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Abstract

Argument Systems provide a rich abstraction within which divers concepts of reasoning,
acceptability and defeasibility of arguments, etc., may be studied using a unified frame-
work. Two important concepts of the acceptability of an argumentp in such systems are
credulous acceptanceto capture the notion thatp canbe ‘believed’; andsceptical accep-
tancecapturing the idea that ifanythingis believed, thenp mustbe. One important aspect
affecting the computational complexity of these problems concerns whether the admissibil-
ity of an argument is defined with respect to ‘preferred’ or ‘ stable’ semantics. One benefit
of so-called ‘coherent’ argument systems being that the preferred extensions coincide with
stable extensions. In this note we consider complexity-theoretic issues regarding deciding
if finitely presented argument systems modelled as directed graphs are coherent. Our main
result shows that the related decision problem is�

�p�
� –complete and is obtained solely via

the graph-theoretic representation of an argument system, thus independent of the specific
logic underpinning the reasoning theory.

Key words: Argument Systems, Coherence, Credulous and Sceptical reasoning,
Computational Complexity

1 Introduction

Since they were introduced by Dung [8], Argument Systems have provided a fruit-
ful mechanism for studying reasoning in defeasible contexts. They have proved
useful both to theorists who can use them as an abstract framework for the study
and comparison of non-monotonic logics, e.g. [2,5,6], and for those who wish to
explore more concrete contexts where defeasibility is central. In the study of rea-
soning in law, for example, they have been used to examine the resolution of con-
flicting norms, e.g. [12], especially where this is studied through the mechanism of
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a dispute between two parties, e.g. [11]. The basic definition below is derived from
that given in [8].

Definition 1 An argument systemis a pair� � �� ���, in which� is a set of
argumentsand� � � � � is the attack relationshipfor �. Unless otherwise
stated,� is assumed to befinite, and� comprises a set of ordered pairs ofdistinct
arguments. A pair�x� y� � � is referred to as ‘xattacks(or is an attacker ofy’ or
‘y is attacked byx’.

For R, S subsets of arguments in the system���� ����, we say that

a) s� S isattackedby R if there is some r� R such that�r� s� � �.
b) x� � is acceptable with respect toS if for every y� � that attacks x there is

some z� S that attacks y.
c) S isconflict-freeif no argument in S is attacked by any other argument in S.
d) A conflict-free set S isadmissibleif every argument in S is acceptable with

respect to S.
e) S is apreferred extensionif it is a maximal (with respect to�) admissible set.
f) S is astable extensionif S is conflict free and every argument y	� S is attacked

by S.
g) � is coherentif every preferred extension in� is also a stable extension.

An argument x iscredulously acceptedif there issomepreferred extension contain-
ing it; x is sceptically acceptedif it is a member ofeverypreferred extension.

The graph-theoretic representation employed by finite argument systems, naturally
suggests a unifying formalism in which to consider various decision problems. To
place our main results in a more general context we start from the basis of the
decision problems described by Table 1 in which:��� ��� is an argument system
as in Defn. 1;x an argument in� ; andSa subset of arguments in� .

Polynomial-time decision algorithms for problems (1) and (2) are fairly obvious.
The results regarding problems (3–7) are discussed below. In this article we are
primarily concerned with the result stated in the final line of Table 1: our proof of
this yields (8) as an easy Corollary.

Before proceeding with this, it is useful to discuss important related work of Di-
mopoulos and Torres [7], in which various semantic properties of the Logic Pro-
gramming paradigm are interpreted with respect to a (directed) graph translation
of reduced negativelogic programs: graph vertices are associated with rules and
the concept of ‘attack’ modelled by the presence of edges�r� s� whenever there is
a non-empty intersection between the set of literals defining the head ofr and the
negated set of literals in the body ofs, i.e. if z� body�s� then
z is in this negated
set. Although [7] does not employ the terminology – in terms of credulous accep-
tance, admissible sets, etc – from [8] used in the present article it is clear that simi-
lar forms are being considered: the structures referred to as ‘semi-kernel’, ‘ maximal
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Problem Decision Question Complexity

1 ADM���S� Is Sadmissible? P

2 STAB-EXT���S� Is Sa stableextension? P

3 PREF-EXT���S� Is Sa preferredextension? CO-NP–complete.

4 HAS-STAB��� Does� have any stable extension? NP–complete.

5 CA��� x� Is x in somepreferredextension? NP–complete

6 IN-STAB��� x� Is x in somestableextension? NP–complete

7 ALL -STAB��� x� Is x in everystable extension? CO-NP–complete.

8 SA��� x� Is x in everypreferred extension? �
�p�
� –complete

9 COHERENT��� Is� coherent? �
�p�
� –complete

Table 1
Decision Problems in Finite Argument Systems and their Complexity

semi-kernel’ and ‘kernel’ in [7] corresponding to ‘admissible set’, ‘preferred exten-
sion’ and ‘stable extension’ respectively. The complexity results for problems (3–6)
if not immediate from [7, Thm 5.1, Lemma 5.2, Prop. 5.3] are certainly implied by
these. In this context, it is worth drawing attention to some significant points re-
garding [7, Thm. 5.1] which, translated into the terminology of the present article
states:

The problem of deciding whether an argument system��� ��� has anon-empty
preferred extension isNP–complete.

First, this implies the complexity classification forPREF-EXT stated,evenwhen the
subsetS forming part of an instance isthe empty set.

A second point, also relevant to our proof of (9) concerns the transformation used:
[7] present a translation of propositional formulae� in 3-CNF (this easily gen-
eralises for arbitraryCNF formulae) into a finite argument system��. It is not
difficult, however, given��� ��� to defineCNF-formulae�� whose satisfiability
properties are dependent on the presence of particular structures within�, e.g. sta-
ble extensions, admissible subsets containing specific arguments, etc. We thus have
a mechanism for transforming a given� into an ‘equivalent’ system� the point
being that� mayprovide a ‘better’ basis for graph-theoretic analyses of structures
within�.

Our final observation, concerns problem (7): although the given complexity classi-
fication is neither explicitly stated in nor directly implied by the results of [7], that
ALL -STAB is CO-NP–complete can be shown using some minor ‘re-wiring’ of the
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argument graphG� constructed from an instance� of 3-SAT. �

The concept ofcoherencewas formulated by [8, Defn. 31(1), p. 332], to describe
those argument systems whose stable and preferred extensions coincide. One sig-
nificant benefit of coherence as a property has been established in recent work of
Vreeswijk and Prakken[13] with respect to proof mechanisms for establishingscep-
tical acceptance: problem (8) of Table 1. In [13] a sound and complete reasoning
method for credulous acceptance - using a dialogue game approach - is presented.
This approach, as the authors observe, provides a sound and complete mechanism
for scepticalacceptance in precisely those argument systems that are coherent.
Thus a major advantage of coherent argument systems is that proofs of sceptical ac-
ceptance are (potentially) rather more readily demonstrated in coherent systems via
devices such as those of [13]. The complexity of sceptical acceptance is considered
(in the context of membership in preferred extensions) for various non-monotonic
Logics by [5], where completeness results at the third-level of the polynomial-time
hierarchy are demonstrated. Although [5] argue that their complexity results ‘dis-
credit sceptical reasoning as ... “unnecessarily” complex’, it might be argued that
within finite systems where coherence is ‘promised’ this view may be unduly pes-
simistic. Notwithstanding our main result that testing coherence is extremely hard,
there is an efficiently testable property that can be used to guarantee coherence.
Some further discussion of this is presented in Section 3.

In the next section we present the main technical contribution of this article, that
COHERENTis��p�

� –complete: the complexity class��p�
� comprising those problems

decidable byCO-NP computations given (unit cost) access to anNP oracle. Alterna-
tively,��p�

� can be viewed as the class of languages,L, membership in which is cer-
tified by a (deterministic) polynomial-time testable ternary relationRL �W�X�Y
such that, for some polynomial boundp��w�� in the number of bits encodingw,

w � L ��x � X � �x� � p��w�����y � Y � �y� � p��w��� �w� x� y� � RL

Our result in Theorem 2 provides some further indications that decision questions
concerning preferred extensions are (under the usual complexity-theoretic assump-
tions) likely to be harder than the analogous questions concerningstableexten-
sions: line (8) of Table 1 is an easy Corollary of our main theorem. Similar conclu-
sions had earlier been drawn in [5,6], where the complexity of reasoning problems
in a variety of non-monotonic Logics is considered under both preferred and stable
semantics. This earlier work establishes a close link between the complexity of the
reasoning problem and that of thederivability problemfor the associated logic. One
feature of our proof is that the result is established purely through a graph-theoretic
interpretation of argument, similar in spirit, to the approach adopted in [7]: thus,

� This involves removing all except the edge�Aux�A� for edges�A� x� or �x�A�: then
ALL -STAB�G��A�� �3–SAT���
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the differing complexity levels may be interpreted in purely graph-theoretic terms,
independently of the Logic that the graph structure is defined from.

In Section 3 we discuss some consequences of our main theorem in particular with
respect to its implications for designingdialogue gamestyle mechanisms for Scep-
tical Reasoning. Conclusions are presented in Section 4.

2 Complexity of Deciding Coherence

Theorem 2 COHERENTis��p�
� –complete.

In order to clarify the proof structure we establish it via a series of technical lem-
mata. The bulk of these are concerned with establishing�

�p�
� –hardness, i.e with

reducing a known��p�
� –complete problem toCOHERENT.

We begin with the, comparatively easy, proof thatCOHERENT��� is in��p�
� .

Lemma 3 COHERENT��� � ��p�
� .

Proof: Given an instance,��� ��� of COHERENT, it suffices to observe that,

COHERENT��� �S�
PREF-EXT���S� � STAB-EXT���S��

i.e.� is coherent if and only if for each subsetSof � : eitherS is not a preferred
extension orS isa stable extension. Since,
PREF-EXT���S� is in NP, i.e.��p�

� and
STAB-EXT���S� in P, we haveCOHERENTin �

�p�
� as required. �

The decision problem we use as the basis for our reduction isQSAT�. An instance of
QSAT� is a well-formed propositional formula,��X�Y�, defined over disjoint sets
of propositional variables,X � �x�� x�� � � � � xn� andY � �y�� y�� � � � � yt�. Without
loss of generality we may assume that:n � t; � is formed using only the Boolean
operations�, �, and
; and negation is only applied to variables inX � Y. An
instance,��X�Y� of QSAT� is accepted if and only if��X��Y ���X� �Y�. That is,
no matter how the variables inX are instantiated (�X) there issomeinstantiation
(�Y) of Y such that��X� �Y� satisfies�. ThatQSAT� is��p�

� –complete was shown in
[14].

We start by presenting some technical definitions. The first of these describes a
standard presentation of propositional formulae asdirected rooted treesthat has
often been widely used in applications of Boolean formulae, see e.g. [9, Chapter 4]

Definition 4 Let��Z� be a well-formed propositional formula (wff) over the vari-

5



z1 z2 z3 z4 -z2 -z4

g1 g2

g3

g4

OR

OR

AND

AND

Fig. 1.T��z�� z�� z�� z�� for �z� � z� � z�� � z� � ��z� � �z��

ables Z� �z�� z�� � � � � zn� using the operations�����
�with negation applied only
to variables of�. Thetree representation of� (denoted T�) is a rooted directed tree
with root vertex denoted��T�� and inductively defined by the following rules.

a) If ��Z� � w – a single literal z or
z – then T� consists of a single vertex
��T�� labelled w.

b) If ��Z� � �k
i���i�Z�, for wff ������� � � � ��k�, T� is formed from the k tree

representations�T�i � by directing edges from each��T�i� into a new root
vertex��T�� labelled�.

c) If ��Z� � �k
i���i�Z�, for wff ������� � � � ��k�, T� is formed from the k tree

representations�T�i � by directing edges from each��T�i� into a new root
vertex��T�� labelled�.

In what follows we use the termnodeof T� to refer to an arbitrary tree vertex, i.e.
a leaf or internal vertex.

In the tree representation of�, each leaf vertex is labelled with some literalw,
(several leaves may be labelled with the same literal), and each internal vertex with
an operation in�����. We shall subsequently refer to the internal vertices ofT� as
thegatesof the tree. Without loss of generality we may assume that the successor
of any�-gate (tree vertex labelled�) is an�-gate (tree vertex labelled�) andvice-
versa. The sizeof ��Z� is the number ofgatesin its tree representationT�. For
formulae of sizem we denote by�g�� g�� � � � � gm� the gates inT� with gm always
taken as the root��T�� of the tree. Finally for any edge�h� g� in T� we refer to the
nodeh as aninputof the gateg. �

Definition 5 For a formula,��Z�, aninstantiationof its variables is a mapping,� �
Z � �true� false� �� associating a truth value or unassigned status (�) with each
variable zi. We use�i to denote��zi�. An instantiation istotal if every variable is
assigned a value in�true� false� andpartialotherwise. We define a partial ordering

� We note that since any gate may be assumed to have at mostn distinct literals among its
inputs, our measure of formula size as ‘number of gates’ is polynomially equivalent to the
more usual measure of size as ‘number of literal occurrences’, i.e. leaf nodes.
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over instantiations� andÆ to Z by writing� � Æ if: for each i with� i 	� �, Æi � �i ,
and there is at least one i, for which�i � � andÆi 	� �.

Given��Z� any instantiation� � Z� �true� false� �� induces a mapping from the
nodes definingT� onto values in�true� false� ��. Assuming the natural generalisa-
tions of� and� to the domain�true� false� ��, � we define forh a node inT�, its
value��h� �� under the instantiation� of Z as

��h� �� �

��������������
�������������

� if h is a leaf node labelledzi or
zi and�i � �

�i if h is a leaf node labelledzi and�i 	� �


�i if h is a leaf node labelled
zi and�i 	� �

�k
j����hj � �� if h is an�-gate with inputs�h�� � � � � hk�

�k
j����hj � �� if h is an�-gate with inputs�h�� � � � � hk�

where� is clear from the context, we write��h� for ��h� ��.

With this concept of the value induced at a node ofT� via an instantiation�, we
can define a partition of theliterals andgatesin T� that is used extensively in our
later analysis.

Thevalue partition Val��� of T� comprises 3 sets�True����False����Open����.

T1) The subsetTrue��� consists of literals and gates,h, for which��h� � true.
T2) The subsetFalse��� consists of literals and gates,h, for which��h� � false.
T3) The subsetOpen��� consists of literals and gates,h, for which��h� � �.

The following properties of this partition can be easily proved:

Fact 6

a) Open��� � �  � is total.
b) If � � Æ, then True��� � True�Æ� and False��� � False�Æ�.

For example in Fig. 1 under the partial instantiation� � �z� � true� z� � false�
with all other variables unassigned, we have:True��� � �z��
z�� g��; False��� �
�
z�� z�� g��; andOpen��� � �z��
z�� z��
z�� g�� g��.

At the heart of our proof thatQSAT� is polynomially reducible toCOHERENT is
a translation from the tree representationT� of a formula��X�Y� to an argument
system���������. It will be useful to proceed by presenting a preliminary trans-

� i.e.�k
j��xj is � unless allxj aretrue or at least onexj is false; �k

j��xj is � unless allxj are
false or at least one istrue.
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z1 z2 z3 -z4
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g3

-g4
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-z2

z4-z3

g4

-z1

Fig. 2. The Argument System�� from the formula of Fig. 1

lation that, although not in the final form that will be used in the reduction, will
have a number of properties that will be important in deriving our result.

Definition 7 Let��Z� be a propositional formula with tree representation T� hav-
ing size m. TheArgument Representationof�, is the argument system���������
defined as follows.�� contains the following arguments��:

X1 �n literal arguments�zi�
zi � 	 � i � n�.
X2 For each gate gk of T�, an argument
gk (if gk is an�-gate) or an argument

gk (if gk is an �-gate). If gm, i.e the root of T�, happens to be an�-gate,
then an additional argument gm is included. We subsequently denote this set
of arguments by��.

The attack relationship –�� – over�� contains:

A1 ��zi�
zi�� �
zi� zi� � 	 � i � n�
A2 �
gm� gm� if gm is an�-gate in T�,
A3 If gk is an�-gate with inputs�h�� h�� � � � � hr�: ��
hi� gk� � 	 � i � r�.
A4 If gk is an�-gate with inputs�h�� h�� � � � � hr�: ��hi�
gk� � 	 � i � r�.

Fig. 2 shows the result of this translation when it is applied to the tree representation
of the formula in Fig. 1.

The arguments defining�� fall into one of two sets:�n arguments corresponding
to the�n distinct literals overZ; andm (or m
	) ‘gate’ arguments. The key idea is
the following: any instantiation� of the propositional variablesZ of �, induces the
partitionVal��� of literals and gates inT�. In the argument system�� the attack
relationship forgatearguments, reflects the conditions under which the correspond-
ing argument is admissible (with respect to the subset of literal arguments marked
out by�). For example, supposeg� is an�-gate with literalsz�, 
z�, z� as its in-
puts. In the simulating argument system,g� is represented by an argument labelled

g� which is attacked by the (arguments labelled with) literalsz�, 
z�, andz�: the
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interpretation being that “the assertion ‘g� is false’ is attacked by instantiations in
which z� or 
z� or z� are true”. Similarly were g� an�-gate it would appear in
�� as an argument labelledg� which was attacked by literals
z�, z�, and
z�: the
interpretation now being that “the assertion ‘g� is true’ is attacked by instantiations
in which z� or 
z� or z� are false”. With this viewpoint, any instantiation� will
induce a selection of the literal arguments and a selection of thegatearguments
(i.e. those for which no attacking argument has been included).

Suppose� is an instantiation ofZ. The key idea is to map the partition of the
tree representationT� asVal��� onto an analogous partition of the literal and gate
arguments in��. Given� this partition comprises 3 sets,�In���� Out���� Poss����
defined by:

R1) An argumentp is in the subsetIn��� of �� if:

�p is the argumentzi, �i � true� or �p is the argument
zi, �i � false�

or �p � 
g � �� andg � T� is in False����

or �p � g � �� andg � T� is in True����

R2) An argumentp is in the subsetOut��� of �� if:

�p is the argumentzi, �i � false� or �p is the argument
zi, �i � true�

or �p � 
g � �� andg � T� is in True����

or �p � g � �� andg � T� is in False����

R3) An argumentp is in the subsetPoss��� of �� if:

p 	� In��� �Out���

With the formulation of the argument system��������� from the formula��Z�
and the definition of the partition�In����Out����Poss���� via the value partition
Val��� of T� we are now ready to embark on the sequence of technical lemmata
which will culminate in the proof of Theorem 2.

Our proof strategy is as follows. We proceed by characterising the set of preferred
extensions of�� showing – in Lemma 8 through Lemma 11 – that these consist
of exactly the subsets defined byIn��Z� where�Z is a total instantiation ofZ. In
Lemma 12 we deduce that these are all stable extensions and thus that�� is itself
coherent. In the remaining lemmata, we consider the argument systems arising by
transforming instances��X�Y� of QSAT�. In these, however, we add to the basic
system defined by�� (which will have �n literal arguments andm (or m
 	)
gate arguments) an additional set of 3control argumentsone of which attacks all
of theY–literal arguments: we denote this augmented system by���������. As
will be seen in Lemma 15, it follows easily from Lemma 10 that for any��X� �Y�
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satisfying��X�Y� the subsetIn��X� �Y� is a stable extension of both�� and H�.
The crucial property provided by the additional control arguments in�� is proved
in Lemma 16:if for �X there is no�Y for which ��X� �Y� satisfies��X�Y� then
the subsetIn��X� (defined from��) is a preferredbut not stableextension of��,
whereIn��X� denotes the setIn��X� �� �� � � � � �� in which everyyi is unassigned.
The reason for introducing the control arguments in moving from�� to�� is that
In��X� is not a preferred extension of��: although it is admissible, it could be
extended by adding, for example,Y–literal arguments. The design of�� will be
such that unless the gate argumentgm can be used in anadmissibleextension of
In��X� thenIn��X� is already maximal in�� and not a stable extension since the
control arguments are not attacked. Finally, in Lemma 17, it is demonstrated that
theonly preferred extensions of�� are those arising as a result of Lemma 15 and
Lemma 16. Theorem 2 will follow easily from Lemma 17, since the argumentgm

– corresponding to the root node��T�� of the instance��X�Y� – must necessarily
belong to any stable extension in��: hence�� is coherent if and only if for each
instantiation�X there is an instantiation�Y such that��X� �Y� satisfies��X�Y�, i.e.
for whichgm � In��X� �Y� in the system�� and thence in the corresponding stable
extension of��.

We employ the following notational conventions:�X, �Y, (and�Z) denotetotal
instantiations ofX, Y, (and Z); for an argumentp in ��, gp (resp.hp) denotes
the corresponding gate (resp. node) inT�, hence ifgp is an�-gate, thenp is the
argument labelled
gp; ��� (resp.���) denotes the set ofall preferred (resp.
stable) extensions in the argument system �, where � is one of�� or��.

Lemma 8 ��Z In��Z� is conflict-free.

Proof: Let �Z be an instantiation ofZ and consider the subsetIn��Z� of �� in��.
Suppose that there are argumentsp andq in In��Z� for which�p� q� � ��. It cannot
be the case thathp � ui andhq � 
ui for ui some literal overzi, since exactly one
of �zi �
zi� is in True��Z� hence exactly one of the corresponding literal arguments
is in In��Z�. Thusq must be a gate argument. Supposegq is an�-gate:q � In��Z�
only if gq � False��Z� and thereforehp, which (since�p� q� � ��) must be an input
of gq is also inFalse��Z�. This leads to a contradiction: ifhp is a gate then it is an
�-gate, sop � In��Z� only if hp � True��Z�; if hp is a literalui, thenhp � False��Z�
would mean that
ui � True��Z� and henceui 	� In��Z�. The remaining possibility
is thatgq is an�-gate:q � In��Z� only if gq � True��Z� and thushp � True��Z�.
If hp is a gate it must be an input ofgq and an�-gate:hp � True��Z� would force
p 	� In��Z�. Finally if the inputhp is a literalui in T� then in�� the literal
ui

attacksq: ui � True��Z� implies 
ui 	� In��Z�. We deduce thatIn��Z� must be
conflict-free. �

Lemma 9 ��Z In��Z� is admissible.
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Proof: From Lemma 8,In��Z� is conflict-free, so it suffices to show for all argu-
mentsp 	� In��Z� that attack someq � In��Z� there is an argumentr � In��Z�
that attacksp. Let p, q be such thatp 	� In��Z�, q � In��Z� and�p� q� � ��. If
q is a literal argument,ui say, thenp must be the literal argument
ui and choos-
ing r � q provides a counter-attacker top. Supposeq is a gate argument. One of
the inputs togq must be the nodehp. If gq is an�-gate thengq � False��Z� and
hp � False��Z�. If hp is a literalui then the literal argumentr � 
ui � In��Z�
attacksp; if hp is an�-gate thenhp � False��Z� implies there is some inputhr

to hp with hr � False��Z�, so thatr � 
hr is in In��Z� (whetherhr is an�-gate
or literal) andr attacksp. Similarly, if gq is an�-gate thengq � True��Z� and
hp � True��Z�. If hp is a literalui then the attacking argument (onq in ��) is the
literal 
ui � Out��Z�, thusr � ui � In��Z� provides a counter-attack onp. If hp

is an�-gate thenhp � True��Z� indicates that some inputhr of hp is in True��Z�,
so thatr � hr is in In��Z� and r attacksp. No more cases remain thusIn��Z� is
admissible. �

Lemma 10 ��Z In��Z� � ���.

Proof: From Lemma 8, 9 and the fact that every argument in�� is allocated
to either In��Z� or Out��Z� by �Z, cf. Fact 6(a), it suffices to show that for any
argumentp � Out��Z� there is someq � In��Z� such thatp andq conflict. Certainly
this is the case for literal arguments,u � Out��Z� since the complementary literal

u is in In��Z�. Supposep � Out��Z� is a gate argument. Ifgp is an�-gate then
p � Out��Z� implies gp � True��Z� and hence some inputhq of gp must be in
True��Z�. The argumentq corresponding to this input node will therefore be in
In��Z�. If gp is an�-gate thenp � Out��Z� impliesgp � False��Z� and some input
hq of gp must be inFalse��Z�. The argument
hq will be in In��Z� and conflicts
with p. �

Lemma 11 �S� ��� ��Z � S� In��Z�.

Proof: First observe that allS � ��� must contain exactlyn literal arguments:
exactly one representative from�zi�
zi� for eachi. Let us call such a subset of the
literal arguments arepresentative setand suppose thatU is any representative set
with SU any preferred extension containingU. We will show that there is exactly
one possible choice forSU and that this isSU � In���U�� where��U� is the instan-
tiation of Z by: zi � true if zi � U; zi � false if 
zi � U. Consider the following
procedure that takes as input a representative setU and returns a subsetSU � ���

with U � SU.

(1) SU �� U; TU �� ��
(2) TU �� TU	SU
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(3) if TU � � then return SU and stop.
(4) TU �� TU	�q � TU � �p� q� � �� for somep � SU�.
(5) SU �� SU � �q � TU � for all p � TU� �p� q� 	� ���
(6) goto Step(2).

We can note three properties of this procedure. Firstly, it always halts: once the
literal arguments in the representative setU and their complements have been re-
moved fromTU (in Steps 2 and 4), the directed graph-structure remaining is acyclic
and thus has at least one argument that is attacked by no others. Thus each iteration
of the main loop removes at least one argument fromTU which eventually becomes
empty. Secondly, the setSU is in ���: the initial set (U) is admissible and the
arguments removed fromTU at each iteration are those that have just been added
to SU (Step 2) as well as those attacked by such arguments (Step 4); in addition
the arguments added toSU at each stage are those that have had counter-attacks
to all potential attackers already placed inSU. Finally for any givenU the subset
SU returned by this procedure is uniquely defined. In summary, everyS� ��� is
defined through exactly one representative set,US, and every representative setU
develops to a uniqueSU � ��

�. Each representative set,U, however, has the form
In���U�� ! �zi�
zi � 	 � i � n�, and hence the unique preferred extension,SU,
consistent withU is In���U��. �

Lemma 12 The argument system��������� is coherent.

Proof: The procedure of Lemma 11 only excludes an argument,q, from the setSU

under construction ifq is attacked by some argumentp � SU. Thus,SU is always
a stable extension, and since Lemma 11 accounts for allS� ���, we deduce that
�� is coherent. �

Although our preceding three results characterise�� as coherent, this, in itself,
does not allow�� be useddirectly as the transformation for instances��X�Y� of
QSAT�. The overall aim is to construct an argument system from��X�Y� which is
coherent if and only if��X�Y� is a positive instance ofQSAT�. The problem with
�� is that, even though��X�Y� may be a positive instance, there could be instan-
tiations,��X� �Y� which fail to satisfy��X�Y� but give rise to a stable extension
In��X� �Y�, e.g. for�Y with which ���X� �Y� � false. In order to deal with this
difficulty, we need to augment�� (giving a system��) in such a way that the
admissible setIn��X� is a preferred (but not stable) extension (in��) only if no
instantiation�Y allows��X� �Y� to satisfy��X�Y�. Thus, in our augmented system,
we will haveexactly twomutually exclusive possibilities for each total instantiation
�X of X: either there is no�Y for which���X� �Y� � true, in which event the set
In��X�will produce a non-stable preferred extension of��; or there is an appropri-
ate�Y, in which caseIn��X� �Y� (of which In��X� is aproper subset, cf. Fact 6(b))
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Fig. 3. An Augmented Argument Representation��

will yield a stable extension in��.

Definition 13 For ��X�Y� an instance ofQSAT�, theAugmented Argument Rep-
resentationof � – denoted��������� – has arguments,�� � �� � "�, where
�� are the arguments arising in the Argument Representation of��X�Y� –�� –
as given in Definition 7 and"� � �C��C��C�� are 3 new arguments called the
control arguments. The attack relationship�� contains all of the attacks�� in the
system�� together with new attacks,

��C�� yi�� �C��
yi� � 	 � i � n�

��C��C��� �C��C��� �C��C���

��gm�C��� �gm�C��� �gm�C���

Using the relabelling of variables in our example formula – Figs. 1,2 – as�x�� x�� �
�z�� z��, �y�� y�� � �z�� z��, the Augmented Argument Representation for the system
in Fig. 2 is shown in Fig. 3

Lemma 14 If S � ��� then Ci 	� S for any of�C��C��C��. If S � ��� then
gm � S.

Proof: SupposeS� ���. If gm � Sthen each of the control arguments is attacked
by gm and so cannot be inS. If gm 	� S thenC� 	� Ssince the only counter-attack
to C� is the argumentC� which conflicts withC�. By similar reasoning it follows
thatC� 	� SandC� 	� S. For the second part of the lemma, givenS� ���, since
�C��C��C�� 	� S, there must be some attacker of these inS. The only choice for
this attacker isgm. �

Lemma 15 ���X� �Y� that satisfy��X�Y�: In��X� �Y� � ���.
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Proof: From Lemma 10 and 12, the subsetIn��X� �Y� is in ���. Furthermore,
sincegm � True��X� �Y� it follows that the gate argumentgm of�� is in In��X� �Y�.
For the augmented system,��, the arguments inIn��X� �Y� remain admissible:
attacks onY–literal arguments by the control argumentC� are attacked in turn by
the gate argumentgm. In addition, using the arguments of Lemma 10 no arguments
in Out��X� �Y� can be added to the setIn��X� �Y� within�� without conflict. Thus
In��X� �Y� � ��� whenever���X� �Y� holds. �

Lemma 16 If �X is such thatno instantiation�Y of Y, leads to��X� �Y� satisfying
��X�Y� then In��X� � ���	���.

Proof: The subsetIn��X� of �� can be shown to be admissible (in both�� and
��) by an argument similar to that of Lemma 9.� Suppose for all�Y, we have
���X� �Y� � false, and consider any subsetSof�� in �� for which In��X� � S.
We show thatS 	� ���. Assume the contrary holds. From Lemma 14 no control
argument is inS. If gm � SthenSmust contain arepresentative set, VY say, of theY–
literal arguments matching some instantiation�Y. From the argument used to prove
Lemma 11,In��X� �Y� is the only preferred extension in�� consistent with the
literal choices indicated by�X and�Y, and thus would be the only such possibility
for ��. Now we obtain a contradiction sincegm 	� In��X� �Y� (in either system),
and so cannot be used in�� to counter the attack byC� on the representative setVY.
Thus we can assume thatgm 	� S. From this it follows that noY–literal argument
is in S (as gm is the only attacker of the control argumentC� which attacksY–
literals). Now consider the gates inT� topologically sorted, i.e. assigned a number
	 � 
�g� � m such that all of the inputs for a gate numbered
�g� are from literals
or gatesh with 
�h� � 
�g�. Let q be an argument such thatgq is the first gate in
this topological ordering for whichq � S	In��X�. We must havegq � Open��X�
otherwise – i.e.q � Out��X� – q would already be excluded from any admissible
set havingIn��X� as a subset. Consider the set of arguments in�� that attack
q. At least one attacker,p, must be a nodehp in T� for which hp � Open��X�.
Now our proof is completed:S has no available counter-attack to the attack by
p on q since such could only arise from aY–literal argument (all of which have
been excluded) or from another gate argumentr with gr � Open��X�, however,

�gr� � 
�hp� � 
�gq� andr � Scontradicts the choice ofq. Fig. 4 illustrates the
possibilities. We conclude that the subsetIn��X� of�� is in��� whenever there
is no �Y with which ���X� �Y� � true, and since the control arguments are not
attacked,In��X� 	� ���. �

� A minor addition is required in that since�X is a partial instantiation (of�X�Y�) it has
to be shown that all argumentsp that attack argumentsq 	 In��X� belong to the subset
Out��X�, i.e. are not inPoss��X�. With the generalisation of� and� to allow unassigned
values, it is not difficult to show that ifp 	 Poss��X� then any argumentq attacked byp in
�� cannot belong toIn��X�.
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Fig. 4. Final cases in the proof of Lemma 16:q 	 Poss��X� is not admissible

Lemma 17 If S � ��� then S� In��X� �Y� (with ���X� �Y� � true). If S �
���	��� then S� In��X� and���X� �Y� � false for all �Y.

Proof: Consider anyS � ���. It is certainly the case thatS has as a subset
some representative set,VX from theX–literal arguments. Suppose we modify the
procedure described in the proof of Lemma 11, to one which takes as input a rep-
resentative setV of theX–literals and returns a subsetSV of the arguments�� of
�� in the following way:

(1) SV �� V ; newTV ����;
(2) oldTV �� newTV ; newTV �� oldTV	SV;
(3) if newTV � oldTV then return SV and stop.
(4) newTV �� newTV	�q � newTV � �p� q� � �� for somep � SV�.
(5) SV �� SV � �q � newTV � for all p � newTV� �p� q� 	� ���
(6) goto Step(2).

The setSV is an admissible subset of�� that contains onlyX–literal arguments
and a (possibly empty) subsetG of the gate arguments��. Furthermore, givenV,
there is a uniqueSV returned by this procedure. It follows that for anyS � ���,
V � S # SV � S for the representative setV associated withS. This set,V,
matches the literal arguments selected by some instantiation��V� of X, and so as
in the proof of Lemma 11, we can deduce thatSV � In���V��. This suffices to
complete the proof: we have established that every setS in ��� contains a subset
In��X� for some instantiation�X: from Lemma 16,In��X� is not maximal if and
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only if S� In��X� �Y� for some�Y with ���X� �Y� � true. �

The proof of our main theorem is now easy to construct.

Proof: (of Theorem 2) It has already been shown thatCOHERENT � �
�p�
� in

Lemma 3. To complete the proof we need only show that��X�Y� is a positive
instance ofQSAT� if and only if�� is coherent.

First suppose that for all instantiations�X there is some instantiation�Y for which
���X� �Y� holds. From Lemma 15 and Lemma 17 it follows that all preferred ex-
tensions in�� are of the formIn��X� �Y�, and these are all stable extensions, hence
�� is coherent. Similarly, suppose that�� is coherent. Let�X be any total instan-
tiation of X. Suppose, by way of contradiction, that for all�Y, ���X� �Y� � false.
From Lemma 16,In��X� is a preferred extension in this case, and hence (since��

was assumed to be coherent) a stable extension. From Lemma 14 this implies that
gm � In��X� which could only happen ifgm � True��X� for T�, i.e. the value of�
is determined in this case, independently of the instantiation ofY, contradicting the
assumption that���X� �Y� wasfalse for every choice of�Y. Thus we deduce that
��X�Y� is a positive instance ofQSAT� if and only if�� is coherent so completing
the proof thatCOHERENTis��p�

� –complete. �

An easy Corollary of the reduction in Theorem 2 is

Corollary 18 SA is��p�
� –complete.

Proof: That SA � �
�p�
� follows from the fact thatx is sceptically accepted in

��� ��� if and only if: for every subsetSof � eitherSis not a preferred extension
or x is in S. To see thatSA is��p�

� –hard, we need only observe that in order for�� to
be coherent, the gate argumentgm must occur in in every preferred extension of��

in the reduction of Theorem 2 Thus,�� is coherent if and only ifgm is sceptically
accepted in��. �

3 Consequences of Theorem 2 and Open Questions

A number of authors have recently considered mechanisms for establishing credu-
lous acceptance of an argumentp in a finitely presented system��� ��� through
dialogue games. The protocol for such games assumes two players – theDefender,
(D) andChallenger, (C) – and prescribe a move (orlocution) repertoire together
with the criteria governing the application of moves and concepts of ‘winning’ or
‘losing’. The typical scenario is that followingD assertingp the players take al-
ternate turns presenting counter-arguments (consistent with the structure of�) to
the argument asserted by their opponent in the previous move. A player loses when
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no legal move (within the game protocol) is available. An important example of
such a game is theTPI–dispute formalism of [13] which provides a sound and com-
plete basis for credulous argumentation. An abstract framework for describing such
games was presented in [11], and is used in [3] also to define a game-theoretic ap-
proach to Credulous Acceptance. Coherent systems are important with respect to
the game formalism of [13]:TPI–disputes define a sound and complete proof theory
for both Sceptical and Credulous games on coherent argument systems; the Scepti-
cal Game is not, however, complete in the case of incoherent systems. The sequence
of moves describing a completed Credulous Game (for both [3,13]) can be inter-
preted as certificates of admissibility or inadmissibility for the argument disputed.
It may be noted that this view makes apparent a computational difficulty arising in
attempting to define similar ‘Sceptical Games’ applicable to incoherent systems:
the shortest certificate thatCA��� x� holds, is the size of the smallest admissible
set containingx – it is shown in [10] that there is always a strategy forD that can
achieve this; it is also shown in [10] thatTPI-disputes won byC, i.e. certificates
that
CA��� x�, can require exponentially many (in�� �) moves.	 If we consider a
sound and complete dialogue game forscepticalreasoning, then the moves of a dis-
pute won byD constitute a certificate of membership in a��p�

� –complete language:
we would expect such certificates ‘in general’ to have exponential length; similarly,
the moves in a dispute won byC constitute a certificate of membership in a��p�

� –
complete language and again these are ‘likely’ to be exponentially long. Thus a
further motivation of coherent systems is that sceptical acceptance is ‘at worst’CO-
NP–complete: short certificates that an argument isnotsceptically accepted always
exist.

The fact that sceptical acceptance is ‘easier’ to decide for coherent argument sys-
tems, raises the question of whether there are efficiently testable properties that can
be exploited in establishing coherence. The following is not difficult to prove:

Fact 19 If ��� ��� is not coherent then it contains a (simple) directed cycle of
odd length.

Thus an absence of odd cycles (a property which can be efficiently decided) ensures
that the system is coherent. An open issue concerns coherence inrandomsystems.
One consequence of [4] is that random argument systems ofn arguments in which
each attack occurs (independently) with probabilityp, almost surely have a stable
extension whenp is a fixed probability in the range� � p � 	. Whether a similar
result can be proven for coherence is open.

As a final point, we observe that the interaction between graph-theoretic models of
argument systems and propositional formulae may well provide a fruitful source

	 Since these are certificates of membership in aCO-NP–complete language, this is unsur-
prising: [10] relates dispute lengths for such instances to the length of validity proofs in the
CUT–free Gentzen calculus.
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of further techniques. We noted earlier that [7] provides a translation fromCNF-
formulae,� into an argument system��; our constructions above define similar
translations for arbitrary propositional formulae. We can equally, however, consider
translations in the reverse direction, e.g. given��� ��� it is not difficult to see that
theCNF-formula,�� �

�
�x�y����
x�
y��

�
x�� �x�

�
�z
�z�x���	 z� is satisfiable if

and only� has a stable extension. Similar encodings can be given for many of the
decision problems of Table 1. Translating such formsbackto argument systems, in
effect gives an alternative formulation of the original argument system from which
they were generated, and thus these provide mechanisms whereby any system,�
can be translated into another system�dec with properties of concern holding of
� if and only if related properties hold in�dec. Potentially this may permit both
established methodologies from classical propositional logic� and graph-theory to
be imported as techniques in argumentation.

4 Conclusion

In this article the complexity of deciding whether a finitely presented argument
system is coherent has been considered and shown to be�

�p�
� –complete, employ-

ing techniques based entirely around the directed graph representation of an ar-
gument system. An important property of coherent systems is that sound and com-
plete methods for establishing credulous acceptance adapt readily to provide similar
methods for deciding sceptical acceptance, hence sceptical acceptance in coherent
systems isCO-NP–complete. In contrast, as an easy corollary of our main result
it can be shown that sceptical acceptance is�

�p�
� –complete in general. Finally we

have outlined some directions by which the relationship between argument systems,
propositional formulae, and graph-theoretic concepts offers potential for further re-
search.
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