Principles of Computer Game Design and Implementation

Lecture 30
Principles of Computer Game Design and Implementation

Lecture 30
“Am I a Game Developer Now?”

• Who am I to say?

• We looked at
 – Game architecture
 – 3D game engines
 • including maths required
 • Some physics
 – AI
Learning Outcomes

At the end of the module, the student will have:

1. An understanding of different design issues related to computer games development: game structure, game engine, physics engine;

2. An appreciation of the fundamental concepts associated with game development: game physics, game artificial intelligence, content generation;

3. The ability to implement a simple game using an existing game engine.
Game Architecture

• Game Design
 – Think movies
 • Idea \rightarrow Design \rightarrow lots of work \rightarrow final product

• More arts than technology
 – One can study approaches to design
 – Vast area

• Nothing beats a clear good idea
3D Game Engines

- Graphics
 - Rendering pipeline

http://www.iamthomasvogel.de/?page_id=85
Styled Graphics

• Photo-realistic 3D graphics does not sell
 – ???

• Moody atmospheric graphics
3D Modelling

• We combined geometries within game engine
• 3D Modelling tools
 – Autodesk Maya
 – Autodesk 3ds Max
 – Blender
 • Integration with
Physics

• A tighter integration of physics and game engines
 – Drawing fur, grass, etc
 – Particles
 – Flame
 – ...

Animation in Games

• We modelled object motion
 – a kind of animations

• Characters should move realistically
 – Modelled in a 3D modelling tool (blender)
 – Provide “hooks” to play sequence from game

• Motion capture
 – Play the sequence
Keyframe Animation

- Storing (and processing) each frame is too expensive
- Keyframe animation: store a (relatively small) number of keyframes and *interpolate*
Animation of Models

- Rigid body animation
 - Body is immutable
 - Sequence of keyframes

- Skeletal animation
 - Bones
 - Skin
 - Follows the skeleton
Inverse Kinematics

• Normally, animation is **forward kinematics**
 – Sequence of keyframes specifying bone motion

• Inverse kinematics
 – Specify where you want a bone to move
 – Animate the model
 • Pick up an object
 – Limits have to be set!
Content Generation

• Modern games are (by in large) about assets
 – Worlds to explore
 – Enemies to kill
 – Friends to make

• Level designers
Procedural Content Generation (1)

• Assets generated by an algorithm
 – As a tool for game developers

www.speedtree.com
Procedural Content Generation (2)

- Terragen

 http://planetside.co.uk
Procedural Content Generation (3)

• Assets generated by an algorithm *on the fly*
• Map generation
 – Dungeon generation in 2D
 – Problems with 3d
 • Too slow
 • Too dull
 • Verification required
Example: A Growing Tree Algorithm

2D maze generation
• Pick a maze cell
• See if there’s space to grow into
 – Random direction
• Carve into the space
• Repeat until finished
Procedural Content Generation (3)

• Assets *tuned* by an algorithm
• Face Instances

• Borderlands
 – Combinations of guns
• Spore
 – Combinations of features
Procedural Content Generation (4)

Procedural population

• S.T.A.L.K.E.R.: Shadow of Chernobyl
 – Dynamical placement of characters
 • Artificial Life

• Left4Dead
 – In addition to placement, adaptive pacing
 – If intensity is too high, remove major threats for a while
Conclusion

• These are just some of directions
• Lots of further info online
 – www.gamasutra.com
 – aigamedev.com
 – www.gamedev.net
 – ...
• Tons of books
• Experiment yourself!