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Abstract. This paper argues that accrual should be modelled in terms of reason-
ing about the application of preferences to sets of arguments, and shows how such
reasoning can be formalised within metalevel argumentation frameworks. These
frameworks adopt the same machinery and level of abstraction as Dung’s argu-
mentation framework. We thus provide a dialectical argumentation semantics that
integrates accrual, and illustrate our approach by instantiating our framework with
the arguments and attacks defined by an object level formalism that accommodates
reasoning about priorities over sets of rules.

1. Introduction

Argumentation has been applied to formalisation of non-monotonic reasoning, conflict
resolution, decision making, and dialogue [3]. Many applications build on Dung’s semi-
nal theory [4] and its various developments. A Dungargumentation framework(AF) con-
sists of a binary conflict basedattackrelationR on a setA of arguments. A ‘dialectical
calculus’ is then applied to evaluate the justified and rejected arguments. Amongst devel-
opments ofAFs are those that evaluate arguments only w.r.t successful attacks (defeats),
wherex defeatsy only if x attacksy, andy is not stronger thanx [1,2,7].

The continuing impact of Dung’s theory can be attributed to its level of abstraction,
and encoding of intuitive general principles of commonsense reasoning in the dialectical
calculus. One defines what constitutes an argument and attack for a logicL, so that
anAF can be instantiated by the arguments and attacks defined by a theory inL. The
theory’s inferences are then defined in terms of the claims of the justified arguments,
as has been shown for logic programming formalisms and a number of non-monotonic
logics such as default and defeasible logic.(Dung’s theory can therefore be viewed as a
dialectical semanticsfor these logics).

However, this dialectical mode of argumentation fails to accommodate the intuition
that the strengths of arguments mayaccrue, whereby, while an argumentx claiming
c is justified at the expense of argumentsy1 and y2 independently claiming¬c, the
combinedstrength ofy1 andy2 can mean that they should collectively prevail overx.
Accrual may apply when evidence for and against is used to establish the truth of the
matter. While in some areas it may be sensible to use Bayesian reasoning to come to an
overall estimate of the probability of the hypothesis, in other cases this is not appropriate.
Consider a witness testifying thatP . One does not adduce some quantifiable probability
of the truth ofP ; rather one presumptively believesP . If another witness testifies the



opposite, and neither witness can be discredited, then one must make ajudgementas
to who will be believed. If several witnesses are involved, then the witness judged to
be individually the most credible may be rejected on the basis of the cumulative weight
of conflicting testimony from a number of individually less credible witnesses. Accrual
may also apply in decision making contexts requiring a subjective judgement orchoice.
Consider arguments supplying reasons for alternative holiday destinations. These do not
force a decision, but additionally need a subjective commitment to the relative worth of
the reasons they supply. It may be that the ideal destination would have good weather,
food and cultural facilities. But if a paradise offering all three cannot be found, one may
need tochoosebetween a place with good weather and one with culture and food. One
may prefer good weather to either culture or food individually, but thecombinationof
the latter two may incline one towards the second possibility. We are thus interested
in cases involving judgement of evidence for which a probability based treatment is
not sensible, and cases requiring a choice, where a decision must be made on the basis
of weighing arguments for and against. While techniques such as Multiattribute Utility
Theory have been applied to such problems, they have proved problematical in practice,
and fail to model actual decision-making which typically takes place in circumstances of
relative ignorance as to both options, effects and utilities. Like [11] we see the need for
a treatment reflecting ‘quick-and-dirty’ commonsense reasoning, where people reason
under resource limitations and with coarse qualitative approximations to the truth.

In [11], both theknowledge representation(kr) andinferenceapproaches to accrual
are reviewed. In the former (e.g. [10,12]) accruals are encoded in the knowledge base, so
that as well as distinct rules (and thus arguments) expressing that P is a reason for R and
Q is a reason for R, there is an additional rule (and hence argument) for Pand Q being
a reason for R, and the strength of the various accruals is expressed through a priority
relation on the rules. In the inference approach (e.g., [5,6,11,13]), that [11] argues has
advantages over thekr approach, the object level inference rules permit construction of
‘super-arguments’ that combine individual rules that yield the same conclusion.

In this paper we argue for, and formalise, an approach to accrual that is distinct from
existing approaches in two important respects. Firstly, accrual is not handled through
additional arguments, whether deriving from explicit rules or from the inference mech-
anism. Rather, we argue that the effect of accrual is more properly located in the (sub-
jective) evaluation of arguments; specifically in the reasoning about and application of
preferences. We thus avoid the proliferation of rules required by thekr approach, many
of which are somewhat artificial given that their premises are entirely independent of one
another. In contrast to the inference approach we respect the individuality of the accrued
arguments; they continue to provide separate, orthogonal, reasons for the conclusions
rather than a combined super-reason. Secondly, our approach provides an abstract inte-
gration of accrual and dialectical argumentation. We make use of the recently introduced
Metalevel Argumentation Frameworks (MAFs) [8] to integrate argumentation based rea-
soning about preferences and their application, with the object level arguments being
evaluated. SinceMAFs adopt the same basic machinery of a DungAF , we thus integrate
accrual within the dialectical mode of argumentation, and therefore provide an abstract
dialectical semantics for object level logical formalisms incorporating mechanisms for
accrual.

In Section 2 we review background concepts. Section 3 formalises integration of
accrual inMAFs, and relates the formalisation to [11]’s principles of accrual. In Section



4, we show how our formalism provides both a dialectical and accrual based semantics
for an object level logic in which one can reason about priorities over sets of rules. We
conclude with a discussion of related and future work in Section 5.

2. Background

A Dung AF is a tuple(A,R), whereR ⊆ (A × A) is an attack relation on arguments
A. x ∈ A is said to beacceptablew.r.t. S ⊆ A iff ∀y ∈ A s.t yRx, implies∃z ∈ S
s.t. zRy. If S is conflict free (i.e.,∀x, y ∈ S, (x, y) /∈ R), and all arguments inS are
acceptable w.r.t.S, thenS is said to be anadmissibleextension. The status of arguments
is then evaluated w.r.t. extensions defined under different semantics:

Definition 1 Let S be an admissible extension of(A,R).
• S is completeiff S contains all arguments inA which are acceptable w.r.tS; grounded
iff S is the minimal (w.r.t. set inclusion)completeextension;preferrediff S is a maximal
completeextension, andstableiff ∀y /∈ S, ∃x ∈ S s.t.(x, y) ∈ R

• Fors ∈ {complete, preferred, grounded, stable}:
If x ∈ A is in at least one, respectively all,s extension(s) of(A,R), thenx is said to be
credulously, respectively sceptically, justified under thes semantics.

For the examples in this paper, we will assume justified arguments as evaluated under
the sceptical preferred semantics (although these will always coincide with the grounded
semantics), and will also refer to the labelling based evaluation of arguments [9] to assist
the reader’s processing of the exampleAFs shown. A legal labelling assigns tox ∈ A:
i) 1 iff ∀y s.t.yRx, y = 0; ii) 0 iff ∃y s.t.yRx andy = 1, and; iii) u (for undecided) iff
neither i) or ii) hold. The arguments in a preferred extension are then those labelled1 in
a legal labelling with a maximal number of arguments labelled1.

More recently, Metalevel Argumentation Frameworks (MAFs) [8] categorise meta-
arguments according to the claims they makeabout object level arguments and their
properties and relations. These meta-arguments are organised into a DungAF whose
meta-attack relation obeys constraints imposed by the claim based characterisation.

Definition 2 A MAF is a tuple∆M = (A, R, C, L,D), where(A,R) is a DungAF ,
and:

• L consists of a countable set of constant symbols and includes the predicates:
{ justified, defeat, rejected, preferred }. The setwff(L) is defined by the
following BNF (x, xi range over constant symbols)1:

L : X ::= x, {x1, . . . , xn} | justified(X) | rejected(X) | defeat(X, X ′) |
preferred(X, X ′)

• The claim functionC is defined asC : A 7→ 2wff(L)

• D is a set of constrains onR of the form:
if l ∈ C(α) andl′ ∈ C(β) then(α, β) ∈ R

• R is said to bedefined byD if whenever(α, β) ∈ R then the claims ofα andβ satisfy
the antecedent of some constraint inD.

1In [8] L also includesval, val_pref , audience and wff constructed from these predicates.



• The extensions and justified arguments of∆M are the extensions and justified argu-
ments of (A,R).

Henceforth, we may use abbreviationsj, r, d andp for justified, rejected, defeat
and preferred respectively. We may also denote an argument by its claims. E.g,
if C(γ) = {defeat(preferred({a1, a2}, {b}), defeat(b, a1)) }, we may denoteγ by
d(p({a1, a2}, b), d(b, a1)).

y is justified y is rejected y defeats x x is justified x is rejected

x defeats y

α α

αβ

ββ βα
1(0) 1(0) 1(0)0(1) 0(1)

0(1)

Figure 1. TheMAF characterisation of a DungAF x � y

The basic idea of metalevel argumentation is that given an object levelAF , (A,R),
then the existence of an argumentx ∈ A, constitutes a meta-argumentα ∈ A of the form
‘there is anx ∈ A that is an admissible extension of(A,R)’, supporting the claim that
‘x is justified’. The existence of an object level attackyRx, constitutes a meta-argument−→
βα = ‘y successfully attacksx’ that supports the claim ’y defeatsx’. Since the justified
status ofx in the object level framework is challenged by a defeat onx, then

−→
βα attacks

α at the metalevel, and so we have the following constraint on the meta-level attack re-
lationR (V,W,X, Y, Z will henceforth range over wff ofL):

D1 : if d(Y, X) ∈ C(γ) andj(X) ∈ C(α) then(γ, α) ∈ R

y does not defeatx if y is rejected, and so
−→
βα is attacked by a meta-argumentβ claiming

‘y is rejected’. However,y does defeatx if y is justified, and soβ claiming ‘y is justified’
attacksβ. We thus have the following metalevel constraints:

D2 : if d(Y,X) ∈ C(γ) andr(Y ) ∈ C(β) then(β, γ) ∈ R
D3 : if j(X) ∈ C(α) andr(X) ∈ C(β) then(α, β) ∈ R

Fig 1 shows theMAF characterisation of a DungAF x � y (together with the two
labellings – the second in brackets – identifying the two preferred extensions). In [8] it
is shown that:

Let ∆ = (A,R), ∆M its MAF (A, R, C, L,D), wherex ∈ A iff j(x), r(y) ∈ A,
(y, x) ∈ R iff d(y, x) ∈ A, andR is defined by{D1, D2, D3}. Thenx is a justified
argument of∆ iff j(x) is a justified argument of∆M (under any semantics).

Developments ofAFs, includingPAFs, VAFs andhierarchical EAFs [7], are also
givenMAF characterisations. For example,x is a justified argument of aPAF iff j(x)
is a justified argument of itsMAF characterisation in which object level strict pref-
erences constitute meta-arguments that claimpreferred(x, y), and are constrained to
meta-level (R) attack arguments claimingd(y, x). TheseMAF characterisations of ob-
ject level argumentation allow for application of the full range of results and techniques
developed for DungAFs to be applied to the various object level developments ofAFs,



and provide for principled integration and extension of object level formalisms (e.g.,
integrating value and preference based argumentation and extending to provide for argu-
mentationaboutpreferences, values and audiences). Furthermore, in the same way that
a theory’s inferences can be identified by instantiating anAF, soMAFs can be instanti-
ated by arguments and attacks defined by a theory, so motivating development of object
level logical formalisms whose inferences can thus be identified.

3. Formalising Accrual in MAFs

In this section we argue that accrual is properly modelled in terms of reasoning about
preferences and their undermining of the success of attacks as defeats. We formalise
such reasoning within aMAF with metalevel constraints that explicitly obey principles
of accrual identified in [11]. We thus define a dialectical argumentation semantics that
integrates accrual. In the next section we instantiate such aMAF with the arguments
and attacks defined by an object level theory, and so identify the theory’s inferences as
defined through a combination of dialectical and accrual modes of reasoning.

We illustrate how the dialectical mode of argumentation fails to accommodate ac-
crual, by considering a variation on an example in [11]. Suppose an argumentb claim-
ing one should go jogging given that it is the appointed time, an argumenta1 not to go
jogging given that it is hot, and an argumenta2 not to go jogging given that it is raining.
b symmetrically attacksa1 anda2, yielding two preferred extensions{b} and{a1, a2};
hence no argument is sceptically justified. Suppose thatb is stronger than (strictly pre-
ferred to)a1 and stronger thana2. Hence the attacks froma1 to b anda2 to b do not
succeed, and we are left withb asymmetrically defeatinga1 anda2, so yielding the sin-
gle preferred extension{b}. However, some may consider that thecombinedweight of
the two independent arguments not to go jogging, outweighsb. The problem with the
dialectical mode is that it considers only pair-wise relationships between arguments so
thatb continues to asymmetrically defeata1 anda2, and so remains sceptically justified.

j(a1) r(a1) d(a1,b) j(b) j(a2)r(a2)_d(a2,b)

r(b)

d(b,a1)

d(p(b,a1),
   d(a1,b))

C(γ) = 
{ d( p({a1,a2},b),d(b,a1) ),
  d( p({a1,a2},b),d(b,a2) ) }

D5D5

d(p(b,a2),
   d(a2,b))

d(b,a2)

γ
1

0 0

00

1 111

1

0 00

j(b')

r(b')

d(b',a2)

1

0

1

0

0

1

1 1

0 01

0

1 1

01

Figure 2. The accrualMAF for the jogging example

We claim that accrual should be modelled in terms of reasoning about preferences
and their undermining of attacks. Not only do the relative strengths of individual argu-



ments constitute reasons for undermining the success of attacks, but intuitively, the com-
bined, or ‘accrued’ strengths ofa1 anda2 being greater thanb constitute a reason for
undermining the attacks fromb to a1 andb to a2. Letting upper case letters refer to ac-
cruals consisting of sets of arguments:

AC1: The existence of a preference for accrualX overY , based on the accrued strength
of arguments inX being greater than the accrued strength of arguments inY , is a reason
for an attack from somey ∈ Y onx ∈ X failing to succeed as a defeat.

We thus have meta-argumentsγ with claims of the form:defeat(preferred(X, Y ),
defeat(y, x)) ∈ C(γ), wherey ∈ Y , x ∈ X, and the following constraint:

D4 : if d(p(X, Y ), d(y, x)) ∈ C(γ) andd(y, x) ∈ C(β) then(γ, β) ∈ R

Consider theMAF in Figure 2 in which (apart from the argumentγ that makes two
claims) the arguments are denoted by the claims they make, and set brackets are omitted
for singleton sets. The meta-attacks are defined byD1 . . . D4 and relate meta-arguments
claiming the justified and rejected status of the object level argumentsb, a1 anda2, and
the object level defeats between them. Given object level preferencesb overa1, b over
a2, and the joint preference fora1 anda2 over b, then meta-arguments claiming these
preferences undermine attacks.

The preference for{a1, a2} over {b} preferentially underminesb’s attacks ona1
andb’s attacks ona2, rather thanb’s preference over the accrual’s elementsa1 anda2
undermining attacks froma1 to b anda2 to b. In general:

AC2: Preferences defined by an accrual take precedence over the preferences defined by
elements of the accrual, in that the former preferentially undermine attacks.

The following constraintD5 encodesAC2 since it requires that a meta-argumentγ′

claiming the undermining of an attack by a preference over accruals, attacks (and so
takes precedence over) anyγ claiming the undermining of an attack by preferences over
elements of the accruals.

D5 : if d(p(X, Y ), d(y, x)) ∈ C(γ) and d(p(Y ′, X ′), d(x′, y′)) ∈ C(γ′) and
(X, Y ) ≺a (Y ′, X ′), then(γ′, γ) ∈ R, where:

(X, Y ) ≺a (Y ′, X ′) iff Y ⊆ Y ′, X ⊆ X ′, and eitherY ⊂ Y ′ or X ⊂ X ′

For example, we have attacks (labelled D5) fromγ to d(p(b, a1), d(a1, b)) and
d(p(b, a2), d(a2, b)) in Figure 2. Now, suppose we also had that{b, b1} preferred to
{a1, a2, a3} (assuming additional object level argumentb1 anda3). Since({a1, a2}, {b})
≺a ({b, b1}, {a1, a2, a3}), this would attackγ and so preferentially undermine attacks
from a1 anda2 to b, rather thanb to a1 anda2.

Analogous toAC2, [11] states that: “When an accrual of arguments is applicable,
that is, when there are no convincing grounds to reject the accruing elements as individual
arguments, then the accrual makes its elements inapplicable.” According to this principle,
Prakken advocates that neithera1 or a2 are justified, but rather that a ‘super-argument’
combininga1 and a2 is justified at the expense ofb. However, in our view,a1 and
a2 shouldbe justified. They remain individually valid reasons not to go jogging, but
their acceptability in the context of a counter-argumentb requires that they are jointly
acceptable so that their combined weight can be taken into account. To say then, that
“the accrual makes its elements inappplicable” is to refer to their applicability in an
evaluative context; it is thepreferencesof the individual arguments that should not be



considered applicable. Hence, Prakken’s qualification – “when there are no convincing
grounds to reject the accruing elements” – on the applicability of the accrual (which he
states as a separate principle: “flawed arguments may not accrue”), amounts in our view
to the defeat of an element of an accrual invalidating the undermining of an attack by a
preference involving that accrual. For example, ifa2 is defeated by someb′ contradicting
a2’s premise that it is raining, then the accrued weight ofa1 anda2 being greater than
b should no longer preferentially undermineb’s attacks ona1 anda2 since otherwisea1
would inappropriately be justified.

Suppose that instead we preferred{b} to {a1, a2}, preferentially undermining at-
tacks froma1 anda2 to b, so thatb now defeatsa1 anda2. We would similarly want
thatb′’s defeat ofa2 invalidate the use of the preference in undermining the attacks. This
is because{a1, a2} may be weaker thana1 alone, so that{b} may not be preferred to
{a1}. Finally, observe that we would obviously not wantb’s defeats ofa1 anda2 to
invalidate the use of the preference, since it is these defeats that are effectively decided
by the preference in the first place. We thus have the following principle (analogous to
[11]’s “flawed arguments may not accrue”) and constraints:

AC3: A preference for accrualX overY undermines an attack from an argument inY
on an argument inX, if no y ∈ Y is defeated by somez /∈ X, and nox ∈ X is defeated
by somez /∈ Y .

D6 : if d(p(X, Y ), d(y, x)) ∈ C(γ), andd(z, x) ∈ C(β), z /∈ Y , x ∈ X, then
(β, γ) ∈ R
D7 : if d(p(X, Y ), d(y, x)) ∈ C(γ), andd(z, y) ∈ C(β), z /∈ X, y ∈ Y , then
(β, γ) ∈ R 2

For the jogging example, given theAF (a1 � b � a2) and the preferences{b} >
{a1}, {b} > {a2}, {a1, a2} > {b}, then the justified arguments of theMAF in Figure
2 includej(a1) andj(a2). We also show the extra meta-arguments and attacks (shaded
grey) that characterise the object level attack fromb′ to a2 (whereb′ contradictsa2’s
premise that it is raining). Nowb rather thana1 anda2 are justified (as indicated by the
labelling in grey).

We alluded above to Prakken’s third principle of accrual: “Accruals are sometimes
weaker than their elements”. It may be that some considera1 anda2 to be individually
stronger reasons not to go jogging, so thata1 anda2 asymmetrically defeatb and are
sceptically justified. However, some may consider the combination of rain and hot to be
less unpleasant, and so the accrued weight ofa1 anda2 is less thanb and so is pref-
erentially a reason for undermininga1 anda2’s attacks onb, so thatb now defeatsa1
anda2 andb is sceptically justified. This illustrates that reasoningabout the strengths
of accruals, and more generally reasoning about preferences, is itself subject to uncer-
tainty and conflict, and so any comprehensive argumentation based semantics integrating
accrual should accommodate object level argumentation based reasoning about prefer-
ences. In the following definition we will therefore assume an object levelAF = (A,R)
augmented by a functionP that maps some arguments inA to the pairwise preferences
(over sets of arguments) that these arguments express (note that no commitments are
made to how these preferences are defined; they may be based on unitilites, values, etc.).

2Note thatD6 andD7 need only be applied when|X| > 1 and|Y | > 1 respectively. Space limitations
preclude a detailed discussion of why this is the case.



Hence, ifz ∈ A wherez claims a preference forX ⊆ A overY ⊆ A, then we will have
meta-argumentsα claiming bothj(z) and j(p(X, Y )), andβ claiming bothr(z) and
r(p(X, Y )), where byD3, α will R attackβ, and byD2 β will R attack anyγ claiming
d(p(X, Y ), d(y, x)). This will be illustrated further in the following section.

Definition 3 An Accrual MAF(A-MAF ) is a tuple∆M = (A,R, C, L,D), whereD is
the set of constraintsD1 . . . D7.
Let ∆ be theAF (A,R) augmented by a partial functionP : A 7→ 2A × 2A. Then the
A-MAF ∆M for ∆ is defined as follows:

• dxe3 is a constant inL iff x ∈ A
• A is the union of the disjoint setsA1 . . .A4 where:

1. α ∈ A1, j(dze) ∈ C(α) iff z ∈ A, wherej(p(dXe, dY e)) ∈ C(α) iff P (z) =
(X, Y ).

2. α ∈ A2, r(dze) ∈ C(α) iff z ∈ A, wherer(p(dXe, dY e)) ∈ C(α) iff P (z) =
(X, Y ).

3. α ∈ A3, d(x, y) ∈ C(α) iff (x, y) ∈ R
4. α ∈ A4, d(p(X, Y ), d(y, x)) ∈ C(α) iff ∃z ∈ A s.t. P (z) = (X, Y ), and

β ∈ A, d(y, x) ∈ C(β), andy ∈ Y, x ∈ X.

• R is defined byD.

We then say that:
x is a justified argument of∆ iff j(x) is a justified meta-argument of∆M.

Note that when anAF = (A,R) is augmented by> ⊆ 2A × 2A (rather than pref-
erences being reasoned about in the domain of argumentation) then one can straightfor-
wardly obtain(A∗, R∗) whereA∗ is A augmented by arguments that map to preferences
(X, Y ) ∈ >, andR∗ = R ∪ {(z, z′)|P (z) = (X, Y ), P (z′) = (Y,X)}. TheA-MAF of
(A,R) and> would then be theA-MAF of (A∗, R∗) andP .

To see that the constraints on anA-MAF ’s attack relation ensure that the principles
of accrual AC1-3 are satisfied, observe that ifj(x) is a justified argument of∆M, then for
every object level attack(y, x) ∈ R, d(y, x) is attacked by some justified meta-argument
d(p(X, Y ), d(y, x)) and/or some justifiedr(y). Consider the latter case4. Forr(y) to be
justified there must be some justifiedd(z, y) that attacksj(y) and so ensures thatr(y)
is reinstated against the attack byj(y)(see Fig.3). We can then state that the following
holds (space limitations preclude inclusion of a formal proof in this paper):

Proposition 1 Let ∆M be theA-MAF for (A,R) augmented by a partial functionP .
Let j(x) be a justified meta-argument of∆M such thatx, y ∈ A, (y, x) ∈ R. Then:
If a) r(y) is not justified, or; b) it holds that:r(y) is justified implies thatz = x for any
d(z, y) that is justified, then:
There are justified meta-argumentsj(p(X, Y )) andd(p(X, Y ), d(y, x)) such thatx ∈
X, y ∈ Y , and:

3Sense quotesd e are conventionally used to abbreviate metalevel representations of object level formulae.
4Notice that it is not necessarily the case thaty is rejected (r(y) is a justified meta-argument) in thaty might

asymmetricallyattackx so that ifx andx′ are both justified, and{x, x′} > {y}, then the asymmetric attack
may be undermined and{x, x′, y} is conflict free and so possibly admissible.



1. ∀x′ ∈ X, j(x′) is justified;
2. ∀y′ ∈ Y , if r(y′) is justified, then any meta-argument attackingj(y′) (and so

reinstatingr(y′)) is of the formd(x′, y), wherex′ ∈ X.
3. There is no justifiedd(p(Y ′, X ′), d(x, y)) such that(X, Y ) ≺a (Y ′, X ′) and

Y ′, X ′ respectively satsify 1 and 2.

j(x)

j(y)

r(y)

d(y,x)

d(x,y)

r(x)

 j(p(X,Y))

 r(p(X,Y))

 d(p(X,Y),
d(y,x))

E' =

Figure 3. Meta-arguments in someE′ ⊆ E, whereE is the grounded or a preferred extension.

Informally, Proposition 1 states that ifx is justified, then for any attack fromy to
x, if a) y is not rejected, or b)y is rejected given only that it is successfully attacked by
x, then: there must be some justified argument expressing a preference for the accrual
X overY (x ∈ X, y ∈ Y ) that undermines the attack fromy to x (AC1), and: 1) All
arguments inX are justified; 2) if any argument inY is rejected, it is exclusively because
of some attack originating from an argument inX (1, 2, and b equate with satisfaction
of AC3); 3) there is no justified undermining of an attack fromx to y by a preference for
accrualY ′ over an accrualX ′, such thatX andY are elements ofX ′ andY ′ (AC2).

4. Instantiating A-MAFs

In this section we instantiate anA-MAF with arguments built from an object level logic
that allows for reasoning about priorities over conjunctions of rules. We assume atomic
formulae built from a first order language containing the nullary predicatepref , and
complex formulae built using the connectives⇒ ¬, ∧ and>. We distinguishpriority
formulaeof the formX > Y , whereX andY are conjunctions of atomic formulae.

Definition 4 A theoryΓ is a set of rulesr : L1 ∧ . . . Lm ⇒ Ln, where:
• Each unique rule namer is an atomic first order formula
• EachLi is an atomic first order formula or a priority formula, or such a formula pre-
ceded by strong negation¬.

As usual, a rule with variables is a scheme standing for all its ground instances. For
any atomA or priority formulaP , we say thatA (P ) and¬A (¬P ) are the complement
of each other. In the metalanguage,L denotes the complement ofL. Henceforth, we
will refer to rules by their names, and writehead(r) andbody(r) to respectively denote
the consequent and antecedent of the rule namedr. We also assume that anyΓ contains
rules that ensure the priority relation> is closed under transitivity, in the sense that if
r1, r2 ∈ Γ, then∃r ∈ Γ s.t.body(r) = body(r1) ∧ body(r2), where;

i) head(r1) = Y > X, head(r2) = Z > Y , head(r) = Z > X, or;
ii) head(r1) = Y > X, head(r2) = ¬(Z > X), head(r) = ¬(Z > Y ), or;
iii) head(r1) = Z > Y , head(r2) = ¬(Z > X), head(r) = ¬(Y > X).



Definition 5 Given a theoryΓ, an argumentx is either:

1. a tree of rules s.t. each noder : L1 ∧ . . . Lm ⇒ Ln has child nodes with rules
r1 . . . rm, where fori = 1 . . .m, head(ri) = Li, andr, r1 . . . rm ∈ Γ, and each
leaf node ofx is a rule with an empty antecedent, and no two distinct rules have
the same head (so excluding arguments with circular chains of reasoning); or

2. a tree with the special root node ‘pref’, each of whose child nodes is the root
noderi of a tree of type 1, where head(ri) is a priority formula.

Table 1. A theory and its arguments and attack relation

Γ A′

r1 :⇒ b, r2 : b ⇒ a y1 = [r1, r2]

r3 :⇒ c, r4 : c ⇒ a y2 = [r3, r4]

r5 ⇒ d, r6 : d ⇒ ¬a z1 = [r5, r6]

r7 :⇒ e, r8 : e ⇒ ¬a z2 = [r7, r8]

r9 :⇒ r6 > r2 p1 = [r9, pref ], P (p1) = ({z1}, {y1})
r10 :⇒ r8 > r2 p2 = [r10, pref ], P (p2) = ({z2}, {y1})
r11 :⇒ r2 ∧ r4 > r6 ∧ r8 p3 = [r11, pref ], P (p3) = ({y1, y2}, {z1, z2})
r12 :⇒ r6 ∧ r8 > r2 ∧ r4 p4 = [r12, pref ], P (p4) = ({z1, z2}, {y1, y2})
r13 :⇒ f , r14 : f ⇒ r11 > r12 q1 = [r13, r14, pref ], P (q1) = ({p3}, {p4})

R′ = y1 � z1, y1 � z2, y2 � z1, y2 � z2, p3 � p4

Definition 6 For any argumentx, L is a conclusion ofx iff L is the head of some rule in
x. Let A be the arguments defined byΓ. For anyx, y ∈ A:
x andy attackeach other (i.e.,(x, y), (y, x) ∈ R) on (L, L′) iff L is a conclusion ofx
andL′ is a conclusion ofy, whereL′ = L, or if L = X > Y thenL′ = Y > X.

Arguments with root nodepref link together arguments concluding priorities over
conjunctions of rules names. Thus, one can define pairwise preferences over sets of ar-
guments w.r.t. priorities linked in a singlepref argument. Henceforth,rules(L,Z) will
denote{r|r is a rule inz, z ∈ Z, andhead(r) = L}, whereZ is a set of arguments.

Definition 7 Let A be the arguments defined byΓ, andX, Y ⊆ A s.t. {(L1, L
′
1), . . . ,

(Ln, L′n)} is the non-empty set of pairs of conclusions s.t. fori = 1 . . . n, ∃x ∈ X, y ∈
Y , x andy attack on(Li, L

′
i).

Let z be an argument with root nodepref . ThenP (z) = (X, Y ) iff for i = 1 . . . n,∧
(rules(Li, X)) >

∧
(rules(Li, Y )) is a conclusion ofz.

To enhance readability we henceforth describe propositional examples and write
arguments as sequences of paths in a tree. Consider argumentsx1 = [r1 :⇒ b, r2 : b ⇒ c],
x2 = [r3 :⇒ c] and y1 = [r4 :⇒ ¬b, r5 : ¬b ⇒ ¬c] which attack each other on the pairs
(b,¬b) and(c,¬c). Suppose rulesr6 :⇒ r1 > r4 andr7 :⇒ r2∧r3 > r5. Thenz with root
nodepref consists of the two paths[r6, pref ], [r7, pref ], andP (z) = ({x1, x2}, {y1}) .

Example 2 Consider the exampleΓ in Table 1 in which a subsetA′ andR′ of the argu-
ments and attack relation defined byΓ are shown. The instantiatedA-MAF (given by
Definition 3 is shown in Figure 4, in which:
C(π3) = {d(p({y1, y2}, {z1, z2}), d(α, β)) | α ∈ {z1, z2}, β ∈ {y1, y2}};
C(π4) = {d(p({z1, z2}, {y1, y2}), d(α, β)) | α ∈ {y1, y2}, β ∈ {z1, z2}}.
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Figure 4. The A-MAF for the theory in Example 2 (to ease readability some arguments – those surrounded by
dotted lines – are repeated).

In general, we say thatα is an inference ofΓ iff α is the conclusion of an argumentx
defined byΓ, andj(x) is a sceptically justified argument of theA-MAF instantiated by
Γ. Thus, the justified arguments of Figure 4’sA-MAF (i.e., those labelled 1) identify
a rather than¬a as an inference of Example 2’s theory. Although argumentsz1 and
z2 concluding¬a are individually preferred toy1 concludinga, p3 concludes that the
accrual{y1, y2} is stronger than{z1, z2}, andq1 justifies a preference for this pairwise
comparison over the contrary pairwise comparison concluded byp4.

5. Conclusions

This paper has argued that accrual is most naturally and properly effected through rea-
soning about and application of preferences to arguments. Such reasoning and applica-
tion can be formalised within meta-argumentation frameworks that adopt the standard
dialectical mode of argumentation. By contrast, existing approaches to accrual adopt
either the inference or knowledge representation approach. Furthermore, they either re-



quire somewhat ad-hoc mechanisms to ensure satisfaction of the principles of accrual
(e.g., the labelling mechanism in [11]’s inference approach), or formalise accrual within
the context of a specific logic (e.g., [6]’s inference approach), or make commitments to
the structure of, and interactions between, arguments (e.g., [13]), or do not accommodate
dialectical argumentation (e.g., [5]). Our approach is the first to integrate accrual within
Dung’s dialectical theory, while preserving the theory’s level of abstraction, so that the
inferences of various instantiating logics can be identified under integration of the di-
alectical and accrual modes of reasoning, and where such logics may also provide for
reasoning about the strengths of accruals. To substantiate this claim we have shown how
the inferences of a theory in such a logic are identified by the justified arguments of the
theory’s instantiatedA-MAF . Note that one can then apply the full range of results and
techniques developed for DungAFs, to the instantiatedA-MAFs. For example, argu-
ment game proof theories and algorithms defined forAFs, establish the justified status of
a given argumentx, and identify the extensions under each of the semantics [9]. We can
now apply these toA-MAFs, and in future work will investigate how efficiency gains
can be obtained. For example, in an argument game, a player could in one move play
argumentsd(X, Y ) followed by j(X), given that the player’s counterpart will always
be able to playr(X) in response tod(X, Y ), which in turn can always be countered by
j(X). If played together the counterpart could then either attackd(X, Y ) or j(X). One
could thus eliminate unnecessary rounds without impacting on the game’s outcome.
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