
PAPER CODE NO. EXAMINER : Boris Konev
COMP222 DEPARTMENT : Computer Science Tel. No. 0151 795 4260

Second Semester Examinations 2016/17

Principles of Computer Game Design and Implementation

TIME ALLOWED : Two Hours

INSTRUCTIONS TO CANDIDATES

Answer FOUR questions.

If you attempt to answer more questions than the required number of questions (in any section),
the marks awarded for the excess questions answered will be discarded (starting with your
lowest mark).

PAPER CODE COMP222 page 1 of 24 Continued

Question 1

A. Describe the code structure of a modern computer game. Your answer should mention
game-specific code, game engine, and in-house tools. You should also cover a typical game
architecture to include initialisation, main game loop and cleanup. Give a diagrammatic
representation of a typical game architecture. 7 marks
Most games make a distinction between game-specific code and game-engine
code. Game-specific code is, as the name implies, tailored to the current
game being developed. It involves the implementation of specific parts of the
game domain itself, such as the behaviour of zombies or spaceships, tactical
reasoning for a set of units, or the logic for a front-end screen. This code is
not intended to be generically reused in any other game in the future other
than possibly direct sequels.
Game-engine code is the foundation on top of which the game-specific code
is built. It has no concept of the specifics of the game being developed, and
deals with generic concepts that apply to any project: rendering, message
passing, sound playback, collision detection, or network communication.
In-house development tools are created to support artists and developers in
creation of worlds and content.
Initialisation and shutdown of different systems and
phases of the game is a very important step, yet it is of-
ten overlooked. Without a clean and robust way of ini-
tialising and shutting down different parts of the game,
it becomes very difficult and error prone to switch be-
tween levels, to toggle back and forth between the
game and the front end, or to even run the game for
a few hours without crashes or slowdowns.
Main Game Loop: At their heart, games are driven
by a game loop that performs a series of tasks ev-
ery frame. By doing those tasks every frame, we
put together the illusion of an animated, living world.
Sometimes, games will have separate loops for the
front end and the game itself, since the front end usu-
ally involves a smaller subset of tasks than the game.
Other times, games are organised around a unified
main loop.
A description of the code structure gives 3 marks, 1 mark for the picture;
description so initialisation, game loop and cleanup is 1 mark each.

B. Classify every one of the following

• rendering,

• behaviour specific to zombies,

• message passing,

• sound playback

as a part of game engine code or game-specific code. 2 marks

PAPER CODE COMP222 page 2 of 24 Continued

Rendering, message passing and sound playback belong go game engine.
Behaviour of zombies and level implementation are a part of game-specific
code.

C. In your opinion, why do game developers often design games so that periods of increased
difficulty follow more relaxed periods, as shown in the diagram below?

In your answer discuss

• the link between the difficulty progression and the definition of a computer game
as a sequence of meaningful choices made by the player in pursuit of a clear and
compelling goal;

• how this form of difficulty progression fits the classical game structure;

• what points A and B in the diagram correspond to.

7 marks

PAPER CODE COMP222 page 3 of 24 Continued

A computer game can be seen as a sequence of meaningful choices made by
the player in pursuit of a clear and compelling goal because player

• must have choice, or it is not interactive;

• must be a series of choices or it is too simple to be a game;

• must have a goal or it is a software toy.

Graphically, the classical game structure can be represented as

Starts with a single choice, widens to many choices, returns to a single choice.
The narrow decision points (A) in the convexities where players’ choices are
limited can be set to correspond to the difficult parts of the game. Designers
have come up with many game mechanisms to make this happen, though boss
monsters or climactic battles. The wider points (B) where there are many
alternatives give the player more discretion and typically difficulty increases
more slowly, or even decreases a bit to provide a break for the player and let
him or her rehearse new skills.
The justification of a definition points is 1 mark each (3 max) A diagram is 2
marks. The argument why the structure works is 2 marks.

D. Name at least two advantages and at least two disadvantages of using a scripting language
such as Python or Lua for programming game-specific code. 4 marks

PAPER CODE COMP222 page 4 of 24 Continued

Game-specific code involves the implementation of specific parts of the game
domain itself, such as the behaviour of zombies or spaceships, tactical rea-
soning for a set of units, or the logic for a front-end screen. This code is not
intended to be generically reused in any other game in the future other than
possibly direct sequels.
Advantages of using a scripting language:

• Ease and speed of development

• Short iteration time

• Code becomes a game asset

• Offer additional features and are customizable Can be mastered by
artists / designers

Disadvantages of using a scripting language:

• Slow performance

• Limited tool support

• Dynamic typing makes it difficult to catch errors

• Awkward interface with the rest of the game

• Difficult to implement well

Every advantage / disadvantage is 1 mark.

E. Games are driven by a game loop that performs a series of tasks every frame. Traditionally,
games only featured one game loop. Some game architectures suggest running multiple
game loops in different threads. What is the reason for doing this? Name at least one
advantage and one disadvantage of such an approach to multithreading. 5 marks

PAPER CODE COMP222 page 5 of 24 Continued

This architecture allows the developers to run different game subsistems in
different update loops, e.g. Heads-up Display, AI, Rendering, Physics, etc all
run in different threads.
Advantages:

• Better use of hardware resources;

• Clear separation between subsystems;

• Developers can run different subsystems at different speeds.

Disadvantages

• The cost of switching context on older architecture (where multithread-
ing is software not hardware driven) – less important these days;

• Game subsystems are tightly coupled and making the execution thread
safe might be tricky;

• Most of the time the threads will be waiting – e.g. the physics simula-
tion thread will wait until new updates come from the user.

Every advantage / disadvantage is 1 mark. A comparison of a single loop /
multiple loops is 2 marks. For 1 extra mark: a much better approach is to split
the load into small independent units and run them on the available CPUs.

PAPER CODE COMP222 page 6 of 24 Continued

Question 2

A. Let V = (3, 2, 1) and W = (4, 2,−6) be 3D-vectors. Compute (and show your working)

(a) V + W 1 marks

V + W = (3 + 4, 2 + 2, 1− 6) = (7, 4,−5)

(b) 2V 1 marks

2V = (6, 4, 2)

(c) V− 2V 1 marks

V− 2V = −V = (−3,−2,−1)

(d) V ·W 1 marks

(3, 2, 1) · (4, 2,−6) = 3 · 4 + 2 · 2− 1 · 6 = 12 + 4− 6 = 10

(e) |V| 1 marks

|V| =
√
32 + 22 + 12 =

√
14

(f) projVW 1 marks

projVW =
W · V
‖V‖2

V,

so

projVW =
10

14
(3, 2, 1) =

(
15

7
,
10

7
,
5

7

)
(g) V×W 2 marks

(3, 2, 1)×(4, 2,−6) = (−2∗6−1∗2, 1∗4+3∗6, 3∗2−2∗4) = (−14, 22,−2)

B. Recall that the 2D rotation matrix representing the counter-clockwise rotation about the
origin by an angle θ is as follows [

cos θ − sin θ
sin θ cos θ

]
Give the 3D rotation matrix representing the counter-clockwise rotation about the Z-axis
through an angle α combined with counter-clockwise rotation about the X-axis through an
angle β. 8 marks

PAPER CODE COMP222 page 7 of 24 Continued

Rotation about the Z-axis is given by

MZ =

 cosα − sinα 0
sinα cosα 0
0 0 1

Rotation about the X-axis is given by

MX =

 1 0 0
0 cos β − sin β
0 sin β cos β

Their combination is given by the matrix produce MZ ×MX .

C. Assume you are implementing a simple 2D space shooter arcade game. In this game a user
is in control of a spaceship, which is approximated by an axis-aligned bounding box. You
need to implement collision detection with obstacles that are approximated as circles.

h

w

(xB,yB)

(xC,yC)
R

Given the dimensions h and w of the box, coordinates (xB, yB) of its centre, coordinates
(xC , yC) of the circle and the circle radius R

• Draw a diagram representing when a collision happens; 2 marks

• Clearly identify the cases you need to consider; 2 marks

• Sketch a method which determines whether the box overlaps the circle. 5 marks

PAPER CODE COMP222 page 8 of 24 Continued

This problem has not been seen by the students.

• Diagram:

• Cases (taken from http://stackoverflow.com/questions/21089959/detecting-
collision-of-rectangle-with-circle):

Step 1: Find the vertical and horizontal (distX/distY) distances between
the circles center and the rectangles center
var distX = Math.abs(circle.x - rect.x-rect.w/2);
var distY = Math.abs(circle.y - rect.y-rect.h/2);

Step 2: If the distance is greater than halfCircle + halfRect, then they are
too far apart to be colliding
if (distX > (rect.w/2 + circle.r)) { return false; }
if (distY > (rect.h/2 + circle.r)) { return false; }

Step 3: If the distance is less than halfRect then they are definitely
colliding
if (distX <= (rect.w/2)) { return true; }
if (distY <= (rect.h/2)) { return true; }

Step 4: Test for collision at rect corner.
Think of a line from the rect center to any rect corner. Now extend
that line by the radius of the circle. If the circles center is on that
line they are colliding at exactly that rect corner Using Pythagoras
formula to compare the distance between circle and rect centers.
var dx=distX-rect.w/2;
var dy=distY-rect.h/2;
return (dx*dx+dy*dy<=(circle.r*circle.r));

•

1 // return true if the rectangle and circle are colliding
2 function RectCircleColliding(circle,rect){
3 var distX = Math.abs(circle.x - rect.x-rect.w/2);
4
5 var distY = Math.abs(circle.y - rect.y-rect.h/2);
6
7 if (distX > (rect.w/2 + circle.r)) { return false; }
8
9 if (distY > (rect.h/2 + circle.r)) { return false; }

10
11 if (distX <= (rect.w/2)) { return true; }

PAPER CODE COMP222 page 9 of 24 Continued

12 if (distY <= (rect.h/2)) { return true; }
13
14 var dx=distX-rect.w/2;
15 var dy=distY-rect.h/2;
16 return (dx*dx+dy*dy<=(circle.r*circle.r));
17 }

PAPER CODE COMP222 page 10 of 24 Continued

Question 3

A. Modern computer games commonly use scene graphs to represent a graphical scene. Name
at least three advantages of this form of data representation as compared with unstructured
collections of geometries, light sources, textures, etc. 3 marks

Some advantages:

• Scene graphs provide an intuitive way to manage large amounts of ge-
ometric and rendering data

• The data needed for rendering, which is associated with the scene graph
nodes, can be kept separate from the rendering code.

• Hierarchical animated models are easier to deal with

• View frustum culling can be supported by using bounding volumes at
the nodes.

Every advantage contributes 1 mark (up to 3).

B. Describe the role of a renderer in a game engine. 2 marks

A renderer

• Transforms geometry from world space to screen space

• Eliminates hidden objects

• Draws the transformed scene

C. Collision detection based on overlap testing may lead to penetration and tunnelling. Ex-
plain what is meant by these terms. Name at least two methods to avoid penetration and
tunnelling. 4 marks

PAPER CODE COMP222 page 11 of 24 Continued

The idea of overlap testing is that at every simulation step, each pair of objects
will be tested to determine if they overlap with each other. If two objects
overlap, they are in collision. This is known as a discrete test since only one
particular point in time is being tested.
The biggest disadvantage of an overlap testing is that it handles poorly ob-
jects travelling fast, so object can get inside each other (penetration) or travel
through each other (tunnelling).
For overlap testing to always work, the speed of the fastest object in the scene
multiplied by the time step must be less than the size of the smallest collidable
object in the scene. This implies a design constraint on the game to keep
objects from moving too fast relative to the size of other objects.
Some methods to avoid penetration and tunnelling:

• smaller timesteps

• extruding the object along the motion

• ray cast to the new position

Explanations are worth 2 marks (1 mark per method). 2 marks for coming up
with a solution.

D. Is it possible to combine animation-based collision response with a physics-based collision
response in a game? If yes, give an example; if not provide a justification. 4 marks
It is possible. Popular AAA games use a clever mix of physics, animation
and prerendered graphics to give you the illusion of a real, physical world.
For example, a building breaking into 4-8 parts after an explosion. The pieces
most likely fly on predefined (so called kinematic) paths and are only replaced
by dynamic Spatials after they touch the ground.

E. Consider a 2D game, in which a gun fires a cannonball. As part of the gameplay, you are
modelling the effect of the air resistance on the cannonball. The mass of the cannonball is
50kg. The initial speed vector for the cannonball is (100, 50).

x

y

PAPER CODE COMP222 page 12 of 24 Continued

Assuming the linear model of drag,

(a) give a graphical representation of all the forces acting on the cannonball as it flies
through the air; 2 marks

x

y

g

fdrag v

Where	v	is	the	speed	vector
and	g is	gravity	pull

(b) describe the discrete motion of the cannonball as a sequence of its positions using
Euler steps; 5 marks
To use Euler steps, we need to upate the forces, acceleration, velocity and
position of the cannonball at every frame as follows.

Fi+1 = −b · Vi

ai+1 = g + 1
m
· Fi+1

Vi+1 = Vi + tpf · ai+1

Pi+1 = Pi + tpf · Vi+1

(c) sketch the simpleUpdate() method that implements the described motion in
jMonkeyEngine. You are not required to write finished working code, but you must
clearly convey the idea. 5 marks

Vector3f force,acceleration;
Vector3f velocity = new Vector3f(100,50,0);
protected void simpleUpdate() {

force = velocity.mult(-b);
acceleration = gravity.add(force.divide(m));
velocity = velocity.add(acceleration.mult(tpf));
s.setLocalTranslation(s.getLocalTranslation().

add(velocity.mult(tpf)));
}

PAPER CODE COMP222 page 13 of 24 Continued

Question 4

A. Poor collision detection can lead to artefacts in computer games. Name at least two unde-
sirable implications of poor collision detection in computer games. 4 marks

• Players/objects falling through the floor;

• Projectiles passing through targets;

• Players getting where they should not get;

• Players missing a trigger boundary.

Every one contributes 2 marks (up to 4).

B. Overlap testing in computer games is often approximated with the help of bounding vol-
umes: a real shape is being embedded into a simplified geometry, and if two bounding
volumes do not overlap, one does not perform an (expensive) triangle-level overlap test.

(a) Simple bounding volume shapes include Axis Aliened Bounding Boxes (AABBs) and
Oriented Bounding Boxes (OBBs). What are the advantages of OBBs over AABBs?
Are there any significant disadvantages? Your answer should contain definitions of
OBBs and AABBs. 4 marks
OBBs stands for oriented bounding boxes; AABBs stands for axis aligned
bounding boxes.
OBBs fit the real geometry tighter. The main disadvantage is that it is harder
to check if the bounding volumes overlap; however, this disadvantage is out-
weighed by better collision detection offered by OBBs.
Explaining abbreviations - 1 mark each. Explanations of what they are 1 mark
per definition.

(b) Sketch a method which, given the coordinates of upper left corners of two 2-
dimensional axis-aligned boxes (x1, y1) and (x2, y2) and their widths w1, w2 and
heights h1, h2, respectively, determines whether these boxes intersect.

7 marks

PAPER CODE COMP222 page 14 of 24 Continued

There is an elegant solution to this problem based on the check of when boxes
do not overlap.

if((x1 + w1 < x2) || (x2 + w2 < y2) ||
(y1 + h1 > y2) || (y2 + w2 > y1)) {

return false;
}
else {

return true;
}

C. Recall that bounding volume hierarchies are used to better support collision detection.

(a) Explain how bounding volume hierarchies are used in collision detection. 2 marks

Collision detection in computer games is often approximated with the help of
bounding volumes – a real shape is being embedded into a simplified geom-
etry, and if two bounding volumes do not overlap, one does not perform an
(expensive) triangle-level overlap test.
Although the tests themselves have been simplified, the same number of pair-
wise tests are still being performed.
A BVH a hierarchical structure, in which the root node completely encapsu-
lates the object; Children give a “tighter fit” for the shape; and Recursive /
iterative algorithms are used to construct and navigate BVHs.

(b) Sketch a bounding volume hierarchy based on bounding spheres for the shape given
below and use it as an example to illustrate your answer.

5 marks

PAPER CODE COMP222 page 15 of 24 Continued

1

2

3

4

5

6

7
1

2

4 5

3

6 7

PAPER CODE COMP222 page 16 of 24 Continued

D. In your opinion, what data structure is most suitable to reduce the number of pairwise
collision detection tests in the scene shown below? Explain your reasoning.

3 marks
Objects are similar size and but not uniformly distributed. Thus either an
implicit grid (e.g. spatial hash) or a quad tree, a k-d tree of a BSP tree are
best suited.

PAPER CODE COMP222 page 17 of 24 Continued

Question 5

A. You are implementing a 2D asteroids field video game targeting a very weak computational
platform. In your game, you want to have in excess of 1000 asteroids floating freely in the
space. You want to model how asteroids collide and, on impact, break up into smaller ones.
In the centre of your viewport (shown as a frame in the image below) you have a spaceship
(shown as a triangle). As the spaceship moves in the space, the viewport follows.

Having implemented accurate collision detection based on the low-level overlap test, you
discover that running it on every pair of asteroids leads to very poor performance. What
techniques can you suggest to speed-up the game? 10 marks
This is is an open-ended problem solving question. Students can suggest own
techniques. Some techniques mentioned in the lectures:

100% optimisation Only run simulation on the visible part. Asteroids will
be spawn in the near proximity of the viewport.

Spatial data structure Use a spatial data structure such as a quad-tree to
determine which asteroids are close and have a chance of colliding

Simplified geometries Use simplified geometries. Bounding spheres (cir-
cles) seem to be a good choice here.

B. In computer game AI one can often identify two actors: a virtual player and a game agent.

• Define what they are and what role they play in computer games.

• Give an example of both.

• What is the difference between them?

PAPER CODE COMP222 page 18 of 24 Continued

• Give examples of when a computer game has a virtual player but no game agents and
when a computer game has game agents but no virtual player.

• How do a virtual player and game agents collaborate? Give an example.

4 marks

Game agents are autonomous entities that observe and act upon an environ-
ment. They often are associated with game characters (enemies, companions,
computer car drivers etc.). Early agents did not show much of intelligent be-
haviour, often their choices were random. In modern computer games they
can learn and react to the environment in an intelligent way.
A virtual player takes place of a human opponent in a game. The virtual
player performs the same operations as the human player. The intelligence of
the virtual player is perceived through the moves it makes and the results of
choices. For example, a chess player is a virtual player.
Many first-person shooters have game agents (enemies) but no virtual player.
Chess has a virtual player but no game agents.
In real-time strategies, the computer-controlled side is a virtual player (thus,
there might be more than one virtual player in a game), while individual units
are game agents, which often can take decisions on their own in order to
follow orders.
The definitions (illustrated with examples) of an agent and a virtual player are
1 mark each. Examples of games – 1 mark extra. Collaboration – 1 mark.

C. Consider the following behaviour of a fighter game agent. The agent can be in three pos-
sible states: idle, patrol, or attack. In the idle state the agent remains motionless, in the
patrol state the agent moves to the next checkpoint, and in the attack state the agent attacks
another player. If the agent sees the other player, it goes into the attack state; otherwise,
from being idle it changes, on a timeout, to the patrol state and, once completed the move
to the next checkpoint, returns to the idle state. If the enemy unit is destroyed, the agent
goes from the attack state to the idle state.

(a) Give a graphical representation of the FSM that represents the agent behaviour. Indi-
cate clearly conditions under which one state changes into another. 5 marks

PAPER CODE COMP222 page 19 of 24 Continued

Idle

Patrol

Attack

(b) Assume now that you want the agent to show more complicated behaviour: in the
patrol state the agent patrols four stations S1,. . . ,S4 in the order S1 → S2 → S3 →
S4 → S1 → . . . and in the attack state the agent goes through three consecutive
stages: approach, aim, fire.
In your opinion, what is the best way to accommodate these modifications to the
agent behaviour? Give a graphical representation of the new model of agent be-
haviour. 6 marks
There are two options how this can be handled. Either to add more states to
the FSM, or consider a hierarchical FSM in which the patrol state and attack
state are FSMs as follows.

PAPER CODE COMP222 page 20 of 24 Continued

Question 6

A. Why in computer games is the character motion control routine often considered at two
logical levels: steering and pathfinding? Name at least two advantages of such separa-
tion. 4 marks

Steering techniques allow a computer character to navigate from one posi-
tion into another provided there are no (or few simple) obstacle on the way.
Pathfinding is used whenever a computer entity needs to find a way to a goal
avoiding obstacles.
Advantages:

• steering is closer to game engine an often requires integration with the
physics engine; pathfinding is closer to the decision taking level. Keep-
ing them separate leads to a cleaner code and better task distribution.

• Pathfinders can be reused in a different kind of game even of another
genre.

One mark per advantage.

B. What is the difference between static, kinematic and dynamic physics entities in the ter-
minology of computer games physics engine? Give an example of a static, kinematic and
dynamic physics entities. 4 marks

All physics entities can detect collisions and can respond to collision. Static
entities never move. An example of those are floors, walls etc. Kinematic
entities are controlled by the game logic. They can interact (e.g. ‘push’) with
other physics entities but they are not influenced by other entities. Examples
of kinematic entities include airships, elevators, doors, etc. Dynamic entities
are controlled by the physics engine and they react to physics interaction with
other entities. Examples include rolling balls, movable crates etc.
Definitions – 2 marks; examples – 2 marks.

C. Consider the following floor plan of a 3x3 room. Tiles 2b and 2c are impassable. The
Pufferfish has filled its stomach with water and so cannot pass through tile 2a either; how-
ever the Eel can.

PAPER CODE COMP222 page 21 of 24 Continued

Finish

a b c

3

2

1

(a) Construct the tile-based pathfinding graphs for both agents (Pufferfish and
Eel). 4 marks

Puffer fish :

t.FI# t.DE#I.
(b) Using the Manhattan block distance between tiles as a heuristic, which tiles and in

which order the A* algorithm will explore for both agents when trying to find a path
from their current position to the target tile 3b (we assume that both agents can oc-
cupy the same tile)? Illustrate the work of the A* algorithm with a diagram. For
every node of the diagram indicate clearly the cost so far and the estimated cost to the
goal. 5 marks

PAPER CODE COMP222 page 22 of 24 Continued

A * (Putfutish) :

q
' 9 (0+3)

• lb (1+2)
to lc (2+2)
×

At Eel :

ql((0+3)

• lb (1+4
|•1a(2+4

f.2<(3+2)
• 3a(4+1)

|•3b (5+0)
v

(c) Which techniques can be used to speed up finding that there is no path for the Puffer-
fish? Show how the technique of your choice works on this example. 5 marks

Zones and zone equivalence arrays can be used. If the start tile and the end tile
belong to the same zone, a path exists. If they don’t belong to the same zone
and the zone equivalence arrays for the agent does not equate them, there is
no path.
With 0 standing for impassable tile, we have the following zone array: 1 1 1

2 0 0
3 3 3

For Pufferfish, the zone equivalence array is as follows: ZEP = [0, 1, 2, 3],
that is all zones are different. Then the zone of tile 1a is 3, the zone of 3b is
1, ZEP [1] 6= ZEP [3] so we conclude there is no path.
For Eel, the zone equivalence array is ZEE = [0, 1, 1, 1] so that zones 1, 2
and 3 are equivalent. As ZEE[1] = ZEE[3] we conclude there exists a path
for Eel.

D. Consider the following chance game tree. Perform the ExpectiMiniMax algorithm on this
tree and compute the ExpectiMiniMax value of the root node.

PAPER CODE COMP222 page 23 of 24 Continued

MAX

MIN

MAX

-3 -4 12 16 2 12 -108

MAX

CHANCE

MIN

½ ½ ⅓ ⅔

3 marks

MAX

MIN

MAX

-3 -4 12 16 2 12 -108

MAX

CHANCE

MIN

½ ½ ⅓ ⅔

-3 -4 2 -10

-3.5 -6

-3.5

Root node ExpectiMiniMax value: −3.5.

PAPER CODE COMP222 page 24 of 24 End

