).

y|S]ust|f|ed yis reJected y defeats x  xisjustified xis rejected

1(0) 0(1) 1(0) 0(1) 1(0)
0(1)

X defeats y

Figure 1. The M AF characterisation of a DundF =z = y

The basic idea of metalevel argumentation is that given an objectd&ve( A, R),
then the existence of an argumeng A, constitutes a meta-argument A of the form
‘there is anz € A that is an admissible extension @4, R)’, supporting the claim that
‘ris justified The existence of an object level attagRx, constitutes a meta-argument
Ba = ‘y successfully attacks’ that supports the claimy’ defeatse’. Since the justified
status ofr in the object level framework is challenged by a defealnothenﬁa attacks
« at the metalevel, and so we have the following constraint on the meta-level attack re-
lationR (V, W, X, Y, Z will henceforth range over wff of):

1:if d(Y,X) € C(v) andj(X) € C(«) then(y,a) € R

y does not defeat if y is rejected, and sﬂ_é is attacked by a meta-argumehtlaiming
‘y is rejected However,y does defeat if y is justified, and s@ claiming ‘y is justified
attackss. We thus have the following metalevel constraints:

2:if d(Y,X) € C(vy) andr(Y) € C(B) then(5,7) € R
D3:if j(X) € C(o) andr(X) € C(5) then(a, 5) € R

Fig 1 shows theél/ AF characterisation of a DungF x = y (together with the two
labellings — the second in brackets — identifying the two preferred extensions). In [8] it
is shown that:

Let A = (A, R), Ap its MAF (A, R, C, L, D), wherex € Aiff j(x),r(y) € A,
(y,z) € Riff d(y,x) € A, andR is defined by{ D1, D2, D3}. Thenz is a justified
argument ofA iff j(z) is a justified argument ah », (under any semantics).

Developments ofA F's, includingPAFs, VAFs andhierarchical EAFs [7], are also
given M AF characterisations. For exampleis a justified argument of RAF iff j(x)
is a justified argument of itd/ AF' characterisation in which object level strict pref-
erences constitute meta-arguments that claiay erred(x,y), and are constrained to
meta-level R) attack arguments claiming(y, «). TheseM AF characterisations of ob-
ject level argumentation allow for application of the full range of results and techniques
developed for Dund\Fs to be applied to the various object level developmentske,



and provide for principled integration and extension of object level formalisms (e.qg.,
integrating value and preference based argumentation and extending to provide for argu-
mentationaboutpreferences, values and audiences). Furthermore, in the same way that
a theory’s inferences can be identified by instantiating\Bnso M AF's can be instanti-

ated by arguments and attacks defined by a theory, so motivating development of object
level logical formalisms whose inferences can thus be identified.

3. Formalising Accrual in MAFs

In this section we argue that accrual is properly modelled in terms of reasoning about
preferences and their undermining of the success of attacks as defeats. We formalise
such reasoning within RIAF with metalevel constraints that explicitly obey principles
of accrual identified in [11]. We thus define a dialectical argumentation semantics that
integrates accrual. In the next section we instantiate suRtAR with the arguments
and attacks defined by an object level theory, and so identify the theory’s inferences as
defined through a combination of dialectical and accrual modes of reasoning.

We illustrate how the dialectical mode of argumentation fails to accommodate ac-
crual, by considering a variation on an example in [11]. Suppose an argunaksiin-
ing one should go jogging given that it is the appointed time, an arguaientt to go
jogging given that it is hot, and an argumen2tnot to go jogging given that it is raining.
b symmetrically attackal anda2, yielding two preferred extensio$} and{al, a2};
hence no argument is sceptically justified. Supposettlimstronger than (strictly pre-
ferred to)al and stronger than2. Hence the attacks fromal to b anda2 to b do not
succeed, and we are left withasymmetrically defeatingl anda2, so yielding the sin-
gle preferred extensiofb}. However, some may consider that t@mbinedweight of
the two independent arguments not to go jogging, outwelgfishe problem with the
dialectical mode is that it considers only pair-wise relationships between arguments so
thatb continues to asymmetrically defeat anda2, and so remains sceptically justified.

d(p(b,a1), d(p(b,a2), 0 |1
0 d(a1 b)) (g((aZa,‘b)))

lm J\

Ja1_>r(a —>da1b <—da2b <_ a2)

r
ol1 /\{; 1
d(b,al) d(b,a2)
d(b',a2)
) = 1Y 0 r(b")
{d(p({a1,a2},b),d(b,a1) ), 1 j(b")

d( p({a1,a2},b),d(b,a2) ) }

Figure 2. The accrualM/ AF for the jogging example

We claim that accrual should be modelled in terms of reasoning about preferences
and their undermining of attacks. Not only do the relative strengths of individual argu-



ments constitute reasons for undermining the success of attacks, but intuitively, the com-
bined, or ‘accrued’ strengths afl anda2 being greater thah constitute a reason for
undermining the attacks fromto a1 andb to a2. Letting upper case letters refer to ac-
cruals consisting of sets of arguments:

ACL1: The existence of a preference for accriabverY’, based on the accrued strength
of arguments inX being greater than the accrued strength of argumentis,iis a reason
for an attack from somg € Y onz € X failing to succeed as a defeat

We thus have meta-argumengswith claims of the form:defeat(preferred(X,Y),
defeat(y,x)) € C(v), wherey € Y, x € X, and the following constraint:

D4:if d(p(X,Y),d(y,x)) € C(y) andd(y, z) € C(B) then(v,8) € R

Consider theMAF in Figure 2 in which (apart from the argumenthat makes two
claims) the arguments are denoted by the claims they make, and set brackets are omitted
for singleton sets. The meta-attacks are define®by. . D4 and relate meta-arguments
claiming the justified and rejected status of the object level argundgatsanda2, and
the object level defeats between them. Given object level preferérme= a1, b over
a2, and the joint preference farl anda2 overb, then meta-arguments claiming these
preferences undermine attacks.

The preference fofal, a2} over {b} preferentially undermines's attacks onul
andb’s attacks o2, rather tharb’s preference over the accrual’s elememtsand a2
undermining attacks fromal to b anda2 to b. In general:

AC2: Preferences defined by an accrual take precedence over the preferences defined by
elements of the accrual, in that the former preferentially undermine attacks

The following constrainD5 encodesAC2 since it requires that a meta-argument
claiming the undermining of an attack by a preference over accruals, attacks (and so
takes precedence over) afylaiming the undermining of an attack by preferences over
elements of the accruals.

D5 : if d(p(X,Y),d(y,z)) € C(y) andd(p(Y', X'), d(«',y)) € C(y) and
(X,Y) <, (Y, X'), then(v',v) € R, where:

(X,)Y) <, (Y, X"iff Y CY', X C X',andeithe C Y’ or X C X'

For example, we have attacks (labelled D5) framo d(p(b, al),d(al,b)) and
d(p(b,a2),d(a2,b)) in Figure 2. Now, suppose we also had tHatv1} preferred to
{al,a2, a3} (assuming additional object level arguméhanda3). Since({al, a2}, {b})
<q ({b,b1},{al,a2,a3}), this would attacky and so preferentially undermine attacks
from a1 anda2 to b, rather tharb to a1 anda?2.

Analogous toAC2, [11] states that: “When an accrual of arguments is applicable,
thatis, when there are no convincing grounds to reject the accruing elements as individual
arguments, then the accrual makes its elements inapplicable.” According to this principle,
Prakken advocates that neithdr or a2 are justified, but rather that a ‘super-argument’
combiningal and a2 is justified at the expense @f However, in our viewal and
a2 shouldbe justified. They remain individually valid reasons not to go jogging, but
their acceptability in the context of a counter-argumienéquires that they are jointly
acceptable so that their combined weight can be taken into account. To say then, that
“the accrual makes its elements inappplicable” is to refer to their applicability in an
evaluative context; it is thpreference®f the individual arguments that should not be



considered applicable. Hence, Prakken’s qualification — “when there are no convincing
grounds to reject the accruing elements” — on the applicability of the accrual (which he
states as a separate principle: “flawed arguments may not accrue”), amounts in our view
to the defeat of an element of an accrual invalidating the undermining of an attack by a
preference involving that accrual. For example,2fis defeated by somté contradicting

a2's premise that it is raining, then the accrued weight blanda2 being greater than

b should no longer preferentially undermibie attacks orul anda2 since otherwise1

would inappropriately be justified.

Suppose that instead we preferrfgg to {al,a2}, preferentially undermining at-
tacks fromal anda?2 to b, so thatb now defeats:1 anda2. We would similarly want
thatb"’s defeat ofa2 invalidate the use of the preference in undermining the attacks. This
is becausdal, a2} may be weaker thaal alone, so tha{b} may not be preferred to
{al}. Finally, observe that we would obviously not wdrg defeats ofal anda2 to
invalidate the use of the preference, since it is these defeats that are effectively decided
by the preference in the first place. We thus have the following principle (analogous to
[11]'s “flawed arguments may not accrue”) and constraints:

AC3: A preference for accruak overY undermines an attack from an argumenttin
on an argument ik, if noy € Y is defeated by some¢ X, and noz € X is defeated
by somez ¢ Y.

D6 :if d(p(X,Y),d(y,z)) € C(v), andd(z,z) € C(f),z ¢ Y,z € X, then
(8,7) €R

D7 :if dp(X,Y),d(y,z)) € C(y), andd(z,y) € C(B), z ¢ X,y € Y, then
(B,7) eR?

For the jogging example, given theF (a1 = b = «2) and the preferenced} >
{al}, {b} > {a2}, {al,a2} > {b}, then the justified arguments of tlié AF" in Figure
2 includej(al) andj(a2). We also show the extra meta-arguments and attacks (shaded
grey) that characterise the object level attack frigno a2 (whered’ contradictsa2’s
premise that it is raining). Now rather tharu1 anda2 are justified (as indicated by the
labelling in grey).

We alluded above to Prakken’s third principle of accrual: “Accruals are sometimes
weaker than their elements”. It may be that some consitlemda2 to be individually
stronger reasons not to go jogging, so thatand a2 asymmetrically defeai and are
sceptically justified. However, some may consider the combination of rain and hot to be
less unpleasant, and so the accrued weightloind a2 is less tharb and so is pref-
erentially a reason for undermining anda?2’s attacks orb, so thatb now defeats:1
anda2 andb is sceptically justified. This illustrates that reasonatgputthe strengths
of accruals, and more generally reasoning about preferences, is itself subject to uncer-
tainty and conflict, and so any comprehensive argumentation based semantics integrating
accrual should accommodate object level argumentation based reasoning about prefer-
ences. In the following definition we will therefore assume an object lévek (A, R)
augmented by a functioR that maps some argumentsAnto the pairwise preferences
(over sets of arguments) that these arguments express (note that no commitments are
made to how these preferences are defined; they may be based on unitilites, values, etc.).

2Note thatD6 and D7 need only be applied whek| > 1 and|Y| > 1 respectively. Space limitations
preclude a detailed discussion of why this is the case.



Hence, ifz € A wherez claims a preference fax C A overY C A, then we will have
meta-arguments: claiming bothj(z) and j(p(X,Y’)), and 3 claiming bothr(z) and
r(p(X,Y)), where byD3, o will R attacks, and byD2 5 will R attack anyy claiming
d(p(X,Y),d(y,x)). This will be illustrated further in the following section.

Definition 3 An Accrual MAF(A-M AF) is atupleA,; = (4, R, C, L, D), whereD is
the set of constraint®1. .. D7.

Let A be theAF (A, R) augmented by a partial functiaR : A — 24 x 24, Then the
A-MAF A, for A is defined as follows:

e [z]%is aconstantirCiff z € A
e A is the union of the disjoint setd, ... A4 where:

1 ae Ay, j([z]) € Cla) iff z € A, wherej(p([X],]Y])) € C(a) iff P(z) =
(X,Y).

2. a € Ay, r([2]) € C(a) iff z € A, wherer(p(]|X],[Y])) € C(a) iff P(z) =
(X,Y).

3. a € Az, d(z,y) € C(a) iff (z,y) €R

4. a € Ay, d (( Y).d(y,z)) € Cla) iff 3z € Ast.P(z) = (X,Y), and
e Ad(y,z)e ()andyEYxEX

e R is defined byD.

We then say that:
x is ajustified argument oA iff j(z) is a justified meta-argument df 4.

Note that when anlF’ = (A, R) is augmented by C 24 x 24 (rather than pref-
erences being reasoned about in the domain of argumentation) then one can straightfor-
wardly obtain(Ax, Rx) whereAx is A augmented by arguments that map to preferences
(X,Y) e > andR«=RU{(z,2")|P(z) = (X,Y),P(z') = (Y, X)}. The A-M AF of
(A, R) and> would then be thel-M AF of (Ax, Rx) andP.

To see that the constraints on AV AF’s attack relation ensure that the principles
of accrual AC1-3 are satisfied, observe thgtif) is a justified argument ak », then for
every object level attacly, z) € R, d(y, x) is attacked by some justified meta-argument
d(p(X,Y),d(y,z)) and/or some justified(y). Consider the latter caeForr(y) to be
justified there must be some justifiéz, y) that attacksj(y) and so ensures thaty)
is reinstated against the attack ply)(see Fig.3). We can then state that the following
holds (space limitations preclude inclusion of a formal proof in this paper):

Proposition 1 Let A be theA-M AF for (A, R) augmented by a partial functiaf.
Let j(z) be a justified meta-argument &fy( such thate,y € A, (y,z) € R. Then:

If &) r(y) is not justified, or; b) it holds thai:(y) is justified implies that = z for any
d(z,y) that is justified, then:

There are justified meta-argument®(X,Y)) andd(p(X,Y), d(y, z)) such thatr €
X,y €Y, and:

3Sense quotep ] are conventionally used to abbreviate metalevel representations of object level formulae.

“Notice that it is not necessarily the case thé rejected{(y) is a justified meta-argument) in thamight
asymmetricallyattackz so that ifz andz’ are both justified, andx, =’} > {y}, then the asymmetric attack
may be undermined angde, z’, y} is conflict free and so possibly admissible.



1. V2’ € X, j(2') is justified;

2.Vy e Y, if r(y') is justified, then any meta-argument attackiitg’) (and so
reinstatingr(y’)) is of the formd(z’, y), wherez’ € X.

3. There is no justified(p(Y’, X'), d(z,y)) such that(X,Y) <, (Y’,X’) and
Y’, X' respectively satsify 1 and 2.

Figure 3. Meta-arguments in some’ C E, whereF is the grounded or a preferred extension.

Informally, Proposition 1 states that:if is justified, then for any attack from to
x, if a) y is not rejected, or by is rejected given only that it is successfully attacked by
x, then: there must be some justified argument expressing a preference for the accrual
X overY (z € X,y € Y) that undermines the attack frognto = (AC1), and: 1) All
arguments inX are justified; 2) if any argument iYi is rejected, it is exclusively because
of some attack originating from an argumentXn(1, 2, and b equate with satisfaction
of AC3); 3) there is no justified undermining of an attack frero y by a preference for
accrualY”’ over an accruakK’, such thatX andY” are elements oK’ andY” (AC2).

4. Instantiating A-M AF's

In this section we instantiate at+ M A F with arguments built from an object level logic
that allows for reasoning about priorities over conjunctions of rules. We assume atomic
formulae built from a first order language containing the nullary predipat¢, and
complex formulae built using the connectives —, A and >. We distinguishpriority
formulaeof the form X > Y, whereX andY are conjunctions of atomic formulae.

Definition 4 A theoryI'isasetofrules : L1 A ... L,, = L,, where:

e Each unique rule nameis an atomic first order formula
e Each[l; is an atomic first order formula or a priority formula, or such a formula pre-
ceded by strong negation

As usual, a rule with variables is a scheme standing for all its ground instances. For
any atomA or priority formula P, we say thatd (P) and—A (—P) are the complement
of each other. In the metalanguage denotes the complement & Henceforth, we
will refer to rules by their names, and writeeadr) andbody(r) to respectively denote
the consequent and antecedent of the rule naméde also assume that ahycontains
rules that ensure the priority relation is closed under transitivity, in the sense that if
r1,79 € I, thendr € T s.t.body(r) = body(r1) A body(rs), where;
i) headr;) =Y > X, headrs) =7 > Y, headf) = Z > X, or;
ii) headri) =Y > X, headr;) = ~(Z > X), headf) =—(Z > Y), or;
i) headr1) = Z > Y, headrs) = =(Z > X), headf) = -(Y > X).



Definition 5 Given a theonf’, an argument: is either:

1. atree of rules s.t. each node L, A ... L,, = L, has child nodes with rules
r1...7Tm, Where fori = 1...m, headf;) = L;, andr,r;...7,, € T', and each
leaf node ofz is a rule with an empty antecedent, and no two distinct rules have
the same head (so excluding arguments with circular chains of reasoning); or

2. a tree with the special root nodpréf’, each of whose child nodes is the root
noder; of a tree of type 1, where head is a priority formula.

Table 1. A theory and its arguments and attack relation

L [ A |
rl:=b,12:b=a yl = [rl,r2]
r3:=crd:c=a y2 = [r3,74]
rb=d,r6:d = —a z1 = [rb, r6]
r7i:=e,r8:e=—a 22 = [r7,r8]
r9 =16 > 12 pl = [r9,pref], P(pl) = ({21},{y1})
r1l0 = r8 > r2 p2 = [r10,pref], P(p2) = ({22}, {y1})
rll:=>r2Ard > r6 Ar8 p3 = [r11,pref], P(p3) = ({y1,y2},{#1, 22})
r12:=>r6 AT8 > r2 Ar4 p4d = [r12,pref], P(p4) = ({#1, 22}, {y1,y2})
rl3:= f,rld: f = rll >rl12 | ¢l =[r13,r14,pref], P(ql) = ({p3}, {p4})

3

’ R =yl 22z1,yl 222,y2 =2 21,y2 = 22,p <—p4‘

Definition 6 For any argument, L is a conclusion o iff L is the head of some rule in
z. Let A be the arguments defined by For anyz, y € A:

x andy attackeach other (i.e(x,y), (y,z) € R)on (L, L") iff L is a conclusion of:
andL’ is a conclusion of;, whereL’ = L,orif L=X > Y thenL’ =Y > X.

Arguments with root noderef link together arguments concluding priorities over
conjunctions of rules names. Thus, one can define pairwise preferences over sets of ar-
guments w.r.t. priorities linked in a singtee f argument. Henceforthules(L, Z) will
denote{r|risaruleinz, z € Z, andhead(r) = L}, whereZ is a set of arguments.

Definition 7 Let A be the arguments defined by and X, Y C A s.t.{(L,,L}),...,
(L, L},)} is the non-empty set of pairs of conclusions s.t.ifef 1...n, 3z € X,y €
Y, x andy attack on(L;, L?,).

Let z be an argument with root node-ef. ThenP(z) = (X,Y) iff for i« = 1...n,
A(rules(L;, X)) > \(rules(L;,Y)) is a conclusion of.

To enhance readability we henceforth describe propositional examples and write
arguments as sequences of paths in atree. Consider argumeats1 := b,72 : b = ],
22 = [r3:= ] and y1 = [r4 := —b,r5 : =b = —c] Which attack each other on the pairs
(b, —b) and(c, —c). Suppose ruless := r1 > r4 andr7 := r2Ar3 > r5. Thenz with root
nodepref consists of the two pathg6, pref], [r7, pref], andP(z) = ({z1, 22}, {y1}) .

Example 2 Consider the examplg in Table 1 in which a subset’ and R’ of the argu-
ments and attack relation defined Byare shown. The instantiatett M/ AF (given by
Definition 3 is shown in Figure 4, in which:

C(m3) = {d(p({y1,y2}, {21, 22}), d(a, B)) | e € {21, 22}, 8 € {y1,y2} };

C(m4) = {d(p({z1, 22}, {y1,42}). d(a, §)) | o € {y1, 42}, 8 € {=1, 22}}.
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Figure 4. The A-MAF for the theory in Example 2 (to ease readability some arguments — those surrounded by
dotted lines — are repeated).

In general, we say that is an inference of" iff « is the conclusion of an argument
defined byl", andj(x) is a sceptically justified argument of the M AF' instantiated by
I'. Thus, the justified arguments of Figure #isM AF (i.e., those labelled 1) identify
a rather than-a as an inference of Example 2's theory. Although argumeitand
22 concluding—a are individually preferred tg1 concludinga, p3 concludes that the
accrual{y1,y2} is stronger thad z1, 22}, andq1 justifies a preference for this pairwise
comparison over the contrary pairwise comparison concludegd by

5. Conclusions

This paper has argued that accrual is most naturally and properly effected through rea-
soning about and application of preferences to arguments. Such reasoning and applica-
tion can be formalised within meta-argumentation frameworks that adopt the standard
dialectical mode of argumentation. By contrast, existing approaches to accrual adopt
either the inference or knowledge representation approach. Furthermore, they either re-



quire somewhat ad-hoc mechanisms to ensure satisfaction of the principles of accrual
(e.g., the labelling mechanism in [11]'s inference approach), or formalise accrual within
the context of a specific logic (e.g., [6]'s inference approach), or make commitments to
the structure of, and interactions between, arguments (e.g., [13]), or do not accommodate
dialectical argumentation (e.g., [5]). Our approach is the first to integrate accrual within
Dung’s dialectical theory, while preserving the theory’s level of abstraction, so that the
inferences of various instantiating logics can be identified under integration of the di-
alectical and accrual modes of reasoning, and where such logics may also provide for
reasoning about the strengths of accruals. To substantiate this claim we have shown how
the inferences of a theory in such a logic are identified by the justified arguments of the
theory’s instantiatedl-M AF'. Note that one can then apply the full range of results and
techniques developed for Dugfs, to the instantiatedi-M AF's. For example, argu-

ment game proof theories and algorithms defineddfbis, establish the justified status of

a given argument, and identify the extensions under each of the semantics [9]. We can
now apply these tol-M AF's, and in future work will investigate how efficiency gains

can be obtained. For example, in an argument game, a player could in one move play
argumentsi(X,Y) followed by j(X), given that the player’s counterpart will always

be able to play-(X) in response ta/(X,Y’), which in turn can always be countered by
J(X). If played together the counterpart could then either atti{c¢k Y) or j(X). One

could thus eliminate unnecessary rounds without impacting on the game’s outcome.
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