
COMP327
Mobile Computing
Session: 2010-2011

Tutorial 4-5 - Objective-C and the
Foundation Framework

1

In these Tutorial Slides...
• These slides introduce you to Objective-C,

with a focus on the object-oriented
components

• History of the Language

• Methods/Classes/Objects

• Message Passing

• Polymorphism, Dynamic Binding, and Reflection

• Foundation Classes

• Memory Management

• Container classes

2

What is Objective-C

• An object-oriented language

• “..focused on simplicity and the elegance of object oriented design...”

• A strict superset of ANSI C

• Very Different (and somewhat simpler) to C++

• Exploits a number of object oriented principles

• Inherits many principles from Smalltalk

• Used to develop the Cocoa API Framework

• A variant for C++ also exists

• ObjC++

• Originally used within NeXT’s NeXTSTEP OS

• Precursor to Mac OS X

3

History
• Originally developed by Brad Cox and Tome Love in the

early 1980

• Inspired by Smalltalk, a C-compiler was modified to add some of
its OOP elements

• Language was then licensed by NeXT in 1988, and used to
develop NeXTstep UI

• NeXT was created by Steve Jobs after having been thrown out of Apple,

• NeXT was acquired by Apple in 1996 on his return, resulting in
the development of OSX, and the adoption of Objective-C for
Cocoa

• Objective-C 2.0 was released by Apple in 2006

• Improved garbage collection and provided syntax enhancements

4

What is Objective-C
• A simple language, but introduces some new syntax

• Single inheritance

• Inherits from only one superclass

• Protocols

• Introduces the notion of multiple inheritance

• A pattern that defines a list of methods that should be defined when
implementing a class

• Pre Objective-C 2.0, all protocol methods were mandatory

• Different to the notion of protocols in Java

• e.g. if you want to define a table, you would need a delegate to enter data into the table

• Dynamic Runtime

• Everything is looked up and dispatched at runtime (not compile time)

• (Optionally) Loosely Typed

5

Object Oriented Recap
• Object Oriented Vocabulary

• Elements

• Class: defines the grouping of data and code, the “type” of an object

• Instance: a specific allocation of a class

• Method: a “function” that an object knows how to perform

• Instance Variable (or “ivar”): a specific piece of data belonging to an
object

• Principles

• Encapsulation: keep implementation private and separate from interface

• Polymorphism: different objects, same interface

• Inheritance: hierarchical organisation, share code, customise or extend
behaviours

6

Syntax Additions
• ANSI C extended with some syntax extensions

• New Types

• Anonymous object (id type)

• Used for loosely typing

• Language Level Constructs

• Class

• Selectors (for sending messages to objects)

• Syntax for...

• ...defining classes

• ...defining message expressions

7

Dynamic Runtime
• Object Creation

• Everything is allocated from the heap

• No stack based objects!!

• Message Dispatch

• Everything is looked up and dispatched at runtime (not compile
time)

• If you send a message to an object, the existence of that object is checked at
runtime

• Introspection

• A “thing” (class, instance, etc) can be asked at runtime what type it is

• Can pass anonymous objects to a method, and get it to determine what to do
depending on the object’s actual type

8

Objective-C Example
#import <stdio.h>
#import <objc/Object.h>

// ---- @interface section ----
@interface Fraction: Object {
 int numerator;
 int denominator;
}

- (void) print;
- (void) setNumerator: (int) n;
- (void) setDenominator: (int) d;
@end

// ---- @implementation section ----
@implementation Fraction;
- (void) print {
 printf(" %i/%i\n",
 numerator, denominator);
}
- (void) setNumerator: (int) n {
 numerator = n;
}
- (void) setDenominator: (int) d {
 denominator = d;
}
@end

Define the class and its methods in the interface section.
Note that these are instance classes, by the prefix ‘-’.

// ---- program section ----
int main(int argc, char *argv[]) {
 Fraction *myFraction;

 // Create an instance of fraction
 myFraction = [Fraction alloc];
 myFraction = [myFraction init];

 [myFraction setNumerator: 1];
 [myFraction setDenominator: 3];

 printf("The value of myFraction is:");
 [myFraction print];
 [myFraction free];

 return 0;
}

Create the methods within
the implementation section

The main code goes in the
program section, where a
new instance is allocated,
used, and then freed.

9

Classes and Objects

• Classes and instances are both
objects

• Classes declare state and behaviour

• State (data) is maintained using
instance variables

• Behaviour is implemented using
methods

• Instance variables typically hidden

• Accessible only using accessor (i.e.
getter and setter) methods

Person

char *name;
int age;

- (char *)name;
- (void)setName:(char *)value;
- (int)age;
- (void)setAge:(int)age;
- (BOOL)canLegallyVote;
- (void)castBallot;

S
ta

te
B

e
h

av
io

u
r

10

Messaging Syntax
• Classes and Instance Methods

• Instances respond to instance methods (“-”)
- (id)init;

- (float)height;

- (void)walk;

• Methods called on instances of a class

• Classes respond to class methods (“+”)
+ (id)alloc;

+ (id)person;

+ (Person *)sharedPerson;

• Methods called on the class itself

• e.g. modifying class-wide static variables

11

Message Syntax

• A square brace syntax is used
[receiver message]

[receiver message:argument]

[receiver message:arg1 andArg:arg2]

Object receiving
the message

The message
itself

The main (first)
argument

Subsequent
named arguments

arg-name : arg-value

12

Message Examples
Person *voter; //assume this exists

[voter castVote];

int theAge = [voter age];

[voter setAge:21];

if ([voter canLegallyVote]) {

// do something voter-y

}

[voter registerForElection:@"Wirral" party:@"Labor"];

char *name = [[voter spouse] name];

13

Terminology

• Message expression
[receiver method: argument]

• Message
[receiver method: argument]

• Selector
[receiver method: argument]

• Method

• The code selected by a message

14

@interface
Section
• This is where the class is defined

• Often defined in a header file (suffix “.h”, as in C)

• Encapsulated within the @interface and @end

• The instance variables (ivars) are given

• These appear within the curly braces, and can vary in scope

• The method declarations are then listed

• The arguments and return types are specified, but using the Objective-C syntax for
methods, and not the C syntax for functions

• No code is defined, just the name, return type and arguments
of each method

• By convention, class names start with upper case letters

@interface NewClassName: ParentClassName {
 memberDeclarations;
}

methodDeclarations;
@end

15

Class and Instance
Method Syntax

• Each method declaration consists of:

• a name

• a return type

• an optional list of arguments (and their data or object types)

• an indicator to determine if the method is a class or instance method

• The syntax is

- (void) setNumerator: (int) n;

Method Type:
+ for class

- for instance

Return Type
Method Name

Colon indicates
that the method

takes an argument

Argument
Type

Argument Name

16

More on Arguments
• Methods can take more than one argument

• Each argument consists of:

• a name

• a type in parentheses

• a variable

• The name is used to refer to the argument to make messages
readable

• The first argument does not have an explicit name, as its name is the method name

• Methods without argument names

• Argument names are actually optional

• This would result in the method set::

• This can make code unreadable

- (void) setTo: (int) n over: (int) d;

// Called by sending the message

[myFraction setTo: 3 over: 4]

- (void) set: (int) n: (int) d;

// Called by sending the message

[myFraction set: 3 : 4]

17

iVar
scope

• By default, instance variables have a scope that is limited to the
methods of that class

• Variables are also inherited through subclassing

• Three directives can be used to modify the scope of instance
variables

• @protected

• This is the default case! Instance variables can be directly accessed by methods of that class
and any subclass.

• @private

• The instance variables can only be accessed by those methods in the same class, but not by
subclasses

• @public

• The instance variables can be accessed by other methods as well, by using the ‘->’ operator;
for example using fraction->numerator

@interface NewClass: Parent {
@private
 memberDeclarations;
@protected
 memberDeclarations;
@public
 memberDeclarations;
}
...
@end

18

@implementation
Section

• This is where the methods for the class are declared

• Code is in a source file (suffix “.m”)

• Encapsulated within the @implementation and @end
• Normally, all the methods defined within the class interface are implemented here

• Categories can be defined in other files to allow groups of methods to be defined
together

• They also allow classes to be extended, even when the original class source is not available

• The class can reference itself or its parent class

• self - this is the instance itself

• super - this is the parent class

• Useful to call class methods of its parent

@implementation NewClassName;
methodDefinitions;
@end

[self setNumerator 5];
...
[super dealloc];

19

@implementation
section

• Many of the accessor methods are defined here

• A convention is often used, where setters are prefixed with the string
“set”

• Objective-C 2.0 introduces a new syntax for properties to simplify the
definition of accessors

• No non-class related code should appear in this section

// ---- @implementation section ----
@implementation Fraction;
- (void) print {
 printf(" %i/%i\n", numerator, denominator);
}
- (void) setNumerator: (int) n {
 numerator = n;
}
- (void) setDenominator: (int) d {
 denominator = d;
}
@end

20

Program section

• The program section
includes functions that look
like regular C functions

• There should be at least one
main function, which is called
when the application executes.

• The code can be split across
multiple files

• However, this section should
not contain additional class
methods

// ---- program section ----
int main(int argc, char *argv[]) {
 Fraction *myFraction;

 // Create an instance of fraction
 myFraction = [Fraction alloc];
 myFraction = [myFraction init];

 [myFraction setNumerator: 1];
 [myFraction setDenominator: 3];

 printf("The value of myFraction is:");
 [myFraction print];
 [myFraction free];

 return 0;
}

21

Selectors identify
methods by name

• A selector has type SEL
SEL action = [button action];

[button setAction:@selector(start:)];

• Conceptually similar to function pointer

• Selectors include the name and all colons, for example:
-(void)setName:(NSString *)name age:(int)age;

• would have a selector:
SEL sel = @selector(setName:age:);

22

Working with selectors
• You can determine if an object responds to a given selector

id obj;

SEL sel = @selector(start:);

if ([obj respondsToSelector:sel]) {

 // it responds to this selector, so call it

 [obj performSelector:sel withObject:self]

}

• This sort of introspection and dynamic messaging underlies many
Cocoa design patterns

• You will see this in use within Interface Builder!!!
-(void)setTarget:(id)target;

-(void)setAction:(SEL)action;

23

Reflection
• Instances can ask questions about themselves

• Am I a certain class?

• Do I support a certain method?

• Various methods exist (defined within the Object class)
to answer these questions

Method Question or Action

-(BOOL) isKindOf: class-object Is the object a member of class-object or a descendent?

-(BOOL) isMemberOf: class-object Is the object a member of class-object?

-(BOOL) respondsTo: selector Can the object respond to the method specified by selector?

+(BOOL) instancesRespondTo: selector Can instances of the specified class respond to this particular message?

-(BOOL) perform: selector Apply the method specified by selector.

24

Class Introspection
• You can ask an object about its class

Class myClass = [myObject class];

NSLog(@"My class is %@", [myObject className]);

• Testing for general class membership (subclasses included):
if ([myObject isKindOfClass:[UIControl class]]) {

 // something

}

• Testing for specific class membership (subclasses excluded):
if ([myObject isMemberOfClass:[NSString class]]) {

 // something string specific

}

25

Protocols
• A protocol is a list of methods that is shared among classes

• There is no existing implementation of these methods; rather it is up to
the developer to implement them for that class

• A class can choose to conform to, or adopt a protocol

• Conforming to more than one protocol is possible

• Informally similar to multiple inheritance

• Two types of protocol are possible

• Informal Protocols

• Specified only in the documentation of the class, but is not stated within source code.
A class can then determine if the method exists through reflection, and invoke it if it
exists.

• Formal Protocols

• Similar to an interface in Java

• Defined, using the @protocol directive ...

26

Formal Protocols
@protocol Locking
- (void)lock;
- (void)unlock;
@end

The protocol is defined
somewhere, using the @protocol
directive, and may group together
a set of related method that
should be implemented if the
class adopts to the protocol.

@interface SomeClass : SomeSuperClass <Locking>
@end

@interface AnotherClass : AnotherSuperClass <Locking, Archiving>
// This class adopts two protocols!!!
@end

id currentObject;
...
if ([currentObject conformsTo: @protocol (Locking)] == YES) {
 // Call lock
 [currentObject lock];

A class is then defined to
adopt the protocol using the
angled bracket notation.

Several protocols could be
adopted, by separating the
protocols with commas

The methods can then be defined in the implementation part of the class

An object can later
check to see if it
conforms to a
protocol, using the
conformsTo method

27

Memory Management
• Objective-C 1.0 defines new functions to

allocate memory and deallocate heap memory

• Once a class has been defined, it needs
instantiating

• This involves the creation of a new instance and
the allocation of heap memory for that object

• The “+ alloc” method (inherited from the
Object class) is a class method that allocates the
necessary memory and returns a new instance

• All classes should also implement an “- init”
method (also defined in the Object class)

• This is responsible for performing any initialisation within the
new instance

• Note that the init method could itself change the memory
location of the instance, and hence you should set your
variable to its return value!!!

...
// Create an instance
// of the class Fraction
myFraction = [Fraction alloc];
myFraction = [myFraction init];

// Alternative syntax
myF2 = [[Fraction alloc] init];
...

28

Implementing your own
-init method

#import "Person.h"

@implementation Person

- (id)init {
 // allow superclass to initialise its state first
 if (self = [super init]) {
 age = 0;
 status = NEWBORN;

 // do other initialisation...
 }
 return self;
}

@end

In this case the new init method is
defined. We start by calling the
parent class’s init method before
we do any of our own initialisation.

NOTE that when calling the
parent’s init method, we set
self to be the returned value,
as init may change the address
of the instance!

Once the init method has
been defined, return self.

By convention, the return type is id. This is because
the method itself could be called by a child class,
and setting the return value to a specific class here
could cause type checking problems.

29

Multiple init methods

• Classes may define multiple init methods

• Less specific ones typically call more specific
ones with default values

...
- (id)init;
- (id)initWithName:(NSString *)name;
- (id)initWithName:(NSString *)name age:(int)age;
...

...
- (id)init {
 return [self initWithName:@“No Name”];
}

- (id)initWithName:(NSString *)name {
 return [self initWithName:name age:0];
}
...

Note we have
NSString - which is
defined in the
Foundation
Framework,
discussed in the
next Tutorial Slides

30

Memory Management
• Once the instance is no longer needed, the memory can be deallocated

using the free method call

• Once an instance is freed, it can no longer be used.

• Sometimes, a class instance may also allocate memory

• This can be done by overriding the free method for that class.

• However, remember to call the parent’s free method once the instance’s own
variables have been freed

...
[myFraction free];
...

-(id) free {
 [myElem1 free];
 [myElem2 free];
 // Now all the sub-elements have been freed
 // the parent method can free the instance
 // ensure you return whatever the parent class method returns
 return [super free];
}

31

Memory Management in
Objective C

• Calls must be balanced

• Otherwise your program may leak or crash

• Objective-C 2.0 and the Foundation Classes introduce
reference counting within memory management

• Each alloc call should be balanced with a release call

• You should never call dealloc directly

• With only one exception...

Allocation Destruction

C malloc free

Objective-C alloc free

Objective-C 2.0 alloc release / dealloc

32

Reference Counting

• Every object has a retain count

• Defined on NSObject (in the Foundation Framework)

• As long as retain count is > 0, object is alive and valid

• +alloc and -copy create objects with retain count == 1

• -retain increments retain count

• -release decrements retain count

• When retain count reaches 0, object is destroyed

• -dealloc method invoked automatically

• One-way street, once you’re in -dealloc there’s no turning back

33

Reference Counting in
Action

person = [[Person alloc] init];

[person retain];

[person release];

[person release];

Retain count begins at 1 with +alloc

Retain count increases to 2 with -retain

Retain count decreases to 1 with -release

Retain count decreases to 0: -dealloc automatically called

34

Messaging deallocated
objects

• Program defensively when managing memory

• Typically, it is good practice to set pointers to nil when they
are not in use
person = nil;

• Easy to check

• Avoids memory corruption if contents at the pointer address is
mistakenly updated

• Objective-C silently ignores messages to nil

Person *person = [[Person alloc] init];
// ...
[person release]; // Object is deallocated

[person doSomething]; // Crash!

35

Object Lifecycle Recap
• Objects begin with a retain count of 1

• Increase with -retain

• Decrease with -release

• When the retain count reaches 0, the object is
deallocated automatically

• You never need to call dealloc explicitly in your code

• The only exception is when redefining the dealloc method to
do additional housekeeping

• In this case, send a message to the superclass via [super dealloc]

• You only deal with alloc, copy, retain, and release

36

Object Ownership
• It is important to know who owns an object

• Hence who is responsible for its memory!

• Can be mediated through -retain and -release

• Sometimes, ownership can be ambiguous

• For this, we have -autorelease

• Also, mutability is an important consideration

• Are objects retained or copied?

• Can depend on the programmer’s paranoia...!

• Typically depends on whether the object is mutable

37

Object Ownership
#import <Foundation/Foundation.h>

@interface Person : NSObject
{
 // instance variables
 NSString *name; // Person class “owns” the name
 int age;
}

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (int)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castVote;
@end

The object name requires memory
management. It is owned by Person.

- may be returned by the getter accessor
- may be changed by the setter accessor.

Header File

38

Object Ownership
#import "Person.h"

@implementation Person

- (NSString *)name {
 return name;
}

- (void)setName:(NSString *)newName {
 if (name != newName) {
 [name release];
 name = [newName retain];
 // name’s retain count has been bumped up by 1
 }
}

@end

If a new name string is sent to setName:
- the previous string is released (i.e. it is not

longer needed)
- the new string retained (i.e. this string will also

be owned by Person).

Implementation
File

39

Object Ownership
#import "Person.h"

@implementation Person

- (NSString *)name {
 return name;
}

- (void)setName:(NSString *)newName {
 if (name != newName) {
 [name release];
 name = [newName copy];
 // name now has a retain count of 1, we own it!!!
 }
}

@end

This version makes a copy of the
string in the setter, rather than
keeping the argument string.
- The ownership of the argument string is

not changed.
- It remains the responsibility of its

previous owner...

Implementation
File

40

Releasing Instance
Variables

#import "Person.h"

@implementation Person

- (NSString *)name {
 return name;
}

- (void)dealloc {
 // Do any cleanup that’s necessary
 [name release];

 // when we’re done, call super to clean us up
 [super dealloc];
}
@end

A newly defined dealloc may need to
clean up (i.e. release) any objects
before it calls its superclass dealloc
method.

Implementation
File

41

Returning a newly
created object

• In some cases, objects may be passed with no clear or
obvious ownership

• Hence no responsibility to clean up
- (NSString *)fullName {

 NSString *result;

 result = [[NSString alloc] initWithFormat:@“%@ %@”,

 firstName, lastName];

return result;

}

• In this case, result is leaked...!

• result is passed as an allocated object with no owner

42

• Can’t release result before it is returned

• Yet, after return, the method looses access to the object
- (NSString *)fullName {

 NSString *result;

 result = [[NSString alloc] initWithFormat:@“%@ %@”,

 firstName, lastName];

[result autorelease]

return result;

}

• result will be released some time in the future (not now)

• caller can choose to retain it to keep it around!

Returning a newly
created object

43

Autorelease

• Calling -autorelease flags an object to be sent
release at some point in the future

• Let’s you fulfil your retain/release obligations while
allowing an object some additional time to live

• Makes it much more convenient to manage
memory

• Very useful in methods which return a newly
created object

44

Naming conventions and
predicting ownership

• Methods whose names includes alloc or copy return a
retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] init];

// We are responsible for calling -release or -autorelease

[string autorelease];

• All other methods return autoreleased objects
NSMutableString *string = [NSMutableString string];

// The method name doesn’t indicate that we

// need to release it ... so don’t!!!

• This is a convention

• follow it in the methods that you define!

45

How does -autorelease
work???

• Object is added to current autorelease pool

• Autorelease pools track objects scheduled
to be released

• When the pool itself is released, it in turn sends
the -release message to all its objects

• UIKit automatically wraps a pool around
every event dispatch

• Important for event driven GUI programming

46

App Lifecycle
Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Event
Loop

Pool
Pool Created

Autoreleased
objects in the
event loop are
put in the Pool

47

App Lifecycle
Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Pool

Object Created

48

App Lifecycle
Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Pool

[object autorelease];

49

App Lifecycle
Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Pool
Pool Released

[object release];
[object release];

[object release];

50

App Lifecycle
Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Pool

51

App Lifecycle
Launch App

App Initialised

Load main nib

Wait for an event

Handle Event

Exit App

Pool
Pool Created

52

Hanging onto an
autoreleased object

• Many methods return autoreleased objects

• Remember the naming conventions...

• They’re hanging out in the pool and will get released later

• If you need to hold onto those objects you need to retain
them

• Bumps up the retain count before the release happens
name = [NSMutableString string];

// We want to name to remain valid!
[name retain];

// ...
// Eventually, we’ll release it (maybe in our -dealloc?)
[name release];

53

Dynamic and Static
Typing

• Dynamically-typed (loosely typed) object
id anObject

• Just id

• Not id * (unless you really, really mean it...)

• Dynamic typic can be very powerful

• No type-checking, so can be very dangerous!!!

• Statically-typed object
Person *anObject

• Compile-time (not runtime) type checking

• Objective-C always uses dynamic binding

54

Foundation Framework
• Different to Cocoa

• Supports all the underlying (common) classes

• Common to all Apple platforms (OS X, iPhone etc)

• Defines classes to support the following:

• Value and collection classes

• User defaults

• Archiving

• Notifications

• Undo manager

• Tasks, timers, threads

• File system, pipes, I/O, bundles

55

Two useful foundation
classes

• NSObject

• Root class

• Implements many basics

• Memory management

• Introspection

• Object equality

• NSString

• General-purpose Unicode string support

• Unicode is a coding system which represents all of the world’s languages

• Consistently used throughout Cocoa Touch instead of “char *”

• Without doubt the most commonly used class

• Easy to support any (spoken) language in the world with Cocoa

56

String Constants
• In C and Java, constant strings are 8 bit char arrays

“simple”

• In Objective C 2.0, constant strings are represented
using unicode characters

@“just as simple”

• Constant strings are NSString instances

• The “@” converts the string into an NSString
NSString *aString = @”Hello World!”;

57

Format Strings

• Similar to printf, but with %@ added for objects
NSString *aString = @”Johnny”;

NSString *log = [NSString stringWithFormat: @”It’s ‘%@’”, aString];

• log would be set to
It’s Johnny

• Also used for logging
NSLog(@”I am a %@, I have %d items”, [array className], [array count]);

• would log something like:
I am a NSArray, I have 5 items

58

More on NSString
• Often ask an existing string for a new string with

modifications
- (NSString *)stringByAppendingString:(NSString *)string;

- (NSString *)stringByAppendingFormat:(NSString *)string;

- (NSString *)stringByDeletingPathComponent;

• Example:
NSString *myString = @”Hello”;

NSString *fullString;

fullString = [myString stringByAppendingString:@” world!”];

• fullString would be set to
Hello world!

59

More on NSString
• Common NSString methods

- (BOOL)isEqualToString:(NSString *)string;

- (BOOL)hasPrefix:(NSString *)string;

- (int)intValue;

- (double)doubleValue;

• Example:
NSString *myString = @”Hello”;

NSString *otherString = @”449”;

if ([myString hasPrefix:@”He”]) {

 // will make it here

}

if ([otherString intValue] > 500) {

 // won’t make it here

}

60

NSMutableString
• NSMutableString subclasses NSString

• Allows a string to be modified

• Common NSMutableString methods
+ (id)string;

- (void)appendString:(NSString *)string;

- (void)appendFormat:(NSString *)format, ...;

NSMutableString *newString = [NSMutableString string];

[newString appendString:@”Hi”];

[newString appendFormat:@”, my favourite number is: %d”,

 [self favouriteNumber]];

61

NSNumber
• In Objective-C, you typically use standard C number types

• NSNumber is used to wrap C number types as objects

• Subclass of NSValue

• No mutable equivalent!

• Typically better to use floats, ints etc, and only convert when
necessary

• Avoids having to unpack an NSNumber, modify it, and repackage it!

• Common NSNumber methods:
+ (NSNumber *)numberWithInt:(int)value;

+ (NSNumber *)numberWithDouble:(double)value;

- (int)intValue;

- (double)doubleValue;

62

Collections

• Array - ordered collection of objects

• Dictionary - collection of key-value pairs

• Set - unordered collection of unique objects

• Common enumeration mechanism

• Immutable and mutable versions

• Immutable collections can be shared without side effect

• Prevents unexpected changes

• Mutable objects typically carry a performance overhead

63

BOOL typedef
• When ObjC was developed, C had no boolean type

• ObjC uses a typedef to define BOOL as a type
BOOL flag = NO;

• Macros included for initialisation and comparison

• YES and NO
if (flag == YES)

if (flag)

if (!flag)

if (flag != YES)

flag = YES;

flag = 1;

64

Identity vs Equality
• Identity—testing equality of the pointer values

if (object1 == object2) {

 NSLog(@"Same exact object instance");

}

• Equality—testing object attributes
if ([object1 isEqual: object2]) {

 NSLog(@"Logically equivalent, but may be
different object instances");

}

65

Properties

• Provide access to object attributes

• Shortcut to implementing getter/setter methods

• Instead of declaring “boilerplate” code, have it generated
automatically

• Specify @properties in the header (*.h) file

• Create the accessor methods by @synthesizing the properties in the
implementation (*.m) file

• Also allow you to specify:

• read-only versus read-write access

• memory management policy

66

Defining Properties

67

Synthesising Properties

68

Property Attributes

• Read-only versus read-write
@property int age; // read-write by default

@property (readonly) BOOL canLegallyVote;

• Memory management policies (only for object
properties)

@property (assign) NSString *name; // pointer assignment

@property (retain) NSString *name; // retain called

@property (copy) NSString *name;! // copy called

69

Inheritance
• Hierarchical relationship

between classes

• Subclasses inherit from
superclasses

• Everything is an object!!!

• Top Level class is
NSObject

• Takes care of memory
management, introspection
etc...

• Typically not directly used,
but often used as a
superclass for other classes

NSObject

UI Control

UITextFieldUIButton

Subclass

70

Dot Syntax
• Objective-C 2.0 introduced dot syntax

• Convenient shorthand for invoking accessor methods
float height = [person height];

float height = person.height;

[person setHeight:newHeight];

person.height = newHeight;

• Follows the dots...
[[person child] setHeight:newHeight];

// exactly the same as

person.child.height = newHeight;

• Essentially provides a shorthand

• Assumes a setter naming convention (setX) etc

• Dot syntax is automatically converted into the brace syntax

71

To Summarise

• In this Tutorial Set we covered

• A crash course in Objective-C !!!

• Recap on Object Oriented Programming

• Classes and Objects

• Messaging Syntax

• Foundation Framework

• NSObject, NSString and mutable objects

• C Pointers

• Memory Allocation in Objective-C

• Retain, Release and Autorelease

72

