Principles of Computer Game Design and Implementation

Lecture 15
We already learned

• Collision Detection
 – two approaches (overlap test, intersection test)
 – Low-level, mid-level, and high-level view
Collision Response

• What happens after a collision is detected?
 1. Prologue
 • Check if collision should be ignored
 • Sound / visual effects
 2. Collision
 • *Resolve collision*
 3. Epilogue
 • Propagate the effects
 – destroy object(s), play sound...
Collision Resolution

- **Animation based**
 - An artist models collision
 - A rocket hits a target...
 - Motion-capture
 - Sport games

- **Physics based**
 - Generated by an algorithm
 - Based on (more or less) realistic models
Recall: Classic Game Structure

- A convexity
- Starts with a single choice, widens to many choices, returns to a single choice
Why Physics?

• Responsive behaviour
 – Infinitely many possibilities

• For centauries people were *describing* the world
 – We can use the equations to *model* the world

• Can be hard
 – Knowledge of physics
 – “Real” physics is too expensive computationally
“Motion Science” in Games

• Kinematics
 – Motion of bodies without considering forces, friction, acceleration,…
 – Not realistic

• Dynamics
 – Interaction with forces and torques
Separate translation and rotation

• Particle physics
 – A sphere with a perfect smooth, frictionless surface. No rotation
 – Interaction with forces and environment
 • Position, Velocity, Acceleration

• Solid body physics
 – Torques, angular velocity, angular momentum
Continuous Motion

• Particles move in a “smooth way”
 – Position as a function of time
 \[P(t) \] is the position of \(P \) in the moment \(t \)
 – The derivative
 \[\frac{dP(t)}{dt} \]
 describes how \(P(t) \) changes over time
• Velocity (speed)
Discrete Particle Motion

• Uniform motion
 – Nothing affects the motion

• Gravitational pull
Integrators

• The process of computing the position of a body based on forces and interaction with other bodies is called *integration*.

• A program that computes it is an *integrator*.
Newton’s Laws

1. Every body remains in a state of rest or uniform motion unless it is acted on by an external force

2. A body of mass \(m \) subject to force \(F \) accelerates as described by
 \[F = ma \]

3. Every action has an equal and opposite reaction
Position and Velocity

Continuous physics

- \(\mathbf{V}(t) = \frac{d\mathbf{P}(t)}{dt} \)

- \(\mathbf{P}(t) = \ldots \text{ (maths)} \)

Discrete physics

- \(\mathbf{V}(t) = \frac{\Delta \mathbf{P}(t)}{\Delta t} = \frac{\mathbf{P}_{i+1} - \mathbf{P}_i}{tpf} \)

- \(\mathbf{P}_{i+1} = \mathbf{P}_i + tpf \cdot \mathbf{V}(t) \)

Main loop iteration
Time per frame
Recall: Arbitrary Translation

- Every iteration *update* the position

\[P = P + speed \cdot tpf \cdot U(t) \]

- \(U(t) \) - the direction of movement
 - Depends on time!!
- \(speed \) is speed
- \(tpf \) is time per frame
Velocity and Acceleration

Continuous physics

- \[a(t) = \frac{dV(t)}{dt} \]
- \[V(t) = \ldots \text{(maths)} \]

Discrete physics

- \[a(t) = \frac{\Delta V(t)}{\Delta t} = \frac{V_{i+1} - V_i}{tpf} \]
- \[V_{i+1} = V_i + tpf \cdot a(t) \]

Main loop iteration

Time per frame
Example: Gravitational Pull

- \(\mathbf{a}(t) = \mathbf{g} = 9.8 \text{ N/kg} \)
- \(\mathbf{V}_{i+1} = \mathbf{V}_i + tpf \cdot \mathbf{g} \)
- \(\mathbf{P}_{i+1} = \mathbf{P}_i + tpf \cdot \mathbf{V}_{i+1} \)

Vector3f velocity = new Vector3f(10, 10, 0);
Vector3f gravity = new Vector3f(0, -9.8f, 0);
...
public void simpleUpdate() {
 velocity = velocity.add(gravity(tpf));
 ag.move(velocity.mult(tpf));
}
Acceleration and Force

Newton’s second law: a body of mass m subject to force F accelerates as described by

$$F(t) = ma(t)$$

$$a(t) = F(t)/m$$

Example:

- Engine thrust $F_{\text{engine}} = kU_V$
- Linear drag $F_D(t) = -bV(t)$
- Quadratic drag $F_{QD}(t) = -c|V(t)|^2V(t)$
Example: Pull + Drag

\[
F_{i+1} = -bV_i \\
a_{i+1} = g + F_{i+1}/m \\
V_{i+1} = V_i + tpf \cdot a_{i+1} \\
P_{i+1} = P_i + tpf \cdot V_{i+1}
\]

Vector3f force = velocityB.mult(-b);
accelerationB = gravity.add(force.divide(m));
velocityB = velocityB.add(accelerationB.mult(tpf));
bg.move(velocityB.mult(tpf));
Example: Pull + Drag + Thrust

\[F_{i+1} = -bV_i + kU \]
\[a_{i+1} = g + F_{i+1}/m \]
\[V_{i+1} = V_i + tpf \cdot a_{i+1} \]
\[P_{i+1} = P_i + tpf \cdot V_{i+1} \]

Vector3f directionC = velocityC.normalize();
Vector3f forceC = velocityC.mult(-b).add(directionC.mult(thrust));
accelerationC = gravity.add(forceC.divide(m));
velocityC = velocityC.add(accelerationC.mult(tpf));
cg.move(velocityC.mult(tpf));
Simulation Recipe

• Add up all the forces acting on the object
 – Gravity, drag, thrust, spring pull,…
• Represent the motion as discrete steps

\[
\begin{align*}
a_{i+1} &= g + \frac{F_{i+1}}{m} \\
V_{i+1} &= V_i + tpf \cdot a_{i+1} \\
P_{i+1} &= P_i + tpf \cdot V_{i+1}
\end{align*}
\]

Euler steps
Rotation

• Rotation of a uniform (again simplification) solid body can be described mathematically
 – Speed vs angular speed
 – Force vs torque
• Represent as discrete motion
• Use Euler steps to compute the rotation matrix
• Combine with translation

Hard but doable
Accuracy of Simulation

• How accurate this simulation is?

• Does it matter?
 – It’s all about illusion, if the behaviour looks right, we do not care.

• But...