
A Proof-Carrying Code Approach to Certificate
Auction Mechanisms

W. Bai1,2, E. M. Tadjouddine2, T. R. Payne1, and S.U. Guan2

1 Department of Computer Science
University of Liverpool

England, UK
{Wei.Bai,T.R.Payne}@liverpool.ac.uk

2 Department of Computer Science and Software Engineering
Xi’an Jiaotong-Liverpool University

SIP, Suzhou, China
{Emmanuel.Tadjouddine,Steven.Guan}@xjtlu.edu.cn

Abstract. Whilst it can be highly desirable for software agents to en-
gage in auctions, they are normally restricted to trading within known
auctions, due to the complexity and heterogeneity of the auction rules
within an e-commerce system. To allow for agents to deal with previ-
ously unseen protocols, we present a proof-carrying code approach using
Coq wherein auction protocols can be specified and desirable properties
be proven. This enables software agents to automatically certify claimed
auction properties and assist them in their decision-making. We have
illustrated our approach by specifying both the English and Vickrey
auctions; have formalized different bidding strategies for agents; have
certified that up to the valuation is the optimal strategy in English auc-
tion and truthful bidding is the optimal strategy in Vickrey auction for
all agents. The formalization and certification are based on inductive
definitions and constructions from within Coq. This work contributes
to solving the problem of open societies of software agents moving be-
tween different institutions and seeking to make optimal decisions and
will benefit those engaged in agent-mediated e-commerce.

Keywords: Coq, proof-carrying code, certification, e-commerce, soft-
ware agents.

1 Introduction

One of the major challenges in developing agents that are capable of rational
decision making within open, heterogeneous environments, is that of compre-
hending the rules and social norms that govern the behavior of new institutions.
Although much work has addressed interoperability at the communication level
(with agent communication languages such as FIPA-ACL, and RDF to under-
pin recent developments within the Semantic Web [1]) thus allowing agents to
communicate, the decision of whether or not the communication is meaningful is
still an open challenge. Agents may understand how to conduct their behavior in

2 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

certain familiar scenarios, and bid strategically in marketplaces that adhere to
certain rules (e.g., an English or Dutch auction). However, such strategies may
not be applicable to other markets, such as those based on Vickrey auctions.
Within an open and dynamic environment (such as e-commerce), agents might
encounter a variety of auction houses, that could form part of an agent mediated
e-commerce scenario. It is therefore important for the agent to be able to acquire
a deeper model of the marketplaces that they could engage in (other than simply
relying in simple classifications) so that they can rationally determine whether
or not they should engage in the marketplace.

Agents should be able to query and comprehend the rules that govern an
auction house, and verify desirable properties that can be relevant to privacy,
security, or economics. This paper focuses on the economic properties, by look-
ing at specifying and verifying game-theoretic properties for single item online
auctions. An important game-theoretic property is strategy-proofness namely,
the existence of a dominant strategy for the players meaning a strategy that is
optimal regardless of the game configuration. For example, truthful bidding can
be the dominant strategy in certain auction settings. The aim of this paper is
to present an approach to help agents to automatically verify desirable proper-
ties in online auctions. To this end, we rely on the proof-carrying code (PCC)
paradigm [2] to allow for:

– the auctioneer to publish the auction mechanism along with the proofs of
desirable properties in a machine readable formalism,

– the potential buyer agent to read the published protocol, make sense of it,
and at will, check the proof of a given property by using a simple trusted
checker, which makes the automatic checking procedure computationally
reasonable.

Our current work focuses on expressing the mechanism and game-theoretic proof-
s in a machine checkable formalism. We have used Coq [3], an interactive theo-
rem prover based on inductive definitions and construction wherein the formal-
izations of English and Vickrey auctions are carried out. Then, different bidding
strategies are specified followed by the proofs of a dominant strategy for each
bidder.

Previous efforts have explored the use of automatic checking of auction prop-
erties. The strategy-proofness property was checked using model checking in [4,
5] but the related computational complexity can be exponential [6]. To handle
the computational limits of exhaustive model checking, two property-preserving
abstractions are proposed. One is the classical program slicing technique [7]. The
other is abstract interpretation [5]. In [8], a distributed computer system infras-
tructure with a rationality authority that allows for safe consultations among
parties is presented. A rationality authority includes the game inventor, partic-
ipating agents and verifiers, which provide verification services. Game inventors
advise the agents about actions and their optimality. Verifiers send their verifi-
cation procedures to the agents. A typed language which allows for automatic
verification that an allocation algorithm is monotonic and therefore truthful is
introduced in [9]. Then, a more general-purpose programming language is defined

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 3

to capture a collection of basic truthful allocation algorithms. This is similar to
our current approach as we rely upon the proof-carrying code paradigm and
Coq to allow software agents to achieve reasonable automatic checking of game
properties.

Moreover, interactive theorem proving is used to express the proof of desirable
properties in a machine-checkable manner. There are two advantages in using
an interactive theorem prover [10]. One is that the specification of the desirable
properties can be precisely described by the designer. The other is that the proof
of a property is machine-checkable. We use the interactive theorem prover Coq
because it has been developed for more than twenty years [11] and is widely
used for formal proof development in a variety of contexts related to software
and hardware correctness and safety. Coq has been used to model and verify
sequential programs [12] and concurrent programs [13]. In [14], Coq was used
to develop and certify a compiler. A fully computer-checked proof of the Four
Colour Theorem was created in [15]. In [16], a Coq-formalised proof that all
non-cooperative, sequential games have a Nash equilibrium point is presented.

This paper is organized as follows. Section 2 describes our certification frame-
work and the scenario of single item auctions. Section 3 describes the formaliza-
tion of auction mechanisms followed by proofs of desirable properties in Section 4.
Section 5 discusses the evaluation of our approach and Section 6 concludes.

2 Our Certification Framework

The ability for heterogeneous software agents to interoperate between different
and open auction houses raise two main questions: how to get agents to operate
on previously unseen protocols and how to get agents to automatically check
desirable properties that are central to their decision making. In order to solve
this difficult problem, we start by looking at models or scenarios allowing us to
use a divide-and-conquer paradigm for an incremental solution. A brief overview
of our scenario can be stated as follows. Online protocols can be described us-
ing some web-based description language; the resulting description is abstracted
into Coq specifications that are used to provide machine-checkable proofs of
desirable properties for the protocol at hand. Such a Coq specification can be
turned back into the original web description so as to be read, understood, and
checked by a software agent. Such mappings back and forth can be carried out
using abstract interpretation [17]. Abstract interpretation enables us to analyze
the behaviors of a computer system by safely approximating its concrete seman-
tics into an abstract one involving a smaller set of values. Note that by safe
approximations, we mean approximations that are at least sound allowing us to
transpose properties that are true in the abstract domain into the concrete one.
For the abstraction, from a web-based description of an auction, we can build
up a Coq-based specification of that auction known as the abstract mapping
so that desirable properties can be proved from within the Coq system. This
abstraction approach can solve the problem of heterogeneity of different auction

4 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

houses by providing a uniform and formalized format of protocols to software
agents.

An abstract interpretation is defined as a sound approximated program se-
mantics obtained from a concrete one by replacing the concrete domain of com-
putation and its concrete semantic operations with an abstract domain and cor-
responding abstract semantic operations. An abstraction is sound if any property
that holds in the abstracted program holds also in the concrete program. In the
architecture of abstract interpretation, the abstract domain can be concretized
back into the concrete domain which means that the concretized abstract con-
text includes the concrete context. The success of abstraction and concretization
leads to the correctness of interpretation. Based on abstract interpretation, pro-
gram transformation frameworks were proposed in [18]. Figure 1 illustrates our

Fig. 1. Framework of Abstract Interpretation

use of the abstract interpretation framework. Once a web based auction proto-
col is abstracted into Coq, desirable properties can be formally proven and the
resulting proof is machine-checkable and therefore verifiable by software agents.

In this work, we focus on the verification procedures for some desirable prop-
erties of auction mechanisms, which can be specified in Coq. The Coq system is
based on a typed lambda calculus [19], which can be taken as a glue specification
language into and from which any auction mechanism can be mapped to.

In order to effectively enable automatic checking of desirable properties, we
need to take into account the fact that software agents have limited computer
resources and may be constrained in their reasoning. On one hand, it is difficult
for a software agent to find the best possible or optimal bidding strategy on its
own or to optimize its utility out of various strategies in the same way humans
might. On the other hand, if the specification of auction protocols and proofs are
published in a machine-readable formalism, then automatic checking by software
agents can be facilitated and the computational complexity will be reduced. For
that purpose, we have relied upon the Proof-Carrying-Code (PCC) ideas since
it allows us to shift the burden of proof from the buyer agent to the auctioneer
who can spend time to prove a claimed property once for all so that it can be
checked by any agent willing to join the auction house.

PCC is a paradigm that enables a computer system to automatically ensure
that a computer code provided by a foreign agent is safe for installation and exe-
cution. A weakness of the original PCC was that the soundness of the verification
condition generator is not proved. To overcome this weakness, Foundational PCC
(FPCC) [20] provides us with stronger semantic foundations to PCC by gener-

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 5

ating verification conditions directly from the operational semantics. Figure 2
illustrates our framework that uses FPCC to certify auction properties. At the
producer or auctioneer’s side, we have the specifications of the auction mechanis-
m along with the proofs of desirable properties in a machine-checkable formalism
in the form of a Coq file. The certification procedure works as follows. The buy-
er agent arriving at the auction house can download its specification and the
claimed proof of a desirable property. Then, the buyer requests the proof check-
er coqhk, which is a standalone verifier for Coq proofs, to the auctioneer. After
the proof checker is installed to the consumer side, the buyer can now perform
all verifications of claimed properties of the auction before deciding to join and
with which bidding strategy.

Fig. 2. Applying FPCC to certify Auction properties

We have implemented this FPCC framework from within the Coq system.
In our current implementation, we have considered a one-to-many scenario. A
single item is allocated using an online auction house. Various buyer agents can
enter or leave this house at will, make sense of its mechanism along with some
recommended strategies and their associated proofs. Such a recommendation
can be for example, truthful bidding is the dominant or optimal strategy for
a buyer agent. We then showed how such a desirable property can be proved
using two examples of a single item auction: the English and Vickrey auctions.
In the remainder of this paper, we basically show how to specify such auctions
and its possible strategy-proofness property and how to prove it within Coq.
The specifications and proofs are split into different Coq files 3.

3 Formalization of Auction Mechanisms within Coq

In this section, we define the framework to specify single item auctions. Then, the
English and Vickrey auctions are specified respectively. For simplicity, we assume

3 Our Coq code is available upon request.

6 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

no agents submit the same bid. To specify the English and Vickrey auctions,
we start by a framework that is used to describe a single item auction within
Coq. Coq uses the keyword Definition to define a variable or a function. The
keyword Inductive is used to provide inductive definitions and Fixpoint can
be used to define recursive functions in Coq. Coq provides library to define data
types, such as the type nat which represents natural numbers, the type Z which
represents integers and the type bool of booleans. When defining a function,
pattern-matching construct match ... with can be used to describe different
cases. Coq also provides functions to compare different numbers. For example,
function Z gt dec can be used to compare two integers and decide whether one
integer is greater than the other one or not.

3.1 Specifying Single Item Auction

To specify a single item auction in Coq, we define the following objects as
types: Agents, Bid, Utility to represent respectively the set of agents, their
bids, and their utilities. Note that Bid is declared as an integer to simplify the
calculation of the utility function but can be viewed as a natural number.

Definition Agents: = nat.
Definition Bid: = Z.
Definition Utility: = Z.

We then describe an inductive relation aRb binding agents with their bids
and provide two functions Agent aRb and Bid aRb that return respectively the
agent and the bid for a given relation.

Inductive aRb : Type :=
Binding : Agents -> Bid -> aRb.

Definition Agent_aRb (r:aRb):Agents :=
match r with
| Binding a b => a
end.

Definition Bid_aRb (r:aRb):Bid :=
match r with
| Binding a b => b
end.

To enable us reasoning on the agents’ utilities, we define a relation aRu bind-
ing agents to their utilities and a handle function Utility aRu to extract the
utility of a given agent.

Inductive aRu : Type :=
AUtility : Agents -> Utility -> aRu.

Definition Utility_aRu (au:aRu):Utility :=
match au with
| AUtility a u => u
end.

To eliminate negative bidding, we define a function TestBid allowing us to
set any bid that is smaller than zero to zero.

Definition TestBid (b:Z):Bid :=
match Z_gt_dec b 0 with
| left _ => b
| right _ => 0
end.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 7

To enable agents to decide whether to bid or not, we have defined a relation
flag binding an agent with a boolean value indicating the choice of this agent.
If the value is true, then the agent wants to bid, otherwise the agent gives up
bidding in the current round. Agents can set their choices based on their bidding
strategies by using the function Set flag.

Inductive flag : Type :=
Choice : Agents -> bool -> flag.

Definition Set_flag (a:Agents)(b:bool) : flag :=
match b with
| true => Choice a b
| false => Choice a b

end.

With the help of flag, we can build up the state of the auction by a fixpoint
definition of the function AuctionState. We use the function Bool flag to get
the boolean value associated to each agent. We then store all the flag values into
a List structure flaglist, which is the input to the function AuctionState. If
AuctionState returns true, then the auction will continue, otherwise it stops.

Definition Bool_flag (f:flag) : bool :=
match f with
| Choice a b => b
end.

Inductive flaglist : Type :=
| nil : flaglist
| cons : flag -> flaglist -> flaglist.

Fixpoint AuctionState (fl:flaglist) : bool :=
match fl with
| nil => false
| cons h nil => match (Bool_flag h) with

| false => false
| true => true
end

| cons h t => match (Bool_flag h) with
| false => AuctionState t
| true => true
end

end.

Next, we will illustrate our single item auction specification by using the
English and Vickrey auctions to show how to specify agents’ strategies and how
a given strategy profile can be shown to be a dominant strategy equilibrium.

3.2 The English Auction Case

In the English auction, we consider two strategies: First, the agent starts to bid
from a lower price up to its valuation termed as bid below to value. Second,
the agent bids beyond its valuation termed as bid beyond value.

Definition bid_below_to_value (b : Bid) (v : Bid): bool :=
match Z_le_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_beyond_value (b : Bid) (v : Bid): bool :=
match Z_gt_dec b v with
| left _ => true
| right _ => false
end.

8 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

The English auction is a type of sequential auction in which bidders have
to beat the current bid. A new bid must be higher than the current one, oth-
erwise it is rejected. To take this into account, we have defined the relation
aRboption and used it to return “Accept” or “Reject” for each new bid via
the function Compare. Two functions Agent flag and Find flag are used to
build up the Compare function. Agent flag returns an agent from one flag.
Find flag searches for the flag of an agent from the list flaglist. The return
value (Choice 0%nat false) is a default value when the flag of an agent can-
not be found. The function CurrentWinner returns the winner and its associated
bid aRb.

Inductive aRboption : Type :=
| Accept : aRb -> aRboption
| Reject : aRboption.

Definition Agent_flag (f:flag) : Agents :=
match f with
| Choice a b => a
end.

Fixpoint Find_flag (a:Agents) (fl:flaglist) : flag :=
match fl with
| nil => (Choice 0%nat false)
| cons h t => match beq_nat a (Agent_flag h) with

| true => h
| false => Find_flag a t
end

end.

Definition Compare (fl:flaglist)(new_aRb current_aRb : aRb) : aRboption :=
match Bool_flag (Find_flag (Agent_aRb new_aRb) fl) with
| true => match Z_gt_dec (Bid_aRb new_aRb) (Bid_aRb current_aRb) with

| left _ => Accept new_aRb
| right _ => Reject

end
| false => Reject
end.

Definition CurrentWinner (fl:flaglist)(new_aRb current_aRb : aRb) : aRb :=
match Compare fl new_aRb current_aRb with
| Accept n’ => n’
| Reject => current_aRb
end.

The auction ends when all agents have a flag value of false and the winner
can be found as the one with the highest bid. Given the agent’s valuation v and
a payment p, the utility u of an agent is defined as v − p if the agent wins and
zero otherwise. This utility function is formalized in Utility Eng wherein the
variable winbid represents the highest bid in the auction.

Definition Utility_Eng (winbid:Bid) (b:Bid) (v:Bid) : Utility :=
match Z_lt_dec b winbid with
| left _ => 0
| right _ => v - b
end.

3.3 The Vickrey Auction Case

In a Vickrey auction, also known as second-price sealed-bid auction, all the
bidders submit their bids at a time without any knowledge of other bidders’ bids.
The highest bidder wins but pays the second-highest bid. There are three bidding
strategies in this auction: bid truthfully (or its valuation) encoded in the function

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 9

bid value, bid below the valuation encoded in the function bid below value,
and bid beyond the valuation through the function bid beyond value.

Definition bid_value (b : Bid) (v : Bid): bool :=
match Z_eq_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_below_value (b : Bid) (v : Bid): bool :=
match Z_lt_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_beyond_value (b : Bid) (v : Bid): bool :=
match Z_gt_dec b v with
| left _ => true
| right _ => false
end.

We have used the List data structure to store the basic elements of aRb. In
the definition list of aRb, the binlist type can be described as follows: it is
either an empty (bnil) or else a pair of a aRb element and a binlist. This can
be described using the notation :: as an infix bcons operator for constructing
binding lists.

Inductive binlist : Type :=
| bnil : binlist
| bcons : aRb -> binlist -> binlist.

Notation "x :: l" := (bcons x l) (at level 60, right associativity).

The function addsortbid allows us to add and sort a binlist in a descending
order. In this recursively defined function, all bindings (Agents → Bid) are
added to the list one by one. Also, the function winbid is used to calculate the
winning bid (the head of the sorted binlist). When binlist is empty, it returns
a default value (Binding 0%nat 0). The utility u of an agent is defined as
v − sb if the agent wins and zero otherwise, where v is the agent’s valuation
and sb is the second highest bid in the sorted binlist. To calculate the utility
of each agent, we need to know the second highest bid in the sorted binlist.
The function se hi bid finds the second highest bid when there are at least
two elements in the sorted binlist. Otherwise, it will return a default value
(Binding 0%nat 0).

Fixpoint addsortbid (b : aRb) (l : binlist) : binlist :=
match l with
| bnil => b :: bnil
| bcons a l’ => match Z_lt_dec (Bid_aRb b)

(Bid_aRb a) with
| left _ => a :: (addsortbid b l’)
| right _ => b :: a :: l’
end

end.

Definition winbid (l : binlist) : aRb :=
match l with
| bnil => (Binding 0%nat 0)
| a :: l’ => a
end.

Definition se_hi_bid (l : binlist) : aRb :=
match l with
| bnil => (Binding 0%nat 0)

10 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

| a :: l’ => match l’ with
| bnil => (Binding 0%nat 0)
| h :: l’’ => h
end

end.

The UtilityOfTruthfulBidding function defines the utility for an agent
bidding its valuation v. Recall that the variable sb in this function stands for
the second highest bid.

Definition UtilityOfTruthfulBidding (v : Bid)
(sb : Bid) : Utility :=

match Z_le_dec sb v with
| left _ => v - sb
| right _ => 0
end.

The utility for an agent in the other two strategies is presented in Algorithm 1.
It summarizes the six different conditions giving rise to an agent’s utility and is
encoded in the function Utility OfOtherStrategies.

Definition Utility_OfOtherStrategies (b : Bid) (v : Bid)
(sb : Bid) : Utility :=

match Z_gt_dec b v with
| left _ => match Z_gt_dec sb b with

| left _ => 0
| right _ => match Z_le_gt_dec sb v with

| left _ => v - sb
| right _ => v - sb
end

end
| right _ => match Z_le_gt_dec sb b with

| left _ => v - sb
| right _ => match Z_ge_lt_dec sb v with

| left _ => 0
| right _ => 0
end

end
end.

Algorithm 1 Computation of Utility OfOtherStrategies

Variables:
v: valuation of one agent
b: bid of one agent
sb: second highest bid in the bid list
u: utility of one agent
Different Cases in the definition of Utility OfOtherStrategies :
1. b > v

1.1 sb > b, u = 0;
1.2 sb ≤ v, u = v − sb;
1.3 v < sb ≤ b, u = v − sb, u < 0.

2. b < v
2.1 sb ≤ b, u = v − sb;
2.2 sb ≥ v, u = 0;
2.3 b < sb ≤ v, u = 0.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 11

4 Certifying Desirable Properties

In the English auction with private values setting, in the sense that bidders know
only their own valuation, buyers sequentially submit their bids. The dominant
bidding strategy is for a buyer to start bidding from a lower price and keep
increasing its bid until its valuation. In a Vickrey auction, the buyers simul-
taneously submit their bids and a dominant strategy is for the bidder to bid
its valuation. We may be interested in additional auction properties, including
collusion-proofness meaning that agents cannot collude to achieve a favourable
outcome to them, or false-name bidding free meaning that agents cannot ma-
nipulate the outcome by using fictitious names. We may also be interested in
showing that the auction is well-defined function and that it is implemented
in line with its specification. In this section, we focus on the certification of
dominant strategy in both English and Vickrey auctions. To carry out the Coq
proof, all different bidding strategies and their related utilities are examined for
comparison. The keyword Variables can be used to define local variables in
Coq. We can use the keywords Hypotheses and Lemma to define Hypotheses
and Lemma in a Coq proof respectively.

4.1 Certification of Dominant Strategy in the English Auction

For the English auction, the dominant strategy is for each buyer to bid up to
its valuation. To provide a machine-checkable proof of this fact, we will use the
previously defined utility function Utility Eng along with some hypotheses.
Algorithm 2 is used to construct the certificate. This algorithm compares two
strategies: bid beyond the valuation (b > v) and bid up to the valuation (b <=

v). In total, there are three cases of comparison using different hypotheses. In
all cases, we see that for a buyer to bid up to its valuation yields an utility that
is higher or equal to that obtained when a buyer adopts any other strategy.

Algorithm 2 Proving the Dominant Strategy in the English auction

Variables:
v: valuation of one agent
b: bid of one agent
winbid: the highest bid
u: utility of one agent
Comparison Cases:
1. b = winbid,

b > v → u = v − b < 0 (If b ≤ v → u = v − b ≥ 0, Better);
2. b < winbid,

b > v → u = 0 (If b ≤ v → u = 0, Same);
3. b > v, b = winbid→ u = v − b < 0 (If b ≤ v, b < winbid→ u = 0, Better).

In here, we provide a detailed proof for the first case. The remaining two
cases are proved in a similar way. To carry out the Coq proof of the first case,

12 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

we started by defining the three variables v, b, and winbid. Recall that v is the
valuation of one agent, b is the bid of one agent and winbid is the highest bid
in one auction.

Variables v b winbid : Z.

As seen in Algorithm 2, the first comparison case is on the condition that one
agent wins the auction with bid b. By relying upon this condition, we introduce
the hypothesis b = winbid , which means that the bid b is the winning bid in
the auction. This hypothesis is defined in Coq as:

Hypotheses English hy1 : b = winbid.

All of the Lemmas that are proved in this part rely upon this hypothesis. A
tactic omega, which is a solver of quantifier-free problems in Presburger Arith-
metic, i.e. a universally quantified formula made of equations and inequations,
is used in the following proofs. In the next step, we prove Lemma 1 to show that
bid b is not less than the winning bid winbid.

Lemma 1 (not b lt win). ∼ b < winbid.

Proof. In English hy1, we have bid b equals to the winning bid winbid. There-
fore, bid b is not less than the winning bid winbid. The proof is carried out by
using English hy1 and the tactic omega in Coq. ut

The following Lemma 2 expresses the fact that if one agent bids up to its valu-
ation (b <= v), it will get an utility of v - b.

Lemma 2 (U below to v). b <= v →∼ b < winbid→ Utility Eng winbid b
v = v − b.

Proof. In here, we use the premises: one agent bids up to its valuation (b <= v)
and the previously proved Lemma 1. According to the definition of Utility Eng,
if bid b is less than the winning bid winbid, this agent gets the utility of zero.
Otherwise, it gets the utility of v-b. Furthermore, we have proved that bid b

is not less than the winning bid winbid in Lemma 1. Consequently, this agent
gets the utility of v-b. The proof is finished by a case-splitting following the
definition of function Utility Eng in Coq. ut

The next Lemma 3 shows that, under the premise (b <= v), the value of v - b

is greater or equal to 0.

Lemma 3 (v min b ge O). b <= v → v − b >= 0.

Proof. The proof is constructed by using the premise b <= v and the tactic
omega. ut

Lemma 4 takes Lemma 2 and Lemma 3 as premises, and proves that the utility
that the agent gets is greater or equal to 0 when it bids up to its valuation.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 13

Lemma 4 (U ge O). Utility Eng winbid b v = v − b → v − b >= 0 →
Utility Eng winbid b v >= 0.

Proof. Lemma 2 indicates that an agent gets the utility of v-b, and Lemma 3
establishes that the value of v-b is greater or equals to 0. By using these two
lemmas, we can draw the conclusion that this agent gets a nonnegative utility.
The proof is built up by combining the Lemma 2 and Lemma 3 in Coq. ut

Next, we will calculate and prove that the utility that an agent gets when it bids
beyond its valuation under the hypothesis English hy1.
The premises of Lemma 5 are an agent bids beyond its valuation (b > v) and
the previously proved Lemma not b lt win. Under these two premises, we can
derive the fact that the agent should get the utility of v - b.

Lemma 5 (U beyond v). b > v →∼ b < winbid → Utility Eng winbid b
v = v − b.

Proof. The proof is carried out by combining the premise b > v and Lemma 1.
By the definition of Utility Eng, if bid b is not less than the winning bid winbid,
then the agent gets the utility of v-b. Lemma 1 establishes that ~b < winbid is
true. So, we have proved that when an agent bids beyond its valuation, it gets
utility of v-b. We finish this proof by a case-splitting following the definition of
function Utility Eng in Coq. ut

Lemma 6 shows that under the premise b > v, the value of v - b is smaller
than 0.

Lemma 6 (v min b lt O). b > v → v − b < 0.

Proof. The proof is constructed by using the premise b > v and the tactic omega.
ut

Lemma 7 shows that if an agent bids beyond its valuation, then it will get
negative utility.

Lemma 7 (U lt O). Utility Eng winbid b v = v−b→ v−b < 0→ Utility Eng
winbid b v < 0.

Proof. Lemma 5 shows one agent getting the utility of v-b, and Lemma 6 es-
tablishes that the value of v-b is less than 0. Based on these two lemmas, we
can conclude that this agent gets a negative utility. The proof is constructed by
combining both Lemma 5 and Lemma 6. ut

On the basis of English hy1, Lemma 4 establishes that if one agent bids up to
its valuation, then it gets nonnegative utility whereas Lemma 7 shows that an
agent will get negative utility if it bids beyond its valuation. As a consequence,
we can conclude that for an agent to start bidding from a lower price up to its
valuation is a better strategy than for that agent bidding beyond its valuation.
This terminates the first case. By proving all the remaining cases, we complete
the proof of dominant strategy in the English auction.

14 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

4.2 Certification of the Dominant Strategy in Vickrey Auction

Our certification is based on the proof in [21]. Six different cases of bidding s-
trategies are considered and defined in Utility OfOtherStrategies. They are
compared against the outcome of the truthful bidding strategy (bidding its val-
uation). The schema used to construct our machine-checkable proof is shown in
Algorithm 3. As in the case of the English auction, we only demonstrate how
to construct the Coq proof of the first case in Algorithm 3, since the remaining
cases are dealt with in a similar fashion.

Algorithm 3 Proving the Dominant Strategy in Vickrey auction

Variables:
v: valuation of one agent
b: bid of one agent
sb: second highest bid in the bid list
u: utility of one agent
Comparison Cases:
1. sb > b,

b > v → u = 0 (If b = v → u = 0, Same);
2. sb ≤ v,

b > v → u = v − sb (If b = v → u = v − sb, Same);
3. v < sb ≤ b,

u = v − sb < 0 (If b = v → u = 0, Better);
4. sb ≤ b,

b < v → u = v − sb (If b = v → u = v − sb, Same);
5. sb ≥ v,

b < v → u = 0 (If b = v → u = 0, Same);
6. b < sb < v,

u = 0 (If b = v → u = v − sb > 0, Better).

Let us start by introducing three variables v, b and sb. The meanings of
these variables are listed in Algorithm 3.

Variables v b sb : Z.

In the first case of Algorithm 3, we have the hypothesis sb > b, meaning that
an agent’s bid is less than the second highest bid. All of the Lemmas that are
proved below are based on this hypothesis.

Hypotheses Vickrey hy1 : sb > b.

The Lemma 8 shows that if one agent bids beyond its valuation (b > v), it
will get the utility of zero.

Lemma 8 (Utility of CaseOne). b > v → Utility OfOtherStrategies b v
sb = 0.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 15

Proof. We have the premise b > v. The definition of Utility OfOtherStrategies

states that if an agent bids beyond its valuation (b > v) and the second highest
bid is greater than this agent’s bid (sb > b), then it gets the utility of zero.
The proof is completed by a case-splitting following the definition of function
Utility OfOtherStrategies in Coq. ut

So far, we have proved that based on Vickrey hy1, one agent gets the utility of
zero if it bids beyond its valuation. Then, we will prove that if one agent bids
its valuation, it also gets the utility of zero. To finish this proof, we introduce
Lemma 9 in the first step. Lemma 9 shows that sb is not smaller or equal to v

under the premise: b = v.

Lemma 9 (not sb le v). b = v → sb > v →∼ sb <= v.

Proof. The Coq proof is constructed by combining the hypothesis Vickrey hy1,
the two premises b = v, sb > v and the tactic omega. ut

The following Lemma 10 shows that when an agent bids its valuation, it gets
the utility of zero.

Lemma 10 (Utility of Valuation). ∼ sb <= v → UtilityOfTruthfulBidding

v sb = 0.

Proof. The conclusion of Lemma 9 is used as a premise. Based on the definition
of Utility OfTruthfulBidding, if an agent bids its valuation and the second
highest bid sb is not less than or equal to its valuation v, this agent gets the
utility of zero. The proof is carried out by a case-splitting following the definition
of the function Utility OfTruthfulBidding in Coq. ut

Lemma 11 establishes that under the hypothesis Vickrey hy1, the utility asso-
ciated with the truthful bidding strategy is the same as that of bidding beyond
the valuation for an agent.

Lemma 11 (V E SOne). Utility OfOtherStrategies b v sb = 0→
UtilityOfTruthfulBidding v sb = 0→
Utility OfOtherStrategies b v sb = UtilityOfTruthfulBidding v sb.

Proof. Using the hypothesis Vickrey hy1, we have proved that an agent gets
the utility of zero if it bids beyond its valuation in Lemma 8. Moreover, in
Lemma 10, if an agent bids its valuation, then it gets the utility of zero. That
is to say, this agent gets the same utility, no matter which strategy it uses. The
proof is completed by combining Lemma 8 and Lemma 10 in Coq. ut

As mentioned earlier in this section, we do not present the Coq proofs related
to the remaining five cases in Algorithm 3 for simplicity of the presentation
because these five cases are proved in a similar way. This then completes the
Coq certification of truthful bidding be a dominant strategy in Vickrey auction.

16 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

5 Discussion

In our current implementation of the FPCC framework to certify auction prop-
erties, we have enabled a participating agent to find out desirable properties
held by the auction house and to recognize whether a given recommendation is
correct or not. For example, suppose a buyer agent visits a first-price sealed-bid
auction (each agent independently submits a single bid, the highest bidder win-
s and pays her bid). The server side of this auction house provides this agent
with a Coq proof that truthful bidding is a dominant strategy derived from the
Vickrey auction. Our system ensures that the proof checker will find a mismatch
between the auction specification and the given proof. Thus our implementa-
tion enables the buyer agent to find out that strategyproofness is not a property
of this auction house and that the given proof is wrong. The agent can only
check the proof that is related to a well-defined specification, which means that
the certificate of dominant strategy in Vickrey auction cannot be used for the
English auction for instance. This helps agents distinguish the properties of d-
ifferent auction mechanisms. Our approach can be extended to a broad range
of agent-mediated e-commerce systems. For example, we can use this approach
to certify whether the winner of the auction is the highest bidder. It also can
be applied to verify the communication protocols used by autonomous agents.
For the customer who may be concerned by security issues, this approach can
be used to verify transaction protocols implemented in an e-commerce system.

One of the limitations of our current work is that an agent cannot understand
a previously unseen mechanism unless the specification is part of the common
knowledge of this agent. For example, an agent with the knowledge of English
auction specification is roaming in the Internet. After this agent arrives at an
auction house, it checks the specification of this auction house. The agent can
recognize this auction if the specification is an English auction. Otherwise, this
agent cannot figure out the type of the auction house. Assume that a human be-
ing delegates a task to bid for one item in an English house to a buyer agent. The
buyer agent with the knowledge of English auction will join in the English auc-
tion house but will ignore any other unrecognized auction house. But, an agent
with all the specifications of widely used auction mechanisms can recognize dif-
ferent kinds of auction houses although it requires more computational resources.
Nonetheless, it is our intention to extend this implementation by enabling agents
to operate on previously unseen protocols by using the semantic web technology
so as to build up a shared ontology by the agents and connect this ontology with
the Coq formalism in order to enable the verification. Seemingly, Semantic Web
Service Language OWL-S is a good Logic-based Language candidate to describe
auction mechanisms in a machine understandable formalism.

Note that although, Coq is an interactive theorem prover, we have utilised
it to enable automated verification since the proof is constructed only once and
agents have to check the correctness of given certificates automatically. Moreover,
our approach can be generalised in any kind of auction by making use of ontology
based formalism to describe an auction and mapping this description to our Coq
specification.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 17

6 Conclusion and Future Work

In this paper, we have used the FPCC framework to e-commerce systems so as
to provide certification abilities for software agents. The setting is that of on-
line auction markets wherein agents can move between auction houses. Auction
houses can publish their mechanism (auction rules) along with proofs of some
desirable properties. Buyer agents can download the auction rules, inquire for a
property and get the proof for that property so that the agent can check that
a proof is indeed correct. We have demonstrated the feasibility of this FPCC
approach by formalizing and checking strategy-proofness for the English and
Vickrey auctions from within Coq. The ability for an agent to verify auction
protocols will increase the trust to an online auction house, which in turn may
render this kind of trading attractive and boost its market value.

As future work, we will continue implementing the framework that is pro-
posed in this article. We plan to build an auction house using both Semantic
Web [1] and the Java Agent DEvelopment Framework (JADE) [22]. Semantic
web provides us with a mechanism that can be used by agents to communicate
and understand each other. It also enables software agent to provide intelligent
access to heterogeneous and distributed information. In this situation, a soft-
ware agent is an encapsulated computer system in some environment, capable
of perceiving and autonomously acting in that environment. JADE is a widely
used tool to implement multi-agent systems. It provides mechanisms to create
agents, enable agents to execute tasks and make agents communicate with each
other. Semantic Web agents can take benefits from Semantic Web technologies
in two parts:

– Metadata will be used to identify and extract information from Web sources.
– Ontologies will be used to assist in Web searches, to interpret retrieved in-

formation, and to communicate with other agents.

In our scenario, all the information of agents, which are created by JADE, will be
translated into an OWL file. Combining the generated auction ontology file with
previously defined auction protocol ontology, we can generate an integral Seman-
tic Web Auction system, which is expressed in Semantic Web Languages. Then,
this Semantic Web Auction system can be abstracted into Coq specifications.
Wherein FPCC can be used for the verification process.

References

1. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific
american 284(5) (2001) 28–37

2. Necula, G.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM (1997) 106–
119

3. The Coq Development Team: The coq proof assistant reference manual: Version
8.4. http://coq.inria.fr (2012)

18 W. Bai, E. M. Tadjouddine, T. R. Payne, and S.U. Guan

4. Tadjouddine, E., Guerin, F.: Verifying dominant strategy equilibria in auctions.
Multi-Agent Systems and Applications V (2007) 288–297

5. Tadjouddine, E., Guerin, F., Vasconcelos, W.: Abstractions for model-checking
game-theoretic properties of auctions. In: Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems-Volume 3, International
Foundation for Autonomous Agents and Multiagent Systems (2008) 1613–1616

6. Tadjouddine, E.M.: Computational complexity of some intelligent computing sys-
tems. International Journal of Intelligent Computing and Cyberneticsl 4(2) (2011)
144 – 159

7. Tip, F.: A survey of program slicing techniques. Journal of programming languages
3(3) (1995) 121–189

8. Dolev, S., Panagopoulou, P., Rabie, M., Schiller, E., Spirakis, P.: Rationality
authority for provable rational behavior. In: Proceedings of the 30th annual ACM
SIGACT-SIGOPS symposium on Principles of distributed computing, ACM (2011)
289–290

9. Lapets, A., Levin, A., Parkes, D.: A typed language for truthful one-dimensional
mechanism design. Technical report, Boston University Computer Science Depart-
ment (2008)

10. Sălcianu, A., Arkoudas, K.: Machine-checkable correctness proofs for intra-
procedural dataflow analyses. Electronic Notes in Theoretical Computer Science
141(2) (2005) 53–68

11. Dowek, G., Felty, A., Herbelin, H., Huet, G., Werner, B., Paulin-Mohring, C., et al.:
The coq proof assistant user’s guide: Version 5.6. (1991)

12. Affeldt, R., Kobayashi, N.: Formalization and verification of a mail server in coq.
Software SecurityTheories and Systems (2003) 283–288

13. Affeldt, R., Kobayashi, N., Yonezawa, A.: Verification of concurrent programs using
the coq proof assistant: A case study. IPSJ Digital Courier 1(0) (2005) 117–127

14. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7) (2009) 107–115

15. Gonthier, G.: The four colour theorem: Engineering of a formal proof. Computer
Mathematics (2008) 333–333

16. Vestergaard, R.: A constructive approach to sequential nash equilibria. Information
Processing Letters 97(2) (2006) 46–51

17. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. Building the
Information Society (2004) 359–366

18. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. ACM SIGPLAN Notices 37(1) (2002) 178–190

19. Barendregt, H.: Lambda calculi with types, handbook of logic in computer science
vol. ii (1992)

20. Appel, A.: Foundational proof-carrying code. In: Logic in Computer Science, 2001.
Proceedings. 16th Annual IEEE Symposium on, IEEE (2001) 247–256

21. Fudenberg, D., Tirole, J.: Game theory. 1991 (1991)
22. Bellifemine, F., Caire, G., Greenwood, D.: Developing multi-agent systems with

jade (wiley series in agent technology). (2007)

