We already learned

• Collision detection
 – two approaches (overlap test, intersection test)
 – Low-level, mid-level, and high-level view

• Collision response
 – Newtonian mechanics
Outline for today

• An application of Newtonian dynamics in targeting
• Collision recipe
 – Bouncing problem
Physics: Prediction

• Consider the targeting problem: a gun takes aim at a target
 – Given: S – distance to the target
 – Compute the bullet velocity vector
 • Incomplete information
Targeting Problem (1)

• Consider *horizontal* and *vertical* components of the velocity vector \mathbf{V}

• **Assume** that
 – the horizontal component is given and
 – it does not change (no wind / drag)

• Flying time is

$$t_{\text{flying}} = \frac{S}{V_h}$$
Targeting Problem (2)

• Vertically, the motion is *up* and *down*

\[V_v(t) = V_v - gt \]

• **Assume** that
 – the gun and target are levelled

• At the highest point \(V_v(t) = 0 \)
 – time to the highest point is half the flying time
Targeting Problem (3)

- Thus,

\[0 = V_v - g \left(t_{\text{flying}} \right) / 2 \]

\[t_{\text{flying}} = \frac{S}{V_h} \]

\[V_v = \frac{g S}{2V_h} \]
float distance = 100f;
bullet.setLocalTranslation(0, 0, 0);
target.setLocalTranslation(distance, 0, 0);
...
float vx = 20f;
float vy = (g*distance) / (2*vx);
velocity = new Vector3f(vx, vy, 0);
...

public void simpleUpdate() {
 if(bullet.getLocalTranslation().getY() >= 0) {
 velocity = velocity.add(gravity.mult(tpf));
 bullet.move(velocity.mult(tpf));
 }
}

Run it with different vx!!
Euler Steps: Advantages and Disadvantages

• Work well when motion is slow (small simulation steps) and forces are well-defined
 – \mathbf{F}, \mathbf{a} and \mathbf{V} remain same in the time interval

• Does not work well when
 – Simulation steps are large
 – Approximation errors accumulate
 – \mathbf{F}, \mathbf{a} and \mathbf{V} change rapidly over time

Inaccurate for serious applications (e.g. flying a real rocket)
Widely used in computer games for its simplicity
If Accuracy Matters

• Use other integration methods
 – Typically, much more computationally demanding

• Cheat
 – E.g. in our aiming example, if the bullet speed is high, consider it travel along a straight line
 – Adjust its position if necessary
Computer Science Approach: Iterations

- Shoot at will
- See where it land
- If undershot, increase power
- If overshot, decrease power

But what will the user think?
Collision Resolution

Colliding objects change the trajectory

• Two main approaches
 – Impact
 • Instantaneous change of velocity as a result of collision
 – Contact
 • Gradual change of velocity and position
Penetration

• Both Impact and Contact may lead to penetration of one entity into another
 – Calculate the exact time of collision
 • Complex computations
Recall: Collision Time

- Collision time can be calculated by moving object “back in time” until right before collision
 - Bisection is an effective technique
Penetration

• Both Impact and Contact may lead to penetration of one entity into another
 – Calculate the exact time of collision
 • Complex computations
 • Collision may never be seen
 – Treat penetration as part of collision
Collision Detection

CollisionResults results =
 new CollisionResults();
boxes.c collideWith(ball.
 getWorldBound(), results);
if (results.size() > 0) {
 ...
}

Simple Impact-Based Response

protected void simpleUpdate() {
 ...
 if(results.size() > 0) {
 velocity.setY(-velocity.getY());
 }
 ...
}

Problems:
1. Assumes floor is horizontal
2. Penetration is not fully taken into account
Penetration Can Cause Glitches

```java
if(results.size() > 0) {
    velocity.setY(-velocity.getY());
}
```

One of the jME2 examples handles collisions this way.... 😊
if(results.size() > 0) {
 velocity.setY(FastMath.abs(velocity.getY()));
}
Ball-Plain Collision

if(results.size() > 0) {
 velocity.setY(FastMath.abs(velocity.getY()));
}

• Still works

• So, what’s the difference?
Ball-Plain Collision Recipe

- Split the ball velocity vector into two components

\[V = V_N + V_{||} \]
- \[V_N = (V \cdot N)N \]
- \[V_{||} = V - V_N \]

\[V' = V'_N + V'_{||} \]
- \[V'_N = \text{abs}(V \cdot N)N \]
- \[V'_{||} = V_{||} \]
Energy Loss

• When entities collide some energy is lost
• Simple model:

\[V' = V'_{N} + V'_{||} \]
\[- V'_{N} = \lambda \, \text{abs}(V \cdot N)N \]
\[- V'_{||} = V_{||} \]
Recall: Quaternion from 3 Vectors

- \(\text{q.fromAngleAxis}(\text{angle}, \text{axis}) : (x,y,z) \rightarrow (x1,y1,z1) \)
- \(\text{q.fromAxes}(x1,y1,z1) \) – “inverse”
protected Geometry boxFromNormal(String name, Vector3f n) {
 Box b = new Box(10f, 1f, 10f);
 Geometry bg = new Geometry(name, b);
 Material mat = new Material...; bg.setMaterial(mat);

 Quaternion q = new Quaternion();
 q.fromAxes(n.cross(Vector3f.UNIT_Z), n, Vector3f.UNIT_Z);

 bg.setLocalRotation(q);
 return bg;
}

Recall: $X = Y \times Z$
HelloBounce (2)

if(...) {
 float projVal = velocity.dot(floor2Normal);
 Vector3f projection = floor2Normal.mult(projVal);
 Vector3f parall = velocity.subtract(projection);
 velocity = parall.add(floor2Normal.mult(energyLoss*FastMath.abs(projVal)));
}