
Comp 204: Computer Systems
and Their Implementation

Lecture 7: Synchronisation

Today

•  Mutual Exclusion
•  Synchronisation methods

– Test-and-Set
– Wait and Signal
– Semaphores

•  Classic synchronisation problems
– The readers-writers problem

Problem

•  Suppose we have an object (called ‘thing’)
which has the following method:
 public void inc() {
 count = count + 1;
 }

•  Count is private to ‘thing’, and is initially zero
•  Two threads, T1 and T2, both execute the

following:
 thing.inc();

Indeterminacy
•  Assume each thread executes following code:

 LOAD count
 ADD 1
 STORE count

•  Could execute as follows

 T1 T2
0 LOAD ..
1 ADD ..

 .. LOAD 0
 .. ADD 1
 .. STORE 1

1 STORE ..

•  This is known as a ‘race’ condition

Mutual Exclusion
•  Indeterminacy arises because of possible simultaneous access

to a shared resource
–  The variable ‘count’ in the example

•  Solution is to allow only one thread to access ‘count’ at any one
time; all others must be excluded

•  To control access to such a shared resource we declare the
section of code in which the thread/process accesses the
resource to be the critical region/section

•  We can then regulate access to the critical region
–  When one thread is executing in its critical region, no other thread/

process is allowed to execute in its critical region
–  This is known as mutual exclusion

Indeterminacy and Interrupts

•  Uniprocessor environment
–  Indeterminacy can be avoided by prohibiting

interrupts from occurring while a shared variable is
being modified

•  Current sequence of instructions executed without
unexpected modifications to the shared variable

•  Multiprocessor environment
–  Prohibiting interrupts not feasible as it is time

consuming and decreases system efficiency
– Many machines provide special hardware

instructions to deal with the problem

Synchronisation
•  Problems such as indeterminacy require protocols

that processes/threads can use to co-operate to
perform their tasks effectively (process
synchronisation)

•  The success of any synchronisation mechanism
depends upon OS’s ability to make a resource
unavailable to other processes/threads whilst it is
being used by another: enforcing mutual exclusion
–  such resources can include data files, I/O devices, a storage

location etc.

•  A key part of synchronisation is ensuring that no job
is left waiting indefinitely

Synchronisation
•  Several mechanisms are available to provide co-

operation and communication amongst processes/
threads

•  A common theme runs through all such mechanisms:
allowing one process/thread to finish work on a critical
region of a program/resource before other processes/
threads have access to it

•  Synchronisation solutions exist in the form of both
hardware and software mechanisms

Locks and Keys
•  Synchronisation can be implemented as a lock-and-key

arrangement: before a process can access a critical region it is
required to obtain the key

•  Once the key is obtained all other processes are locked out until it
finishes its work

•  When process holding the key finishes its work, it unlocks entry to
the critical region and releases the key so another process can
obtain it and subsequently access the critical region

•  There are two actions involved here:
–  1) first see if the key is available
–  2) if the key is available the process must obtain the lock to ensure the

resource is unavailable to all other processes

Lock-and-Key
•  For the lock and key mechanism to work both the

previous actions must be performed in the same
machine cycle
–  If not, it is possible that while the first process is ready to pick up

the key, another could come along, find the key available and
prepare to pick it up, causing each to block the other out

•  There are several such locking mechanisms that have
been developed for process synchronisation:
–  Test-and-Set
–  WAIT and SIGNAL
–  semaphores…

Test-and-Set
•  Test-and-Set is a single indivisible machine

instruction (known as TS) which tests to see if the
key is available and if so, sets it to unavailable, all in
one machine cycle
–  TS was developed by IBM for its multiprocessing computers

•  Actual key is a single bit that contains 0 if it is free
and 1 if it is busy

•  TS can be viewed as a subprogram with the following
properties:
–  It has one parameter: the storage location of the key
–  It returns one value: the condition of the key (busy/free)
–  It takes only one machine cycle

Test-and-Set
•  Advantages:

–  Simple procedure to implement
– Works well for a small number of processes

•  Disadvantages:
– When many processes are waiting to enter a

critical region starvation could occur as processes
gain access to the critical region in an arbitrary
manner

•  Could be solved using a first-come, first-served policy
– Waiting processes remain in unproductive,

resource-consuming ‘wait loops’: this is known as
busy waiting

Wait and Signal
•  Wait and Signal is a modification of TS

•  Makes use of two mutually exclusive
operations: WAIT and SIGNAL

•  WAIT is activated when the process
encounters a ‘busy’ condition code:
–  Sets the process to the blocked state
–  Links the blocked process to a queue of those

waiting to enter the critical region
– OS selects another process to execute

Wait and Signal
•  SIGNAL is activated when the process exits

the critical region and the condition code is
set to ‘free’:
– Checks the queue of processes waiting to enter

the critical region and selects one, moving it to the
‘ready’ state

– OS will eventually choose this process for
execution

•  Wait and Signal operations free processes
from busy waiting and transfer control back to
the OS to run other jobs while the waiting
processes are idle

Semaphores
•  A semaphore is an integer-valued variable that

is used as a flag to signal when a resource is
free and can be accessed

•  Only two operations possible: P and V
–  also called test and increment, or down and up

P(S) { V(S) {
 while (S<=0) S++;
 ; //null }
 S--;
}

Semaphores

•  P and V are indivisible
–  When one thread/process modifies the semaphore,

no other thread/process can modify that same
semaphore

•  They can be used to enforce mutual exclusion
by enclosing critical regions

 T1 T2
P(s); P(s);
 critical region critical region
V(s); V(s);

Example
•  Java used not to support semaphores directly

–  Although they could be simulated
•  In previous code, each thread would perform

P(s);
 thing.inc(); // critical region
V(s);

•  The Java 5 API provides a counting semaphore

Semaphores

•  A semaphore that can only take values 0
or 1 is a binary semaphore
– unrestricted ones are counting semaphores

•  When a process/task/thread is in its critical
region, no others can enter theirs
– hence, keep critical regions as small as

possible
•  Use of semaphores requires care

Question
•  The value of a semaphore s is initially 1. What could happen in the

following situation?

 T1 T2
V(s); P(s);
 critical region critical region
P(s); V(s);

a)  Deadlock will ensue
b)  T1 and T2 can both enter their critical regions simultaneously
c)  Neither T1 nor T2 can enter its critical region
d)  T1 can never enter its critical region, but T2 can enter its own
e)  T1 can enter its critical region, but T2 can never enter its own

19

Answer: b
If T1 executes first, then it acquires the semaphore, which is immediately
released by T2. Both then execute the critical region.
If T2 executes first, it releases a semaphore it does not have, which can
be acquired by T1. Again, both can execute the critical region.

Classic Synchronisation
Problems

•  There are a number of famous problems that
characterise the general issue of concurrency
control

•  These problems are used to test synchronisation
schemes

•  We will look at two such problems that involve
synchronisation issues:
–  The Readers-Writers Problem
–  The Producer-Consumer Problem

The Readers-Writers Problem
•  A problem in which several threads/processes have

shared access to a file or database

•  Readers: threads that only read the database

•  Writers: threads that both read the database and update
it (write)

•  Two readers accessing the shared data simultaneously
poses no problem

•  But, if a writer and another thread (either a reader or a
writer) access the shared data simultaneously, problems
can arise

Example
•  A real-world example of the readers-writers problem is

an airline reservation system

•  Readers: want to read flight information

•  Writers: want to make flight reservations

•  Potential problem: if readers and writers can access the
shared data simultaneously then readers/writers may
view flights as being available when they’ve actually just
been booked

•  Solution: enforce mutual exclusion, whilst ensuring the
system is fair (avoids starvation)

Solution – First Attempts
•  In the original statement of this problem, there were two

solutions that both made use of semaphores

•  Solution 1: give priority to readers over writers - readers
are kept waiting only if a writer is modifying the data
–  Problem: results in starvation of writers if there is a continuous

stream of readers

•  Solution 2: give priority to writers over readers - as soon
as a writer arrives, any readers that are reading are
allowed to finish their task, but all additional readers are
put on hold until the writer has finished its task
–  Problem: results in starvation of readers if there is a continuous

stream of writers

Alternative Solution
•  As neither of the previous two solutions are

acceptable, another solution was later proposed
that encompasses a combination priority policy
and avoids starvation problems

•  Solution:
–  when a writer has finished writing, any and all readers

who are waiting are allowed to read
–  when this group of readers have finished reading, a

writer on hold can begin to write
–  any new readers that arrive in the meantime are not

allowed to start reading until the writer has finished

