Principles of Computer Game Design and Implementation

Lecture 29
Putting It All Together

• Games are unimaginable without AI
 – (Except for puzzles, casual games,...)
 – No AI – no computer adversary/companion

• Good AI makes a game interesting
 – No “silver bullet” solution
 • What is more important, smooth paths or smart decisions?

• We looked at some AI techniques
Virtual Player V Smart Agents:
Smart virtual player, simple agents
Virtual Player V Smart Agents: Smart Agents

Doom 3

Serious Sam
Virtual Player V Smart Agents: Groups of Smart Agents

F.E.A.R.
Virtual Player V Smart Agents:
Smart Virtual Player, Smart Agents

Lord of The Rings:
The Battle for Middle Earth

Perfect Dark Zero
Virtual Player V Smart Agents: Techniques

• Smart Virtual Player
 – Turn-based game search (board games)
 – Rule based system (RTS: C&C, Age of Empires,...)

• Smart Agents
 – Planning (F.E.A.R)
 – Behaviour Trees (Halo)

• Smart VP, smart agents
 – Agent coalition
 – Hierarchical models (FSMs, BTs)
Game AI Design

• Decide what AI should and **should not** do
 – Include *everything*
 – E.g. *Empire earth* project took a month, 30 pages

• Brainstorm different techniques

• Identify components

• Identify interfaces
Game AI: Requirements

• Be intelligent but *purposely* flawed
• Have no *unintended* weaknesses
• Perform within CPU and memory constraints
 – Cheat!
 • Precompute!!
• Be configurable by game designers /player
• Be *visible*
Artificial Stupidity

• AI researchers / developers want strongest possible AI

• Gamers want believable AI

• Player is supposed to win!
 – Winning because AI gives up is not as rewarding
Loosing Gracefully Techniques (1)

• Warn the player about an attack / be visible (Especially in action-adventure games)
 – Shout “Take that!” before attacking
 – Great camouflage makes for bad gameplay
 – Move before firing
 • Player enters room, the monster looks sideways

• Have horrible aim
 – Being killed is not pleasant for the player

• Miss the first time – aim at a close destructible object
Loosing Gracefully Techniques (2)

• “Kung-Fu” style attack
 – Only one team member attacks the player
 • Half-life:
 – One attack slot
 – When out of ammo, AI player shouts “Cover me”
 – Another player starts attacking
 – Illusion of agent communication
Loosing Gracefully Techniques (3)

• Pull back at the last minutes
 – A “boss” becomes vulnerable when players health and ammo are low

• Intended Vulnerabilities
 • Stand on mines
 • Gun misfires
 • ...

Cover Up Weakness with Design: Halo

• Rushing levels with the assault rifle isn’t fun
 – levels end too quickly.
 – **AI is more accurate** the longer the player is out of cover.

• AI isn’t very good at dealing with close quick targets
 – **Powerful melee attacks.**

• One can **refine** the design to fix flaws in AI
Cover Up Weakness with Design: Half-Life

• Player throws grenades
 – Pathfinder tries to find an escape route
 – Fails to do that for all agents
 – Standing helplessly is stupid

 • Play animation of crouching down and covering head
Explicit and Implicit AI Designs

Explicit
- Characters’ behaviour is predefined (Doom 3, Unreal 2,...)

Implicit
- Characters **work together** to create an emergent storyline (Pizza Tycoon)

Modern games with implicit AI still have a storyline
- GTA series
- Bioshock Infinite
AI Techniques

• We only had a look at simulation-based behaviour in this module
 – Specify rules / states / actions / perceptions
 – Let the system figure out what to do next

• Alternative: scripted behaviour
 – Agents follow some predefined behaviour
Scripted Behaviour

• Game designers decides what computer characters do
 – Fixed trigger regions
 • When player approaches, character starts talking
 – Scripts send units to attack at some time
Scripts

• Technique of specifying a game’s logic outside the game’s source language
 – Scripting languages

• These two notions are closely interlinked
 – If the behaviour is specified by designers, they need a way to access it
If (PlayerArmed == TRUE)
 BEGIN
 DoFlee();
 END
ELSE
 BEGIN
 DoAttack();
 END
Verbal Interaction

If (PlayerArmed == Dagger)
 Say("What a cute little knife.");
If (PlayerArmed == Bow)
 Say("Drop the bow now and I'll let you live.");
If (PlayerArmed == Sword)
 Say("That sword will fit nicely in my collection.");
If (PlayerArmed == BattleAxe)
 Say("You're too weak to wield that battle axe.");
Scripting Events

If (PlayerLocation(120,76))
 Trigger(kExplosionTrap);
if (PlayerLocation(56,16))
 Trigger(kPoisonTrap);

If (PlayerLocation(kDoorway))
 PlaySound(kCreakingDoorSnd);
Advantages of Scripted Behaviour

• Faster / parallel game code development
• Easier to write and modify
• Much easier to execute
 – No search, no simulation
 • No pathfinding?
 – Simple execution of the script
• Possibility to create mods (PC)
 – Selling point long past the release date
Disadvantages

• Limits player’s choices
• Allows to exploit AI flaws
 – Players will learn the limits of the script
• Non-programmers are required to program

• To be interesting, games need LOTS of scripts
Best of Both Worlds(?)

- Combining smart agents with scripted behaviour
- FSMs as scripts
 - Game design & AI design done by the same people
 - Enforced transitions based on the storyline
- Override the default behaviour of characters
- *Bind* agents and objects
In Place of a Conclusion: Game AI Techniques (1)

- Agents and multiagent systems
- A* pathfinding
- Behaviour trees
- Blackboard architectures
 - Coordination method
- Command hierarchy
 - Taking decisions on different levels
In Place of a Conclusion: Game AI Techniques (2)

- Dead reckoning
 - Predicting a player’s future position
- Decision trees
- Emergent behaviour
 - Behaviour that was not explicitly programmed
- Flocking
- Formations
 - Group movements
In Place of a Conclusion: Game AI Techniques (3)

• Fuzzy logic
 – Yes / no → degree of (un)certainty

• Goal oriented behaviour

• Influence mapping
 – RTS games: how valuable a tile is

• Learning

• Level of detail AI
In Place of a Conclusion: Game AI Techniques (4)

• Markov systems
 – Uncertainty as probability. Markov FSM & Markov processes

• Minimax

• Rule-based systems

• Scripting

• State Machines (FSM, HFSM, Stack FSM)

• Steering
In Place of a Conclusion: Game AI Techniques (5)

- Subsumption architecture
 - Several layers of FSM, highest layer has priority
- Tactical and strategic AI
 - Global plans on top of short-sited goals
- Terrain analysis
 - Identify strategic locations
- Trigger system