Principles of Computer Game Design and Implementation

Lecture 5

We already knew

- Introduction to this module
- History of video
- High-level information of a game
- Designing information for a game
- Execution of a game (Game loop)

jMonkeyEngine

Architecture and Mathematical Concepts

jMonkeyEngine

- A high performance scene graph based graphics API
- Completely open source (BSD License)
- Written in pure Java

jMonkeyEngine graphics

jMonkeEngine History

- Started in 2003 by Mark Powell inspired by a C++ book "3D Game Engine Design"
- 2008 jMonkeyEngive v. 2.0
- 2009 Development stalled. Project forked.

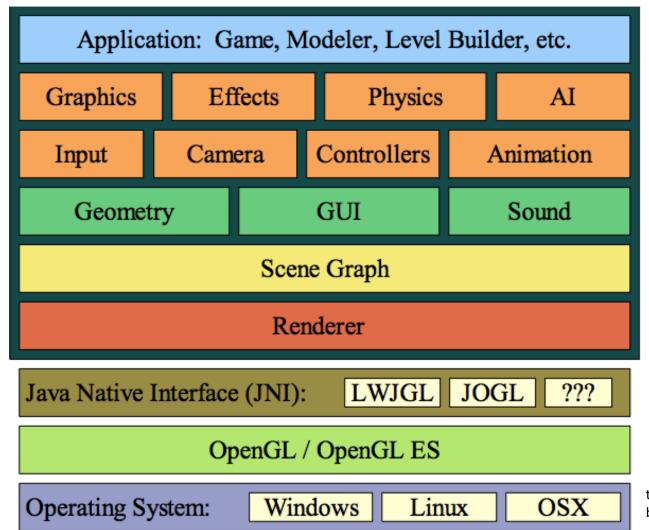
jMonkeEngine v. 3.0

- Community-driven project
- New people joint
- Integration with free tools

Ardor 3D

- Commercial development
- Neater but less features

Version Differences

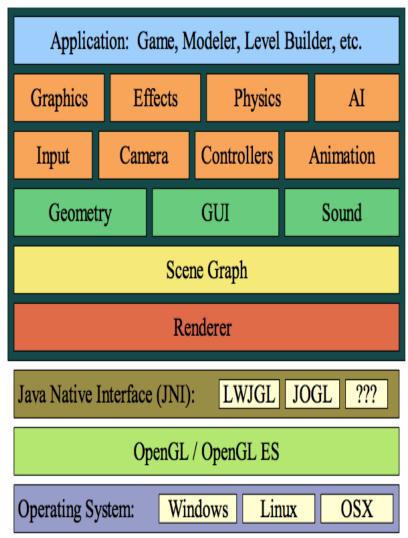

- jME v2.0
 - Stable
 - Uses OpenGL 1. Runs on any hardware
- jMe v2.1
 - Final release in the 2.x branch
- jME v3.0
 - Uses OpenGL 2. Runs well on modern hardware
 - Shader based
 - Physics engine integrated
 - jMonkeyPlatform

jME Documentation

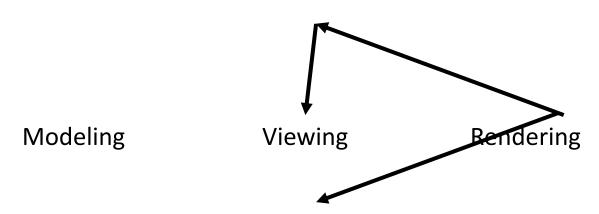
Official site:

http://www.jmonkeyengine.org

jME Architecture

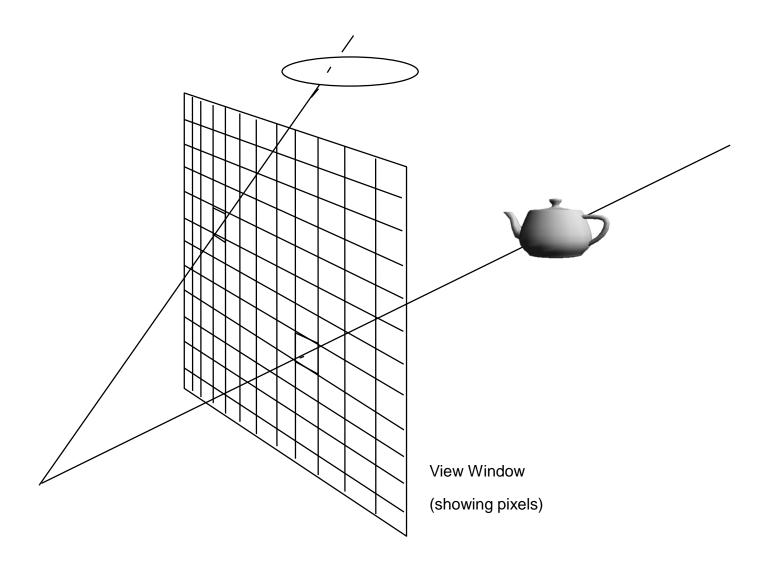


the picture is largely out-dated, but it still conveys the idea


Where Will It Run?

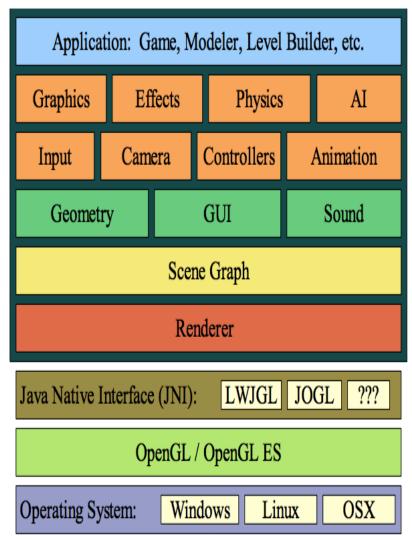
- jME is 100% Java.
- It depends on a JNI platform.
 - LWJGL is currently the only supported JNI platform.
 - LWJGL runs on Linux,OSX, and Win32.

Implemented over
 OpenGI

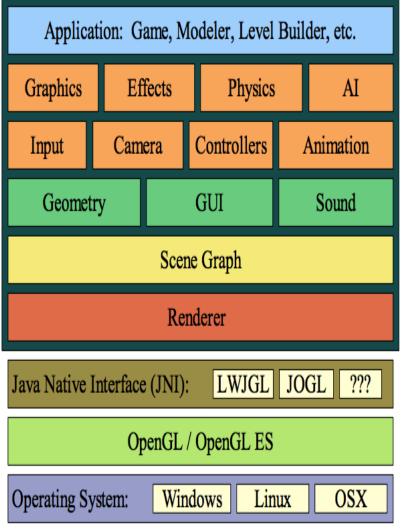

Image Synthesis

Separation of **Scene Specification**, **Viewing** and **Rendering**

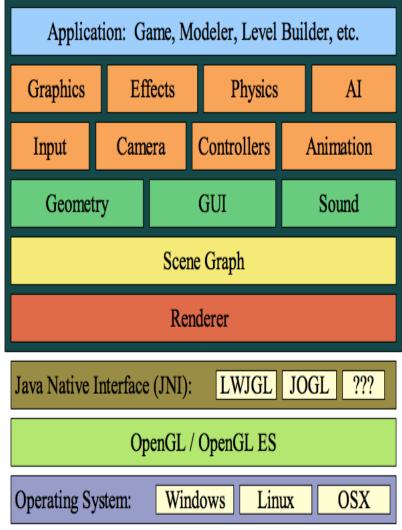
- Scene is modelled independent of any view
- Views are unconstrained
- There are many possible rendering methods given a scene and a view


Model to Screen

Renderer


- Transforms geometry from world space to screen space
- Eliminates "hidden" objects
- Draws the transformed scene

More to follow


Scene Graph

- A hierarchical data structure used to group data
 - Simplifies management
 - Groups objects into the same spatial region
 - Facilitates
 transformations &
 rotations of compound
 objects

Geometry

- Geometry
 - Geometric data for rendering objects
- GUI
 - Widgets
- Sound
 - Similar to renderer
 - 3D effects

Setting Up jME 3.0

- Download the appropriate version of the jMonkeyEngine SDK
 - http://jmonkeyengine.org/downloads/
- Run the installer

(already available in the labs)

File -> New Project -> BasicGame

Simplest jME Program

```
package mygame;
import com.jme3.app.SimpleApplication;
public class Main extends SimpleApplication {
  public static void main(String[] args) {
    Main app = new Main();
    app.start();
```

A Default Blue Box

package mygame;

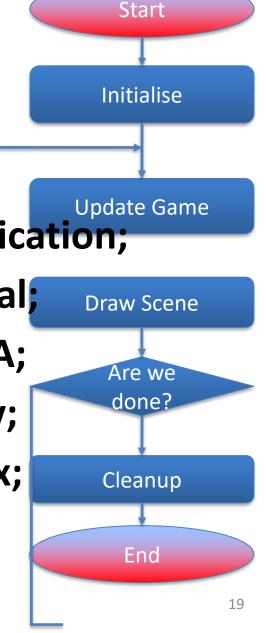
```
import com.jme3.app.SimpleApplication; import com.jme3.material.Material; import com.jme3.math.ColorRGBA; import com.jme3.scene.Geometry; import com.jme3.scene.shape.Box;
```

public void simpleInitApp() {

Let's Run It

Demo

Game Loop

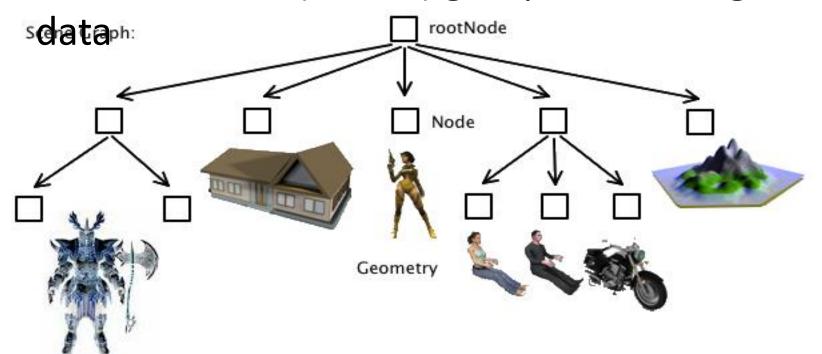

package mygame;

import com.jme3.app.SimpleApplication; import com.jme3.material.Material; Draw import com.jme3.math.ColorRGBA;

import com.jme3.scene.Geometry;

import com.jme3.scene.shape.Box;

public void simpleInitApp() {


SimpleApplication Provides

- Options dialog (when you first run it)
 - Can ask for it to be always on
- Input handler
- Standard camera
- A timer to compute the frame rate and provide smooth movements

rootNode

Scene Graph

- The scene graph represents the 3D world
- Leaf nodes (Geometry) represent data
- Internal nodes (Nodes) group and manage

Two Geometries

```
public void simpleInitApp() {
    Material mat = new Material(assetManager,
   "Common/MatDefs/Misc/Unshaded.j3md");
    mat.setColor("Color", ColorRGBA.Blue);
    Box b = new Box(1, 1, 1);
    Geometry geom = new Geometry("Box", b);
    geom.setMaterial(mat);
    Sphere s = new Sphere(60, 60, 1.5f);
    Geometry sgeom = new Geometry("Sphere", s);
   sgeom.setMaterial(mat);
    rootNode.attachChild(geom);
    rootNode.attachChild(sgeom);
```

Graphical Model

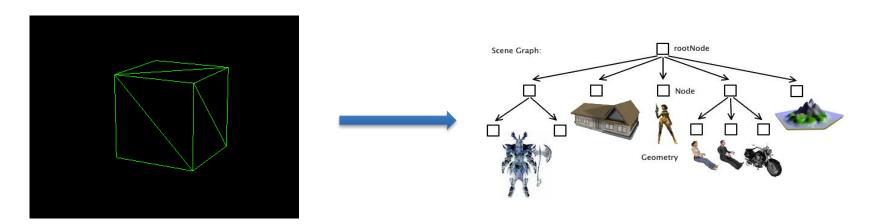
- Items arranged spatially (grouped together)
 - Placing something (e.g. a light) in a branch affects all branch elements
- A node is a reference point to its children
 - Simplifies rendering
 - Simplifies manipulation
- Simplifies importing models

Rendering Scene Graph

- Every node (Nodes and Geometry) defines
 - Transform(ation)s
 - orientation, location and scale
 - BoundingVolume
 - An area containing all sub-nodes
 - Render state
 - Defines how geometry is displayed

Meaningful Game Loop

```
protected Geometry geom;
...
public void simpleUpdate(float tpf) {
    geom.move (0.001f, 0, 0));
}
```


Changes the scene graph

Let's Run It

Demo

Meshes and Geometries

A collection of *polygons* that can be drawn

Everything that is rendered

Box mesh = new Box(1, 1, 1); Geometry geom = new Geometry("Box", mesh);

But how is it rendered

Meshes, Geometries and Materials

- All Geometries must have *Materials* that defines colour or texture.
- Each Material is based on a Material Definition file (.j3md)
 - Lighting.j3md, <u>Unshaded.j3md</u>

All Materials (except "Unshaded" ones) are **invisible** without a light source.

Example

```
public void simpleInitApp() {
  Box b = new Box (1, 1, 1);
  geom = new Geometry("Box",
b);
  rootNode.attachChild(geom);
  Material mat = new
Material (assetManager,
"Common/MatDefs/Light/Lighting.j
3md");
```

3D Models and Games

- While it is possible to specify the geometry based on basic shapes (we do it), most games import scene graphs from a 3D modelling tool
 - Maya
 - 3D Max
 - Blender

— ...

Summary

- jMonkeyEngine is a simple yet powerful Java game engine
- Basic shapes can be combined in a scene graph to create a 3D model
- We need some Maths to manipulate entities