
1

Comp 204: Computer Systems
and Their Implementation

Lecture 11: Scheduling cont’d

2

Today

•  Scheduling algorithms continued
– Shortest remaining time first (SRTF)
– Priority scheduling
– Round robin (RR)
– Multilevel queues

3

Shortest Remaining Time First
•  Preemptive version of the SJF algorithm

–  CPU is allocated to the job that is closest to being completed
–  Can be preempted if there is a newer job in the ready queue that

has a shorter completion time

•  Suppose we have four processes arriving one CPU time
cycle apart and in the following order:
–  P1 with CPU burst of 6 milliseconds (arrives at time 0)
–  P2 with CPU burst of 2 milliseconds (arrives at time 1)
–  P3 with CPU burst of 8 milliseconds (arrives at time 2)
–  P4 with CPU burst of 4 milliseconds (arrives at time 3)

•  Using the SRTF algorithm we can schedule the
processes as viewed in the following Gantt chart…..

4

Example

0 12 20

P2 P1 P1

7

•  P1 starts at time 0 then P2 arrives at time 1
•  As P2 requires less time (2 milliseconds) to complete
 than P1 (5 milliseconds), then P1 is preempted and P2 is
 scheduled

•  The next processes are then treated in this same manner
•  Thus, the average wait time is:

 ((7 - 1) + (1 - 1) + (12 - 2) + (3 - 3))/4 = 4 milliseconds

Note: the above calculation accounts for the arrival time of each
processes in that it is subtracted

1 3

P4 P3

5

Exercise
•  Using the same processes, arrival times

and CPU burst times as in the previous
example, what would the average wait
time be if we were using the Shortest Job
First algorithm?

6

Answer

0 12 20

P2 P3 P4 P1

6 8

•  Thus, the average wait time is:

 (0 + (6 - 1) + (12 - 2) + (8 - 3))/4 = 20/4 = 5 milliseconds

7

Shortest Remaining Time First

•  This preemptive version of the SJF algorithm is
faster than the non-preemptive version

•  However, within our calculation for SRTF, we
have not included any time for context switching
–  Context switching is required for all preemptive

algorithms
–  Time taken to perform context switches will depend

upon the particular system, but it must be accounted
for

8

Shortest Remaining Time First
•  Advantages:

– Allows for preemption, which reduces wait
time over non-premptive version

– Short jobs completed quickly

•  Disadvantages:
– Time gain diminished by the need for context

switching
•  Can be kept to a minimum if system implements

efficient context switching

9

Priority Scheduling
•  Algorithm that gives preferential treatment to important

jobs
–  Each process is associated with a priority and the one with the

highest priority is granted the CPU
–  Equal priority processes are scheduled in FCFS order

•  SJF is a special case of the general priority scheduling algorithm

•  Priorities can be assigned to processes by a system
administrator (e.g. staff processes have higher priority
than student ones) or determined by the Processor
Manager on characteristics such as:
–  Memory requirements
–  Peripheral devices required
–  Total CPU time
–  Amount of time already spent processing

10

Example
•  Suppose we have five processes all arriving at time 0 in the

following order and having the following CPU burst times:
–  P1 with CPU burst of 9 milliseconds, priority 3
–  P2 with CPU burst of 2 milliseconds, priority 4
–  P3 with CPU burst of 1 millisecond, priority 1
–  P4 with CPU burst of 5 milliseconds, priority 3
–  P5 with CPU burst of 6 milliseconds, priority 2

•  Assuming that 0 represents the highest priority, using the priority
algorithm we can view the result as the following Gantt chart:

0 16 21 23

P3 P5 P2

1 7

P1 P4

11

Priority Scheduling
•  For the previous example, the average waiting time is:

 (7 + 21 + 0 + 16 + 1)/5 = 9 milliseconds

•  Advantages:
–  Simple algorithm
–  Important jobs are dealt with quickly
–  Can have a preemptive version

•  Disadvantages:
–  Process starvation can be a problem

•  Can be alleviated through the aging technique: gradually increasing
the priority of processes that have been waiting a long time in the
system

12

Round Robin
•  Preemptive algorithm that gives a set CPU time to all active

processes
–  Similar to FCFS, but allows for preemption by switching between

processes
–  Ready queue is treated as a circular queue where CPU goes round the

queue, allocating each process a pre-determined amount of time

•  Time is defined by a time quantum: a small unit of time, varying
anywhere between 10 and 100 milliseconds

•  Ready queue treated as a First-In-First-Out (FIFO) queue
–  new processes joining the queue are added to the back of it

•  CPU scheduler selects the process at the front of the queue, sets
the timer to the time quantum and grants the CPU to this process

13

Round Robin
•  Two potential outcomes ensue:

 1) If the process’ CPU burst time is less than the
specified time quantum it will released the CPU upon
completion
–  Scheduler will then proceed to the next process at the front of

the ready queue

 2) If the process’ CPU burst time is more than the
specified time quantum, the timer will expire and cause
an interrupt (i.e. the process is preempted) and execute
a context switch
–  The interrupted process is added to the end of the ready queue
–  Scheduler will then proceed to the next process at the front of

the ready queue

14

Example
•  Suppose we have three processes all arriving at time 0

and having CPU burst times as follows:
–  P1 with CPU burst of 20 milliseconds
–  P2 with CPU burst of 3 milliseconds
–  P3 with CPU burst of 3 milliseconds

•  Supposing that we use a time quantum of 4 milliseconds,
using the round robin algorithm we can view the result as
the following Gantt chart:

0 10 14 18

P1 P2 P1

4 7

P3 P1 P1 P1

22 26

15

Round Robin

•  In the previous example P1 executed for the first four
milliseconds and is then interrupted after the first time
quantum has lapsed, but it requires another 16
milliseconds to complete

•  P2 is then granted the CPU, but as it only needs 3
milliseconds to complete, it quits before its time quantum
expires

•  The scheduler then moves to the next process in the
queue, P3 , which is then granted the CPU, but that also
quits before its time quantum expires

16

Round Robin

•  Now each process has received one time quantum, so
the CPU is returned to process P1 for an additional time
quantum

•  As there are no other processes in the queue, P1 is given
further additional time quantum until it completes
–  No process is allocated the CPU for more than one time

quantum in a row, unless it is the only runnable process

•  The average wait time is ((10 - 4) + 4 + 7)/3 = 5.66
milliseconds

17

Round Robin
•  The performance of the round robin algorithm depends

heavily on the size of the time quantum
–  If time quantum is too large, RR reduces to the FCFS algorithm
–  If time quantum is too small, overhead increases due to amount

of context switching needed

•  Advantages:
–  Easy to implement as it is not based on characteristics of

processes
•  Commonly used in interactive/time-sharing systems due to its

preemptive abilities
–  Allocates CPU fairly

•  Disadvantages:
–  Performance depends on selection of a good time quantum

•  Context switching overheads increase if a good time quantum is not
used

18

Multilevel Queues

•  A class of scheduling algorithms that categorise
processes by some characteristic and can be used in
conjunction with other policies
–  Processes can be categorised by: memory size, process type,

their response time, their externally assigned priorities, etc.

•  A multilevel queue-scheduling algorithm divides the
ready queue into several separate queues to which
processes are assigned
–  Each queue is associated with one particular scheduling

algorithm

•  Also requires scheduling between queues
–  Commonly implemented as fixed-priority preemptive scheduling

