We already knew

• Game history
• game design information
• Game engine
What’s Next

• Mathematical concepts (lecture 6-10)
• Collision detection and resolution (lecture 11-16)
• Game AI (lecture 17 -)
Mathematical Concepts
3D modelling, model manipulation and rendering require Maths and Physics

• Typical tasks:
 – How to position objects?
 – How to move and rotate objects
 – How do objects interact?
2D Space

• We will start with a 2D space (simpler) and look at issues involved in
 – Modelling
 – Rendering
 – Transforming the model / view
2D Geometry

• Representation with two axes, usually X (horizontal) and Y (vertical)

• **Origin** of the graph and of the 2D space is where the axes cross (X = Y = 0)

• Points are identified by their coordinates
Viewports

• A **viewport** (or **window**) is a rectangle of pixels representing a view into **world space**

• A viewport has its own coordinate system, which may not match that of the geometry.
 – The axes will usually be X horizontal & Y vertical
 • But don’t have to be – rotated viewports
 – The *scale* of the axes may be different
 – The *direction* of the Y axis may differ.
 • E.g. the geometry may be stored with Y up, but the viewport has Y down.
 – The origin (usually in the corners or centre of the viewport) may not match the geometry origin.
Example of changing coordinate system from world space to viewport space:

\[P = (20, 15) \] in world space. Where is \(P' \) in viewport space?
Rendering

- **Rendering** is the process of converting geometry into screen pixels
- To render a point:
 - Convert vertex coordinates into viewport space
 - Set the colour of the pixel at those coordinates
 - The colour might be stored with the geometry, or we can use a fixed colour (e.g. black)
Rendering Lines and Shapes

- Need to determine which part of the line is visible, where it meets the viewport edge and how to crop it.

 - In “Ye good old days” this was rather difficult
 - With support from rendering libraries easy
Points and Vectors

• Point: a **location** in space
• Vector: a **direction** in space
What’s the Difference?

• The only difference is “meaning”

• But think about
 – “move a picture to the right”
 – “move a picture up”
 – “move a picture in the direction ...”
 • Vectors specify the direction
Moving an Object

• **Translation** of an object
 – Moving without rotating or reflecting
 – *Apply* a vector to all points of an object
 – Vector specifies **direction** and **magnitude** of translation

![Diagram](attachment:diagram.png)
Vectors

A vector is a *directed line segment*

• The length of the segment is called the *length or magnitude* of vector.

• The direction of the segment is called the *direction* of vector.

• Notations: vectors are usually denoted in bold type, e.g., \mathbf{a}, \mathbf{u}, \mathbf{F}, or underlined, \underline{a}, \underline{u}, \underline{F}.

Same direction, red is twice as long
Translation Recipe

- In order to translate (move) an object in the direction given by a vector \(\mathbf{V} \), move all points.

\[
\mathbf{V} = (x_v, y_v) \\
\mathbf{P} = (x_p, y_p) \\
\mathbf{P}' = (x_p + x_v, y_p + y_v)
\]
Multiplying a Vector by a Number

• Multiplying a vector by a positive **scalar** (positive number) does not change the direction but changes the magnitude.

• Multiplying by a negative number reverses the direction and changes the magnitude.
In Coordinates

• \(\mathbf{v} = (x, y) \) a vector, \(\lambda \) a number

\[\lambda \cdot \mathbf{v} = (\lambda x, \lambda y) \]

Example:

\[2 \cdot (2, 5) = (4, 10) \]
\[0.7 \cdot (2, 5) = (1.4, 3.5) \]
\[-2 \cdot (2, 5) = (-4, -10) \]
From A to B

• Which vector should be applied to move a point from \((x_A, y_A)\) to \((x_B, y_B)\)?

\[(x_B - x_A, y_B - y_A)\]
Sum of Two Vectors

- Two vectors \mathbf{V} and \mathbf{W} are added by placing the beginning of \mathbf{W} at the end of \mathbf{V}.
In Coordinates

Let

\cdot \mathbf{V} = (x_v, y_v)

\cdot \mathbf{W} = (x_w, y_w)

Then

\mathbf{V} + \mathbf{W} = (x_v + x_w, y_v + y_w)
Vector Difference

- $\mathbf{V} - \mathbf{W} = \mathbf{V} + (-1) \cdot \mathbf{W}$
In Coordinates

Let

• \(V = (x_v, y_v) \)
• \(W = (x_w, y_w) \)

Then

\[V - W = (x_v - x_w, y_v - y_w) \]
Applications

• Apply vector V to an object then apply W
 – Apply $V + W$
 – Representing motion as a combination of two

• If V takes you to A, W takes you to B, what takes from A to B?
 – Apply $W - V$
 – Shooting, targeting
From 2D to 3D

- 3D geometry adds an extra axis over 2D geometry
 - This “Z” axis represents “depth”
 - Can choose the “direction” of Z
“Handedness”

- Use thumb (X), index finger (Y) & middle finger (Z) to represent the axes
- Use your left hand and the axes are left-handed, otherwise they are right-handed

Right-Handed System
(Z comes out of the screen)

Left-Handed System
(Z goes in to the screen)
Left- vs Right-Handed

• In mathematics, traditionally, right-handed axes are used

• In computing:
 – DirectX and several graphics applications use left-handed axes
 – OpenGL use right-handed

Neither is better, just a choice
Vectors in 3D

- Still a directed interval
- x, y and z coordinates define a vector

- $\mathbf{v} = (x_v, y_v, z_v)$ a vector, λ a number
 $\lambda \cdot \mathbf{v} = (\lambda x_v, \lambda y_v, \lambda z_v)$

- $\mathbf{v} = (x_v, y_v, z_v)$; $\mathbf{w} = (x_w, y_w, z_w)$
 $\mathbf{v} + \mathbf{w} = (x_v+x_w, y_v+y_w, z_v+z_w)$

- $\mathbf{v} = (x_v, y_v, z_v)$; $\mathbf{w} = (x_w, y_w, z_w)$
 $\mathbf{v} - \mathbf{w} = (x_v-x_w, y_v-y_w, z_v-z_w)$
Vectors in jMonkeyEngine

• jME defines two classes for vectors
 – Vector3f
 – Vector2f

• Constructors
 – Vector2f(float x, float y)
 – Vector3f(float x, float y, float z)

• Lots of useful methods (see javadoc)
Translation (setting position) in JME

protected void simpleInitApp() {
 Geometry box = ...;

 Vector3f v = new Vector3f(1, 2, 0);
 box.setLocalTranslation(v);

 rootNode.attachChild(box);
}
Translation And the Scene Graph

• Let’s model a table
Boxes for Tabletop and Legs

Box tableTop = new Box(10, 1, 10);
Box leg1 = new Box(1,5,1);
...
Geometry gTableTop = new
 Geometry("TableTop", tableTop);
gTableTop.setMaterial(mat);
Geometry gLeg1 = new
 Geometry("Leg1", leg1);
gLeg1.setMaterial(mat);
...

Beware of Floats

• If you think that the table top is too thick and change

 Box tableTop = new Box(10, 1, 10);

 to

 Box tableTop = new Box(10, 0.3, 10);

 you will see an error:

 The constructor Box(int, double, int) is undefined
Use the “f” word! ☺

Box tableTop = new Box(10, 0.3f, 10);

Many jME methods take “single precision” float numbers as input

No need “double precision”
Position the legs

...
leg1.setLocalTranslation(7, 0, 7);
leg2.setLocalTranslation(-7, 0, 7);
leg3.setLocalTranslation(7, 0,-7);
leg4.setLocalTranslation(-7, 0,-7);

Attach all to rootNode
Oops...
A Better Scene Graph

rootNode

table

tableTop

legs

leg1

leg2

leg3

leg4
What are “table” and “legs”

• Internal nodes

Node table = new Node(“Table”);
Node legs = new Node(“Legs”);
...

rootNode

... table

... legs

...
Putting it Together

```javascript
legs.attachChild(gLeg1);
legs.attachChild(gLeg2);
legs.attachChild(gLeg3);
legs.attachChild(gLeg4);

table.attachChild(tableTop);
table.attachChildChild(legs)

rootNode.attachChild(table);
```
But Does It Change the Picture?

No
Transforms Are in All Nodes!

```java
legs.move(0,-5f,0);
```
Summary: Manipulation of Vectors

- **Vector addition**
 - $v + w$

- **Vector difference**
 - $v - w = v + (-w)$

- **Scalar multiplication of vectors**
 - $2v$
 - $(-1)v$
 - $(1/2)V$
 - They remain parallel

- **Vector OP**

- **Vector addition sum**
 - $v + w$

- **Vector OP**
Summary: Vector Arithmetic

\(\mathbf{V}= (x_v, y_v, z_v) \) a vector, \(\lambda \) a number

\[\lambda \mathbf{V} = (\lambda x_v, \lambda y_v, \lambda z_v) \]

\(\mathbf{V} = (x_v, y_v, z_v) ; \mathbf{W} = (x_w, y_w, z_w) \)

\[\mathbf{V} + \mathbf{W} = (x_v+x_w, y_v+y_w, z_v+z_w) \]

\[\mathbf{V} - \mathbf{W} = (x_v-x_w, y_v-y_w, z_v-z_w) \]

What about a product of \(\mathbf{V} \) and \(\mathbf{W} \)?
And why?
Summary: Vector Algebra

- \(a + b = b + a \)
 (commutative law)
- \((a + b) + c = a + (b + c)\)
 (associative law)
- \(a + 0 = a \)
- \(a + (-a) = 0 \)
- \(\lambda (\mu a) = (\lambda \mu) a \)
- \((\lambda + \mu)a = \lambda a + \mu a \)
- \(\lambda(a + b) = \lambda a + \lambda b \)
- \(1a = a \)