Overview

- Allocation of scarce resources amongst a number of agents is central to multiagent systems.

- A resource might be:
 - a physical object
 - the right to use land
 - computational resources (processor, memory, . . .)

- It is a question of supply vs demand
 - If the resource isn’t scarce…, or if there is no competition for the resource...
 - …then there is no trouble allocating it
 - If there is a greater demand than supply
 - Then we need to determine how to allocate it
Overview

• In practice, this means we will be talking about auctions.
 • These used to be rare (and not so long ago).
 • However, auctions have grown massively with the Web/Internet
 • Frictionless commerce

• Now feasible to auction things that weren’t previously profitable:
 • eBay
 • Adword auctions
What is an auction

• Auctions are effective in allocating resources efficiently
 • They also can be used to reveal truths about bidders

• Concerned with traders and their allocations of:
 • Units of an indivisible good; and
 • Money, which is divisible.

• Assume some initial allocation.

• Exchange is the free alteration of allocations of goods and money between traders

“... An auction is a market institution in which messages from traders include some price information — this information may be an offer to buy at a given price, in the case of a bid, or an offer to sell at a given price, in the case of an ask — and which gives priority to higher bids and lower asks...”

This definition, as with all this terminology, comes from Dan Friedman
Types of value

- There are several models, embodying different assumptions about the nature of the good.

 - Private Value / Common Value / Correlated Value
 - With a common value, there is a risk that the winner will suffer from the winner’s curse, where the winning bid in an auction exceeds the intrinsic value or true worth of an item.

- Each trader has a value or limit price that they place on the good.

 - Limit prices have an effect on the behaviour of traders.

Private Value
Good has an value to me that is independent of what it is worth to you.

- For example: John Lennon’s last dollar bill.

Common Value
The good has the same value to all of us, but we have differing estimates of what it is.

- Winner’s curse.

Correlated Value
Our values are related.

- The more you’re prepared to pay, the more I should be prepared to pay.
Auction Protocol Dimensions

Winner Determination
- Who gets the good, and what do they pay?
 - e.g. first vs second price auctions

Open Cry vs Sealed-bid
- Are the bids public knowledge?
 - Can agents exploit this public knowledge in future bids?

One-shot vs Iterated Bids
- Is there a single bid (i.e. one-shot), after which the good is allocated?
- If multiple bids are permitted, then:
 - Does the price ascend, or descend?
 - What is the terminating condition?
English Auction

- This is the kind of auction everyone knows.
 - Typical example is sell-side.

- Buyers call out bids, bids increase in price.
 - In some instances the auctioneer may call out prices with buyers indicating they agree to such a price.

- The seller may set a reserve price, the lowest acceptable price.

- Auction ends:
 - at a fixed time (internet auctions); or when there is no more bidding activity.
 - The “last man standing” pays their bid.

Classified in the terms we used above:
- First-price
- Open-cry
- Ascending

Around 95% of internet auctions are of this kind. The classic use is the sale of antiques and artwork.

Susceptible to:
- Winner’s curse
- Shills
Dutch Auction

• Also called a “descending clock” auction
 • Some auctions use a clock to display the prices.

• Starts at a **high price**, and the auctioneer calls out **descending prices**.
 • One bidder claims the good by indicating the current price is acceptable.
 • *Ties are broken* by restarting the descent from a slightly higher price than the tie occurred at.

• The winner pays the price at which they “stop the clock”.

Classified in the terms we used above:

- **First-price**
- **Open-cry**
- **Descending**

High volume (since auction proceeds swiftly). Often used to sell perishable goods:

- **Flowers in the Netherlands** (e.g. Aalsmeer)
- **Fish in Spain and Israel**.
- **Tobacco in Canada**.
First-Price Sealed-Bid Auction

• In an English auction, you get information about how much a good is worth.
 • Other people’s bids tell you things about the market.

• In a **sealed bid auction**, none of that happens
 • at most you know the winning price after the auction.

• In the First-Price Sealed-Bid (FPSB) auction the **highest bid wins as always**
 • As its name suggests, the winner pays that highest price (which is what they bid).

FPSB

Classified in the terms we used above:

- **First-price**
- **Sealed Bid**
- **One-shot**

Governments often use this mechanism to sell treasury bonds (the UK still does, although the US recently changed to Second-Price sealed Bids). Property can also be sold this way (as in Scotland).
Vickrey Auction

- The Vickrey auction is a sealed bid auction.
 - The winning bid is the highest bid, but the winning bidder pays the amount of the second highest bid.

- This sounds odd, but it is actually a very smart design.
 - Will talk about why it works later.

- It is in the bidders’ interest to bid their true value.
 - incentive compatible in the usual terminology.

- However, it is not a panacea, as the New Zealand government found out in selling radio spectrum rights.
 - Due to interdependencies in the rights, that led to strategic bidding,
 - one firm bid NZ$100,000 for a license, and paid the second-highest price of only NZ$6.

Classified in the terms we used above:
- Second-price
- Sealed Bid
- One-shot

Historically used in the sale of stamps and other paper collectibles.
Why does the Vickrey auction work?

• Suppose you bid more than your valuation.
 • You may win the good.
 • If you do, you may end up paying more than you think the good is worth.
 • Not so smart.

• Suppose you bid less than your valuation.
 • You stand less chance of winning the good.
 • However, even if you do win it, you will end up paying the same.
 • Not so smart.
Proof of dominance of truthful bidding

● Let v_i be the bidding agent i’s value for an item, and b_i be the agent’s bid

 ● The payoff for bidder i is:

 \[
 p_i = \begin{cases}
 v_i - \max_{j \neq i} b_j & \text{if } b_i > \max_{j \neq i} b_j \\
 0 & \text{otherwise}
 \end{cases}
 \]

● Assume bidder i bids $b_i > v_i$ (i.e. overbids)

 ● If $\max_{j \neq i} b_j < v_i$, then the bidder would win whether or not the bid was truthful. Therefore the strategies of bidding truthfully and overbidding have equal payoffs

 ● If $\max_{j \neq i} b_j > b_i$, then the bidder would loose whether or not the bid was truthful. Again, both strategies have equal payoffs

 ● If $v_i < \max_{j \neq i} b_j < b_i$, then the strategy of overbidding would win the action, but the payoff would be negative (as the bidder will have overpaid). A truthful strategy would pay zero.
Proof of dominance of truthful bidding

Let v_i be the bidding agent i’s value for an item, and b_i be the agent’s bid.

- The payoff for bidder i is:

$$p_i = \begin{cases}
 v_i - \max_{j \neq i} b_j & \text{if } b_i > \max_{j \neq i} b_j \\
 0 & \text{otherwise}
\end{cases}$$

Assume bidder i bids $b_i < v_i$ (i.e. **underbids**)

- If $\max_{j \neq i} b_j > v_i$, then the bidder would loose whether or not the bid was truthful. Therefore the strategies of bidding truthfully and underbidding have equal payoffs.
- If $\max_{j \neq i} b_j < b_i$, then the bidder would win whether or not the bid was truthful. Again, both strategies have equal payoffs.
- If $b_i < \max_{j \neq i} b_j < v_i$, then only the strategy of truthtelling would win the action, with a positive payoff (as the bidder would have). An underbidding strategy would pay zero.
Collusion

- None of the auction types discussed so far are immune to collusion
 - A *grand coalition of bidders* can agree beforehand to collude
 - Propose to artificially lower bids for a good
 - Obtain true value for good
 - Share the profit
 - An auctioneer could employ bogus bidders
 - *Shills* could artificially increase bids in open cry auctions
 - Can result in *winners curse*
A combinatorial auction is an auction for bundles of goods.

- A good example of bundles of goods are spectrum licences.
- For the 1.7 to 1.72 GHz band for Brooklyn to be useful, you need a license for Manhattan, Queens, Staten Island.
- Most valuable are the licenses for the same bandwidth.
- But a different bandwidth license is more valuable than no license
 - a phone will work, but will be more expensive.

(The FCC spectrum auctions, however, did not use a combinatorial auction mechanism)
Combinatorial Auctions

• Define a set of items to be auctioned as:

• Given a set of agents $A_g = \{1, \ldots, n\}$, the preferences of agent i are given with the valuation function opposite:
 - If that sounds to you like it would place a big requirement on agents to specify all those preferences, you would be right.
 - If $v_i(\emptyset) = 0$, then we say that the valuation function for i is normalised.
 - i.e. Agent i does not get any value from an empty allocation

• Another useful idea is free disposal:
 - In other words, an agent is never worse off having more stuff.
Allocation of Goods

• An outcome is an allocation of goods to the agents.
 • Note that we don’t require all off the goods to be allocated
 • Formally an allocation is a list of sets $Z_i, \ldots Z_n$, one for each agent Ag_i such that $Z_i \subseteq Z$
 • and for all $i, j \in Ag$ such that $i \neq j$, we have $Z_i \cap Z_j = \emptyset$.
 • Thus no good is allocated to more than one agent.

• The set of all allocations of Z to agents Ag is: $\text{alloc}(Z, Ag)$
Maximising Social Welfare

• If we design the auction, we get to say how the allocation is determined.
 • Combinatorial auctions can be viewed as different social choice functions, with different outcomes relating to different allocations of goods
 • A desirable property would be to maximize social welfare.
 • i.e. maximise the sum of the utilities of all the agents.

• We can define a social welfare function:

\[
sw(Z_1, \ldots, Z_n, v_1, \ldots, v_n) = \sum_{i=1}^{n} v_i(Z_i)
\]
Defining a Combinatorial Auction

• Given this, we can define a combinatorial auction.
 • Given a set of goods Z and a collection of valuation functions v_1, \ldots, v_n, one for each agent $i \in Ag$, the goal is to find an allocation Z_1^*, \ldots, Z_n^* that maximises sw:

$$Z_1^*, \ldots, Z_n^* = \arg\max_{(Z_1, \ldots, Z_n) \in alloc(Z, Ag)} sw(Z_1, \ldots, Z_n, v_1, \ldots, v_n)$$

• Figuring this out is called the winner determination problem.
Winner Determination

• How do we do this?

• Well, we could get every agent \(i\) to declare their valuation: \(\hat{v}_i\)

 • The hat denotes that this is what the agent says, not what it necessarily is.

 • Remember that the agent may lie!

• Then we just look at all the possible allocations and figure out what the best one is.

• One problem here is representation, valuations are exponential: \(v_i : 2^Z \rightarrow \mathbb{R}\)

 • A naive representation is impractical.

 • In a bandwidth auction with 1122 licenses we would have to specify \(2^{1122}\) values for each bidder.

• Searching through them is computationally intractable
Bidding Languages

• Rather than exhaustive evaluations, allow bidders to construct valuations from the bits they want to mention.
 • An atomic bid β is a pair (Z, p) where $Z \subseteq Z$.
 • A bundle Z' satisfies a bid (Z, p) if $Z \subseteq Z'$.

• In other words a bundle satisfies a bid if it contains at least the things in the bid.

• Atomic bids define valuations

$$v_{\beta}(Z') = \begin{cases} p & \text{if } Z' \text{ satisfies } (Z, p) \\ 0 & \text{otherwise} \end{cases}$$

• Atomic bids alone don’t allow us to construct very interesting valuations.
XOR Bids

With XOR bids, we pay for at most one

- A bid $\beta = (Z_1, p_1) \text{ XOR } ... \text{ XOR } (Z_k, p_k)$ defines a valuation function v_β as follows:

$$v_\beta(Z') = \begin{cases} 0 & \text{if } Z' \text{ does not satisfy any } (Z_i, p_i) \\ \max \{p_i | Z_i \subseteq Z'\} & \text{otherwise} \end{cases}$$

- I pay nothing if your allocation Z' doesn’t satisfy any of my bids
- Otherwise, I will pay the largest price of any of the satisfied bids.

XOR bids are fully expressive, that is they can express any valuation function over a set of goods.

- To do that, we may need an exponentially large number of atomic bids.
 - However, the valuation of a bundle can be computed in polynomial time.

Example:

$$\begin{align*}
B_1 &= (\{a, b\}, 3) \text{ XOR } (\{c, d\}, 5) \\
&= \text{"...I would pay 3 for a bundle that contains a and b but not c and d. I will pay 5 for a bundle that contains c and d but not a and b, and I will pay 5 for a bundle that contains a, b, c and d..."} \\
\end{align*}$$

From this we can construct the valuation:

$$\begin{align*}
v_{\beta_1}(\{a\}) &= 0 \\
v_{\beta_1}(\{b\}) &= 0 \\
v_{\beta_1}(\{a, b\}) &= 3 \\
v_{\beta_1}(\{c, d\}) &= 5 \\
v_{\beta_1}(\{a, b, c, d\}) &= 5
\end{align*}$$
OR Bids

- With OR bids, we are prepared to pay for more than one bundle

- A bid \(\beta = (Z_1, p_1) \) OR ... OR \((Z_k, p_k) \) defines \(k \) valuations for different bundles

- An allocation of goods \(Z' \) is assigned given a set \(W \) of atomic bids such that:
 - Every bid in \(W \) is satisfied by \(Z' \)
 - No goods appear in more than one bundle; i.e. \(Z_i \cap Z_j = \emptyset \) for all \(i, i \) where \(i \neq j \)
 - No other subset \(W' \) satisfying the above condition is better:
 \[
 \sum_{(Z_i, p_i) \in W'} p_i > \sum_{(Z_j, p_j) \in W'} p_j
 \]

\[B_1 = (\{a, b\}, 3) \text{ OR } (\{c, d\}, 5) \]

"...I would pay 3 for a bundle that contains a and b but not c and d. I will pay 5 for a bundle that contains c and d but not a and b, and I will pay 8 for both bundles that contain a combination of a, b, c and d..."

From this we can construct the valuation:

\[
\begin{align*}
 v_{B_1}(\{a\}) &= 0 \\
 v_{B_1}(\{b\}) &= 0 \\
 v_{B_1}(\{a, b\}) &= 3 \\
 v_{B_1}(\{c, d\}) &= 5 \\
 v_{B_1}(\{a, b, c, d\}) &= 8
\end{align*}
\]

Note that the cost of the last bundle is different to that when the XOR bid was used.
OR Bids

• Here is another example!

 • \(B_3 = (\{e, f, g\}, 4) \ OR \ (\{f, g\}, 1) \ OR \ (\{e\}, 3) \ OR \ (\{c, d\}, 4) \)

• This gives us:

\[
\begin{align*}
v_{B_3}(\{e\}) &= 3 \\
v_{B_3}(\{e, f\}) &= 3 \\
v_{B_3}(\{e, f, g\}) &= 4 \\
v_{B_3}(\{b, c, d, f, g\}) &= 4 + 1 = 5 \\
v_{B_3}(\{a, b, c, d, e, f, g\}) &= 4 + 4 = 8 \\
v_{B_3}(\{c, d\}) &= 4 + 3 = 7
\end{align*}
\]

• Remember that if more than one bundle is satisfied, then you pay for each of the bundles satisfied.

 • Also remember free disposal, which is why the bundle \(\{e, f\} \) satisfies the bid \((\{e\}, 3)\) as the agent doesn’t pay extra for \(f\)
OR Bids

• OR bids are **strictly less expressive** than XOR bids
 • Some valuation functions cannot be expressed:
 • \(v(\{a\}) = 1, \ v(\{b\}) = 1, \ v(\{a,b\}) = 1 \)

• OR bids also **suffer from computational complexity**
 • Given an OR bid \(\beta \) and a bundle \(Z \), computing \(v_\beta(Z) \) is NP-hard
Winner Determination

- Determining the winner is a combinatorial optimisation problem (NP-hard)
 - But this is a worst case result, so it may be possible to develop approaches that are either **optimal** and run well in many cases, or **approximate** (within some bounds).

- Typical approach is to code the problem as an **integer linear program** and use a standard solver.
 - This is NP-hard in principle, but often provides solutions in reasonable time.
 - Several algorithms exist that are efficient in most cases

- Approximate algorithms have been explored
 - Few solutions have been found with reasonable bounds

- Heuristic solutions based on **greedy algorithms** have also been investigated
 - e.g. that try to find the largest bid to satisfy, then the next etc
The VCG Mechanism

• Auctions are easy to strategically manipulate
 • In general we don’t know whether the agents valuations are true valuations.
 • Life would be easier if they were…
 • … so can we make them true valuations?

• Yes!
 • In a generalization of the Vickrey auction.
 • Vickrey/Clarke/Groves Mechanism

• Mechanism is incentive compatible: telling the truth is a dominant strategy.

Recall that we could get every agent i to declare their valuation: \hat{v}_i
where the hat denotes that this is what the agent says, not what it necessarily is.
• The agent may lie!
The VCG Mechanism

• Need some more notation.

 • *Indifferent valuation* function: \(v^0(Z) = 0 \) for all \(Z \)
 • I.e. the value for a bid that doesn’t care about the goods

 • \(sw_{-i} \) is the *social welfare function without* \(i \):
 \[
 sw_{-i}(Z_1, \ldots, Z_n, v_1, \ldots, v_n) = \sum_{j \in Ag, j \neq i} v_j(Z_j)
 \]
 • This is how well everyone *except agent* \(i \) does from \(Z_1, \ldots, Z_n \)

• And we can then define the VCG mechanism.
The VCG Mechanism

- Every agent simultaneously declares a valuation \hat{v}_i
 - Remember that this not be the actual valuation

- The mechanism computes the allocation Z_1^*, \ldots, Z_n^*:
 \[
 Z_1^*, \ldots, Z_n^* = \arg\max_{(Z_1, \ldots, Z_n) \in alloc(Z, Ag)} sw(Z_1, \ldots, Z_n, v_1, \ldots, \hat{v}_i, \ldots, \hat{v}_n)
 \]

- Each agent i pays p_i
 - This is effectively a compensation to the other agents for their loss in utility due to i winning an allocation
 - This is the difference in social welfare to agents other than i
 - Between the outcome Z_1, \ldots, Z_n when i doesn't participate
 - And the outcome Z_1^*, \ldots, Z_n^* when i does participate
 \[
 p_i = sw_i(Z_1', \ldots, Z_n', \hat{v}_1, \ldots, v^0, \ldots, \hat{v}_n) - sw_i(Z_1^*, \ldots, Z_n^*, \hat{v}_1, \ldots, \hat{v}_i, \ldots, \hat{v}_n)
 \]
 - Therefore the mechanism computes, for each agent I the allocation that maximises social welfare were that agent to have declared v^0 to be its valuation:
 \[
 Z_1', \ldots, Z_n' = \arg\max_{(Z_1, \ldots, Z_n) \in alloc(Z, Ag)} sw(Z_1, \ldots, Z_n, v_1, \ldots, v^0, \ldots, \hat{v}_n)
 \]
The VCG Mechanism

• With the VCG, each agent pays out the cost (to the other agents) of it having participated in the auction.
 • It is incentive compatible for exactly the same reason as the Vickrey auction was before.
 • No agent can benefit by declaring anything other than its true valuation
 • To understand this, think about VCG with a singleton bundle
 • The only agent that pays anything will be the agent i that has the highest bid
 • But if it had not participated, then the agent with the second highest bid would have won
 • Therefore agent i "compensates" the other agents by paying this second highest bid

• Therefore we get a dominant strategy for each agent that guarantees to maximise social welfare.
 • i.e. **social welfare maximisation can be implemented in dominant strategies**
Summary

• Allocating scarce resources comes down to auctions
 • We looked at a range of different simple auction mechanisms.
 • English auction
 • Dutch auction
 • First price sealed bid
 • Vickrey auction

• The we looked at the popular field of combinatorial auctions.
 • We discussed some of the problems in implementing combinatorial auctions.

• And we talked about the Vickrey/Clarke/Groves mechanism, a rare ray of sunshine on the problems of multiagent interaction.

Class Reading (Chapter 14):

This gives a detailed case study of a successful company operating in the area of computational combinatorial auctions for industrial procurement.