
COMP310
MultiAgent Systems

Chapter 2 - Intelligent Agents

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

• The main point about agents is they are
autonomous: capable independent action.

• Thus:

• It is all about decisions

• An agent has to choose what action to perform.

• An agent has to decide when to perform an action.

“... An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in that
environment in order to meet its delegated objectives...”

What is an Agent?

2

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agent and Environment

environment

feedba
ck

actions

sensors

effectors/actuators

percepts
?

Perception
D

ecision
A

ction
}
}
}

3

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Autonomy

• There is a spectrum of autonomy

• Autonomy is adjustable

• Decisions handed to a higher authority when this is
beneficial

Simple Machines
(no autonomy)

People
(full autonomy)

4

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Simple (Uninteresting) Agents

• Thermostat

• delegated goal is maintain room temperature

• actions are heat on/off

• UNIX biff program

• delegated goal is monitor for incoming email
and flag it

• actions are GUI actions.

• They are trivial because the decision
making they do is trivial.

5

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Intelligent Agents

• We typically think of as intelligent agent as
exhibiting 3 types of behaviour:

• Pro-active (goal-driven);

• Reactive (environment aware)

• Social Ability.

6

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Proactiveness

• Reacting to an environment is easy

• e.g., stimulus → response rules

• But we generally want agents to do things
for us.

• Hence goal directed behaviour.

• Pro-activeness = generating and attempting
to achieve goals; not driven solely by events;
taking the initiative.

• Also: recognising opportunities.

7

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Reactivity

• If a program’s environment is guaranteed to be fixed, a
program can just execute blindly.

• The real world is not like that: most environments are
dynamic and information is incomplete.

• Software is hard to build for dynamic domains: program
must take into account possibility of failure

• ask itself whether it is worth executing!

• A reactive system is one that maintains an ongoing
interaction with its environment, and responds to
changes that occur in it (in time for the response to be
useful).

8

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Social Ability

• The real world is a multi-agent environment: we
cannot go around attempting to achieve goals
without taking others into account.

• Some goals can only be achieved by interacting with
others.

• Similarly for many computer environments: witness the
INTERNET.

• Social ability in agents is the ability to interact
with other agents (and possibly humans) via
cooperation, coordination, and negotiation.

• At the very least, it means the ability to communicate. . .

9

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Social Ability: Cooperation

• Cooperation is working together as a
team to achieve a shared goal.

• Often prompted either by the fact that no
one agent can achieve the goal alone, or
that cooperation will obtain a better result
(e.g., get result faster).

10

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Social Ability: Coordination

• Coordination is managing the
interdependencies between
activities.

• For example, if there is a non-sharable
resource that you want to use and I want
to use, then we need to coordinate.

11

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Social Ability: Negotiation

• Negotiation is the ability to reach
agreements on matters of common interest.

• For example: You have one TV in your house; you
want to watch a movie, your housemate wants to
watch football.

• A possible deal: watch football tonight, and a movie
tomorrow.

• Typically involves offer and counter-offer,
with compromises made by participants.

12

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Some Other Properties...

• Mobility
• The ability of an agent to move. For software agents this movement is around

an electronic network.

• Veracity
• Whether an agent will knowingly communicate false information.

• Benevolence
• Whether agents have conflicting goals, and thus whether they are inherently

helpful.

• Rationality
• Whether an agent will act in order to achieve its goals, and will not deliberately

act so as to prevent its goals being achieved.

• Learning/adaption
• Whether agents improve performance over time.

13

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agents and Objects

• Are agents just objects by
another name?

• Object:

• encapsulates some state;

• communicates via message passing;

• has methods, corresponding to operations that
may be performed on this state.

“... Agents are objects with attitude...”

14

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Differences between
Agents and Objects

• Agents are autonomous:

• agents embody stronger notion of autonomy than objects, and in particular,
they decide for themselves whether or not to perform an action on request
from another agent;

• Agents are smart:

• capable of flexible (reactive, pro-active, social) behaviour – the standard object-
oriented model has nothing to say about such types of behaviour;

• Agents are active:

• not passive service providers; a multi-agent system is inherently multi-threaded,
in that each agent is assumed to have at least one thread of active control.

Agents do it because they
want to!

Agents do it for money!

Objects do it because
they have to!

Objects do it for free!

15

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Aren’t agents just expert systems
by another name?

• Expert systems typically
disembodied ‘expertise’ about
some (abstract) domain of
discourse.

• agents are situated in an
environment:

• MYCIN is not aware of the world —
only information obtained is by asking
the user questions.

• agents act:

• MYCIN does not operate on patients.

MYCIN is an example of an
Expert System that knows
about blood diseases in
humans.

It has a wealth of knowledge
about blood diseases, in the
form of rules.

A doctor can obtain expert
advice about blood diseases
by giving MYCIN facts,
answering questions, and
posing queries.

16

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Intelligent Agents and AI

• Aren’t agents just the AI project?  
Isn’t building an agent what AI is all about?

• AI aims to build systems that can (ultimately)
understand natural language, recognise and
understand scenes, use common sense, think
creatively, etc — all of which are very hard.

• So, don’t we need to solve all of AI to build
an agent...?

17

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Intelligent Agents and AI

• When building an agent, we simply want a system that can
choose the right action to perform, typically in a limited domain.

• We do not have to solve all the problems of AI to build a
useful agent:

• Oren Etzioni, speaking about the commercial experience of
NETBOT, Inc:

“... We made our agents dumber and dumber and dumber . . .
until finally they made money...”

“...a little intelligence goes a long way!..”

18

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Properties of Environments

• Since agents are in close contact with their
environment, the properties of the environment
affect agents.

• Also have a big effect on those of us who build agents.

• Common to categorise environments along
some different dimensions.

• Fully observable vs partially observable

• Deterministic vs non-deterministic

• Episodic vs non-episodic

• Static vs dynamic

• Discrete vs continuous

19

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Properties of Environments

• Fully observable vs partially observable.

• An accessible or fully observable environment is one in
which the agent can obtain complete, accurate, up-to-date
information about the environment’s state.

• Most moderately complex environments (including, for
example, the everyday physical world and the Internet) are
inaccessible, or partially observable.

• The more accessible an environment is, the simpler it is to
build agents to operate in it.

20

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Properties of Environments

• Deterministic vs non-deterministic.

• A deterministic environment is one in which any action has
a single guaranteed effect — there is no uncertainty about
the state that will result from performing an action.

• The physical world can to all intents and purposes be
regarded as non-deterministic.

• We'll follow Russell and Norvig in calling environments
stochastic if we quantify the non-determinism using
probability theory.

• Non-deterministic environments present greater problems
for the agent designer.

21

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Properties of Environments

• Episodic vs non-episodic.

• In an episodic environment, the performance of an agent is
dependent on a number of discrete episodes, with no link
between the performance of an agent in different scenarios.

• An example of an episodic environment would be an assembly line where
an agent had to spot defective parts.

• Episodic environments are simpler from the agent developer’s
perspective because the agent can decide what action to perform
based only on the current episode — it need not reason about
the interactions between this and future episodes.

• Environments that are not episodic are called either non-
episodic or sequential. Here the current decision affects future
decisions.

• Driving a car is sequential.

22

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Properties of Environments

• Static vs dynamic.

• A static environment is one that can be assumed to
remain unchanged except by the performance of actions by
the agent.

• A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond
the agent’s control.

• The physical world is a highly dynamic environment.

• One reason an environment may be dynamic is the
presence of other agents.

23

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Properties of Environments

• Discrete vs continuous.

• An environment is discrete if there are a fixed, finite
number of actions and percepts in it.

• Russell and Norvig give a chess game as an example of a
discrete environment, and taxi driving as an example of a
continuous one.

24

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agents as Intentional Systems

• When explaining human activity, it is often useful to
make statements such as the following:

• Janine took her umbrella because she believed it was going to rain.

• Michael worked hard because he wanted to possess a PhD.

• These statements make use of a folk psychology, by
which human behavior is predicted and explained
through the attribution of attitudes

• e.g. believing, wanting, hoping, fearing ...

• The attitudes employed in such folk psychological
descriptions are called the intentional notions.

25

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Dennett on Intentional Systems

• The philosopher Daniel Dennett coined the term intentional
system to describe entities:

• Dennett identifies different ‘grades’ of intentional system:

• Is it legitimate or useful to attribute beliefs, desires, and so on, to
computer systems?

“... whose behaviour can be predicted by the method of
attributing belief, desires and rational acumen...”

“... A first-order intentional system has beliefs and desires (etc.) but no
beliefs and desires about beliefs and desires...

... A second-order intentional system is more sophisticated; it has beliefs
and desires (and no doubt other intentional states) about beliefs and
desires (and other intentional states) — both those of others and its own...”

26

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

McCarthy on Intentional Systems

• John McCarthy argued that there are occasions when the
intentional stance is appropriate:

“... To ascribe beliefs, free will, intentions, consciousness, abilities,
or wants to a machine is legitimate when such an ascription expresses the
same information about the machine that it expresses about a person. It is
useful when the ascription helps us understand the structure of the machine,
its past or future behaviour, or how to repair or improve it. It is perhaps never
logically required even for humans, but expressing reasonably briefly what
is actually known about the state of the machine in a particular situation may
require mental qualities or qualities isomorphic to them.

Theories of belief, knowledge and wanting can be constructed for machines in a
simpler setting than for humans, and later applied to humans. Ascription of
mental qualities is most straightforward for machines of known structure
such as thermostats and computer operating systems, but is most useful when
applied to entities whose structure is incompletely known ...”

27

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

What can be described with the
intentional stance?

• As it turns out, more or less anything can. . .
consider a light switch:

• But most adults would find such a description
absurd!

• Why is this?

“... It is perfectly coherent to treat a light switch as a
(very cooperative) agent with the capability of
transmitting current at will, who invariably transmits
current when it believes that we want it transmitted
and not otherwise; flicking the switch is simply our way
of communicating our desires ...” (Yoav Shoham)

28

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

What can be described with the
intentional stance?

• The answer seems to be that while the intentional stance
description is consistent:

• Put crudely, the more we know about a system, the less we need to
rely on animistic, intentional explanations of its behaviour.

• But with very complex systems, a mechanistic, explanation of its
behaviour may not be practicable.

• As computer systems become ever more complex, we need
more powerful abstractions and metaphors to explain their
operation — low level explanations become impractical.

• The intentional stance is such an abstraction.

“... it does not buy us anything, since we essentially understand the
mechanism sufficiently to have a simpler, mechanistic description of its
behaviour ...” (Yoav Shoham)

29

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agents as Intentional Systems
• So agent theorists start from the (strong) view of agents as intentional

systems: one whose simplest consistent description requires the
intentional stance.

• This intentional stance is an abstraction tool...

• ... a convenient way of talking about complex systems, which allows us to predict
and explain their behaviour without having to understand how the mechanism
actually works.

• Most important developments in computing are based on new
abstractions:

• procedural abstraction, abstract data types, objects, etc

• Agents, and agents as intentional systems, represent a further, and
increasingly powerful abstraction.

So why not use the intentional stance as an abstraction tool in computing — to explain,
understand, and, crucially, program computer systems, through the notion of “agents”?

30

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agents as Intentional Systems

• There are other arguments in
favour of this idea...

1. Characterising Agents

• It provides us with a familiar, non-technical way
of understanding and explaining agents.

2. Nested Representations

• It gives us the potential to specify systems that
include representations of other systems.

• It is widely accepted that such nested
representations are essential for agents that
must cooperate with other agents.

• “If you think that Agent B knows x, then move to
location L”.

North by Northwest

Eve Kendell knows that Roger
Thornhill is working for the FBI. Eve
believes that Philip Vandamm
suspects that she is helping Roger.
This, in turn, leads Eve to believe
that Philip thinks she is working
for the FBI (which is true). By
pretending to shoot Roger, Eve
hopes to convince Philip that she is
not working for the FBI

31

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agents as Intentional Systems

• There are other arguments in favour of this
idea...

3. Post-Declarative Systems

• In procedural programming, we say exactly what a system
should do;

• In declarative programming, we state something that we
want to achieve, give the system general info about the
relationships between objects, and let a built-in control
mechanism (e.g., goal-directed theorem proving) figure out
what to do;

• With agents, we give a high-level description of the
delegated goal, and let the control mechanism figure out
what to do, knowing that it will act in accordance with some
built-in theory of rational agency.

32

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

An aside...

• We find that researchers from a more mainstream
computing discipline have adopted a similar set of
ideas in knowledge based protocols.

• The idea: when constructing protocols, one often
encounters reasoning such as the following:

If process i knows process j
has received message m1

Then process i should send
process j the message m2.

33

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Abstract Architectures for
Agents

• Assume the world may be in any of a finite set E of discrete,
instantaneous states:

• Agents are assumed to have a repertoire of possible actions available
to them, which transform the state of the world.

• Actions can be non-deterministic, but only one state ever results from and
action.

• A run, r, of an agent in an environment is a sequence of interleaved
world states and actions:

r : e0
↵0�! e1

↵1�! e2
↵2�! e3

↵3�! · · · ↵u�1�! eu

Ac = {↵,↵0, . . .}

E = {e, e0, . . .}

34

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Abstract Architectures for
Agents (1)

• When actions are deterministic each state has only one
possible successor.

• A run would look something like the following:

North

North

35

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Abstract Architectures for
Agents (2)

• When actions are deterministic each state has only one
possible successor.

• A run would look something like the following:

East

North

36

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Abstract Architectures for
Agents

North

North

We could illustrate
this as a graph...

37

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Abstract Architectures for
Agents

North

North

When actions are non-
deterministic a run (or
trajectory) is the same, but
the set of possible runs is
more complex.

38

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Runs

• In fact it is more complex still, because all of
the runs we pictured start from the same state.

• Let:

• We will use r,r′,... to stand for the members of

• These sets of runs contain all runs from all
starting states.

R be the set of all such possible finite sequences (over E and Ac);
RAc

be the subset of these that end with an action; and

RE
be the subset of these that end with a state.

R

39

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

• A state transformer function represents behaviour of the
environment:

• Note that environments are...

• history dependent.

• non-deterministic.

• If there are no possible successor states to r, so we say
the run has ended. (“Game over.”)

• An environment Env is then a triple where E is
set of states, e0 ∈ E is initial state; and τ is state transformer
function.

Environments

⌧ : RAc ! }(E)

⌧(r) = ;

Env = hE, e0, ⌧i

40

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agents

• We can think of an agent as being a function
which maps runs to actions:

• Thus an agent makes a decision about what
action to perform based on the history of
the system that it has witnessed to date.

• Let Ag be the set of all agents.

Ag : RE ! Ac

41

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Systems

• A system is a pair containing an agent and
an environment.

• Any system will have associated with it a
set of possible runs; we denote the set of
runs of agent Ag in environment Env by:

• Assume contains only runs that
have ended.

R(Ag,Env)

R(Ag,Env)

42

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Systems

Formally, a sequence

(e0,↵0, e1,↵1, e2, . . .)

represents a run of an agent Ag in environment Env = hE, e0, ⌧i if:

1. e0 is the initial state of Env

2. ↵0 = Ag(e0); and

3. for u > 0,

eu 2 ⌧((e0,↵0, . . . ,↵u�1)) and

↵u = Ag((e0,↵0, . . . , eu))

43

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Why the notation?

• Well, it allows us to get a precise handle on some
ideas about agents.

• For example, we can tell when two agents are the same.

• Of course, there are different meanings for “same”.
Here is one specific one.

• We won’t be able to tell two such agents apart by
watching what they do.

Two agents are said to be behaviorally equivalent with

respect to Env i↵ R(Ag1, Env) = R(Ag2, Env).

44

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Deliberative Agents

45

• Maecenas aliquam maecenas ligula nostra,
accumsan taciti. Sociis mauris in integer

• El eu libero cras interdum at eget habitasse
elementum est, ipsum purus pede

• Aliquet sed. Lorem ipsum dolor sit amet,
ligula suspendisse nulla pretium, rhoncus

North

North

Potentially the agent will reach a different
decision when it reaches the same state by
different routes.

West
North

East

West

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Purely Reactive Agents

• Some agents decide what to do without reference to
their history — they base their decision making entirely
on the present, with no reference at all to the past.

• We call such agents purely reactive:

• A thermostat is a purely reactive agent.

action : E ! Ac

action(e) =

⇢
o↵ if e = temperature OK
on otherwise.

46

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Reactive Agents

47

• Maecenas aliquam maecenas ligula nostra,
accumsan taciti. Sociis mauris in integer

• El eu libero cras interdum at eget habitasse
elementum est, ipsum purus pede

• Aliquet sed. Lorem ipsum dolor sit amet,
ligula suspendisse nulla pretium, rhoncus

North

North

A reactive agent will always do the
same thing in the same state.

West
North

West

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agent

Agents with State

see action

next state

Environment

48

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Perception

• The see function is the agent’s ability to observe its
environment, whereas the action function represents the
agent’s decision making process.

• Output of the see function is a percept:

• ...which maps environment states to percepts.

• The agent has some internal data structure, which is
typically used to record information about the
environment state and history.

• Let I be the set of all internal states of the agent.

see : E ! Per

49

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Actions and Next State
Functions

• The action-selection function action is now defined
as a mapping from internal states to actions:

• An additional function next is introduced, which maps
an internal state and percept to an internal state:

• This says how the agent updates its view of the
world when it gets a new percept.

action : I ! Ac

next : I ⇥ Per ! I

50

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agent Control Loop

1. Agent starts in some initial internal state i0.

2. Observes its environment state e, and generates a percept see(e).

3. Internal state of the agent is then updated via next function, becoming
next(i0, see(e)).

4. The action selected by the agent is action(next(i0, see(e))).

This action is then performed.

5. Goto (2).

51

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Tasks for Agents

• We build agents in order to carry out
tasks for us.

• The task must be specified by us. . .

• But we want to tell agents what to do without
telling them how to do it.

• How can we make this happen???

52

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Utility functions

• One idea: associated rewards with states that we want
agents to bring about.

• We associate utilities with individual states — the task of
the agent is then to bring about states that maximise utility.

• A task specification is then a function which associates a
real number with every environment state:

53

u : E ! R

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Local Utility Functions

• But what is the value of a run...

• minimum utility of state on run?

• maximum utility of state on run?

• sum of utilities of states on run?

• average?

• Disadvantage:

• difficult to specify a long term view when assigning utilities to
individual states.

• One possibility:

• a discount for states later on. This is what we do in
reinforcement learning.

54

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Example of local utility function

• Goal is to select actions to
maximise future rewards

• Each action results in moving to a
state with some assigned reward

• Allocation of that reward may be
immediate or delayed (e.g. until the
end of the run)

• It may be better to sacrifice immediate
reward to gain more long-term reward

• We can illustrate with a simple
4x3 environment

• What actions maximise the reward?

55

r = -0.04 (unless stated otherwise)

1 r=+1
👍

2 r=-1
👎

3

1 2 3 4

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Example of local utility function

• Assume environment was
deterministic

• Optimal Solution is:

• [Up, Up, Right, Right, Right]

• Additive Reward is:

• r = (-0.04 x 4) + 1.0

• r = 1.0 - 0.16 = 0.84

• i.e. the utility gained is the sum of
the rewards received

• The negative (-0.04) reward incentivises
the agent to reach its goal asap.

56

r = -0.04 (unless stated otherwise)

1 r=+1
👍

2 r=-1
👎

3

1 2 3 4

p=1.0Deterministic Environment
Agent is guaranteed to be in
the intended cell (i.e.
probability = 1.0)

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Sequential Decision Making

Returning to our earlier example

• Assume environment was non-deterministic

• Optimal Solution is:

• [Up, Up, Right, Right, Right]

• Probability of reaching the goal if successful:

• p = 0.8 x 5 = 0.32768

• Could also reach the goal accidentally by going the
wrong way round:

• p = (0.1 x 4) x 0.8 = 0.00008

• Final probability of reaching the goal: p = 0.32776

• Utility gained depends on the route taken

• We will see later how to compute this…

• Reinforcement Learning builds upon this type of model

57

r = -0.04 (unless stated otherwise)

1 r=+1
👍

2 r=-1
👎

3

1 2 3 4

p=0.1

p=0.1
p=0.8

Non-Deterministic Environment
Agent may fail to reach its intended
cell (i.e. probability of success = 0.8,
but may move sideways with p=0.1
in each direction

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Utilities over Runs

• Another possibility: assigns a utility not to
individual states, but to runs themselves:

• Such an approach takes an inherently long term
view.

• Other variations:

• incorporate probabilities of different states emerging.

• To see where utilities might come from, let’s look
at an example.

58

u : R! R

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Utility in the Tileworld

• Simulated two dimensional grid
environment on which there are agents,
tiles, obstacles, and holes.

• An agent can move in four directions, up,
down, left, or right, and if it is located next
to a tile, it can push it.

• Holes have to be filled up with tiles by the
agent. An agent scores points by filling
holes with tiles, with the aim being to fill
as many holes as possible.

• TILEWORLD changes with the random
appearance and disappearance of holes.

59

The agent starts to
push a tile towards
the hole.

But then the hole
disappears!!!

Later, a much more
convenient hole
appears (bottom
right)

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Utilities in the Tileworld

• Utilities are associated over runs, so that more
holes filled is a higher utility.

• Utility function defined as follows:

• Thus:

• if agent fills all holes, utility = 1.

• if agent fills no holes, utility = 0.

• TILEWORLD captures the need for reactivity and
for the advantages of exploiting opportunities.

60

u(r) =̂

number of holes filled in r

number of holes that appeared in r

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Expected Utility
• To denote probability that run r occurs when agent

Ag is placed in environment Env, we can write:

• In a non-deterministic environment, for example, this
can be computed from the probability of each step.

61

P (r | Ag, Env)

For a run r = (e0, ↵0, e1, ↵1, e2, . . .):

P (r | Ag, Env) = P (e1, | e0, ↵0)P (e2 | e1, ↵1) . . .

and clearly:

X

r2R(Ag,Env)

P (r | Ag, Env) = 1.

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Expected Utility

• The expected utility (EU) of agent Ag in
environment Env (given P, u), is then:

• That is, for each run we compute the utility
and multiply it by the probability of the run.

• The expected utility is then the sum of all of
these.

62

EU(Ag, Env) =
X

r2R(Ag,Env)

u(r)P (r | Ag, Env).

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Expected Utility

• The probability of a run can be determined from
individual actions within a run

• Using the decomposability axiom from Utility Theory

63

e0

e1

e2
e3

e4

e0

e1
e3

e4

p

(1-p)
q

(1-q)

p
q(1-p)

(1-p)(1-q)

is equivalent to

“... Compound lotteries can be reduced to simpler ones using the law
of probability. Known as the “no fun in gambling” as two consecutive
lotteries can be compressed into a single equivalent lottery….”

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

• The optimal agent Agopt in an environment
Env is the one that maximizes expected
utility:

• Of course, the fact that an agent is optimal
does not mean that it will be best; only that
on average, we can expect it to do best.

Optimal Agents

64

Ag
opt

= arg max

Ag2AG
EU(Ag, Env)

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Example 1

65

Consider the environment Env1 = hE, e0, ⌧i
defined as follows:

E = {e0, e1, e2, e3, e4, e5}

⌧(e0
↵0�!) = {e1, e2}

⌧(e0
↵1�!) = {e3, e4, e5}

There are two agents possible with respect

to this environment:

Ag1(e0) = ↵0

Ag2(e0) = ↵1

The probabilities of the various runs are

as follows:

P (e0
↵0�! e1 | Ag1, Env1) = 0.4

P (e0
↵0�! e2 | Ag1, Env1) = 0.6

P (e0
↵1�! e3 | Ag2, Env1) = 0.1

P (e0
↵1�! e4 | Ag2, Env1) = 0.2

P (e0
↵1�! e5 | Ag2, Env1) = 0.7

Assume the utility function u1 is defined

as follows:

u1(e0
↵0�! e1) = 8

u1(e0
↵0�! e2) = 11

u1(e0
↵1�! e3) = 70

u1(e0
↵1�! e4) = 9

u1(e0
↵1�! e5) = 10

What are the expected utilities of the

agents for this utility function?

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Mock Exam Solns

Example 1 Solution

66

Given the utility function u1 in the question, we have two transition func-

tions defined as ⌧(e0
↵0�!) = {e1, e2, e3}, and ⌧(e0

↵1�!) = {e4, e5, e6}. The

probabilities of the various runs (two for the first agent and three for the sec-

ond) is given in the question, along with the probability of each run occurring.

Given the definition of the utility function u1, the expected utilities of agents

Ag0 and Ag1 in environment Env can be calculated using:

EU(Ag,Env) =
X

r2R(Ag,Env)

u(r)P (r|Ag,Env).

This is equivalent to calculating the sum of the product of each utility for a run

ending in some state with the probability of performing that run; i.e.

• Utility of Ag0 = (0.4⇥ 8) + (0.6⇥ 11) = 9.8

• Utility of Ag1 = (0.1⇥ 70) + (0.2⇥ 9) + (0.7⇥ 10) = 15.8

Therefore agent Ag1 is optimal.

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Example 2

67

Consider the environment Env1 = hE, e0, ⌧i
defined as follows:

E = {e0, e1, e2, e3, e4, e5}

⌧(e0
↵0�!) = {e1, e2}

⌧(e1
↵1�!) = {e3}

⌧(e2
↵2�!) = {e4, e5}

There are two agents, Ag1 and Ag2, with respect

to this environment:

Ag1(e0) = ↵0 Ag2(e0) = ↵0

Ag1(e1) = ↵1 Ag2(e2) = ↵2

The probabilities of the various runs are

as follows:

P (e0
↵0�! e1 | Ag1, Env1) = 0.5

P (e0
↵0�! e2 | Ag1, Env1) = 0.5

P (e1
↵1�! e3 | Ag1, Env1) = 1.0

P (e0
↵0�! e1 | Ag2, Env1) = 0.1

P (e0
↵0�! e2 | Ag2, Env1) = 0.9

P (e2
↵2�! e4 | Ag2, Env1) = 0.4

P (e2
↵2�! e5 | Ag2, Env1) = 0.6

Assume the utility function u1 is defined

as follows:

u1(e0
↵0�! e1) = 4

u1(e0
↵0�! e2) = 3

u1(e1
↵1�! e3) = 7

u1(e2
↵2�! e4) = 3

u1(e2
↵2�! e5) = 2

What are the expected utilities of the agents

for this utility function?

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Example 2 solution

68

Agent 1

e0

e1

e2

p(e0⟶
 e1)=

0.5
e3

p(e1⟶ e3)=1.0

p(e0⟶
 e2)=0.5 e0

e2

e4

e5

p(e0⟶
 e1)=

0.1

p(e0⟶
 e2)=0.9 p(e2⟶

 e4)=
0.4

p(e2⟶
 e5)=0.6

e1

Agent 2

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Example 2 solution

69

Agent 1

e0

e1

e2

p(e0⟶
 e1)=

0.5
e3

p(e1⟶ e3)=1.0

p(e0⟶
 e2)=0.5

e0

e3

e2

p=0.5 ⨉1.0 = 0.5

p=0.5

e0

e2

e4

e5

p(e0⟶
 e1)=

0.1

p(e0⟶
 e2)=0.9 p(e2⟶

 e4)=
0.4

p(e2⟶
 e5)=0.6

e1

Agent 2

e0

e1

e5

p=0.1

p=0.9⨉0.6=0.54

e4p=0.9⨉0.4=0.36

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Example 2 solution

70

Agent 1

e0

e1

e2

p(e0⟶
 e1)=

0.5
e3

p(e1⟶ e3)=1.0

p(e0⟶
 e2)=0.5

e0

e3

e2

p=0.5 ⨉1.0 = 0.5

p=0.5

e0

e2

e4

e5

p(e0⟶
 e1)=

0.1

p(e0⟶
 e2)=0.9 p(e2⟶

 e4)=
0.4

p(e2⟶
 e5)=0.6

e1

Agent 2

e0

e1

e5

p=0.1

p=0.9⨉0.6=0.54

e4p=0.9⨉0.4=0.36

Find sum of utilities for each run

u(e0⟶
 e1)=

4

u(e0⟶
 e2)=3

u=3

u=4+7=11

u(e1⟶ e3)=7

u(e0⟶
 e1)=

4

u(e0⟶
 e2)=3

u(e2⟶
 e5)=2

u(e2⟶
 e4)=

3

u=4

u=3+2=5

u=3+3=6

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Example 2 solution

71

Run Utility Probability

Agent 1 e0⟶ e3 u=11 p=0.5
e0⟶ e2 u=3 p=0.5

Agent 2 e0⟶ e1 u=4 p=0.1
e0⟶ e4 u=6 p=0.36
e0⟶ e5 u=5 p=0.54

Ag1= (11 ⨉ 0.5) + (3 ⨉ 0.5) = 5.5 + 1.5 = 7
Ag2= (4 ⨉ 0.1) + (6 ⨉ 0.36) + (5 ⨉ 0.54)
 = 0.4 + 2.16 + 2.7 = 5.26

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Bounded Optimal Agents

• Some agents cannot be implemented on some computers

• The number of actions possible on an environment (and consequently
the number of states) may be so big that it may need more than
available memory to implement.

• We can therefore constrain our agent set to include only
those agents that can be implemented on machine m:

• The bounded optimal agent, Agbopt, with respect to m is then. . .

72

AGm = {Ag | Ag 2 AG and Ag can be implemented on m}.

Ag
bopt

= arg max

Ag2AGm

EU(Ag,Env)

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Predicate Task Specifications

• A special case of assigning utilities to histories
is to assign 0 (false) or 1 (true) to a run.

• If a run is assigned 1, then the agent succeeds on
that run, otherwise it fails.

• Call these predicate task specifications.

• Denote predicate task specification by Ψ:

73

 : R! {0, 1}

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Task Environments

• A task environment is a pair <Env, Ψ>, where Env is an
environment, and the task specification Ψ is defined by:

• Let the set of all task environments be defined by:

• A task environment specifies:

• the properties of the system the agent will inhabit;

• the criteria by which an agent will be judged to have either
failed or succeeded.

74

 : R! {0, 1}

T E

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Task Environments

75

A more optimistic idea of success is:

which counts an agent as successful as
soon as it completes a single successful
run.

9r 2 R(Ag, Env),we have (r) = 1

• To denote set of all runs of the agent Ag in environment Env that satisfy
Ψ, we write:

• We then say that an agent Ag succeeds in task environment <Env, Ψ > if

• In other words, an agent succeeds if every run satisfies the specification
of the agent.

We could also write this as:  

However, this is a bit pessimistic: if
the agent fails on a single run, we say it
has failed overall.

8r 2 R(Ag, Env),we have (r) = 1

R (Ag,Env) = {r | r 2 R(Ag, Env) and (r) = 1}.

R (Ag,Env) = R(Ag, Env)

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

The Probability of Success

• If the environment is non-deterministic, the τ returns a
set of possible states.

• We can define a probability distribution across the set of states.

• Let P(r | Ag, Env) denote probability that run r occurs if agent
Ag is placed in environment Env.

• Then the probability P(Ψ | Ag, Env) that Ψ is satisfied by Ag in
Env would then simply be:

76

P (| Ag, Env) =
X

r2R (Ag,Env)

P (r | Ag,Env)

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Achievement and Maintenance
Tasks

• The idea of a predicate task specification is
admittedly abstract.

• It generalises two common types of tasks: achievement
tasks and maintenance tasks:

1. Achievement tasks Are those of the form “achieve state of affairs φ”.

2. Maintenance tasks Are those of the form “maintain state of affairs ψ”.

77

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Achievement and Maintenance
Tasks

• An achievement task is specified by a set G of “good” or “goal”
states: G ⊆ E.

• The agent succeeds if it is guaranteed to bring about at least one of these
states (we don’t care which, as all are considered good).

• The agent succeeds if it can force the environment into one of the
goal states g ∈ G.

• A maintenance goal is specified by a set B of “bad” states: B ⊆
E.

• The agent succeeds in a particular environment if it manages to avoid all
states in B — if it never performs actions which result in any state in B
occurring.

• In terms of games, the agent succeeds in a maintenance task if it ensures
that it is never forced into one of the fail states b ∈ B.

78

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Summary
• This chapter has looked in detail at

what constitutes an intelligent agent.

• We looked at the properties of an
intelligent agent and the properties of the
environments in which it may operate.

• We introduced the intentional stance and
discussed its use.

• We looked at abstract architectures for
agents of different kinds; and

• Finally we discussed what kinds of task an
agent might need to carry out.

• In the next chapter, we will start to
look at how one might program an
agent using deductive reasoning.

79

Class Reading (Chapter 2):

“Is it an Agent, or Just a Program?: A
Taxonomy for Autonomous Agents”,
Stan Franklin and Art Graesser. ECAI
'96 Proceedings of the Workshop on
Intelligent Agents III, Agent Theories,
Architectures, and Languages. pp 21-35

This paper informally discusses
various different notions of agency.
The focus of the discussion might
be on a comparison with the
discussions in this chapter

