
COMP329RoboSim
Simple Robot Simulator for COMP329 Assignments

Dr Terry R. Payne - 15 December 2016  

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE �1

Introduction
The RoboSim package is designed to simulate a simple LeJOS style Lego Robot

environment that can be used to test out simple programs, and to simulate robot control
within the AgentSpeak / Jason environment. It has been modelled around the Lego Robot
used for the first Assignment within COMP329 Robots and Autonomous Systems and
provides complementary functionality including:

• Bump Sensor (in the direction of travel)
• Directional UltraSound Proximity Sensor
• Colour Sensor
• Pose Query methods
• Speed / Rotation / Distance methods
• Configurable arena modelling
• Obstacles and “victims”
• Real Time Robot Diagnostic Information
• Dead Reckoning control1

The functionality provided within the RoboSim
API is basic, but provides the necessary action and
perception methods that more complex functionality
can build upon. This guide is design to get you started
in using the RoboSym package within JASON running under Eclipse, and provides an
overview of the API itself, complete with example code fragments. A number of
assumptions have been made with the package, including:

• The robot has a 10cm radius circular body to simplify navigation around obstacles
• The robot can navigate around cells and can be positioned independently of the

number of cells in the arena, and can move in any direction
• Cells are 35cm (350mm) square; this is also the size of obstacles and victims
• The robot can rotate in a positive and negative direction by specifying the number

of degrees to rotate. Simple rotation (e.g. turning left or right) can be achieved by
specifying an angle of 90 (or -90), but finer grain control is also possible

• The robot can move a fixed distance and will then stop, based on a distance to
travel. This is specified in mm, and thus moving from the centre of one cell to the centre
of another can be achieved by moving 350mm.

 Uncertainty will be included in future versions, but for the sake of simplicity we relax the need for 1

sophisticated localisation techniques for the sake of the current Assignment 2.

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE �2

• The bump sensor triggers if the body comes into contact with an obstacle that
causes the robot to stop. If the robot rotates such that it no longer collides with the
obstacle, then the sensor resets.

• Methods for moving forward, rotating or turning the UltraSound Sensor are
blocking (i.e. the code will wait until the robot has completed the task), but the robot
will move at a specified speed until it has reached its goal.

Note that the package is a prototype and still in development. If you find any
problems, or issues, or it behaves unexpectedly, then contact me (trp@liv.ac.uk)
providing details of the code and issue found.

Adding the RoboSym package to a new JASON project
The following assumes that you already have JASON installed on a PC (MacOSX,

Windows or Linux) running under Eclipse. The jar file, comp329robosim.jar, is available
from the Module Website, which also includes links to the JASON SourceForge site.

Create a JASON project
with an environment, and give
the project a name and also
name the environment. This will
create a new project in your
workspace, with a number of
initial files. In the example
opposite, I have created a project
called myProject with an
environment class called myEnv.

If you try to build and run
this, you will find errors in the
myEnv.java file that are due to
an unhandled exception. For
now, comment out the offending
line (addPercept(ASSyntax.parseLiteral(“percept(demo)”));) and check that
you can now run the project, which should result in one agent saying “Hello World”. The
next step is to:

1. Tell Eclipse about the jar file
2. Tell Jason about the jar file

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE �3

mailto:trp@liv.ac.uk

If you close Eclipse and navigate to the
directory containing your project you will see
two directories: src and bin, and the
myProject.mas2j file.Create a new directory
called lib, and copy the jar file into that lib
directory:

The Jason environment will now be able to
find the jar file when it compiles. However, you
will still need to add the jar file to the Eclipse
project. Right-click on the project within Eclipse
to bring up a menu and select Properties to
open up the project properties. In the left hand
panel you will see the option Java Build Path - this is where you inform Eclipse of
resources that you can include into your project. Select this, and then select the button
Add External JARs to add the jar file to your project. A file browser will appear - if you
don’t see the relevant directories, you can toggle the filter between jar and */* files. Select

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE �4

the jar file in the lib directory and then select Open. Finally, select OK to finish
adding the jar file. This will add the jar file to your project and should list it in the project
resources in Eclipse. You are now ready to import the comp329robosim package classes
in your project.

You will need to create a new object of of the EnvController class, which
configures the simulator. You can also request from this object a reference to
RobotMonitor Object, which will provide you control of your robot.

First, expand the jar resource to see its classes. You will see a file DefaultConfig.txt
file. Create a new file somewhere in your file directory, and copy over the contents - this
will be your configuration file. For the final evaluation, we will give you a new
configuration file that defines the final location of obstacles and victims. Note the path to
the location of this file, as you will need to specify it when creating the EnvController
class instance.

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE �5

It is up to you have you manage your objects in your project, but to get started,
create two instance variables in your myEnv class for the EnvController and
RobotMonitor objects. Then in the init method, instantiate these. Ensure that you
import the classes from the jar file. Note that the line below takes three arguments; the
first is the path to the config file (you will probably need to change this to the location of
your file) and the second two define the size of the arena (including the bounding objects).

controller = new EnvController(
	 	 "/Users/trp/Desktop/robosimDefaultConfig.txt", 7, 6);

If you then run the project, you should see the map appear, with a circular robot in
the top left hand corner. The line in the robot indicates the heading, whereas the small
circle indicates the direction of the UltraSound Sensor.

If you are having problems getting this far, then contact Jeffrey or myself to get
advice on how to fix them. You need to get to this point before you can start controlling
the robot.

More details will follow soon, including code fragments on the different Robot
methods. For now, a javadoc archive is also available from the module website which
contains details on the different methods. To get you started, try the following lines in
your code..

	 	 myRobot.monitorRobotStatus(true);
 	 myRobot.setTravelSpeed(100);		 // 10cm per sec
 	 myRobot.setDirection(0);
 	
 	 while (myRobot.getUSenseRange() > 700) {
 	 	 myRobot.travel(350);	 	 // travel 35 cm
 	 }
 	 myRobot.rotate(90);	 	 	 // Turn Left
 	
 	 while (!myRobot.isBumperPressed()){
 	 	 myRobot.travel(350);	 	 // travel 35 cm
 	 	 if (myRobot.getCSenseColor().equals(Color.GREEN)) {
 	 	 	 System.out.println("found Green cell at location ("+
 	 	 	 	 	 myRobot.getX()+","+
 	 	 	 	 	 myRobot.getY()+") with heading "+
 	 	 	 	 	 myRobot.getHeading());
 	 	 }
 	 }
See the following page for a screenshot!

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE �6

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE �7

