
Principles of Computer Game
Design and Implementation

Lecture 5

We already knew

• Introduction to this module

• History of video

• High-level information of a game

• Designing information for a game

• Execution of a game (Game loop)

2

jMonkeyEngine

Architecture and Mathematical
Concepts

jMonkeyEngine

• A high performance scene graph based graphics API

• Completely open source (BSD License)

• Written in pure Java

4

jM
o

n
ke

yE
n

gi
n

e
 g

ra
p

h
ic

s

jMonkeEngine History

• Started in 2003 by Mark Powell inspired by
a C++ book “3D Game Engine Design”

• 2008 jMonkeyEngive v. 2.0

• 2009 Development stalled. Project forked.

5

jMonkeEngine v. 3.0 Ardor 3D

• Community-driven project
• New people joint
• Integration with free tools

• Commercial development
• Neater but less features

Version Differences

• jME v2.0

– Stable

– Uses OpenGL 1. Runs on any hardware

• jMe v2.1

– Final release in the 2.x branch

• jME v3.0

– Uses OpenGL 2. Runs well on modern hardware

– Shader based

– Physics engine integrated

– jMonkeyPlatform

– Supports Android devices

6

jME Documentation

• Official site:
http://www.jmonkeyengine.org

7

http://www.jmonkeyengine.org/
http://www.jmonkeyengine.org/

jME Architecture

8

the picture is largely out-dated,
but it still conveys the idea

Where Will It Run?

• jME is 100% Java.

• It depends on a JNI
platform.

– LWJGL is currently the
only supported JNI
platform.

– LWJGL runs on Linux,
OSX, and Win32.

• Implemented over
OpenGL

9

Image Synthesis

Separation of Scene Specification, Viewing and
Rendering

– Scene is modelled independent of any view

– Views are unconstrained

– There are many possible rendering methods given
a scene and a view

Modeling Viewing Rendering

10

Model to Screen

View Window

(showing pixels)

11

Renderer

• Transforms geometry
from world space to
screen space

• Eliminates “hidden”
objects

• Draws the transformed
scene

More to follow
12

Scene Graph

• A hierarchical data
structure used to group
data

– Simplifies management

– Groups objects into the
same spatial region

– Facilitates
transformations &
rotations of compound
objects

13

Geometry

• Geometry

– Geometric data for
rendering objects

• GUI

– Widgets

• Sound

– Similar to renderer

– 3D effects

14

Setting Up jME 3.0

• Download the appropriate version of the
jMonkeyEngine SDK

– http://jmonkeyengine.org/downloads/

• Run the installer

(already available in the labs)

• File -> New Project -> BasicGame

15

http://jmonkeyengine.org/downloads/

Simplest jME Program

package mygame;

import com.jme3.app.SimpleApplication;

public class Main extends SimpleApplication {

public static void main(String[] args) {

Main app = new Main();

app.start();

}
16

A Default Blue Box

package mygame;

import com.jme3.app.SimpleApplication;

import com.jme3.material.Material;

import com.jme3.math.ColorRGBA;

import com.jme3.scene.Geometry;

import com.jme3.scene.shape.Box;

public void simpleInitApp() {

Box b = new Box(1, 1, 1);

17

Let’s Run It

Demo

18

Game Loop

19

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

package mygame;

import com.jme3.app.SimpleApplication;

import com.jme3.material.Material;

import com.jme3.math.ColorRGBA;

import com.jme3.scene.Geometry;

import com.jme3.scene.shape.Box;

public void simpleInitApp() {

Box b = new Box(1, 1, 1);

SimpleApplication Provides

• Options dialog (when you first run it)

– Can ask for it to be always on

• Input handler

• Standard camera

• A timer to compute the frame rate and
provide smooth movements

• rootNode

20

Scene Graph

21

• The scene graph represents the 3D world

• Leaf nodes (Geometry) represent data

• Internal nodes (Nodes) group and manage
data

Two Geometries
public void simpleInitApp() {

Material mat = new Material(assetManager,
"Common/MatDefs/Misc/Unshaded.j3md");

mat.setColor("Color", ColorRGBA.Blue);

Box b = new Box(1, 1, 1);

Geometry geom = new Geometry("Box", b);

geom.setMaterial(mat);

Sphere s = new Sphere(60, 60, 1.5f);

Geometry sgeom = new Geometry("Sphere", s);

sgeom.setMaterial(mat);

rootNode.attachChild(geom);

rootNode.attachChild(sgeom);

}

22

Graphical Model

• Items arranged spatially (grouped together)

– Placing something (e.g. a light) in a branch affects
all branch elements

• A node is a reference point to its children

– Simplifies rendering

– Simplifies manipulation

• Simplifies importing models

23

Rendering Scene Graph

• Every node (Nodes and Geometry) defines

– Transform(ation)s
• orientation, location and scale

– BoundingVolume
• An area containing all sub-nodes

– Render state
• Defines how geometry is displayed

24

Meaningful Game Loop

…

protected Geometry geom;

…

public void simpleUpdate(float tpf) {

geom.move (0.001f, 0, 0));

}

25

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

EndChanges the scene graph

Let’s Run It

Demo

26

Meshes and Geometries

Box mesh = new Box(1, 1, 1);

Geometry geom = new Geometry("Box", mesh);

27

A collection of polygons
that can be drawn

Everything that is rendered

But how is it rendered

Meshes, Geometries and Materials

• All Geometries must have Materials that
defines colour or texture.

• Each Material is based on a Material Definition
file (.j3md)

– Lighting.j3md, Unshaded.j3md

All Materials (except "Unshaded" ones) are invisible
without a light source.

28

Example

public void simpleInitApp() {

Box b = new Box(1, 1, 1);

geom = new Geometry("Box",

b);

rootNode.attachChild(geom);

Material mat = new

Material(assetManager,

"Common/MatDefs/Light/Lighting.j

3md");

geom.setMaterial(mat);

29

3D Models and Games

• While it is possible to specify the geometry
based on basic shapes (we do it), most games
import scene graphs from a 3D modelling tool

– Maya

– 3D Max

– Blender

– …

30

Summary

• jMonkeyEngine is a simple yet powerful Java
game engine

• Basic shapes can be combined in a scene
graph to create a 3D model

• We need some Maths to manipulate entities

31

