
Theorem Proving for Metric Temporal Logic
over the Naturals

Ullrich Hustadt1, Ana Ozaki2, and Clare Dixon1

1 Department of Computer Science, University of Liverpool, UK
{cldixon,uhustadt}@liverpool.ac.uk

2 Faculty of Computer Science, TU Dresden
Ana.Ozaki@tu-dresden.de

Abstract We study translations from Metric Temporal Logic (MTL)
over the natural numbers to Linear Temporal Logic (LTL). In particular,
we present two approaches for translating from MTL to LTL which
preserve the ExpSpace complexity of the satisfiability problem for MTL.
In each of these approaches we consider the case where the mapping
between states and time points is given by (1) a strict monotonic function
and by (2) a non-strict monotonic function (which allows multiple states
to be mapped to the same time point). Our translations allow us to
utilise LTL solvers to solve satisfiability and we empirically compare the
translations, showing in which cases one performs better than the other.

1 Introduction

Linear and branching-time temporal logics have been used for the spe-
cification and verification of reactive systems. In linear-time temporal
logic [19,11] we can, for example, express that a formula ψ holds now or
at some point in the future using the formula ♦ψ (ψ holds eventually).
However, some applications require not just that a formula ψ will hold
eventually but that it holds within a particular time-frame, for example,
between 3 and 7 moments from now.

To express such constraints, a range of Metric Temporal Logics (MTL)
have been proposed [3,4], considering different underlying models of time
and operators allowed. MTL has been used to formalise vehicle routing
problems [17], monitoring of algorithms [22] and cyber-physical systems [1],
among others [15]. A survey about MTL and its fragments can be found
in [18]. It is known that MTL over the reals is undecidable, though,
decidable fragments have been investigated [6,2,5]. Here we consider MTL
with pointwise semantics over the natural numbers, following [3], where
each state in the sequence is mapped to a time point on a time line
isomorphic to the natural numbers. In this instance of MTL, temporal
operators are annotated with intervals, which can be finite or infinite. For

2

example, ♦[3,7] means that p should hold in a state that occurs in the
interval [3, 7] of time, while 2[2,∞)p means that p should hold in all states
that occur at least 2 moments from now. In contrast to LTL, where the
time difference from one state to the next is always 1, in MTL, time is
allowed to irregularly ‘jump’ from one state to the next. For example,
using #[2,2]p we can state that the time difference from the current state
to the next state is 2. Furthermore, following Alur and Henzinger [3], the
mapping between states and time points is given by a (weakly) monotonic
function, which allows multiple states to be mapped to the same time
point. In this work, we also consider the semantics where the mapping
between states and time points is given by a strictly monotonic function,
which forces time to progress from one state to another.

We provide two approaches for translating from MTL to LTL: in the
first approach we introduce a fresh propositional variable that we call
‘gap’, which is used to encode the ‘jumps’ between states, as mentioned
above; the second approach is inspired by [3], where fresh propositional
variables encode time differences between states. In each approach we
consider the case where the mapping between states and time points is
given by (1) a strict monotonic function and by (2) a non-strict monotonic
function (which allows multiple states to be mapped to the same time
point). All translations are polynomial in the size of the MTL formula
and the largest constant occurring in an interval (although exponential in
the size of the MTL formula due to the binary encoding of the constants).
Since the satisfiability problem for LTL is PSpace-complete [21], our
translations preserve the ExpSpace complexity of the MTL satisfiability
problem over the natural numbers [3].

Using these translations from MTL to LTL, we apply three temporal
solvers, one resolution based [16], one tableau based [13] and the other
based on the model checker NuSMV [7] to investigate the properties of the
resulting formulae experimentally. To the best of our knowledge, there are
no implementations of solvers for MTL with pointwise discrete semantics.
In particular, our contributions are:

– translations from MTL to LTL which preserve the ExpSpace com-
plexity of the MTL satisfiability problem;

– an experimental analysis of the behaviour of LTL solvers on the
resulting formulae;

– to exemplify which kind of problems can be solved using MTL we also
provide encodings of the classical Multiprocessor Job-Shop Scheduling
problem [14,8] into MTL.

3

In the following we provide the syntax and semantics of LTL and MTL,
show our translations from MTL to LTL and experimental results.

2 Preliminaries

We briefly state the syntax and semantics of LTL and MTL. Let P be a
(countably infinite) set of propositional variables. Well formed formulae in
LTL are formed according to the rule:

ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #ϕ | (ϕUψ)

where p ∈ P . We often omit parentheses if there is no ambiguity. We denote
by #c a sequence of c next operators, i.e., #0ϕ = ϕ and #n+1ϕ = ##nϕ,
for every n ∈ N.

An LTL model or state sequence σ over (N, <) is an infinite sequence
of states σi ⊆ P, i ∈ N. The semantics of LTL is defined as follows.

(σ, i) |= p iff p ∈ σi
(σ, i) |= (ϕ ∧ ψ) iff (σ, i) |= ϕ and (σ, i) |= ψ
(σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ
(σ, i) |= #ϕ iff (σ, i+ 1) |= ϕ
(σ, i) |= (ϕUψ) iff ∃k ≥ i : (σ, k) |= ψ and ∀j, i ≤ j < k : (σ, j) |= ϕ

Further connectives can be defined as usual: true ≡ p ∨ ¬p, false ≡
¬(true), ♦ϕ ≡ trueUϕ and 2ϕ ≡ ¬♦¬ϕ. MTL formulae are constructed
in a way similar to LTL, with the difference that temporal operators are
now bounded by an interval I with natural numbers as end-points or
∞ on the right side. Note that since we work with natural numbers as
end-points we can assume w.l.o.g that all our intervals are of the form
[c1, c2] or [c1,∞), where c1, c2 ∈ N. Well formed formulae in MTL are
formed according to the rule:

ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #Iϕ | (ϕUIψ)

where p ∈ P. A timed state sequence ρ = (σ, τ) over (N, <) is a pair
consisting of an infinite sequence σ of states σi ⊆ P , i ∈ N, and a function
τ : N → N that maps every i corresponding to the i-th state to a time
point τ(i) such that τ(i) < τ(i + 1). A non-strict timed state sequence
ρ = (σ, τ) over (N, <) is a pair consisting of an infinite sequence σ of states
σi ⊆ P , i ∈ N, and a function τ : N→ N that maps every i corresponding
to the i-th state to a time point τ(i) such that τ(i) ≤ τ(i+ 1). We assume
w.l.o.g. that τ(0) = 0. The semantics of MTL is defined as follows (we
omit propositional cases, which are as in LTL).

4

(ρ, i) |= #Iϕ iff (ρ, i+ 1) |= ϕ and τ(i+ 1)− τ(i) ∈ I
(ρ, i) |= (ϕUIψ) iff ∃k ≥ i : τ(k)− τ(i) ∈ I and (ρ, k) |= ψ

and ∀j, i ≤ j < k : (ρ, j) |= ϕ

Further connectives can be defined as usual: ♦Iϕ ≡ trueUIϕ and 2Iϕ ≡
¬♦I¬ϕ. To transform an MTL formula into Negation Normal Form, one
uses the constrained dual until ŨI operator [18], defined as (ϕŨIψ) ≡
¬(¬ϕUI¬ψ).

An MTL formula ϕ is in Negation Normal Form (NNF) iff the negation
operator (¬) occurs only in front of propositional variables. One of the
differences between MTL and LTL is that in LTL we have the equivalence
¬(#p) ≡ #¬p, whereas in MTL ¬(#[2,2]p) 6≡ #[2,2]¬p. If ¬(#[2,2]p) then
either p does not occur in the next state or the next state does not
occur with time difference 2. We can express this as follows: ¬(#[2,2]p) ≡
#[2,2]¬p ∨#[0,1]true ∨#[3,∞)true.

An MTL formula ϕ is in Flat Normal Form (FNF) iff it is of the form
p0 ∧

∧
i 2[0,∞)(pi → ψi) where p0, pi are propositional variables or true

and ψi is either a formula of propositional logic or it is of the form #Iψ1,
ψ1UIψ2 or ψ1ŨIψ2 where ψ1, ψ2 are formulae of propositional logic.

One can transform an MTL formula into FNF by renaming subformulae
with nested operators, as in [10,23]. For example, assume that we are given
the following MTL formula: #[2,3](¬2[1,2]q). We first transform our formula
into NNF and obtain: #[2,3](♦[1,2]¬q). We then transform it into FNF:
p0 ∧ 2[0,∞)(p0 → #[2,3]p1)∧ 2[0,∞)(p1 → ♦[1,2]¬q). The transformations
into NNF and FNF are satisfiability preserving and can be performed in
polynomial time.

3 From MTL to LTL: encoding ‘gaps’

Assume that our MTL formulae are in NNF and FNF. The main idea for
our approach is to map each timed state sequence ρ = (σ, τ) to a state
sequence σ′ such that ρ = (σ, τ) is a model of an MTL formula if, and only
if, σ′ is a model of our LTL translation. We first present our translation
using the strict semantics and then show how to adapt it for the non-strict
semantics, where multiple states are allowed to be mapped to the same
time point.

Strict Semantics We translate MTL formulae for discrete time models
into LTL using a new propositional variable gap. ¬gap is true in those
states σ′j of σ′ such that there is i ∈ N with τ(i) = j and gap is true in all

5

.

p
gap p

0 1 2 3

0

q, same

2

. . .

q

. . .

1

gap

3

(a)

(b)

Figure 1: Examples illustrating Definitions 1 and 3

other states of σ′. We now define our mappings between MTL and LTL
models.

Definition 1. Given a timed state sequence ρ = (σ, τ), we define σ′ =
σ′0σ

′
1 . . ., where σ′j is as follows:

σ′j =

{
σi if there is i ∈ N such that τ(i) = j;
{gap} otherwise.

Figure 1(a) illustrates the mapping given by Definition 1. For instance,
if ρ = (σ, τ) is the timed state sequence on the left side of Figure 1(a)
then (ρ, 0) |= #[2,3]p. As shown in Table 1, we translate #[2,3]p into:∨

2≤l≤3(#
l(¬gap ∧ p) ∧

∧
1≤k<l #

kgap). Note that the state sequence rep-
resented on the right side of Figure 1(a) is a model of the translation.
Since gap is a propositional variable not occurring in σ, the time points
mapped by the image of τ do not contain gap.

Definition 2. Given a state sequence σ′ such that (σ′, 0) |= ¬gap ∧
2(♦¬gap), we inductively define ρ = (σ0, τ(0))(σ1, τ(1)) . . ., where
(σ0, τ(0)) = (σ′0, 0) and, for i, j, k ∈ N and i > 0, (σi, τ(i)) is as follows:

σi = σ′j and τ(i) = j if j > τ(i− 1), gap 6∈ σ′j and for all k,

τ(i− 1) < k < j, gap ∈ σ′k.

As σ′ is such that (σ′, 0) |= ¬gap ∧ 2(♦¬gap), for each i ∈ N we have
τ(i) ∈ N. Also, for i > 0, τ(i) > τ(i − 1) and, so, τ : N → N is well
defined. We are ready for Theorem 1, which states the correctness of our
translation from MTL to LTL using ‘gap’s.

Theorem 1 Let ϕ = p0∧
∧
i 2[0,∞)(pi → ψi) be an MTL formula in NNF

and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → (¬gap ∧ ψ]i)) be the result of replacing

each ψi in ϕ by ψ]i as in Table 1. Then, ϕ is satisfiable if, and only if,
ϕ] ∧ ¬gap ∧2(♦¬gap) is satisfiable.

6

MTL (Strict) LTL Gap Translation

(#[0,∞)α)] (#[1,∞)α)]

(#[c1,∞)α)] (
∧

1≤k<c1
#kgap) ∧#c1(gapU(α ∧ ¬gap))

(#[c1,c2]α)]
∨

c1≤l≤c2
(#l(¬gap ∧ α) ∧

∧
1≤k<l #

kgap)

(#[0,0]α)] false

(#[0,c2]α)] (#[1,c2]α)]

(αU[0,∞)β)] (gap ∨ α)U(¬gap ∧ β)

(αU[c1,∞)β)] (
∧

0≤k<c1
#k(gap ∨ α)) ∧#c1((gap ∨ α)U(¬gap ∧ β))

(αU[c1,c2]β)]
∨

c1≤l≤c2
(#l(¬gap ∧ β) ∧

∧
0≤k<l #

k(gap ∨ α))

(αU[0,0]β)] ¬gap ∧ β
(αU[0,c2]β)] (¬gap ∧ β) ∨ (αU[1,c2]β)]

Table 1: (Strict) Gap Translation from MTL to LTL, where α, β are
propositional formulae and c1, c2 > 0.

Non-Strict Semantics We now show how we modify the Gap translation
for non-strict timed state sequences. We introduce a fresh propositional
variable called ‘same’. same is true exactly in those states σ′j of σ′ such
that there is i ∈ N with τ(i) = j and, for i > 0, τ(i) = τ(i− 1). Note that
same and gap cannot both be true in any state. We say that a state s is
a gap state if gap ∈ s. We now define our mappings between MTL and
LTL models.

Definition 3. Let ρ = (σ, τ) be a non-strict timed state sequence. We
define σ′ = σ′0σ

′
1 . . . by initially setting σ′ = σ and then modifying σ′ with

the two following steps:

1. For i > 0, if τ(i)− τ(i− 1) = 0 then set σ′i := σi ∪ {same};
2. For i, j ≥ 0, if σ′j is the i-th non-gap state in σ′, σ′j+1 is a non-gap

state and τ(i + 1) − τ(i) = k > 1 then add k − 1 states of the form
{gap} between σ′j and σ′j+1.

Figure 1(b) illustrates the mapping given by Definition 3. For instance,
if ρ = (σ, τ) is the non-strict timed state sequence on the left side of
Figure 1(b) then (ρ, 0) |= ♦[2,2]q. As shown in Table 2, we translate ♦[2,2]q
into: sameU(¬same ∧ #(sameU(¬same ∧ #((q ∧ ¬gap) ∨ #(sameU(q ∧
same)))))). The main distinction from the translation presented in Table 1
is that here we use nested until operators to make progress in our encoding
of the time line whenever we find a state with ¬same. Note that the state

7

sequence represented on the right side of Figure 1(b) is a model of the
translation (recall that ♦[2,2]q ≡ trueU[2,2]q).

Definition 4. Let σ′ be a state sequence such that (σ′, 0) |= ¬gap ∧
¬same ∧ 2(♦¬gap) ∧ 2(¬same ∨ ¬gap) ∧ 2(gap → #¬same). We first
define τ : N→ N by setting τ(0) = 0 and, for i > 0, τ(i) is as follows:

τ(i) =

{
τ(i−1) if σ′j is the i+1-th non-gap state and same ∈ σ′j
τ(i−1)+k+1 otherwise,

where k ≥ 0 is the number of gap states between the i − 1-th and i-th
non-gap states. We now define σ as follows:

σi = σ′j \ {same}, where σ′j is the i+ 1-th non-gap state.

One can use the mappings given by Definitions 3 and 4 to show Theorem 2
with ideas similar to those used in Theorem 1.

Theorem 2 Let ϕ = p0∧
∧
i 2[0,∞)(pi → ψi) be an MTL formula in NNF

and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → (¬gap ∧ ψ]i)) be the result of replacing

each ψi in ϕ by ψ]i as in Table 2. Then, ϕ is satisfiable if, and only if,
ϕ] ∧¬gap∧¬same∧2(♦¬gap)∧2(¬same∨¬gap)∧2(gap→ #¬same)
is satisfiable.

4 From MTL to LTL: encoding time differences

Assume that our MTL formulae are in NNF and FNF. Similar to the
previous section our proof strategy relies on mapping each timed state
sequence ρ = (σ, τ) to a state sequence σ′ such that ρ = (σ, τ) is a model
of an MTL formula if, and only if, σ′ is a model of our LTL translation.
We first show a translation under the strict semantics and then we show
how to adapt it for the non-strict semantics.

Strict Semantics Let C − 1 be the greatest number occurring in an
interval in an MTL formula ϕ or 1, if none occur. We say that a timed
state sequence ρ = (σ, τ) is C-bounded, for a constant C ∈ N, if τ(0) ≤ C
and, for all i ∈ N, τ(i + 1) − τ(i) ≤ C. To map a timed state sequence
ρ = (σ, τ) to a state sequence σ′ we employ the following result adapted
from [4].

Theorem 3 Let ϕ be an MTL formula. If there is a timed state sequence
ρ = (σ, τ) such that (ρ, 0) |= ϕ then there is a C-bounded timed state
sequence ρC such that (ρC , 0) |= ϕ.

8

MTL Non-Strict LTL Gap Translation

(#[0,∞)α)] (#[0,0]α)] ∨ (#[1,∞)α)]

(#[0,c2]α)] (#[0,0]α)] ∨ (#[1,c2]α)]

(#[0,0]α)] #(α ∧ same)
(αU[c1,∞)β)] α ∧#((α ∧ same)U(¬same ∧ (αU[c1−1,∞)β)]))

(αU[0,∞)β)] (gap ∨ α)U(¬gap ∧ β)

(αU[c1,c2]β)] α ∧#((α ∧ same)U(¬same ∧ (αU[c1−1,c2−1]β)]))

(αU[0,0]β)] (β ∧ ¬gap) ∨ (α ∧#((α ∧ same)U(β ∧ same)))
(αU[0,c2]β)] (αU[0,0]β)] ∨ (αU[1,c2]β)]

Table 2: Non-Strict Gap Translation from MTL to LTL, using gap
and same, where α, β are propositional logic formulae, c1, c2 > 0 and
(#[c1,∞)α)] and (#[c1,c2]α)] are as in Table 1.

By Theorem 3, w.l.o.g., we can consider only timed state sequences
where the time difference from a state to its previous state is bounded by
C. Then, we can encode time differences with a set Πδ = {δ−i | 1 ≤ i ≤ C}
of propositional variables where each δ−i represents a time difference of i
w.r.t. the previous state (one could also encode the time difference to the
next state instead of the difference from the previous state). We also use
propositional variables of the form snm with the meaning that ‘the sum
of the time differences from the last n states to the current state is m’.
For our translation, we only need to define these variables up to sums
bounded by 2 · C. We can now define our mapping from an MTL model
to an LTL model3.

Definition 5. Given a C-bounded timed state sequence ρ = (σ, τ), we
define σ′ = σ′0σ

′
1 . . . by setting σ′0 = σ0 and, for i > 0:

σ′i = σi ∪ {δ−k , s
1
k | τ(i)− τ(i− 1) = k, 1 ≤ k ≤ C}

∪ {sj+1
min(l+k,2·C) | s

1
k ∈ σ′i and sjl ∈ σ

′
i−1, 1 < j + 1, l ≤ 2 · C, 1 ≤ k ≤ C}

where variables of the form snm and δ−n , n,m ∈ N, do not occur in σ.

In Definition 5, if, for example, τ(2) − τ(0) = 4 then (σ′, 2) |= s24.
Intuitively, the variable s24 allow us to group together all the cases where

3 We write min(l + k, 2 · C) for the minimum between l + k and 2 · C. If the minimum
is 2 · C then sj+1

2·C means that the sum of the last j + 1 variables is greater or equal
to 2 · C.

9

the sum of the time differences from the last 2 states to the current
state is 4. This happens when: τ(2) − τ(1) = 3 and τ(1) − τ(0) = 1; or
τ(2)−τ(1) = 1 and τ(1)−τ(0) = 3; or τ(2)−τ(1) = 2 and τ(1)−τ(0) = 2.

The next lemma gives the main properties of σ′. First, we need some
notation. We use two additional n-ary boolean operators ⊕=1 and ⊕≤1.
If S = {ϕ1, . . . , ϕn} is a finite set of LTL formulae, then ⊕=1(ϕ1, . . . , ϕn),
also written ⊕=1S, is an LTL formula. Let σ′ be a state sequence and
i ∈ N. Then (σ′, i) |= ⊕=1S iff (σ′, i) |= ϕj ∈ S for exactly one ϕj ∈ S,
1 ≤ j ≤ n. Similarly, (σ′, i) |= ⊕≤1S iff (σ′, i) |= ϕj ∈ S for at most one
ϕj ∈ S, 1 ≤ j ≤ n. By definition of σ′ the following lemma is immediate.

Lemma 1. Let SC be the conjunction of the following:

1. #2⊕=1 Πδ, for Πδ = {δ−k | 1 ≤ k ≤ C};
2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ C;
3. 2⊕≤1 Π i, for 1 ≤ i ≤ 2 · C and Π i = {sij | i ≤ j ≤ 2 · C};
4. 2((#s1k ∧ s

j
l)→ #sj+1

min(l+k,2·C)), for 1 < j + 1, l ≤ 2 · C, 1 ≤ k ≤ C.

Given a C-bounded timed state sequence ρ = (σ, τ), let σ′ = σ′0σ
′
1 . . . be as

in Definition 5. Then, (σ′, 0) |= SC .

Point 1 ensures that at all times, the time difference k from the current
state to the previous (if it exists) is uniquely encoded by the variable δ−k .
In Point 2 we have that the sum of the difference of the last state to the
current, encoded by s1k, is exactly δ−k . Point 3 ensures that at all times we
cannot have more than one value for the sum of the time differences of
the last i states. Finally, Point 4 has the propagation of sum variables: if
the sum of the last j states is l and the time difference to the next is k
then the next state should have that the sum of the last j + 1 states is
l + k. We now define our mapping from an LTL model of SC to an MTL
model (for this mapping, we actually only need Point 1).

Definition 6. Given a state sequence σ′ = σ′0σ
′
1 . . . such that (σ′, 0) |=

SC , we define a C-bounded timed state sequence ρ = (σ, τ) by setting
σi = σ′i \ (Πδ ∪

⋃
1≤j≤C Π

j), for i ∈ N, and:

τ(i) =

{
0 if i = 0
τ(i− 1) + k if i > 0, δ−k ∈ σ

′
i

Note that ρ, in particular, τ , in Definition 6 is well-defined because
for every i ∈ N there is exactly one k such that δ−k ∈ σ

′
i. As shown in

Table 3, we translate, for example, #[2,3]p into #((δ−2 ∨ δ
−
3) ∧ p). We are

ready for Theorem 4, which states the correctness of our translation using
time differences.

10

MTL (Strict) LTL Time Difference Translation

(#[c1,∞)α)] #((
∨

c1≤i≤C δ
−
i) ∧ α)

(#[0,∞)α)] #α

(#[c1,c2]α)] #((
∨

c1≤i≤c2
δ−i) ∧ α)

(#[0,c2]α)] (#[1,c2]α)]

(#[0,0]α)] false

(αU[c1,∞)β)]
∨

1≤i≤c1
(#i((

∨
c1≤j≤c1+C sij) ∧ αUβ) ∧ (

∧
0≤k<i #kα))

(αU[0,∞)β)] αUβ
(αU[c1,c2]β)]

∨
1≤i≤c2

(#i((
∨

c1≤j≤c2
sij) ∧ β) ∧ (

∧
0≤k<i #kα))

(αU[0,c2]β)] β ∨ (αU[1,c2]β)]

(αU[0,0]β)] β

Table 3: (Strict) Time Difference Translation from MTL to LTL where
α, β are propositional logic formulae and c1, c2 > 0.

Theorem 4 Let ϕ = p0∧
∧
i 2[0,∞)(pi → ψi) be an MTL formula in NNF

and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → ψ]i) be the result of replacing each ψi

in ϕ by ψ]i as in Table 3. Then, ϕ is satisfiable if, and only if, ϕ] ∧ SC is
satisfiable.

Non-Strict Semantics We now show how we modify the Time Difference
translation for non-strict timed state sequences. We extend the set Πδ =
{δ−i | 1 ≤ i ≤ C} of propositional variables representing time differences
with δ−0 , which holds whenever the time difference to the previous state
is 0. We say that a state is non-zero if the time difference to the previous
state is non-zero. The meaning of the variables of the form snm also needs
to change, it now indicates that ‘the sum of the time differences from
the last n non-zero states to the current state is m’. As before, for our
translation, we only need to define these variables up to sums bounded by
2 · C. We can now define our mapping from an MTL model to an LTL
model.

Given a C-bounded non-strict timed state sequence (σ, τ), we define a
state sequence σ′ as in Definition 5, with the difference that, whenever
τ(i) = τ(i− 1), we now make δ−0 true in σ′i and copy all variables of the
form snm in σ′i−1 to σ′i. Let S′C be the conjunction of the following:

1. #2⊕=1 Πδ, for Πδ = {δ−k | 0 ≤ k ≤ C};
2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ C;

11

3. 2⊕≤1 Π i, for 1 ≤ i ≤ 2 · C and Π i = {sij | i ≤ j ≤ 2 · C};
4. 2((#s1k ∧ s

j
l)→ #sj+1

min(l+k,2·C)), for 1 < j + 1 ≤ l + k ≤ 2 · C.

5. 2((#δ−0 ∧ s
j
l)→ #sjl), for 1 ≤ j ≤ l ≤ 2 · C.

It is easy to see that (σ′, 0) |= S′C . Note that the only difference from
S′C to SC , defined in Lemma 1, is Point 5 which propagates the variables
of the form snm to the next state if the time difference is zero. The mapping
from an LTL model of S′C to an MTL model is defined in the same way
as in Definition 6 (but now k in δ−k can be zero). To simplify the notation,
in Table 4 we write φUnγ, χ as a shorthand for φU(γ ∧ #(φUn−1γ, χ)),
where φU1γ, χ = φUχ. Theorem 5 states the correctness of our translation
(Table 4) using non-strict time differences. It can be proved with ideas
similar to those used in the proof of Theorem 4. The main distinction
appears in the translation of the ‘until’ formulas, where we nest until
operators so that we can count n non-zero states and then check whether
a variable of the form snm holds (in the strict case all states are non-zero,
so in Table 3 we can count these states with next operators).

MTL (Non-Strict) LTL Time Difference Translation

(#[k1,∞)α)] #((
∨

k1≤i≤C δ
−
i) ∧ α)

(#[k1,k2]α)] #((
∨

k1≤i≤k2
δ−i) ∧ α)

(αU[c1,∞)β)] α ∧#
∨

1≤i≤c1
((α ∧ δ−0)U i(¬δ−0 ∧ α), (¬δ−0 ∧ (

∨
c1≤j≤c1+C sij) ∧ αUβ))

(αU[0,∞)β)] αUβ
(αU[c1,c2]β)] α ∧#

∨
1≤i≤c2

((α∧δ−0)U i(¬δ−0 ∧α), (¬δ−0 ∧(
∨

c1≤j≤c2
sij) ∧ (αU[0,0]β)]))

(αU[0,c2]β)] (αU[0,0]β)] ∨ (αU[1,c2]β)]

(αU[0,0]β)] β ∨ (α ∧#((α ∧ δ−0)U(β ∧ δ−0)))

Table 4: Non-Strict LTL Time Difference Translation from MTL to LTL
where α, β are propositional logic formulae, k1, k2 ≥ 0 and c1, c2 > 0.

Theorem 5 Let ϕ = p0∧
∧
i 2[0,∞)(pi → ψi) be an MTL formula in NNF

and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → ψ]i) be the result of replacing each ψi

in ϕ by ψ]i as in Table 4. Then, ϕ is satisfiable if, and only if, ϕ] ∧ S′C is
satisfiable.

5 Experiments

In order to empirically evaluate the translations, we have used them to-
gether with three LTL satisfiability solvers, TRP++, pltl and NuSMV. TRP++

12

Table 5: Experiments with TRP++, pltl and NuSMV

(a) Performance on ♦[0,b1]p ∧ 2[0,∞)¬p

TD Gap TD Gap TD Gap
b1 TRP++ TRP++ pltl pltlNuSMVNuSMV

Strict Semantics

0 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 OoM 0.00 33.54 0.00
4 0.10 0.00 OoM 0.00 T/O 0.00
6 3.18 0.00 OoM 0.00 T/O 0.00
8 64.00 0.00 OoM 0.00 T/O 0.00

Non-strict Semantics

0 0.00 0.00 0.00 0.00 0.00 0.00
2 36.17 0.01 OoM 0.00 25.45 0.00
4 T/O 0.55 OoM 0.00 T/O 0.00
6 T/O 7.29 OoM 0.01 T/O 0.00
8 T/O 58.20 OoM 0.09 T/O 0.00

(b) Performance on #[10,∞)p ∧#[b2,∞)¬p

TD Gap TD Gap TD Gap
b2 TRP++TRP++pltlpltlNuSMVNuSMV

Strict Semantics

10 0.00 0.33 0.01 0.00 0.63 0.04
12 0.00 0.77 0.01 0.00 2.76 0.07
14 0.00 1.68 0.01 0.00 55.91 0.15
16 0.00 3.15 0.01 0.00 T/O 0.24
18 0.01 5.68 0.01 0.00 T/O 0.40

Non-strict Semantics

10 0.00 0.32 0.00 0.00 0.93 0.05
12 0.00 0.74 0.00 0.00 6.06 0.05
14 0.00 1.62 0.00 0.00 42.44 0.08
16 0.00 3.03 0.00 0.00 T/O 0.13
18 0.00 5.43 0.00 0.00 T/O 0.14

implements an ordered resolution calculus for LTL [16], pltl implements
a one-pass and-or tree tableau calculus [13], and NuSMV uses a reduc-
tion to model checking combined with symbolic model checking using
BDDs [7]. These solvers performed well in the extensive comparison of
LTL satisfiability solvers performed in [20].

We focus on formulae where differences between the two translations
could lead to differences in the behaviour of solvers on these formulae. In
particular, for (αU[c1,c2]β) the Strict and Non-Strict LTL Time Difference
Translations contain disjunctive subformulae of the form

∨
c1≤j≤c2 sij that

have no equivalence in the Strict and Non-Strict LTL Gap Translations
of that formula. Each sum variable sij is also subject to the constraints
expressed by SC . It is a reasonable hypothesis that this will have a
detrimental effect on the performance of a solver. On the other hand,
for #[c1,∞)α both LTL Gap Translations contain an eventuality formula
gapU(α∧¬gap) that is not present in the LTL Time Difference Translations
of this formula. Here, the hypothesis is that the LTL Time Difference
Translations lead to better behaviour of solvers.

To test our two hypotheses, we consider the unsatisfiable parameterised
formulae θ1b1 := ♦[0,b1]p ∧2[0,∞)¬p for values of b1 between 0 and 8, and
θ2b2 := #[10,∞)p ∧ #[b2,∞)¬p for values of b2 between 10 and 18. After
transformation to Flat Normal Form, we apply one of the four translations,
and run a solver five times on the resulting LTL formula (with a timeout of
1000 CPU seconds), and then determine the median CPU time over those

13

five runs. The repeated runs are necessary to moderate the fluctuations in
runtime shown by all provers. The experiments were conducted on a PC
with Intel i7-2600 CPU @ 3.40GHz and 16GB main memory. Tables 5a
and 5b show the results with entries indicating the median CPU time in
seconds (‘T/O’ indicates timeout). The combination TD + pltl, for both
strict and non-strict semantics, runs out of memory for θ1b1 with b1 ≥ 1,
after searching for a model for about 100 CPU seconds, indicated by ‘OoM’
in Table 5a. Strict and non-strict TD + NuSMV exceeds the timeout for θ1b1
with b1 > 3 and the same is true for non-strict TD + TRP++.

Table 5a confirms our hypothesis that for (αU[c1,c2]β) the LTL Gap
translations, independent of the semantics, lead to better performance.
However, Table 5b only confirms that the LTL Time Difference Transla-
tions lead to better performance on #[c1,∞)α for TRP++. For pltl there
is no significant difference between the translations while NuSMV again
performs considerably better with the LTL Gap translations, independent
of the semantics.

6 An Example: Multiprocessor Job-Shop Scheduling

We consider a generalisation of the classic job-shop scheduling problem,
called the Multiprocessor Job-shop Scheduling (MJS) problem [14,8]. The
representation provided is based on that in [9]. Here, a set of jobs have
to be processed on a set of machines running in parallel. Each job might
require a number of processor steps to complete. We first show how one
can encode the problem in MTL with the strict semantics and then we
show the encoding with the non-strict semantics.

Strict Semantics Assume we have n jobs j1, j2, . . . , jn and k machines
m1,m2, . . . ,mk. Let

– start runji , runji and has runji denote the start, the execution and
the end of the execution of job ji on some machine, respectively;

– start runjiml
and runjiml

denote the start and the execution of job
ji on machine ml, respectively; and

– tjiml
to denote the time taken to run job ji on machine ml.

The following equations state that (1) once a job starts running it
must start running on one of the machines and that (2) once a job starts
running on a machine it must run on that machine (where

∧
1≤i≤n and∧

1≤i≤n,1≤l≤k in front of the formulas is omitted for brevity).

2(start runji →
∨k
l=1 start runjiml

) (1)

14

2(start runjiml
→ runjiml

) (2)

Equation (3) states that: if a job is running on one machine then it cannot
be running on another (integrity of jobs); and another job cannot be
running on the same machine (integrity of machines). By Equation (4),
once a job has started it cannot be started again.

2(runjiml
→ (

∧k
p=1,p 6=l ¬runjimp ∧

∧n
q=1,q 6=i ¬runjqml

)) (3)

2(start runji → #2¬start runji) (4)

We write ¬runji as a short hand for
∧k
l=1 ¬runjiml

. We can use (5) to
denote that once job ji is started to run on machine ml it takes time tjiml

and (6) to denote that once job ji has finished running on machine ml it
will not run again. Further, Equation (7) denotes that job ji cannot be
run until it has started.

2(start runjiml
→ 2[0,tjiml

−1]runjiml
∧ ¬has runji) (5)

2(start runjiml
→ 2[tjiml

,∞)(¬runji ∧ has runji)) (6)

2(¬runjiUstart runji) (7)

We assume initially that no jobs have run, i.e.,
∧n
i=1 ¬has runji ; and

that (8) if a job has not run and is currently not running then it has not
run in the next moment.

2((¬has runji ∧ ¬runji)→ #¬has runji) (8)

We can now check whether we can achieve a schedule after at most t time
points by adding ♦[0,t]

∧n
i=1 has runji . We can also specify constraints on

jobs such as
– 2(runji ↔ runji,ml

): job ji must run on machine ml;
– ♦(start runji → ♦[1,∞)start runjm): job ji must start before job jm;
– ♦[c,d]start runji : job ji must start at a point within the interval [c, d].

Non-Strict Semantics We again assume we have n jobs j1, j2, . . . , jn
and k machines m1,m2, . . . ,mk. Let

– start runji and has runji denote the start and the end of job ji on
some machine, respectively;

– ml denote a state of machine ml;
– runji denote that job ji is running on some machine; and
– tjiml

denote the time taken to run job ji on machine ml.

15

In each state exactly one of the variables of the form ml is true. Also, in
each state at most one job is running, but now we may have multiple states
at the same time. Let Πm = {m1, . . . ,mk} and Πj = {runj1 , . . . , runjn}.
The following states the constraints mentioned above (the meaning of ⊕=1

and ⊕≤1 is as described in Section 3):

2(⊕=1Πm ∧ ⊕≤1Πj) (9)

Equation (10) specifies that if a job is running on one machine then it
cannot be running on another. Equation (11) states that once a job is
started it cannot be started again (where

∧
1≤i≤n,1≤l≤k and

∧
1≤i≤n in

front of the formulas is omitted for brevity).

2((ml ∧ runji)→
∧
l′ 6=l 2¬(ml′ ∧ runji)) (10)

2(start runji → #2¬start runji) (11)

We use the following

2((start runji ∧ml)→ (2[0,tjiml
−1](¬has runji ∧ (ml → runji))

∧ ♦[0,tjiml
]has runji))

(12)

to denote that once job ji started to run on machine ml it takes time tjiml

and (13) to denote that once job ji has finished running on machine ml

it will not run again. Further, we use 2(¬runjiUstart runji) to state a
job ji cannot be run until it is started and 2(¬has runjiUstart runji) to
state that a job cannot have run before it starts (another rule above will
make sure that has runji will hold after the run has finished).

2((start runji ∧ml)→ 2[tjiml
+1,∞)(¬runji ∧ has runji)) (13)

We assume initially that no jobs have run, i.e.,
∧n
i=1 ¬has runji . We can

now check whether we can achieve a schedule after at most t time points
by adding ♦[0,t]

∧n
i=1 has runji .

7 Conclusion

We presented and evaluated experimentally four translations from MTL to
LTL. These translations provide a route to practical reasoning about MTL
over natural numbers via LTL solvers, which allow us to solve instances
of classical problems such as the MJS problem (see http://cgi.csc.

liv.ac.uk/~ullrich/MTL/ for experimental results). As future work, we
intend to investigate whether we can translate PDDL3.0 statements (see
[12]) into MTL formulae and apply our translations so as to make use of
LTL provers in the planning domain.

http://cgi.csc.liv.ac.uk/~ullrich/MTL/
http://cgi.csc.liv.ac.uk/~ullrich/MTL/

16

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Probabil-
istic temporal logic falsification of cyber-physical systems. ACM Transactions on
Embedded Computing Systems (TECS) 12(2s), 95:1–95:30 (2013)

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

3. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf.
Comput. 104(1), 35–77 (1993)

4. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
5. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of

continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)
6. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proc.

LICS 2007. pp. 109–120. IEEE (2007)
7. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource tool for symbolic model
checking. In: Proc. CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer (2002)

8. Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the
general multiprocessor job-shop scheduling problem using tabu search. Annals of
Operations Research 70, 281–306 (1997)

9. Dixon, C., Fisher, M., Konev, B.: Temporal Logic with Capacity Constraints. In:
Proc. FroCoS 2007. LNCS, vol. 4720, pp. 163–177. Springer (2007)

10. Fisher, M.: A normal form for temporal logics and its applications in theorem-
proving and execution. Journal of Logic and Computation 7(4), 429–456 (1997)

11. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proc. POPL ’80. pp. 163–173. ACM (1980)

12. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic
planning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence 173(5-6) (2009)

13. Goré, R.: And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and
CPDL. In: Proc. IJCAR 2014. LNCS, vol. 8562, pp. 26–45. Springer (2014)

14. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Labs Technical
Journal 45(9), 1563–1581 (1966)

15. Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: A
case study in the Android operating system. In: Proc. FM 2014. LNCS, vol. 8442,
pp. 296–311. Springer (2014)

16. Hustadt, U., Konev, B.: TRP++2.0: A temporal resolution prover. In: Proc. CADE-
19. LNCS, vol. 2741, pp. 274–278. Springer (2003)

17. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic
specifications. In: Proc. CDC 2008. pp. 3953–3958. IEEE (2008)

18. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Proc.
FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer (2008)

19. Pnueli, A.: The temporal logic of programs. In: Proc. SFCS ’77. pp. 46–57. IEEE
(1977)

20. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Proc. ATVA
2011. LNCS, vol. 6996, pp. 397–413. Springer (2011)

21. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

22. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electronic Notes in Theoretical Computer Science 113, 145–162 (2005)

23. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Auto-
mation of reasoning, pp. 466–483. Springer (1983)

17

A Proofs for ‘MTL to LTL translation: encoding ‘gaps’ ’

The following two propositions are useful for the proof of Theorem 1. Since
gap is a propositional symbol not occurring in σ, the time points mapped
by the image of τ do not contain gap. Then, it is easy to see the following.

Proposition 1. Given a timed state sequence ρ = (σ, τ), let σ′ be as in
Definition 1. Then, (σ′, 0) |= 2(♦¬gap).

The state sequence σ′ in Definition 2 is such that (σ′, 0) |= ¬gap ∧
2(♦¬gap). Consequently, for the timed state sequence constructed in
Definition 2 we have that for each i ∈ N, τ(i) ∈ N. Also, for i > 0,
τ(i) > τ(i−1) and, so, τ : N→ N is well defined. The following proposition
states this property.

Proposition 2. Given a state sequence σ′ such that (σ′, 0) |= ¬gap ∧
2(♦¬gap), let ρ = (σ, τ) be as in Definition 2. Then, τ : N → N is a
function such that τ(i+ 1) > τ(i), for all i ∈ N.

We now show Theorem 1, one can use similar arguments to show
Theorem 2.

Theorem 1 (restated). Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL

formula in NNF and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → (¬gap ∧ ψ]i)) be the

result of replacing each ψi in ϕ by ψ]i as in Table 1. Then, ϕ is satisfiable
if, and only if, ϕ] ∧ ¬gap ∧2(♦¬gap) is satisfiable.

Proof. (⇒) If ϕ is satisfiable then there is a timed state sequence ρ = (σ, τ)
such that (ρ, 0) |= ϕ. Let σ′ = σ′0σ

′
1 . . . be as in Definition 1. We need to

show that (σ′, τ(0)) |= ϕ] ∧ ¬gap ∧ 2(♦¬gap). By Definition 1 we have
that (σ′, τ(0)) |= ¬gap and, by Proposition 1, (σ′, τ(0)) |= 2(♦¬gap).
Also, by definition of σ′, for all propositional variables pi occurring in
σ and all j ∈ N, we have (ρ, j) |= pi iff (σ′, τ(j)) |= pi. Clearly, for any
propositional formula α, (ρ, j) |= α iff (σ′, τ(j)) |= α. Then, following
our translation in Table 1, we only need to show that (ρ, j) |= ψi implies

(σ′, τ(j)) |= ¬gap∧ψ]i , i, j ∈ N. This follows from Claims 1, 2 and 3 below
(other cases are similar).

Claim 1 For c1 > 0, if (ρ, j) |= #[c1,c2]α then (σ′, τ(j)) |= ¬gap ∧
(
∨
c1≤l≤c2(#l(¬gap ∧ α) ∧

∧
1≤k<l #

kgap)).

If (ρ, j) |= #[c1,c2]α then (ρ, j + 1) |= α and τ(j + 1) ∈ τ(j) +
[c1, c2]. By definition of σ′, (σ′, τ(j+1)) |= ¬gap∧α. Also, there is no
n ∈ N such that τ(n) = m, for τ(j) < m < τ(j + 1), meaning that

18

for all such m, (σ′,m) |= gap. As τ(j) + c1 ≤ τ(j + 1) ≤ τ(j) + c2,
we have (σ′, τ(j)) |=

∨
c1≤l≤c2(#l(¬gap ∧ α) ∧

∧
1≤k<l #

kgap). By
definition of σ′, we also have that (σ′, τ(j)) |= ¬gap. So (σ′, τ(j)) |=
¬gap ∧ (

∨
c1≤l≤c2(#l(¬gap ∧ α) ∧

∧
1≤k<l #

kgap)).

Claim 2 For c1 > 0, if (ρ, j) |= αU[c1,c2]β then (σ′, τ(j)) |= ¬gap∧
(
∨
c1≤l≤c2(#l(¬gap ∧ β) ∧

∧
0≤k<l #

k(gap ∨ α))).

If (ρ, j) |= αU[c1,c2]β then there is k ∈ N such that τ(k) ∈
τ(j) + [c1, c2] and (ρ, k) |= β and for all l ∈ N with j ≤ l < k we
have (ρ, l) |= α. By definition of σ′, (σ′, τ(k)) |= ¬gap ∧ β and,
as τ(j) + c1 ≤ τ(k) ≤ τ(j) + c2, we have that (∗): (σ′, τ(j)) |=∨
c1≤m≤c2(#m(¬gap ∧ β)). Also, by definition of σ′, for all l ∈ N

with j ≤ l < k we have (σ′, τ(l)) |= α. If n ∈ N is such that τ(j) ≤
n < τ(k) and there is no l ∈ N with n = τ(l) then, by definition of
σ′, (σ′, n) |= gap. Then, (σ′, τ(j)) |=

∧
0≤k<l #

k(gap ∨ α) and, by

(∗), (σ′, τ(j)) |=
∨
c1≤l≤c2(#l(¬gap ∧ β) ∧

∧
0≤k<l #

k(gap ∨ α)).

Claim 3 For c1 > 0, if (ρ, j) |= αŨ[c1,c2]β then

(σ′, τ(j)) |= ¬(¬(α)U[c1,c2]¬(β))].

If (ρ, j) |= αŨ[c1,c2]β then, by semantics of Ũ , (ρ, j) |=
¬(¬(α)U[c1,c2]¬(β)). By Claim 5, if (ρ, j) 6|= ¬(α)U[c1,c2]¬(β) then

(σ′, τ(j)) 6|= ¬gap∧(
∨
c1≤l≤c2(#l(¬gap∧¬β)∧

∧
0≤k<l #

k(gap∨¬α)).

That is, (σ′, τ(j)) |= ¬(¬(α)U[c1,c2]¬(β))].

(⇐) If ϕ]∧¬gap∧2(♦¬gap) is satisfiable then there is a state sequence
σ′ such that (σ′, 0) |= ϕ] ∧ ¬gap ∧ 2(♦¬gap). Let ρ = (σ, τ) be a timed
state sequence as in Definition 2. By Proposition 2, τ : N → N is well
defined. We need to show that (ρ, 0) |= ϕ. By definition of σ, for all
propositional variables pi occurring in σ′n with gap 6∈ σ′n there is j ∈ N
such that τ(j) = n and (ρ, j) |= pi iff (σ′, τ(j)) |= pi. Clearly, for any
propositional formula α, (ρ, j) |= α iff (σ′, τ(j)) |= α. Then, following our

translation in Table 1, we only need to show that (σ′, τ(j)) |= ¬gap ∧ ψ]i
implies (ρ, j) |= ψi, i, j ∈ N. This follows from Claims 4, 5 and 6 below
(other cases are similar).

Claim 4 For c1 > 0, if (σ′, j) |= ¬gap∧ (
∨
c1≤l≤c2(#l(¬gap∧α)∧∧

1≤k<l #
kgap)) then (ρ, i) |= #[c1,c2]α, where j = τ(i).

If (σ′, j) |= ¬gap ∧ (
∨
c1≤l≤c2(#l(¬gap ∧ α) ∧

∧
1≤k<l #

kgap))
then there is l, c1 ≤ l ≤ c2, such that (σ′, j + l) |= ¬gap ∧ α and
for all k, 1 ≤ k < l, (σ′, j + k) |= gap. If (σ′, j) |= ¬gap then there
is i ∈ N such that τ(i) = j. As (σ′, j + l) |= ¬gap and, for all k,
1 ≤ k < l, (σ′, j + k) |= gap, we have that τ(i + 1) = j + l. As

19

(σ′, j + l) |= α, by Definition 2, (ρ, i + 1) |= α. Since c1 ≤ l ≤ c2,
we have that (ρ, i) |= #[c1,c2]α.

Claim 5 For c1 > 0, if (σ′, j) |= ¬gap∧ (
∨
c1≤l≤c2(#l(¬gap∧β)∧∧

0≤k<l #
k(gap ∨ α))) then (ρ, i) |= αU[c1,c2]β, where j = τ(i).

If (σ′, j) |= ¬gap∧(
∨
c1≤l≤c2(#l(¬gap∧β)∧

∧
0≤k<l #

k(gap∨α)))
then there is l, c1 ≤ l ≤ c2, such that (σ′, j + l) |= ¬gap ∧ β and
for all k, 1 ≤ k < l, (σ′, j + k) |= gap ∨ α. As (σ′, j) |= ¬gap,
by definition of ρ, there is i ∈ N such that τ(i) = j. Also, as
(σ′, j + l) |= ¬gap ∧ β, there is i0 ∈ N such that τ(i0) = j + l and
(ρ, i0) |= ¬gap ∧ β. Since for all k, 1 ≤ k < l, (σ′, j + k) |= gap ∨ α,
we also have that for all n, j + 1 ≤ n < j + l, if there is m ∈ N
such that τ(m) = n then (ρ,m) |= α. Then, (ρ, i) |= αU[c1,c2]β.

Claim 6 For c1 > 0, if (σ′, j) |= ¬(¬(α)U[c1,c2]¬(β))] then (ρ, i) |=
αŨ[c1,c2]β, where j = τ(i).

If (σ′, j) 6|= (¬(α)U[c1,c2]¬(β))] then, by Claim 2, (ρ, i) 6|=
¬(α)U[c1,c2]¬(β), where j = τ(i). By semantics of Ũ , we have that

(ρ, i) |= αŨ[c1,c2]β.

o

Example Assume that we are given the following MTL formula in NNF
and FNF: ϕ = p0 ∧ 2[0,∞)(p0 → #[2,3]p1)∧ 2[0,∞)(p1 → ♦[1,2]¬q). Using
Table 1, we translate ϕ into LTL as follows (recall that ♦Iψ ≡ trueUIψ):

ϕ] = p0 ∧2[0,∞)(p0 → (¬gap ∧ (
∨

2≤l≤3(#
l(¬gap ∧ p1) ∧

∧
1≤k<l #

kgap))

∧2[0,∞)(p1 → (¬gap ∧ (
∨

1≤l≤2(#
l(¬gap ∧ ¬q))))

By Theorem 1, ϕ is satisfiable iff ϕ] ∧ ¬gap ∧2(♦¬gap) is satisfiable.

B Proofs for ‘MTL to LTL translation: encoding time
differences’

For the sake of completeness, we restate and prove Theorem 3. Let C − 1
be the greatest number occurring in an interval in an MTL formula ϕ
or 1, if none occur.

Definition 7. Given a timed sequence ρ = (σ, τ) and C ∈ N, we define a
timed sequence ρC = (σC , τC) as follows:

– σC = σ;

20

– τC(0) = min(τ(0), C) and, for i > 0, τC(i) = τC(i− 1) + min(C, τ(i)−
τ(i− 1)).

The following proposition states the main property of Definition 7.

Proposition 3. Let ρ = (σ, τ) be a timed state sequence and let ρC =
(σC , τC) be as in Definition 7. For all i, j ∈ N and all intervals of the form
I = [c1, c2] or I = [c1,∞) with c1, c2 < C, the following holds:

τ(j) ∈ τ(i) + I ⇔ τC(j) ∈ τC(i) + I

Proof. First assume I = [c1, c2]. If τ(j) ∈ τ(i) + [c1, c2] then τ(j)− τ(i) ≤
c2 < C and, so, τC(j)− τC(i) = τ(j)− τ(i). Thus, τC(j) ∈ τC(i) + [c1, c2].
Conversely, if τC(j) ∈ τC(i) + [c1, c2] then τC(j)− τC(i) ≤ c2 < C and, so,
τC(j)− τC(i) = τ(j)− τ(i). Thus, τ(j) ∈ τ(i) + [c1, c2].

Now assume I = [c1,∞). If τ(j) ∈ τ(i) + [c1,∞) then τ(j)− τ(i) ≥ c1.
If τ(j)− τ(i) < C then τC(j)− τC(i) = τ(j)− τ(i) and, so, τC(j) ∈ τC(i)+
[c1,∞). Otherwise τ(j)− τ(i) ≥ C. Then, τC(j)− τC(i) = C. As C > c1,
we have that τC(j) ∈ τC(i) + [c1,∞). Conversely, if τC(j) ∈ τC(i) + [c1,∞)
then τC(j) − τC(i) ≥ c1. If τC(j) − τC(i) < C then τC(j) − τC(i) =
τ(j) − τ(i) and, so, τ(j) ∈ τ(i) + [c1,∞). Otherwise τC(j) − τC(i) = C.
Then, τ(j)−τ(i) ≥ C. As C > c1, we have that τ(j) ∈ τ(i)+[c1,∞). o

We are now ready for Theorem 3.

Theorem 3 Adaptation from [4] (restated). If there is a timed state
sequence ρ = (σ, τ) such that (ρ, 0) |= ϕ then there is a C-bounded timed
state sequence ρC such that (ρC , 0) |= ϕ.

Proof. Let ρ = (σ, τ) be a timed state sequence and let ρC = (σC , τC) be
as in Definition 7. By definition of ρC we have that ρC is C-bounded.

Assume w.l.o.g. that ϕ is in NNF. Let sub(ϕ) be the set of all subfor-
mulae of ϕ. To prove this lemma, we argue by structural induction and
show that for all ϕ′ ∈ sub(ϕ), if (ρ, i) |= ϕ′ then (ρC , i) |= ϕ′, i ∈ N.

In the base case, ϕ′ is a propositional formula. Then, as σC = σ,
we have that (ρ, i) |= ϕ′ implies (ρC , i) |= ϕ′, i ∈ N. Suppose that, for
χ, ψ ∈ sub(ϕ) and i ∈ N, (ρ, i) |= χ implies (ρC , i) |= χ, and, (ρ, i) |= ψ
implies (ρC , i) |= ψ. We explain for #I , UI and ŨI (other cases are similar):

– ϕ′ is of the form #Iχ: if (ρ, i) |= #Iχ then τ(i + 1) ∈ τ(i) + I
and (ρ, i + 1) |= ψ. By induction hypothesis, (ρC , i + 1) |= ψ. By
Proposition 3, τC(i+ 1) ∈ τC(i) + I. Then, (ρC , i) |= #Iχ.

21

– ϕ′ is of the form χUIψ: if (ρ, i) |= χUIψ then there is k ∈ N such that
k ≥ i, τ(k) ∈ τ(i) + I and (ρ, k) |= ψ and for all j ∈ N, if i ≤ j < k
then (ρ, j) |= χ. By induction hypothesis, (ρC , k) |= ψ and (ρC , j) |=
χ, for all j ∈ N with i ≤ j < k. By Proposition 3, τC(k) ∈ τC(i) + I.
Then, (ρC , i) |= χUIψ.

– ϕ′ is of the form χŨIψ: if (ρ, i) |= χŨIψ then either:
1. for all j ∈ N, if τ(j) ∈ τ(i) + I then (ρ, j) |= ψ; or
2. (if c1 > 0) (ρ, k) |= χ for some k ∈ N such that τ(k) ∈ τ(i) +

[0, c1 − 1], where c1 is the left end-point of I; or
3. (ρ, l) |= χ for some l ∈ N such that τ(l) ∈ τ(i)+ I and for all l′ ∈ N

such that τ(i) + c1 ≤ τ(l′) ≤ τ(l), we have (ρ, l′) |= ψ.
We make a case distinction. In Case (1), we have to establish that, for
all j ∈ N, if τC(j) ∈ τC(i) + I then (ρC , j) |= ψ. By Proposition 3, if
τC(j) ∈ τC(i) + I then τ(j) ∈ τ(i) + I and by induction hypothesis,
(ρC , j) |= ψ, for all j ∈ N with τ(j) ∈ τ(i) + I. Therefore, (ρC , i) |=
χŨIψ. Cases (2) and (3) can be proved with similar arguments.

o

The following two propositions are useful for the proof of Theorem 4.

Proposition 4. Given a C-bounded timed state sequence ρ = (σ, τ), let
σ′ be as in Definition 5. For all i < j ∈ N, if τ(j)− τ(i) = m ≤ 2 ·C then
(σ′, j) |= snm where n = j − i.

Proof. In the base case j = i + 1, that is, n = 1. As ρ is C-bounded,
τ(i + 1) − τ(i) = k, for 1 ≤ k ≤ C. Then, by Definition 5, (σ′, j) |= s1k.
Suppose that, for j = i + n, if τ(i + n) − τ(i) = l then (σ′, i + n) |= snl
where l ≤ 2 · C. In the induction step we consider j = i+ n+ 1. Let k′

be such that τ(i + n + 1) − τ(i + n) = k′. As τ(i + n) − τ(i) = l and
τ(i+ n+ 1)− τ(i+ n) = k′, we have that τ(i+ n+ 1)− τ(i) = l + k′. By
Definition 5, (σ′, i+ n+ 1) |= s1k′ . By induction hypothesis, (σ′, j) |= snl .
By Definition 5, if l + k′ ≤ 2 · C, then (σ′, i+ n+ 1) |= sn+1

l+k′ . o

Proposition 5. Given a state sequence σ′ = σ′0σ
′
1 . . . such that (σ′, 0) |=

SC , let ρ be as in Definition 6. For all i < j ∈ N, if (σ′, j) |= snm with
n = j − i then τ(j)− τ(i) = min(m, 2 · C).

Proof. In the base case j = i + 1, that is, n = 1. Assume that (σ′, i +
1) |= s1k. By definition of SC , (σ′, i + 1) |= δ−k . Then, by Definition 6,
τ(i+1)−τ(i) = k ≤ C, i ∈ N. Suppose that, for j = i+n, (σ′, i+n) |= snm
implies τ(i+ n)− τ(i) = min(m, 2 · C). In the induction step we consider
j = i+ n+ 1. Assume that (σ′, i+ n+ 1) |= sn+1

l . By Points 1 and 2 of

22

the definition of SC , there is 1 ≤ k′ ≤ C such that (σ′, i + n + 1) |= s1k′ .
As (σ′, i + n) |= snm and (σ′, i + n + 1) |= s1k′ , we have that, by Point 4
of the definition of SC , (σ′, i+ n+ 1) |= sn+1

min(m+k′,2·C). Also, by Point 3

of the definition, there is no l 6= m+ k′ such that (σ′, i+ n+ 1) |= sn+1
l .

Then, we can assume that l = min(m+ k′, 2 ·C). By induction hypothesis,
τ(i+n)−τ(i) = min(m, 2·C) and, by Definition 6, τ(i+n+1)−τ(i+n) = k′.
Then τ(i+ n+ 1)− τ(i) = min(m+ k′, 2 · C). o

We now show Theorem 4, one can use similar arguments to show
Theorem 5.

Theorem 4 (restated). Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL

formula in NNF and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → ψ]i) be the result of

replacing each ψi in ϕ by ψ]i as in Table 3. Then, ϕ is satisfiable if, and
only if, ϕ] ∧ SC is satisfiable.

Proof. (⇒) If ϕ is satisfiable then there is a timed state sequence ρ = (σ, τ)
such that (ρ, 0) |= ϕ. By Theorem 3, we can assume w.l.g. that ρ is C-
bounded, where C − 1 is the largest constant in ϕ. Let σ′ = σ′0σ

′
1 . . . be

as in Definition 5. By Lemma 1, (σ′, 0) |= SC . So we need to show that
(σ′, 0) |= ϕ]. By definition of σ′, for all propositional variables pi occurring
in σ and all j ∈ N, we have (ρ, j) |= pi iff (σ′, j) |= pi. Clearly, for any
propositional formula α, (ρ, j) |= α iff (σ′, j) |= α. Then, following our
translation in Table 3, we only need to show that (ρ, j) |= ψi implies

(σ′, j) |= ψ]i , i, j ∈ N. This follows from Claims 7, 8, 9 and 10 below (other
cases are similar).

Claim 7 For c1 > 0, if (ρ, j) |= #[c1,c2]α then (σ′, j) |=
#((
∨
c1≤i≤c2 δ

−
i) ∧ α).

If (ρ, j) |= #[c1,c2]α, with c1 > 0, then (ρ, j + 1) |= α and
τ(j + 1) ∈ τ(j) + [c1, c2]. By definition of σ′, (σ′, j + 1) |= α and
(σ′, j + 1) |=

∨
c1≤i≤c2 δ

−
i . Then, (σ′, j) |= #((

∨
c1≤i≤c2 δ

−
i) ∧ α).

Claim 8 For c1 > 0, if (ρ, j) |= αU[c1,c2]β then (σ′, j) |=∨
1≤i≤c2(#i((

∨
c1≤l≤c2 s

i
l) ∧ β) ∧

∧
0≤k<i #

kα).
If (ρ, j) |= αU[c1,c2]β, with c1 > 0, then there is m ∈ N such that

m ≥ j, τ(m) ∈ τ(j) + [c1, c2] and (ρ,m) |= β and for all n ∈ N, if
j ≤ n < m then (ρ, n) |= α. By definition of σ′, (σ′,m) |= β and for
all n ∈ N, if j ≤ n < m then (σ′, n) |= α. As τ(m)− τ(j) ≤ c2 < C,
by Proposition 4, (σ′,m) |= sm−jτ(m)−τ(j). As c1 ≤ τ(m)− τ(j) ≤ c2,

we have (σ′,m) |=
∨
c1≤l≤c2 s

m−j
l . Since c1 > 0 and τ is strictly

monotonically increasing, we have 1 ≤ m− j ≤ c2. Then, (σ′, j) |=∨
1≤i≤c2(#i(

∨
c1≤l≤c2 s

i
l) ∧ β). As (σ′, n) |= α for all n ∈ N such

23

that j ≤ n < m, we have that (σ′, j) |=
∧

0≤k<m−j #kα. Thus,

(σ′, j) |=
∨

1≤i≤c2(#i((
∨
c1≤l≤c2 s

i
l) ∧ β) ∧

∧
0≤k<i #

kα).

Claim 9 For c1 > 0, if (ρ, j) |= αU[c1,∞)β then (σ′, j) |=∨
1≤i≤c1(#i((

∨
c1≤l≤c1+C sil) ∧ αUβ) ∧

∧
0≤k<i #

kα).

If (ρ, j) |= αU[c1,∞)β, with c1 > 0, then there is m ∈ N such
that m ≥ j, τ(m) ∈ τ(j)+[c1,∞) and (ρ,m) |= β and for all n ∈ N,
if j ≤ n < m then (ρ, n) |= α. Let i ∈ N be minimum such that
τ(i) ≥ τ(j) + c1. That is, τ(i− 1) < τ(j) + c1 (as c1 > 0 we know
that such i exists). As ρ is C-bounded, by minimality of i, we have
that τ(i) − τ(j) ≤ c1 + C, (ρ, i) |= αU[0,∞)β and for all n ∈ N, if
j ≤ n < i then (ρ, n) |= α.

By definition of σ′, (σ′, i) |= αUβ and for all n ∈ N, if j ≤ n < i
then (σ′, n) |= α. As τ(i) − τ(j) ≤ c1 + C < 2 · C, by Propos-
ition 4, (σ′, i) |= si−jτ(i)−τ(j). As c1 ≤ τ(i) − τ(j) ≤ c1 + C, we

have (σ′, i) |=
∨
c1≤l≤c1+C si−jl . Since τ is strictly monotonic-

ally increasing, we have that j < i ≤ j + c1. Then, (σ′, j) |=∨
1≤i′≤c1(#i′(

∨
c1≤l≤c1+C si

′
l) ∧ αUβ). As (σ′, n) |= α for all n ∈ N

such that j ≤ n < i, we have that (σ′, j) |=
∧

0≤k<i−j #kα. Thus,

(σ′, j) |=
∨

1≤i′≤c1(#i′(
∨
c1≤l≤c1+C si

′
l) ∧ αUβ) ∧

∧
0≤k<i′ #

kα).

Claim 10 For c1 > 0, if (ρ, j) |= αŨ[c1,c2]β then (σ′, j) |=
¬(¬(α)U[c1,c2]¬(β))].

If (ρ, j) |= αŨ[c1,c2]β then, by semantics of Ũ , (ρ, j) |=
¬(¬(α)U[c1,c2]¬(β)). By Claim 12, if (ρ, j) 6|= ¬(α)U[c1,c2]¬(β) then

(σ′, j) 6|=
∨

1≤i≤c2(#i((
∨
c1≤l≤c2 s

i
l)∧¬(β))∧

∧
0≤k<i #

k¬(α)). That

is, (σ′, j) |= ¬(¬(α)U[c1,c2]¬(β))].

(⇐) If ϕ] ∧SC is satisfiable then there is a state sequence σ′ such that
(σ′, 0) |= ϕ] ∧ SC . Let ρ = (σ, τ) be a C-bounded timed state sequence as
in Definition 6. We need to show that (ρ, 0) |= ϕ. By definition of σ, for all
propositional variables pi occurring in σ′ but not in Πδ ∪

⋃
1≤i′≤C Π

i′ and
all j ∈ N, we have (ρ, j) |= pi iff (σ′, j) |= pi. Clearly, for any propositional
formula α, (ρ, j) |= α iff (σ′, j) |= α. Then, following our translation in

Table 3, we only need to show that (σ′, j) |= ψ]i implies (ρ, j) |= ψi, i, j ∈ N.
This follows from Claims 11 and 12 below (other cases are similar).

Claim 11 For c1 > 0, if (σ′, j) |= #((
∨
c1≤i≤c2 δ

−
i) ∧ α) then

(ρ, j) |= #[c1,c2]α.

If (σ′, j) |= #((
∨
c1≤i≤c2 δ

−
i) ∧ α), with c1 > 0, then, by definition

of ρ, c1 ≤ τ(j + 1)− τ(j) ≤ c2 and (ρ, j + 1) |= α. Then, (ρ, j) |=
#[c1,c2]α.

24

Claim 12 For c1 > 0, if (σ′, j) |=
∨

1≤i≤c2(#i((
∨
c1≤l≤c2 s

i
l)∧ β)∧∧

0≤k<i #
kα) then (ρ, j) |= αU[c1,c2]β.

If (σ′, j) |=
∨

1≤i≤c2(#i((
∨
c1≤l≤c2 s

i
l) ∧ β) ∧

∧
0≤k<i #

kα), with
c1 > 0, then there is i, 1 ≤ i ≤ c2, such that (σ′, j+ i) |= β and, for
all k, 0 ≤ k < i, (σ′, j + k) |= α. By definition of ρ, (ρ, j + i) |= β
and, for all 0 ≤ k < i, (ρ, j + k) |= α. So it remains to show that
τ(j + i) ∈ τ(j) + [c1, c2]. By Proposition 5, if (σ′, j + i) |= sil and
c1 ≤ l ≤ c2 < 2 · C then l = τ(j + i) − τ(j). By definition of SC ,
we can assume that there is only one l such that (σ′, j + i) |= sil.
As c1 ≤ l ≤ c2, τ(j + i) ∈ τ(j) + [c1, c2]. Thus, (ρ, j) |= αU[c1,c2]β.

Claim 13 For c1 > 0, if (σ′, j) |=
∨

1≤i≤c1(#i((
∨
c1≤l≤c1+C sil) ∧

αUβ) ∧
∧

0≤k<i #
kα) then (ρ, j) |= αU[c1,∞)β.

If (σ′, j) |=
∨

1≤i≤c1(#i((
∨
c1≤l≤c1+C sil)∧αUβ)∧

∧
0≤k<i #

kα),
with c1 > 0, then there is i, 1 ≤ i ≤ c1, such that (σ′, j + i) |= αUβ
and, for all k, 0 ≤ k < i, (σ′, j + k) |= α. By definition of ρ,
(ρ, j + i) |= αUβ and, for all 0 ≤ k < i, (ρ, j + k) |= α. So, it
remains to show that τ(j + i) ∈ τ(j) + [c1,∞). By Proposition 5, if
(σ′, j + i) |= sil and c1 ≤ l ≤ c1 +C < 2 ·C then l = τ(j + i)− τ(j).
By definition of SC , we can assume that there is only one l such
that (σ′, j + i) |= sil. As c1 ≤ l ≤ c1 + C, τ(j + i) ∈ τ(j) + [c1,∞).
Thus, (ρ, j) |= αU[c1,∞)β.

Claim 14 For c1 > 0, if (σ′, j) |= ¬(¬(α)U[c1,c2]¬(β))] then (ρ, j) |=
αŨ[c1,c2]β.

If (σ′, j) 6|= (¬(α)U[c1,c2]¬(β))] then, by Claim 8, (ρ, j) 6|=
¬(α)U[c1,c2]¬(β). By semantics of Ũ , we have that (ρ, j) |= αŨ[c1,c2]β.

o

Example We illustrate the Time Difference translation by carrying out
a simple example. Assume that we are given the following MTL formula
(in NNF and FNF):

ϕ = p0 ∧2[0,∞)(p0 → #[2,3]p1)

∧2[0,∞)(p1 → ♦[1,2]¬q).

Using Table 3, we translate ϕ into LTL as follows:

ϕ] = p0 ∧2[0,∞)(p0 → (¬gap ∧ (#[2,3]p1)
]))

∧2[0,∞)(p1 → (¬gap ∧ (♦[1,2]¬q)])),

25

where

(#[2,3]p1)
] = #((

∨
2≤i≤3 δ

−
i) ∧ p1)

(♦[1,2]¬q)] =
∨

1≤i≤2(#
i((
∨

1≤j≤2 sij) ∧ ¬q))

(recall that ♦Iψ ≡ trueUIψ). By Theorem 4, ϕ is satisfiable iff ϕ] ∧ S4 is
satisfiable, where S4 is the conjunction of the following:

1. #2⊕=1 Πδ, for Πδ = {δ−k | 1 ≤ k ≤ 4};
2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ 4;
3. 2⊕≤1 Π i, for 1 ≤ i ≤ 8 and Π i = {sij | i ≤ j ≤ 8};
4. 2(#s1k ∧ s

j
l → #sj+1

min(l+k,8)), for 1 < j + 1 ≤ l + k ≤ 8.

C Additional Experimental Results

We have empirically evaluated the translation presented in Sections 3 and
4 on a much wider range of LTL solvers than we were able to report in
Section 5, namely, Aalta, Leviathan, LS4, LWB, NuSMV, pltl, TRP++, and
TSPASS.

Aalta [24] implements the obligation-based LTL satisfiability check-
ing algorithm for finite and infinite traces devised by Li et al. [29]. We
have performed experiments with both versions 1.2 and 2.0 of Aalta.
As Aalta 2.0 was consistently several orders of magnitude faster than
Aalta 1.2, we will only report the results for the latest version of Aalta.

NuSMV 2.6.0 [34] provides a reduction of the LTL satisfiability problem
to the LTL model checking problem [7]. It is then possible to decide
the latter problem either using a BDD-based algorithm (NuSMV-BDD)
or a SAT-based algorithm (NuSMV-SBMC). We use NuSMV-BDD with the
options dynamic for dynamic reordering and elbwd for backward image
computation, for NuSMV-SBMC we have enabled the completeness check.

The Logics Workbench 1.1 (LWB) [30] contains implementations of
two different LTL solvers. The first is a two-pass tableau-based decision
procedure developed by Janssen [27] which underlies the provable and
satisfiable functions of the pltl module of LWB. In the following we
denote this procedure by LWB-SAT. The second is a one-pass tableau
calculus by Schwendimann [37] which underlies the model function of the
pltl module. In the following we denote this procedure by LWB-MOD.

Leviathan [28] is an LTL satisfiability checking and model building
tool that implements a novel one-pass tableau calculus by Reynolds [25,36].

The pltl [35] system also implements two tableau-based methods.
The tree method is again based on Schwendimann’s one-pass tableau

26

calculus, the graph method is based on a one-pass and-or tree tableau
calculus [13] resulting in a time complexity optimal decision procedure for
LTL.

TRP++ 2.2 [39] is based on an ordered resolution calculus that operates on
LTL formulae in a clausal normal form [16], while TSPASS [40] extends that
calculus to monodic first-order linear time temporal logic over expanding
domains [33]. We use TSPASS with the ModelConstruction option so that
it returns a model for satisfiable formulae [32].

LS4 [31] is an LTL-prover based on labelled superposition with partial
model guidance developed by Suda and Weidenbach [38]. It operates on
LTL formulae in the same clausal normal form as TRP++.

We again use the unsatisfiable parameterised formulae θ1b1 := ♦[0,b1]p∧
2[0,∞)¬p and θ2b2 := #[10,∞)p ∧#[c1,∞)¬p to highlight differences between
the Time Difference Translations and the Gap translations. We expect
that on θ1b1 combinations of the Time Difference Translations with LTL
solvers perform worse than combinations of the Gap Translations with
LTL solvers, while we expect the opposite for θ2b2 .

Tables 6 and 7 show the median CPU times for the combination of our
translations with the various LTL solvers on θ1b1 , with values of b1 between
0 and 10, and on θ2b2 , with values of b2 between 10 and 20, respectively. An
entry ‘T/O’ indicates that the timeout of 1000 CPU seconds was exceeded
by a prover, an entry ‘OoM’ indicates that the LTL solver ran out of
memory and stopped, while entry ‘Fail’ indicates that the LTL solver
encountered some other error condition and stopped.

Figure 2 and 3 show the same data in the form of ‘heat maps’ where
different colours are used to represent different ranges of runtimes. This
allows to easily recognise significant differences in the performance of
the various combinations of translations and provers while playing down
insignificant differences.

The results in Table 6 and Figure 2 confirm our hypothesis that on
θ1b1 the Gap translations will lead to better performance than the Time
Difference translations. For both the strict and non-strict semantics, for
all LTL solvers, and for all values of b1 considered, the Time Difference
translations result in equal or worse performance than the Gap trans-
lation, with the vast majority of entries indicating a significantly worse
performance for the Time Difference translations.

Regarding the strict versus the non-strict translations, we would expect
that a non-strict translation results in worse performance compared to the
corresponding strict translation as the search space for an LTL solver is
larger. For the non-strict versus the strict Gap translation we see that this

27

Table 6: Performance on ♦[0,b1]p ∧2[0,∞)¬p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

A
a
l
t
a
A
a
l
t
a
L
e
v
i
a
t
h
L
e
v
i
a
t
h

L
S
4

L
S
4

L
W
B

L
W
B

L
W
B

L
W
B
N
u
S
M
V
N
u
S
M
V

N
u
S
M
V
N
u
S
M
V
p
l
t
l
p
l
t
l

T
R
P
+
+

T
R
P
+
+
T
S
P
A
S
S
T
S
P
A
S
S

b 1
a
n

a
n

M
O
D

M
O
D

S
A
T

S
A
T

B
D
D

B
D
D

S
B
M
C

S
B
M
C

S
tr

ic
t

S
em

a
n
ti

cs

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

2
0
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

0
.0

0
0
.0

0
T

/
O

0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

2
0
.3

2
0
.0

0
0
.0

6
0
.0

1
0
.3

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

0
2

0
.0

0
0
.0

0
T

/
O

T
/
O

0
.0

0
0
.0

0
0
.0

2
0
.0

1
T

/
O

0
.0

2
3
3
.5

4
0
.0

0
0
.3

1
0
.0

2
O

o
M

0
.0

0
0
.0

0
0
.0

0
0
.0

3
0
.0

0
3

0
.0

0
0
.0

0
T

/
O

T
/
O

0
.0

0
0
.0

0
0
.1

1
0
.0

1
T

/
O

0
.0

2
T

/
O

0
.0

0
1
.3

7
0
.0

2
O

o
M

0
.0

0
0
.0

2
0
.0

0
0
.0

9
0
.0

0
4

0
.0

0
0
.0

0
T

/
O

T
/
O

0
.0

0
0
.0

0
0
.8

0
0
.0

1
T

/
O

0
.0

2
T

/
O

0
.0

0
4
.9

3
0
.0

2
O

o
M

0
.0

0
0
.1

0
0
.0

0
0
.2

2
0
.0

0
5

0
.0

0
0
.0

0
T

/
O

T
/
O

0
.0

1
0
.0

0
3
.9

2
0
.0

1
T

/
O

0
.0

2
T

/
O

0
.0

0
1
5
.0

2
0
.0

3
O

o
M

0
.0

0
0
.6

0
0
.0

0
0
.4

1
0
.0

0
6

0
.0

0
0
.0

0
T

/
O

T
/
O

0
.0

1
0
.0

0
1
5
.4

9
0
.0

1
T

/
O

0
.0

2
T

/
O

0
.0

0
4
0
.1

4
0
.0

4
O

o
M

0
.0

0
3
.1

8
0
.0

0
0
.6

2
0
.0

1
7

F
a
il

0
.0

1
T

/
O

T
/
O

0
.0

1
0
.0

0
5
1
.5

1
0
.0

1
T

/
O

0
.0

2
T

/
O

0
.0

0
9
6
.4

7
0
.0

5
O

o
M

0
.0

0
1
5
.1

3
0
.0

0
2
.9

4
0
.0

1
8

F
a
il

0
.0

1
T

/
O

T
/
O

0
.0

2
0
.0

0
F

a
il

0
.0

1
T

/
O

0
.0

2
T

/
O

0
.0

0
2
1
3
.8

6
0
.0

6
O

o
M

0
.0

0
6
4
.0

0
0
.0

0
7
.8

6
0
.0

1
9

F
a
il

0
.0

1
T

/
O

T
/
O

0
.0

2
0
.0

0
F

a
il

0
.0

1
T

/
O

0
.0

2
T

/
O

0
.0

1
4
4
0
.5

9
0
.0

6
O

o
M

0
.0

0
2
2
4
.8

3
0
.0

0
2
7
.2

8
0
.0

1
1
0

F
a
il

0
.0

1
T

/
O

T
/
O

0
.0

3
0
.0

0
F

a
il

0
.0

1
T

/
O

0
.0

3
T

/
O

0
.0

1
8
5
6
.3

4
0
.0

8
O

o
M

0
.0

0
7
6
0
.2

5
0
.0

0
1
1
0
.1

9
0
.0

1

N
o
n
-s

tr
ic

t
S
em

a
n
ti

cs

0
0
.0

0
0
.0

0
0
.5

3
T

/
O

0
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

0
0
.0

0
0
.0

3
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

0
1

0
.0

4
0
.0

0
T

/
O

T
/
O

0
.0

0
0
.0

0
0
.0

1
0
.0

1
1
3
9
.7

0
0
.0

1
0
.4

0
0
.0

0
3
.2

1
0
.0

6
O

o
M

0
.0

0
0
.3

7
0
.0

0
0
.3

2
0
.0

1
2

0
.4

9
0
.0

0
T

/
O

T
/
O

0
.0

0
0
.0

0
0
.4

1
0
.0

1
O

o
M

0
.0

1
2
5
.4

5
0
.0

0
T

/
O

0
.1

2
O

o
M

0
.0

0
T

/
O

0
.0

1
3
6
.1

7
0
.0

2
3

2
.2

5
0
.0

0
T

/
O

T
/
O

0
.0

1
0
.0

0
1
3
.9

4
0
.0

1
O

o
M

0
.0

1
T

/
O

0
.0

0
T

/
O

0
.2

4
O

o
M

0
.0

0
T

/
O

0
.1

1
T

/
O

0
.0

3
4

1
2
.7

1
0
.0

0
T

/
O

T
/
O

0
.0

2
0
.0

0
5
1
2
.9

7
0
.0

1
O

o
M

0
.0

1
T

/
O

0
.0

0
T

/
O

0
.4

9
O

o
M

0
.0

0
T

/
O

0
.5

5
T

/
O

0
.0

5
5

3
5
.0

2
0
.0

0
T

/
O

T
/
O

0
.0

3
0
.0

1
T

/
O

0
.0

1
O

o
M

0
.0

1
T

/
O

0
.0

0
T

/
O

0
.9

5
O

o
M

0
.0

0
T

/
O

2
.2

0
T

/
O

0
.0

8
6

1
1
3
.0

1
0
.0

0
T

/
O

T
/
O

0
.0

4
0
.0

2
T

/
O

0
.0

1
O

o
M

0
.0

2
T

/
O

0
.0

0
T

/
O

1
.9

7
O

o
M

0
.0

1
T

/
O

7
.2

9
T

/
O

0
.1

2
7

F
a
il

0
.0

0
T

/
O

T
/
O

0
.1

0
0
.0

3
T

/
O

0
.0

2
O

o
M

0
.0

5
T

/
O

0
.0

0
T

/
O

3
.9

6
O

o
M

0
.0

4
T

/
O

2
1
.6

1
T

/
O

0
.1

6
8

F
a
il

0
.0

0
T

/
O

T
/
O

0
.1

5
0
.0

4
F

a
il

0
.0

3
O

o
M

0
.1

3
T

/
O

0
.0

0
T

/
O

6
.1

6
O

o
M

0
.0

9
T

/
O

5
8
.2

0
T

/
O

0
.2

2
9

F
a
il

0
.0

0
T

/
O

T
/
O

0
.1

9
0
.0

6
F

a
il

0
.0

6
O

o
M

0
.3

8
T

/
O

0
.0

1
T

/
O

1
0
.6

3
O

o
M

0
.2

0
T

/
O

1
4
8
.4

1
T

/
O

0
.3

0
1
0

F
a
il

0
.0

0
T

/
O

T
/
O

0
.2

5
0
.0

9
F

a
il

0
.1

2
O

o
M

1
.1

4
T

/
O

0
.0

1
T

/
O

1
7
.0

4
O

o
M

0
.5

3
T

/
O

3
2
8
.8

1
T

/
O

0
.4

0

28

Table 7: Performance on #[10,∞)p ∧#[b2,∞)¬p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

T
D

G
a
p

A
a
l
t
a
A
a
l
t
a
L
e
v
i
a
t
h
L
e
v
i
a
t
h

L
S
4

L
S
4

L
W
B

L
W
B

L
W
B

L
W
B

N
u
S
M
V
N
u
S
M
V
N
u
S
M
V
N
u
S
M
V
p
l
t
l
p
l
t
l
T
R
P
+
+
T
R
P
+
+
T
S
P
A
S
S
T
S
P
A
S
S

b 2
a
n

a
n

M
O
D

M
O
D

S
A
T

S
A
T

B
D
D

B
D
D

S
B
M
C

S
B
M
C

S
tr

ic
t

S
em

a
n
ti

cs

1
0

0
.0

0
0
.0

6
0
.0

4
T

/
O

0
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

2
0
.0

2
0
.6

3
0
.0

4
0
.0

8
0
.1

8
0
.0

1
0
.0

0
0
.0

0
0
.3

3
0
.0

3
4
8
9
.2

8
1
1

0
.0

0
0
.0

9
0
.0

8
T

/
O

0
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

2
0
.0

2
0
.9

1
0
.0

6
0
.1

0
0
.2

0
0
.0

1
0
.0

0
0
.0

0
0
.5

0
0
.0

4
8
2
6
.8

0
1
2

0
.0

0
0
.1

4
0
.1

2
T

/
O

0
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

2
0
.0

2
2
.7

6
0
.0

7
0
.1

2
0
.2

4
0
.0

1
0
.0

0
0
.0

0
0
.7

7
0
.0

5
T

/
O

1
3

0
.0

0
0
.2

2
0
.1

8
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

2
0
.0

2
9
.7

4
0
.1

4
0
.1

4
0
.2

7
0
.0

1
0
.0

0
0
.0

0
1
.1

8
0
.0

5
T

/
O

1
4

0
.0

0
0
.2

9
0
.2

2
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

2
0
.0

2
5
5
.9

1
0
.1

5
0
.1

7
0
.3

2
0
.0

1
0
.0

0
0
.0

0
1
.6

8
0
.0

7
T

/
O

1
5

0
.0

0
0
.4

0
0
.3

0
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

2
0
.0

2
5
3
.4

9
0
.1

5
0
.2

0
0
.3

6
0
.0

1
0
.0

0
0
.0

0
2
.3

3
0
.0

8
T

/
O

1
6

0
.0

0
0
.5

7
0
.4

2
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

2
0
.0

2
T

/
O

0
.2

4
0
.2

4
0
.4

1
0
.0

1
0
.0

0
0
.0

0
3
.1

5
0
.0

9
T

/
O

1
7

0
.0

0
0
.5

6
0
.6

0
T

/
O

0
.0

0
0
.0

2
0
.0

1
0
.0

1
0
.0

2
0
.0

2
T

/
O

0
.2

7
0
.2

8
0
.4

7
0
.0

1
0
.0

0
0
.0

1
4
.3

8
0
.1

0
T

/
O

1
8

0
.0

0
0
.7

8
0
.8

2
T

/
O

0
.0

0
0
.0

2
0
.0

1
0
.0

1
0
.0

2
0
.0

2
T

/
O

0
.4

0
0
.3

4
0
.5

4
0
.0

1
0
.0

0
0
.0

1
5
.6

8
0
.1

3
T

/
O

1
9

0
.0

0
1
.0

9
1
.1

0
T

/
O

0
.0

0
0
.0

2
0
.0

1
0
.0

1
0
.0

2
0
.0

2
T

/
O

0
.1

3
0
.3

9
0
.6

1
0
.0

1
0
.0

0
0
.0

1
7
.3

5
0
.1

5
T

/
O

2
0

0
.0

0
1
.3

1
1
.5

2
T

/
O

0
.0

0
0
.0

3
0
.0

1
0
.0

1
0
.0

2
0
.0

2
T

/
O

0
.1

4
0
.4

6
0
.6

8
0
.0

1
0
.0

0
0
.0

1
9
.4

1
0
.1

8
T

/
O

N
o
n
-s

tr
ic

t
S
em

a
n
ti

cs

1
0

0
.0

0
0
.0

6
0
.0

8
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.9

3
0
.0

5
0
.1

0
0
.1

9
0
.0

0
0
.0

0
0
.0

0
0
.3

2
0
.0

0
5
1
1
.5

6
1
1

0
.0

0
0
.1

0
0
.1

2
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
1
.8

2
0
.0

5
0
.1

2
0
.2

3
0
.0

0
0
.0

0
0
.0

0
0
.4

9
0
.0

0
8
7
8
.0

0
1
2

0
.0

0
0
.1

6
0
.1

8
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
6
.0

6
0
.0

5
0
.1

4
0
.2

6
0
.0

0
0
.0

0
0
.0

0
0
.7

4
0
.0

0
T

/
O

1
3

0
.0

0
0
.2

3
0
.2

4
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
1
1
.3

3
0
.0

6
0
.1

7
0
.3

1
0
.0

0
0
.0

0
0
.0

0
1
.1

3
0
.0

0
T

/
O

1
4

0
.0

0
0
.2

8
0
.2

8
T

/
O

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
4
2
.4

4
0
.0

8
0
.2

0
0
.3

5
0
.0

0
0
.0

0
0
.0

0
1
.6

2
0
.0

0
T

/
O

1
5

0
.0

0
0
.3

8
0
.4

2
T

/
O

0
.0

0
0
.0

2
0
.0

1
0
.0

1
0
.0

1
0
.0

1
9
5
9
.1

6
0
.1

2
0
.2

4
0
.4

0
0
.0

0
0
.0

0
0
.0

0
2
.2

3
0
.0

0
T

/
O

1
6

0
.0

0
0
.5

2
0
.5

7
T

/
O

0
.0

0
0
.0

2
0
.0

1
0
.0

1
0
.0

1
0
.0

1
T

/
O

0
.1

3
0
.2

8
0
.4

5
0
.0

0
0
.0

0
0
.0

0
3
.0

3
0
.0

0
T

/
O

1
7

0
.0

0
0
.6

8
0
.8

6
T

/
O

0
.0

0
0
.0

2
0
.0

1
0
.0

1
0
.0

1
0
.0

1
T

/
O

0
.1

3
0
.3

3
0
.5

2
0
.0

0
0
.0

0
0
.0

0
4
.1

9
0
.0

0
T

/
O

1
8

0
.0

0
0
.8

8
1
.0

0
T

/
O

0
.0

0
0
.0

3
0
.0

1
0
.0

1
0
.0

1
0
.0

1
T

/
O

0
.1

4
0
.3

9
0
.5

8
0
.0

0
0
.0

0
0
.0

0
5
.4

3
0
.0

0
T

/
O

1
9

0
.0

0
0
.9

9
1
.4

4
T

/
O

0
.0

0
0
.0

3
0
.0

1
0
.0

1
0
.0

1
0
.0

1
T

/
O

0
.1

8
0
.4

6
0
.6

5
0
.0

0
0
.0

0
0
.0

0
7
.0

1
0
.0

1
T

/
O

2
0

0
.0

0
1
.2

6
2
.1

8
T

/
O

0
.0

0
0
.0

4
0
.0

1
0
.0

1
0
.0

1
0
.0

1
T

/
O

0
.1

5
0
.5

3
0
.7

4
0
.0

0
0
.0

0
0
.0

0
8
.9

4
0
.0

1
T

/
O

29

is indeed the case for all provers except Aalta. Likewise, the non-strict
Time Difference translation results in worse performance than the strict
Time Difference translation with the exception of NuSMV-BDD. It would be
of interest to investigate what causes these deviations from expectations.

The best performing combination is Gap + Aalta. The most ‘robust’
LTL solver, in the sense of producing the lowest total runtime across all
translations and all instances of θ1b1 considered, is LS4.

The results in Table 7 and Figure 3 also largely confirm our hypothesis
that on θ2b2 the Time Difference translations will lead to better performance
than the Gap translations. In total we have considered ten LTL solvers
and translations under two different semantics, giving us twenty points of
comparison between a Time Diference translation and a Gap translation,
each over eleven instances of θ2b2 . For twelve of these comparison points
a Time Difference translation results in better performance than a Gap
translation (highlighted in green in Table 7), for five comparison points
the performance is the same and only for three comparison points the
Time Difference translation results in worse performance than the Gap
translation (highlighted in pink in Table 7).

Strict Semantics Non-Strict Semantics

TD + Aalta
Gap + Aalta
TD + Leviathan
Gap + Leviathan
TD + LS4
Gap + LS4
TD + LWB-MOD
Gap + LWB-MOD
TD + LWB-SAT
Gap + LWB-SAT
TD + NuSMV-BDD
Gap + NuSMV-BDD
TD + NuSMV-SBMC
Gap + NuSMV-SBMC
TD + pltl
Gap + pltl
TD + TRP++

Gap + TRP++

TD + TSPASS
Gap + TSPASS

Figure 2: Heat map of the runtimes on θ1b1 = ♦[0,b1]p ∧ 2[0,∞)¬p. Each
rectangle represents the runtime of one approach on one instance of θ1b1
with runtimes given colours as follows:

< 0.01 sec > 0.01 sec, ≤ 0.25 sec > 0.25 sec, ≤ 0.50 sec > 0.50 sec, ≤ 1 sec
> 1 sec, ≤ 2 sec > 2 sec, ≤ 4 sec > 4 sec, ≤ 8 sec > 8 sec, ≤ 16 sec
> 16 sec, ≤ 32 sec > 32 sec, ≤ 64 sec > 64 sec, ≤ 125 sec > 125 sec, ≤ 250 sec
> 250 sec, ≤ 500 sec > 500 sec, ≤ 1000 sec T/O, OoM or Fail

30

Strict Semantics Non-Strict Semantics

TD + Aalta
Gap + Aalta
TD + Leviathan
Gap + Leviathan
TD + LS4
Gap + LS4
TD + LWB-MOD
Gap + LWB-MOD
TD + LWB-SAT
Gap + LWB-SAT
TD + NuSMV-BDD
Gap + NuSMV-BDD
TD + NuSMV-SBMC
Gap + NuSMV-SBMC
TD + pltl
Gap + pltl
TD + TRP++

Gap + TRP++

TD + TSPASS
Gap + TSPASS

Figure 3: Heat map of the runtimes on θ2b2 := #[10,∞)p ∧#[c1,∞)¬p. Each
rectangle represents the runtime of one approach on one instance of θ2b2
with runtimes given colours as follows:

< 0.01 sec > 0.01 sec, ≤ 0.25 sec > 0.25 sec, ≤ 0.50 sec > 0.50 sec, ≤ 1 sec
> 1 sec, ≤ 2 sec > 2 sec, ≤ 4 sec > 4 sec, ≤ 8 sec > 8 sec, ≤ 16 sec
> 16 sec, ≤ 32 sec > 32 sec, ≤ 64 sec > 64 sec, ≤ 125 sec > 125 sec, ≤ 250 sec
> 250 sec, ≤ 500 sec > 500 sec, ≤ 1000 sec T/O, OoM or Fail

There are several LTL solvers that perform very well on θ2b2 , the most
‘robust’ LTL solver on θ2b2 is pltl.

Overall the experiments presented in this section confirm that no
translation is strictly ‘better’ than the other. It will depend on the charac-
teristics of the formula and sometimes on the LTL solver whether a Time
Difference translation or a Gap translation results in better performance
and therefore in a greater likelihood of deciding a formula in reasonable
time. However, the experiments also show the significant performance
improvements that can be achieved by choosing the ‘right’ translation and,
arguably, the simplicity of the Gap translations means that more often
than not it is the translation to use. The experimental results for Mul-
tiprocessor Job-Shop Scheduling problems presented in the next section
provide additional support for this.

D Experiments with MJS problems

We have performed an experimental evaluation of the combination of our
translations with a wide range of LTL solvers on MJS problems. The

31

provers we have used are Aalta, Leviathan, LS4, LWB, NuSMV, TRP++, and
TSPASS. For a short description of each of these provers see Section C.

Regarding the Multiprocessor Job-shop Scheduling problems we made
the simplifying assumption that a job ji, for each i, 1 ≤ i ≤ n, takes the
same amount of time ti on whichever machine it is processed on. We can
then characterise a MJS problem by stating (i) a job list J consisting of a
list of durations (t′1, . . . , t

′
n), (ii) the number k of machines available, and

(iii) the time bound t. In equations 5, 6, 12 and 13, for every i, 1 ≤ i ≤ n,
and every l, 1 ≤ l ≤ k, tjiml

will be given by t′ji . The time bound t is used
in the formula ♦[0,t]

∧n
i=1 has runji that expresses the requirement for a

schedule that completes all n jobs on k machines in at most t time points.

It is an interesting characteristic of the MTL formulae for MJS prob-
lems, in contrast to, say, random 3CNF formulae or random modal K3CNF
formulae that are often used for benchmarking SAT solvers or modal logic
provers, unsatisfiable MTL formulae are smaller than satisfiable MTL for-
mulae: A time bound t that is too small leads to a MJS problem for which
no schedule exists that can complete all jobs within the given time bound
while a sufficiently large time bound guarantees that such a schedule can
be found. By our encodings a small time bound results in a smaller LTL
formula than a large time bound. The difference in size is more pronounced
for the Time Difference Translations than for the Gap Translations.

In our experiments we varied the number n of jobs between 1 and
4, the duration t′i of a job between 1 and 4, the number k of machines
between 1 and 3 and finally the time bound t between 0 and 4. We then
constructed MTL formulae for the strict semantics and the non-strict
semantics according to the formalisations in Section 6. Each formula was
transformed to Flat Normal Form, translated to LTL using one of the
encodings, and each solver run five times on the resulting LTL formula
(with a timeout of 1000 CPU seconds), and the median CPU time over
those five runs determined. We refer to that median CPU time as the
runtime.

If an LTL solver reports that the formula resulting from a MJS problem
with n jobs, k machines and time bound t is satisfiable, then a schedule
exists that completes all n jobs on k machines within t time points.
However, this provides us with no information about what that schedule
might be. If for a satisfiable formula the LTL solver also returns a model,
then the information at which time point start runjiml

(or start runji∧ml

for the non-strict semantics) becomes true tells when a particular job has
to be started on a particular machine in order to complete all jobs within
the time bound, thus, the model provides us with a schedule.

32

Among the systems included in our experiments, only Leviathan,
NuSMV-BDD, NuSMV-SBMC, LWB-MOD and TSPASS can produce models and
have been used with the command line options that require them to do
so. It should be noted that the model construction in TSPASS potentially
requires significantly more resolution inferences to be performed than
are necessary to just decide the satisfiability of a formula. Thus, the way
we use TSPASS puts it as a distinct performance disadvantage over TRP++

although both perform very similar inference steps when just deciding the
satisfiability of an LTL formula.

Tables 8 and 9 show the results for the formalisation of MJS problems
in MTL with strict semantics and non-strict semantics, respectively. The
first three columns in each table show the job list J , the number k of
machines and the time bound t. The fourth column indicates whether the
corresponding MTL formula is satisfiable (S) or unsatisfiable (U). The
remaining columns of the table show the runtime for each translation and
each prover (‘T/O’ indicates timeout). Figure 4 shows the same data in
the form of a heat map.

Table 8: Performance of LTL solvers on MJS problems (strict semantics)
TD Gap TD Gap TD Gap TD Gap TD Gap TD Gap TD Gap

Aalta Aalta LS4 LS4 LWB LWB NuSMV NuSMV NuSMV NuSMV TRP++ TRP++ TSPASS TSPASS

J k t S MOD MOD BDD BDD SBMC SBMC

1 1 0 U 0.00 0.00 0.00 0.00 0.01 0.02 0.42 0.03 0.04 0.02 0.00 0.00 0.00 0.02
1 1 1 S 0.00 0.00 0.00 0.00 0.02 0.02 0.75 0.03 0.13 0.05 0.01 0.06 0.02 1.12
1 1 2 S 0.02 0.00 0.00 0.00 0.23 0.02 11.83 0.03 0.48 0.05 3.92 0.08 0.10 2.01
1 1 3 S 0.24 0.00 0.00 0.00 2.25 0.02 180.48 0.03 1.56 0.05 T/O 0.12 0.53 7.35
1,2 1 0 U 0.00 0.00 0.00 0.00 0.01 0.02 9.11 0.10 0.23 0.05 0.00 0.00 0.02 0.02
1,2 1 1 U 0.01 0.00 0.00 0.00 0.01 0.02 11.68 0.12 0.33 0.09 0.02 0.00 0.03 0.05
1,2 1 2 U 0.31 0.00 0.00 0.00 1.09 0.02 16.50 0.20 0.47 0.12 157.39 0.01 0.28 0.10
1,2 1 3 S 1.13 0.01 0.00 0.00 11.22 0.03 T/O 0.20 2.40 0.22 T/O 2.69 315.98 950.48
1,2 2 0 U 0.00 0.00 0.00 0.00 0.01 0.02 10.07 0.28 0.26 0.07 0.00 0.00 0.02 0.02
1,2 2 1 U 0.01 0.01 0.00 0.00 0.11 0.02 19.67 0.44 0.38 0.12 0.03 0.01 0.05 0.09
1,2 2 2 S 0.06 0.02 0.00 0.00 0.61 0.04 21.97 0.70 0.58 0.26 T/O 1.07 31.92 70.68
1,2 2 3 S 0.90 0.02 0.01 0.00 2.63 0.04 T/O 0.99 1.68 0.26 T/O 1.55 112.66 422.40
1,1,2 2 0 U 0.00 0.00 0.00 0.00 0.01 0.02 15.00 1.26 0.50 0.14 0.00 0.00 0.02 0.03
1,1,2 2 1 U 0.02 0.02 0.00 0.00 0.02 0.02 21.65 1.31 0.55 0.20 0.04 0.01 0.05 0.25
1,1,2 2 2 S 0.15 0.03 0.00 0.00 1.04 0.13 44.82 2.07 1.11 0.39 T/O 12.69 190.13 T/O
1,1,2 2 3 S 0.49 0.03 0.00 0.00 31.01 0.12 852.46 1.95 3.84 0.40 T/O 33.93 T/O T/O
1,1,2 3 0 U 0.00 0.00 0.00 0.00 0.02 0.02 17.91 2.59 0.50 0.19 0.00 0.00 0.03 0.04
1,1,2 3 1 U 0.02 0.02 0.00 0.00 0.46 0.04 92.28 2.89 0.89 0.27 0.13 0.02 0.09 0.29
1,1,2 3 2 S 0.21 0.04 0.00 0.00 2.39 0.44 116.92 6.60 1.41 0.43 T/O 7.62 88.98 149.05
1,1,2 3 3 S 0.32 0.04 0.00 0.00 3.68 0.19 T/O 14.88 2.84 0.55 T/O 9.78 656.16 640.64
1,1,2,2 2 0 U 0.00 0.00 0.00 0.00 0.02 0.02 25.62 2.53 0.59 0.20 0.00 0.00 0.03 0.05
1,1,2,2 2 1 U 0.02 0.02 0.00 0.00 0.02 0.03 53.98 4.40 0.98 0.29 0.10 0.02 0.07 0.55
1,1,2,2 2 2 U 0.34 0.09 0.00 0.00 9.06 0.77 68.83 8.68 1.24 0.39 T/O 0.17 2.55 1.84
1,1,2,2 2 3 S 2.30 0.07 0.01 0.00 239.81 1.93 T/O 8.30 4.64 0.73 T/O T/O T/O T/O
1,1,2,2 3 0 U 0.00 0.00 0.00 0.00 0.02 0.02 167.08 7.04 0.49 0.29 0.00 0.00 0.04 0.06
1,1,2,2 3 1 U 0.03 0.04 0.00 0.00 0.09 0.06 113.48 26.05 2.40 0.42 0.33 0.03 0.15 0.78
1,1,2,2 3 2 S 0.34 0.09 0.00 0.00 8.62 4.06 342.19 17.49 1.28 0.82 T/O 696.66 T/O T/O
1,1,2,2 3 3 S 1.29 0.08 0.01 0.00 274.13 2.87 T/O 132.39 2.93 0.79 T/O T/O T/O T/O
1,2,2,3 2 0 U 0.01 0.00 0.00 0.00 0.03 0.02 410.67 3.42 1.12 0.12 0.00 0.00 0.06 0.05
1,2,2,3 2 1 U 0.06 0.02 0.00 0.00 0.05 0.03 990.74 8.23 1.90 0.16 0.32 0.04 0.19 0.74
1,2,2,3 2 2 U 0.44 0.04 0.01 0.00 73.57 0.78 T/O 7.74 2.38 0.44 T/O 0.21 3.30 1.33
1,2,2,3 2 3 U 4.66 0.26 0.01 0.00 T/O 4.30 T/O 28.87 3.81 0.58 T/O 14.71 T/O 594.90
1,2,2,3 2 4 S 20.09 0.30 0.02 0.00 T/O 8.17 T/O 26.49 15.78 0.99 T/O T/O T/O T/O
1,2,3,4 2 4 U 31.50 0.88 0.03 0.01 T/O 13.73 T/O 17.41 8.55 0.79 T/O 56.04 T/O T/O
1,2,3,4 2 5 S 161.79 1.05 0.03 0.01 T/O 29.64 T/O 25.26 29.35 1.39 T/O T/O T/O T/O

33

Leviathan was only able to solve the simplest MJS problem using the
Strict Gap Translation and otherwise exceeded the timeout. We have not
included its results in the tables and the heat map.

Regarding the formalisation of MJS problems in the strict semantics,
we see in Figure 4 and Table 8 that for every prover except TSPASS, the
Gap Translation results in equal or better performance than the Time
Difference Translation on every single problem. The Gap Translation
together with LS4 offers the best performance for every instance but does
not provide models for satisfiable problems. The Gap Translation together
with NuSMV-SBMC offers the best performance among the approaches that
return models.

Regarding the formalisation of MJS problems in the non-strict se-
mantics, the most striking observation we can make from Figure 4 and
from the data in Table 9 is how much more challenging the corresponding
LTL satisfiability problems are for all the provers. In total there are 35 MJS
problems on which we benchmarked 7 provers with 2 different translations
producing a total of 490 results. Of these 244 were timeouts, compared

Table 9: Performance of LTL solvers on MJS problems (non-strict se-
mantics)

TD + Gap + TD + Gap + TD + Gap + TD + Gap + TD + Gap + TD + Gap + Delta + Gap +
Aalta Aalta LS4 LS4 LWB LWB NuSMV NuSMV NuSMV NuSMV TRP++ TRP++ TSPASS TSPASS

J m t S MOD MOD BDD BDD SBMC SBMC

1 1 0 U 0.37 0.01 0.00 0.00 0.14 0.01 45.15 0.00 T/O 4.31 T/O 0.37 0.02 71.43
1 1 1 S 0.56 0.02 0.00 0.00 0.30 0.01 39.00 0.01 0.47 0.04 T/O 1.21 T/O 77.45
1 1 2 S 0.13 0.00 0.00 0.00 0.45 0.02 59.44 0.03 0.48 0.04 T/O 1.79 T/O 446.46
1 1 3 S 1.30 0.01 0.00 0.00 2.83 0.01 T/O 0.04 1.55 0.04 T/O 3.42 T/O T/O
1,2 1 0 U 0.86 0.06 0.01 0.00 3.61 0.02 Fail 0.11 Fail T/O T/O 522.45 T/O T/O
1,2 1 1 U 3.18 0.20 0.01 0.03 11.79 0.11 Fail 0.17 Fail T/O T/O T/O T/O T/O
1,2 1 2 U 9.39 Fail 0.03 2.36 56.21 0.53 T/O 0.19 Fail T/O T/O T/O T/O T/O
1,2 1 3 S 2.02 0.10 0.01 0.00 17.51 0.33 T/O 0.52 2.67 0.14 T/O T/O T/O T/O
1,2 2 0 U 1.62 0.31 0.03 0.02 165.43 1.06 T/O 0.53 Fail T/O T/O T/O T/O T/O
1,2 2 1 U 39.60 4.10 0.14 89.65 430.17 10.72 T/O 0.68 T/O T/O T/O T/O T/O T/O
1,2 2 2 S 4.24 0.76 0.01 0.01 161.83 4.06 T/O 1.90 2.27 0.16 T/O T/O T/O T/O
1,2 2 3 S 1.57 0.19 0.02 0.01 170.01 14.02 T/O 4.95 2.30 0.16 T/O T/O T/O T/O
1,1,2 2 0 U 18.06 2.82 0.03 0.50 T/O 12.96 T/O 2.00 Fail 503.72 T/O T/O T/O T/O
1,1,2 2 1 U 299.36 12.37 0.20 T/O T/O 806.58 T/O 7.62 Fail T/O T/O T/O T/O T/O
1,1,2 2 2 S Fail Fail 0.04 0.02 910.67 167.88 T/O 24.65 3.08 0.32 T/O T/O T/O T/O
1,1,2 2 3 S 26.20 1.19 0.03 0.02 928.95 T/O T/O 61.32 3.11 0.32 T/O T/O T/O T/O
1,1,2 3 0 U 7.96 6.52 0.61 T/O T/O T/O T/O 4.66 Fail T/O T/O T/O T/O T/O
1,1,2 3 1 U 472.29 T/O T/O T/O T/O T/O T/O 29.01 Fail T/O T/O T/O T/O T/O
1,1,2 3 2 S 32.26 1.25 0.05 0.01 T/O T/O T/O 253.91 3.38 0.42 T/O T/O T/O T/O
1,1,2 3 3 S 11.77 T/O 0.06 0.02 T/O T/O T/O 450.82 3.42 0.42 T/O T/O T/O T/O
1,1,2,2 2 0 U 13.17 3.42 0.06 4.84 53.79 T/O 3.18 Fail T/O T/O T/O T/O T/O T/O
1,1,2,2 2 1 U T/O Fail 1.51 T/O T/O T/O T/O 12.84 Fail T/O T/O T/O T/O T/O
1,1,2,2 2 2 U Fail Fail T/O T/O T/O T/O T/O 146.48 Fail T/O T/O T/O T/O T/O
1,1,2,2 2 3 S Fail Fail 0.15 0.06 T/O T/O T/O 930.71 4.22 0.60 T/O T/O T/O T/O
1,1,2,2 3 0 U 18.68 222.25 T/O T/O T/O T/O T/O 25.77 Fail Fail T/O T/O T/O T/O
1,1,2,2 3 1 U 910.03 Fail T/O T/O T/O T/O T/O 253.55 Fail Fail T/O T/O T/O T/O
1,1,2,2 3 2 S Fail Fail 0.16 0.10 T/O T/O T/O T/O 4.63 0.83 T/O T/O T/O T/O
1,1,2,2 3 3 S Fail 5.41 0.20 0.09 T/O T/O T/O T/O 4.69 0.83 T/O T/O T/O T/O
1,2,2,3 2 0 U 29.36 15.60 0.07 3.71 T/O 58.14 T/O 7.04 Fail 4.90 T/O T/O T/O T/O
1,2,2,3 2 1 U 120.02 Fail 1.67 T/O T/O T/O T/O 9.05 Fail T/O T/O T/O T/O T/O
1,2,2,3 2 2 U T/O Fail T/O T/O T/O T/O T/O 62.53 Fail T/O T/O T/O T/O T/O
1,2,2,3 2 3 U Fail Fail T/O T/O T/O T/O T/O 482.93 Fail T/O T/O T/O T/O T/O
1,2,2,3 2 4 S Fail Fail 0.24 0.08 T/O T/O T/O T/O 12.65 0.97 T/O T/O T/O T/O
1,2,3,4 2 4 U Fail Fail T/O T/O T/O T/O T/O T/O Fail T/O T/O T/O T/O T/O
1,2,3,4 2 5 S Fail Fail 0.54 0.15 T/O T/O T/O T/O 34.28 1.32 T/O T/O T/O T/O

34

Strict Semantics Non-Strict Semantics

TD + Aalta
Gap + Aalta
TD + LS4
Gap + LS4
TD + LWB-MOD
Gap + LWB-MOD
TD + NuSMV-BDD
Gap + NuSMV-BDD
TD + NuSMV-SBMC
Gap + NuSMV-SBMC
TD + TRP++

Gap + TRP++

TD + TSPASS
Gap + TSPASS

Figure 4: Heat map for the performance of LTL provers on MJS problems.
Each rectangle represents the runtime of one approach on a MJS problem
with runtimes given colours as follows:

< 0.01 sec > 0.01 sec, ≤ 0.25 sec > 0.25 sec, ≤ 0.50 sec > 0.50 sec, ≤ 1 sec
> 1 sec, ≤ 2 sec > 2 sec, ≤ 4 sec > 4 sec, ≤ 8 sec > 8 sec, ≤ 16 sec
> 16 sec, ≤ 32 sec > 32 sec, ≤ 64 sec > 64 sec, ≤ 125 sec > 125 sec, ≤ 250 sec
> 250 sec, ≤ 500 sec > 500 sec, ≤ 1000 sec T/O or Fail

to 51 timeouts for MJS problems in the strict semantics. In a further 44
instances (indicated by ‘Fail’ in the table) the provers failed, that is, they
encountered a memory allocation error, exhausted the limited size of some
internal data structure, or produced some other internal failure before
reaching the timeout.

Overall, the Non-Strict Gap Translation results in better performance
than the Non-Strict Time Difference Translation. The combination of
the Non-Strict Gap Translation and LS4 is still the best performing
single approach, but exceeds the timeout for most of the unsatisfiable
MJS problems. The combination of the Non-Strict Gap Translation and
NuSMV-SBMC shows the same pattern, only slower, but produces models.
In contrast to LS4 and NuSMV-SBMC, NuSMV-BDD with the Non-Strict Gap
Translation solves almost all satisfiable MJS problems but exceeds the
timeout on unsatisfiable problems. The best results can therefore be
obtained by a combination of the Non-Strict Gap Translation with a
portfolio consisting of LS4 and NuSMV-BDD or NuSMV-SBMC and NuSMV-BDD.

In summary, the experimental results presented in this section provide
further evidence of the significant performance improvements that can
be gained from the use of the Gap Translations over Time Difference
Translations.

It is worth pointing out that Multiprocessor Job-shop Scheduling is not
our intended domain of application for the translations we have presented.

35

There is a lot of symmetry in these problems that a more specialised
solver can take advantage of while LTL solvers are oblivious to it, e.g., the
order in which jobs are executed on a particular machine does not affect
the overall time to completion nor does the choice of machine. However,
for problems containing less symmetry that can naturally be formalised
in MTL, and for which scheduling or planning is just one part of it, the
approach used here can be beneficial.

References

24. Aalta, http://lab205.org/aalta/
25. Bertello, M., Gigante, N., Montanari, A., Reynolds, M.: Leviathan: A new LTL

satisfiability checking tool based on a one-pass tree-shaped tableau. In: Proc. IJCAI
2016. pp. 950–956. IJCAI/AAAI Press (2016)

26. Goré, R.: And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and
CPDL. In: Proc. IJCAR 2014. LNCS, vol. 8562, pp. 26–45. Springer (2014)

27. Janssen, G.: Logics for Digital Circuit Verification: Theory, Algorithms, and Ap-
plications. Ph.D. thesis, Eindhoven University of Technology, The Netherlands
(1999)

28. Leviathan, https://github.com/Corralx/leviathan
29. Li, J., Yao, Y., Pu, G., Zhang, L., He, J.: Aalta: an LTL satisfiability checker over

infinite/finite traces. In: Proc. FSE 2014. pp. 731–734. ACM (2014)
30. Logics Workbench, http://www.lwb.unibe.ch/index.html
31. LS4, https://github.com/quickbeam123/ls4
32. Ludwig, M., Hustadt, U.: Resolution-based model construction for PLTL. In: Proc.

TIME 2009. pp. 73–80. IEEE (2009)
33. Ludwig, M., Hustadt, U.: Implementing a fair monodic temporal logic prover. AI

Communications 23(2–3), 69–96 (2010)
34. NuSMV, http://nusmv.fbk.eu/
35. pltl, http://users.cecs.anu.edu.au/~rpg/PLTLProvers/
36. Reynolds, M.: A new rule for LTL tableaux. In: Proc. GandALF 2016. EPTCS, vol.

226, pp. 287–301 (2016)
37. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: Proceedings of

the International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, TABLEAUX ’98. Lecture Notes in Computer Science, vol. 1397,
pp. 277–292. Springer (1998)

38. Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with
partial model guidance. In: Proc. IJCAR. LNCS, vol. 7364, pp. 537–543. Springer
(2012)

39. TRP++, http://cgi.csc.liv.ac.uk/~konev/software/trp++/
40. TSPASS, http://cgi.csc.liv.ac.uk/~michael/TLBook/TSPASS-System/

http://lab205.org/aalta/
https://github.com/Corralx/leviathan
http://www.lwb.unibe.ch/index.html
https://github.com/quickbeam123/ls4
http://nusmv.fbk.eu/
http://users.cecs.anu.edu.au/~rpg/PLTLProvers/
http://cgi.csc.liv.ac.uk/~konev/software/trp++/
http://cgi.csc.liv.ac.uk/~michael/TLBook/TSPASS-System/

	Theorem Proving for Metric Temporal Logic over the Naturals

