COMP329RoboS1m

Simple Robot Simulator for COMP329 Assignments

Dr Terry R. Payne - 15 December 2016

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE 1

Introduction

The RoboSim package is designed to simulate a simple LeJOS style Lego Robot
environment that can be used to test out simple programs, and to simulate robot control
within the AgentSpeak / Jason environment. It has been modelled around the Lego Robot
used for the first Assignment within COMP329 Robots and Autonomous Systems and

provides complementary functionality including:

* Bump Sensor (in the direction of travel) s e et s GRLEY

* Directional UltraSound Proximity Sensor programming
multi-agent systems

in AgentSpeak
using Jgson 22

» Colour Sensor

« Pose Query methods

* Speed / Rotation / Distance methods
 Configurable arena modelling

* Obstacles and “victims”

« Real Time Robot Diagnostic Information
 Dead Reckoning control!

Rafael H. Bordini

The functionality provided within the RoboSim Jom Fred Habner

Michael Wooldridge

APl is basic, but provides the necessary action and

perception methods that more complex functionality
can build upon. This guide is design to get you started
in using the RoboSym package within JASON running under Eclipse, and provides an
overview of the API itself, complete with example code fragments. A number of
assumptions have been made with the package, including:
« The robot has a 10cm radius circular body to simplify navigation around obstacles
« The robot can navigate around cells and can be positioned independently of the
number of cells in the arena, and can move in any direction
* Cells are 35cm (350mm) square; this is also the size of obstacles and victims
* The robot can rotate in a positive and negative direction by specifying the number
of degrees to rotate. Simple rotation (e.g. turning left or right) can be achieved by
specifying an angle of 90 (or -90), but finer grain control is also possible
* The robot can move a fixed distance and will then stop, based on a distance to
travel. This is specified in mm, and thus moving from the centre of one cell to the centre

of another can be achieved by moving 350mm.

" Uncertainty will be included in future versions, but for the sake of simplicity we relax the need for
sophisticated localisation techniques for the sake of the current Assignment 2.

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE 2

¢ The bump sensor triggers if the body comes into contact with an obstacle that
causes the robot to stop. If the robot rotates such that it no longer collides with the
obstacle, then the sensor resets.

« Methods for moving forward, rotating or turning the UltraSound Sensor are
blocking (i.e. the code will wait until the robot has completed the task), but the robot

will move at a specified speed until it has reached its goal.

Note that the package is a prototype and still in development. If you find any

problems, or issues, or it behaves unexpectedly, then contact me (trp@liv.ac.uk)

providing details of the code and issue found.

Adding the RoboSym package to a new JASON project

The following assumes that you already have JASON installed on a PC (MacOSX,
Windows or Linux) running under Eclipse. The jar file, comp329robosim.jar, is available
from the Module Website, which also includes links to the JASON SourceForge site.

. [NON J New Jason Project
Create a JASON project

New Jason Project
Wlth an enViI’OHment, and give This wizard creates a new Jason Project
the project a name and also

Project name: myProject
name the environment. This will | cetre: Centratised [
create a new project in your Environment Jason]

Environment host: localhost

workspace, with a number of Enironment cass name: (e
initial files. In the example
opposite, I have created a project
called myProject with an
environment class called myEnv.

If you try to build and run
this, you will find errors in the
myEnvjava file that are due to
an unhandled exception. For @ Cancel
now, comment out the offending
line (addPercept (ASSyntax.parseLiteral (“percept (demo)”));) and check that
you can now run the project, which should result in one agent saying “Hello World”. The
next step is to:

1. Tell Eclipse about the jar file

2. Tell Jason about the jar file

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE 3

mailto:trp@liv.ac.uk

. . [) () Jason - m
If you close Eclipse and navigate to the . — — :
) .)) T O3 B0 QB
directory containing your project you will see
&= v o
. . . h &® Jason Navigator $3 == i [J] myEnv.
two directories: sre and bin, and the > S ass2Framework e
myProject.mas®j file.Create a new directory 7 ve—— gew > |impo
. .] . # grefjavi o Into
called 1lib, and copy the jar file into that 1ib 'L;ggf: . Showin csw » [publ
. > [In
directory: > (@ jason-; L= Copy ®C
» (= bin 55 Copy Qualified Name
> ;l'i;src 5 Paste RV
myProji
bin » = comp329robosim.jar ;g,:boTest X.Delete B
e ifow | BuldPa
myProject.mas2j ¥ Stestenv Refactor >
£xg Import...
src > A
ez Export...
& | Refresh F5
Close Project
. . Close Unrelated Projects
The Jason environment will now be able to
Debug As >
find the jar file when it compiles. However, you Run As >
Team >
will still need to add the jar file to the Eclipse Compare With >
. . . . L. . Restore from Local History...
project. Right-click on the project within Eclipse Configure Ve
to bring up a menu and select Properties to % myProject Properties Bl

open up the project properties. In the left hand

panel you will see the option Java Build Path - this is where you inform Eclipse of
resources that you can include into your project. Select this, and then select the button
Add External JARs to add the jar file to your project. A file browser will appear - if you

don’t see the relevant directories, you can toggle the filter between jar and */* files. Select

Today Today

.classpath comp329robosim.jar \

.project
.settings

>
bin » - :
lib >]
myProject.mas2j v
g src >
JAR

vV v.VvYyY

comp329robosim.jar

) 29 KB
Created Todav. 17:36
‘ a

)ptions Cancel Open

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE 4

the jar file in the lib directory and then select Open. Finally, select OK to finish
adding the jar file. This will add the jar file to your project and should list it in the project
resources in Eclipse. You are now ready to import the comp329robosim package classes

in your project.

= & v i
€ Jason Navigator $2 = - = 0 [J] myEnv.java &
b == ass2Framework // Environment code for project myProject
& myProject
> (# src/asl @ 1import jason.asSyntax.*;[]

v (# src/java
v {4 (default package)
» [J] myEnv.java
» @ jason-2.0a.jar - /Users/trp/Research/jason-

public class myEnv extends Environment {

//EnvController controller;

» (a3 comp329robosim.jar - /Users/trp/Research private Logger logger = Logger.getlLogger("myProject."+myEnv.class.getName());
» (= bin
> (= src /** Called before the MAS execution with the agrgs informed in .mas2j */
@8 1 Droject. 2i @0verride
. @ myFrojectmass) a public void init(Strinal1 aras) {

You will need to create a new object of of the EnvController class, which
configures the simulator. You can also request from this object a reference to
RobotMonitor Object, which will provide you control of your robot.

First, expand the jar resource to see its classes. You will see a file DefaultConfig.txt
file. Create a new file somewhere in your file directory, and copy over the contents - this
will be your configuration file. For the final evaluation, we will give you a new
configuration file that defines the final location of obstacles and victims. Note the path to
the location of this file, as you will need to specify it when creating the EnvController

class instance.

// Environment code for project myProject

import jason.asSyntax.*;
import jason.environment.*;

import java.util.logging.*;

import comp329robosim.EnvController;
import comp329robosim.RobotMonitor;

public class myEnv extends Environment {
//EnvController controller;
private Logger logger = Logger.getLogger("myProject."+myEnv.class.getName());
// ========= Instance Variables for Robosym ========
EnvController controller;

RobotMonitor myRobot;
//

/** Called before the MAS execution with the args informed in .mas2j */
@0verride
public void init(String[] args) {

super.init(args);

// addPercept(ASSyntax.parselLiteral("percept(demo)"));

// ========= (reating the Robosym Objects|========
controller = new EnvController("/Users/trp/Desktop/robosimDefaultConfig.txt", 7, 6);
myRobot = controller.getMyRobot();

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE 5

It is up to you have you manage your objects in your project, but to get started,
create two instance variables in your myEnv class for the EnvController and
RobotMonitor objects. Then in the init method, instantiate these. Ensure that you
import the classes from the jar file. Note that the line below takes three arguments; the
first is the path to the config file (you will probably need to change this to the location of

your file) and the second two define the size of the arena (including the bounding objects).

controller = new EnvController (
"/Users/trp/Desktop/robosimDefaultConfig.txt", 7, 6);

If you then run the project, you should see the map appear, with a circular robot in
the top left hand corner. The line in the robot indicates the heading, whereas the small
circle indicates the direction of the UltraSound Sensor.

If you are having problems getting this far, then contact Jeffrey or myself to get
advice on how to fix them. You need to get to this point before you can start controlling
the robot.

More details will follow soon, including code fragments on the different Robot
methods. For now, a javadoc archive is also available from the module website which
contains details on the different methods. To get you started, try the following lines in
your code..

myRobot.monitorRobotStatus(true);

myRobot.setTravelSpeed(100); // 10cm per sec
myRobot.setDirection(O);

while (myRobot.getUSenseRange() > 700) {
myRobot.travel(350); // travel 35 cm

}
myRobot.rotate(90); // Turn Left

while (!myRobot.isBumperPressed()){
myRobot.travel(350); // travel 35 cm
if (myRobot.getCSenseColor().equals(Color.GREEN)) {
System.out.println("found Green cell at location ("+
myRobot.getX()+","+
myRobot.getY()+") with heading "+
myRobot.getHeading());

}

See the following page for a screenshot!

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE 6

~ import
import

import
import

import
import

public

jason.asSyntax.*;
jason.environment.*;

java.awt.Color;
java.util.logging.*;

comp329robosim.EnvController;
comp329robosim.RobotMonitor;

class myEnv extends Environment {

//EnvController controller;

private Logger logger = Logger.getlLogger("myProject."+myEnv.class.getName());

//

EnvController controller;
RobotMonitor myRobot;

//

=] @0verride
public void init(String[] args) {

super.init(args);

// =========
controller = new EnvController("/Users/trp/Desktop/robosimDefaultConfig.txt", 7, 6);
myRobot = controller.getMyRobot();

myRobot.monitorRobotStatus(true);

myRobot.setDirection(@);

while (myRobot.getUSenseRange() > 700) {
myRobot.travel(350); // travel 35 cm

}
myRobot.rotate(90); // Turn left

while (!myRobot.isBumperPressed()){
myRobot.travel(350); // travel 35 cm
if (myRobot.getCSenseColor().equals(Color.GREEN)) {
System.out.println("found Green cell at location ("+
myRobot.getX()+","+
myRobot.getY()+") with heading "+
myRobot.getHeading());

e

Arena Grid Map e0e MAS Cons

Arena: 7 x 6
HHERHHRH
#_#___#
#_g_r_#

Pose: (525,525) with heading 0

with a current travel speed of 100mm per second
Bumper is pressed: false

Colour Sensor: java.awt.Color[r=255,9=255,b=255]
Range Sensor: 1130 with direction 0

Pose: (525,615) with heading 0
with a current travel speed of 100mm per second

Bumper is pressed: false

Colour Sensor: java.awt.Color[r=255,g=255,b=255]
e Range Sensor: 1040 with direction 0

Pose: (525,715) with heading 0

'with a current travel speed of 100mm per second
Bumper is pressed: false

Colour Sensor: java.awt.Color[r=255,9=255,b=255]
Range Sensor: 940 with direction 0

Pose: (525,805) with heading 0

with a current travel speed of 100mm per second
Bumper is pressed: false

Colour Sensor: java.awt.Color[r=255,9=255,b=255]
Range Sensor: 850 with direction 0

Dara: (E2E 07E) wishs laaad:

SIMPLE ROBOT SIMULATOR - DR TERRY R PAYNE

