Principles of Computer Game Design and Implementation

Lecture 12
We already knew

• Vector operations
• Collision detection – overlap test and intersection test
Outline for Today

• Collision detection – detailed view
• Collision detection -- mid level view
Detailed View

• 3D shapes are combinations of *polygons*

• One needs to know if
 – one polygon overlaps with another
 • Overlap testing
 – a polygon overlaps with a shape
 • Intersection testing
Overlap of Triangles

The penetration method

• Consider a plane P_1 where (V_1, V_2, V_3) lays

• Triangles intersect if
 – One of W_i is above P_1 and one is below
 – The intersection of (W_1, W_2, W_3) with P_1 (line segment) lays within (V_1, V_2, V_3)
Example: Triangle & Plain

- Compute the **normal vector**
 \[n_1 = (V_3 - V_1) \times (V_2 - V_1) \]

- Notice that
 \[n_1 \cdot (W_1 - V_1) < 0 \]

- but
 \[n_1 \cdot (W_2 - V_1) > 0 \]

Checking for intersection requires equations for plain and line intersection.
Bounding volumes

Collision detection for triangles is insanely complex for real objects

- Approximate complex objects with simpler geometry
Uses: Minkowski Sum

Overlap can be found by testing if a single point is within the new volume
Uses: Bounding Volumes

• Bounding volume is a simple geometric shape
 – Completely encapsulates object
 – If no collision with bounding volume, no more testing is required

• Common bounding volumes
 – Sphere
 – Box
Bounding Sphere

• Simple shape approximation
 – May be difficult to get it tight
 – Two sphere collision:
 • Let \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \) be position vectors
 • If \(d < R_1 + R_2 \) they overlap
 – where \(d = |\mathbf{V}_1 - \mathbf{V}_2| \)
 • Or, better, if
 \[
 d^2 < (R_1 + R_2)^2
 \]

Why is it better?
Bounding Boxes

• Place a box around an object
• Test collisions between the boxes
Axis-Aligned Bounding Box

- Take the maximal and minimal values of the coordinates (corner of the box)
- Collision detection is very Fast
 - Compare the corner coordinates
- May not be accurate
Quiz

• Sketch a method which, given the coordinates of upper left corners of two 2-dimensional axis-aligned boxes \((x_1, y_1)\) and \((x_2, y_2)\) and their width \(w_1, w_2\) and height \(h_1, h_2\), respectively, determines whether these boxes intersect.
Oriented Bounding Box

• Based on object primary dimensions
• More accurate
• Box rotates with the object

• Collision detection is harder
 – One needs to know if a point “goes across” a side of the box
Idea: Separate Boxes

• Approximate using projections

Definitely do not overlap

Possibly overlap
Further check needed

Nothing but putting OBBs inside AABBs
Definite Answer with Projections

• Use local coordinates given by the box edges

\[(V_2 - V_1) \cdot (W_1 - V_1) < 0\]
\[(V_2 - V_1) \cdot (W_2 - V_1) < 0\]
\[(V_2 - V_1) \cdot (W_3 - V_1) < 0\]
\[(V_2 - V_1) \cdot (W_4 - V_1) < 0\]

All \(W\)'s are to the left of \((V_1 - V_4)\)
Separating Shapes

• Same principles can be applied to check for collision of arbitrary **convex** shapes
Distance Test

- Gilbert-Johnson-Keerthi (GJK) Algorithm
 - Determines distance between two convex shapes
 - Can be used to locate closest points
 - Uses Minkowski sum
 - Requires some maths background to understand

- Implementations available
Mid-Level View

Speedup recipe:
• Place a simple shape around an object
• Test for collisions between the bounding shapes

• Two problems:
 • Too crude an approximation
 • Too many entities

• Divide and conquer!
Bounding Volume Hierarchy

• “Look inside” the box:
 – Hierarchical structure
 • Root node completely encapsulates the object
 • Children give a “tighter fit” for the shape
 • Recursive / iterative algorithms to construct BVHs
Parent-Child Relationship

• Higher-level volumes may not contain their children volumes
 – higher level node contains the child’s \textit{geometry}
 – best fit is the target

• Children volumes can intersect
Bounding Volume Hierarchy-Based Collision Detection

- Given two BVH’s
 - If root volumes do not overlap
 - Return **False**
 - Else (may overlap)
 - Test recursively all pairs of children

(In this example the second shape is simply a sphere)
Bounding Volume Hierarchy and Scene Graph

Nodes define bounding volume
Scene Graphs as Bounding Volume Hierarchies

Advantages:
• BHVs can be easily built from SGs

Disadvantages:
• Designers tend to group scene graph parts by function not by being close
 – A branch of light sources
• Can be too shallow / too deep
Collision Trees in jME

• jME automatically generates balanced bounding volume trees from geometries
 – Primarily for visualisation