
Reasoning for Description Logics around SHIQ in a

Resolution Framework

Ullrich Hustadt1 Boris Motik2

Ulrike Sattler3

1Department of Computer Science, University of Liverpool
Liverpool, UK

U.Hustadt@csc.liv.ac.uk

2FZI Research Center for Information Technologies, University of Karlsruhe
Karlsruhe, Germany

motik@fzi.de

3Department of Computer Science, University of Manchester
Manchester, UK

sattler@cs.man.ac.uk

November 25, 2004

Abstract

We present several algorithms for reasoning with description logics closely related to
SHIQ. Firstly, we present an algorithm for deciding satisfiability of SHIQ knowl-
edge bases. Then, to enable representing concrete data such as strings or integers, we
devise a general approach for reasoning with concrete domains in the framework of
resolution, and apply it to obtain a procedure for deciding SHIQ(D). For unary cod-
ing of numbers, this procedure is worst-case optimal, i.e. it runs in exponential time.
Motivated by the prospects of reusing optimization techniques from deductive data-
bases, such as magic sets, we devise an algorithm for reducing SHIQ(D) knowledge
bases to disjunctive datalog programs. Furthermore, we show that so-called DL-safe
rules can be combined with disjunctive programs obtained by our transformation to
increase the expressivity of the logic, without affecting decidability. We show that
our algorithms can easily be extended to handle answering conjunctive queries over
SHIQ(D) knowledge bases. Finally, we extend our algorithms to support metamodel-
ing. Since SHIQ(D) is closely related to OWL-DL, our algorithms provide alternative
mechanisms for reasoning in the Semantic Web.

Contents

1 Introduction 3

2 Preliminaries 8

2.1 Multi-sorted First-order Logic . 8
2.2 Relations and Orderings . 11
2.3 Rewrite Systems . 12
2.4 Basic Superposition Calculus . 12
2.5 Splitting . 18
2.6 Disjunctive Datalog . 18
2.7 Description Logic SHIQ . 19
2.8 Description Logics with Concrete Domains 25

2.8.1 Concrete Domains . 25
2.8.2 Description Logic SHIQ(D) . 26

3 Deciding SHIQ by Basic Superposition 29

3.1 Decision Procedure Overview . 30
3.2 Eliminating Transitivity Axioms . 31
3.3 Deciding ALCHIQ− . 34

3.3.1 Preprocessing . 35
3.3.2 Parameters for Basic Superposition 36
3.3.3 Closure of ALCHIQ−-closures under Inferences 37
3.3.4 Termination and Complexity Analysis 43

3.4 Removing the Restriction to Very Simple Roles 45
3.4.1 Transformation by Decomposition 47
3.4.2 Deciding ALCHIQ by Decomposition 50

3.5 Safe Role Expressions . 52
3.6 Related Work . 55

4 Reasoning with Concrete Domains 58

4.1 Resolution with a Concrete Domain . 58
4.1.1 Concrete Domain Resolution with Ground Clauses 59
4.1.2 Most General Partitioning Unifiers 62
4.1.3 Concrete Domain Resolution with General Clauses 64

2

CONTENTS 3

4.1.4 Combining Concrete Domains with Other Resolution Calculi . . 65
4.2 Deciding SHIQ(D) . 66

4.2.1 Closures with Concrete Predicates 67
4.2.2 Closure of ALCHIQ−(D)-closures under Inferences 68
4.2.3 Termination and Complexity Analysis 69
4.2.4 Deciding ALCHIQ(D) and ALCHIQb(D) 71

4.3 Related Work . 71

5 Reducing Description Logics to Disjunctive Datalog 73

5.1 Overview . 73
5.2 Eliminating Function Symbols . 74
5.3 Removing Irrelevant Clauses . 79
5.4 Reduction to Disjunctive Datalog . 80
5.5 Answering Queries in DD(KB) . 81
5.6 Discussion . 85
5.7 Related Work . 85

6 Data Complexity of Reasoning 87

6.1 Data Complexity of Satisfiability . 88
6.2 A Horn Fragment of SHIQ(D) . 90
6.3 Discussion . 94
6.4 Related Work . 95

7 Integrating Description Logics with Rules 97

7.1 Reasons for Undecidability of SHIQ(D) with Rules 98
7.2 Combining Description Logics and Rules 100
7.3 DL-safety . 101
7.4 Expressivity of DL-safe Rules . 102
7.5 Query Answering for DL-safe Rules . 104
7.6 Related Work . 106

8 Answering Conjunctive Queries 109

8.1 Definition of Conjunctive Queries . 109
8.2 Answering Conjunctive Queries . 110
8.3 Deciding Conjunctive Query Containment 114
8.4 Related Work . 115

9 Semantics of Metamodeling 117

9.1 Undecidability of Metamodeling in OWL-Full 118
9.2 Extending DLs with Decidable Metamodeling 121

9.2.1 Metamodeling Semantics for ALCHIQ(D) 122
9.2.2 Deciding ν-satisfiability . 126
9.2.3 Metamodeling and Transitivity 129

9.3 Added Expressivity of Metamodeling . 130

4 CONTENTS

9.4 Related Work . 132

10 Conclusion 133

Chapter 1

Introduction

Description Logics (DLs) are a family of knowledge representation formalisms which
allow representing and reasoning with domain knowledge in a formally well-understood
way. The first description logic KL-ONE [23] was introduced to address the deficiencies
of semantic networks [96] and frame-based knowledge representation systems [79]. In
particular, it was based on a formal model-theoretic semantics, to compensate for the
vague and imprecise semantics of earlier systems.

A description logic terminology consist of concepts, i.e. unary predicates repre-
senting sets of individuals, and roles, i.e. binary predicates representing links between
individuals. Concepts can be atomic, meaning that they are denoted by name, or
complex, consisting of concept constructors representing necessary and/or sufficient
membership conditions. Apart from a terminology, a description logic knowledge base
usually has an assertional component, which specifies the membership of individuals
or pairs of individuals in concepts and roles, respectively. Historically, the fundamental
reasoning problem in description logic is to determine whether one concept subsumes
another, i.e. whether the extension of the former necessarily includes the extension of
the latter concept. Apart from subsumption, reasoning problems, such as checking
satisfiability of a knowledge base or retrieving individuals belonging to a concept, are
also of interest in applications.

After its introduction, it soon turned out that the subsumption problem in KL-ONE
is undecidable [106]. From this point on, a large body of description logic research
focused on investigating the fundamental tradeoffs between expressivity and compu-
tational complexity. This line of research culminated in a detailed taxonomy of com-
plexity/undecidability results for various description logic variants [5, Chapter 5].

In parallel, an important goal of description logic research was to develop practical
reasoning algorithms and to realize them in practical knowledge representation and
reasoning systems. Initially, reasoning algorithms were based on structural subsump-
tion. Roughly speaking, such algorithms transform a concept description to a certain
normal form. Subsumption between two concepts is checked by comparing the struc-
ture of corresponding normal forms. After initial experiments with systems such as

5

6 1. Introduction

CLASSIC [20] and LOOM [77], it became evident that sound and complete structural
subsumption algorithms are possible only for inexpressive logics.

As a reaction to these deficiencies, tableau algorithms were proposed as an al-
ternative for description logic reasoning in [107]. A tableau algorithm demonstrates
satisfiability of a knowledge base by trying to build a model of a knowledge base1.
If such a model can be built, the knowledge base is evidently satisfiable, and if it
cannot, the knowledge base is unsatisfiable. Classical reasoning problems can be re-
duced to satisfiability checking, and, since tableau algorithms for very expressive logics
are available, they are nowadays considered the state-of-the-art. Most contemporary
implemented DL systems are based on a tableau calculus.
SHIQ [61] is a very expressive description logic which, apart from the usual

boolean operations on concepts and existential and universal quantification on roles,
supports advanced features, such as inverse and transitive roles, role hierarchies and
number restrictions. It can be extended with a concrete domain [6] to facilitate rep-
resenting and reasoning with concrete datatypes, such as strings or integers; this ex-
tension is denoted as SHIQ(D). A tableau algorithm for SHIQ was presented in
[61, 62], and it can be easily extended with datatype reasoning in the same way as
this was done for the related logic SHOQ(D) in [59]. SHIQ(D) is important, since
it provides the basis of OWL-DL [91] — a W3C recommendation language for ontol-
ogy representation in the Semantic Web. Namely, OWL-DL is a notational variant of
the SHOIN (D) description logic, which differs from SHIQ(D) mainly by supporting
nominals — concepts consisting exactly of the specified set of individuals.

In [114] it was shown that reasoning in SHIQ is ExpTime-complete. Moreover,
tableau algorithms for SHIQ run in worst-case doubly non-deterministic exponential
time. Because of high worst-case complexity, effective optimization techniques are
essential to make reasoning usable in practice. Numerous optimization techniques
were presented in [56], along with the evidence for their benefits in reasoning with large
knowledge bases. Based on these techniques, the FaCT [57] reasoner was implemented
and successfully applied to interesting practical problems. Another state-of-the-art
reasoner for SHIQ(D) is Racer [50], distinguished from FaCT mainly by supporting
assertional knowledge.

Description logics were successfully applied in numerous fields, such as informa-
tion integration [5, Chapter 16] [73, 18, 45], software engineering [5, Chapter 11] and
conceptual modeling [5, Chapter 10] [27]. The performance of reasoning algorithms
was found to be quite adequate for applications mainly requiring terminological rea-
soning. However, new applications, such as metadata management in the Semantic
Web, require efficient query answering over large ABoxes. So far, attempts have been
made to answer queries by reduction to ABox consistency checking, which can then be
performed using tableau algorithms. From a theoretical point of view, this approach
is quite elegant, but from a practical point of view, it has a significant drawback: as
the number of ABox individuals increases, the performance becomes quite poor.

1Actually, for some logics tableaux algorithms build finite abstractions of possibly infinite models.

7

We believe that there are three main reasons why tableau algorithms scale poorly
to ABox reasoning. Firstly, tableau algorithms treat all individuals separately: to
answer a query, a tableau check is needed for each individual to see whether it is an
answer to the query or not. Secondly, usually only a small subset of ABox information
is relevant to the query. Thirdly, a tableau-based ABox algorithm tries to construct a
“forest model”, i.e. a model where each individual in the ABox is the root of a tree of
(in the worst case) exponential depth. Clearly, an ABox algorithm that is to handle
large numbers of ABox individuals has to restrict these trees to a minimum size. These
deficiencies have already been acknowledged by the research community, and certain
optimization techniques for instance retrieval have already been developed [51, 52].
However, the performance of query answering is still not satisfactory in practice.

In parallel to description logic research, many techniques for efficient reasoning in
deductive databases already exist. For example, the first deficiency outlined above
is addressed by managing individuals in sets [2]. This opens the door to various
optimization techniques, such as the join order optimization. Consider the query
worksAt(P, I), hasName(I, ‘FZI’). Since the second argument is a constant, it is rea-
sonable to assume that evaluating the subgoal hasName(I, ‘FZI’) first, and then joining
the result with tuples in the worksAt relation, will reduce the number of irrelevant tu-
ples considered. Join order optimizations are usually based on database statistics, and
have proven to be very effective in practice.

The second deficiency outline above can be addressed by effectively identifying
the subset of the ABox which is relevant to the query and then to run the reasoning
algorithm only on this subset. Magic sets transformation [17] is a primary technique
addressing this problem, and has been used mainly in the context of Horn deductive
databases to optimize evaluation of recursive queries. Roughly speaking, the query is
modified so that during its evaluation, a set of relevant facts is derived. Evaluating
the original query is then limited to this set of facts. The magic sets transformation
for disjunctive programs has been presented recently in [48], along with empirical
evidence of its usefulness. The significant performance improvements reported there
are attributed mainly to the fact that selecting information relevant to the query
reduces the number of models of the disjunctive program.

Since techniques for reasoning in deductive databases are now mature, we think it
makes sense to investigate whether they can be used to improve ABox reasoning in
description logics. Our initial experimental results were reported in [80] and are very
promising, exhibiting improvements in performance of one, or sometimes two orders of
magnitude. However, the approach presented there was limited to a very simple logic.
In particular, the presence of existential quantifiers in terminological cycles was not
allowed, due to problems with termination. Other expressive features, such as number
restrictions or transitivity, were not considered either.

In this paper, we develop several novel algorithms for reasoning in description
logics around SHIQ. Our ultimate goal is to enable reducing SHIQ(D) knowledge
bases to disjunctive datalog programs, while preserving the set of entailed ground facts.
Hence, we reduce ABox reasoning in description logic to query answering in disjunctive

8 1. Introduction

datalog, and thus enable exploiting previously mentioned optimization techniques for
DL query answering. However, many algorithms on the path to the reduction are
interesting in their own right. We give an outline of this paper and its contribution:

• In Chapter 3 we present a decision procedure for checking satisfiability of SHIQ
knowledge bases based on basic superposition [15, 83]. Basic superposition is a
clausal refutation calculus optimized for theorem proving with equality. Parame-
terized by a suitable term ordering and a selection function, basic superposition
yields a decision procedure only for a slightly weaker logic SHIQ−, in which
number restrictions are allowed only on roles not having subroles; for full SHIQ,
saturation by basic superposition does not terminate. To remedy that, we intro-
duce so-called decomposition rule, which transforms certain clauses into simpler
ones, thus ensuring termination. We show that decomposition is a very general
rule, and can be used with any calculus compatible with the standard notion of
redundancy [14]. This decision procedure runs in worst-case exponential time,
provided that numbers are coded in unary, so it is worst-case optimal. Please
note that the assumption on unary coding of numbers is standard in description
logic algorithms, and, to the best of our knowledge, is employed in all existing
practical reasoning systems.

• Until now, reasoning with concrete domains has been predominantly studied in
the context of tableau algorithms. Since our algorithms operate in the frame-
work of resolution, existing approaches are not directly applicable to our setting.
Therefore, in Chapter 4 we present a general approach for reasoning with a con-
crete domain in the framework of resolution. Our approach is applicable to any
calculus whose completeness proof is based on the model generation method [14],
so it can easily be combined with basic superposition. We apply this approach to
the decision procedure from Chapter 3 and thus obtain a decision algorithm for
SHIQ(D). We show that, assuming a bound on the arity of concrete predicates,
adding concrete domains does not increase the complexity of reasoning.

• In Chapter 5 we present an algorithm for reducing SHIQ(D) knowledge bases
to disjunctive datalog programs. This algorithm produces a disjunctive data-
log program capable of simulating inference steps of the algorithms presented in
Chapter 3 and Chapter 4. Roughly speaking, algorithms from Chapter 3 and
Chapter 4 are first used to compute all non-ground consequences of a knowl-
edge base. Thus obtained set of clauses is then transformed in a way to enable
simulating remaining ground inferences in disjunctive datalog.

• Based on the algorithm from Chapter 5, in Chapter 6 we analyze the data com-
plexity of reasoning in SHIQ(D). Data complexity is measured only in the size
of the ABox, while assuming that TBox and RBox are fixed in size. In applica-
tions where the size of the ABox (i.e. the number of facts) is much bigger than
the size of the TBox and RBox (i.e. the size of the schema), data complexity

9

provides a better estimate of the practical applicability of an algorithm. Sur-
prisingly, the data complexity of satisfiability checking in SHIQ(D) turns out
to be NP-complete, which is much better than the combined complexity, which
is ExpTime-complete. Moreover, we identify the Horn-SHIQ(D) fragment of
SHIQ(D) which does not provide for disjunctive reasoning, but exhibits poly-
nomial data complexity.

• In Chapter 7 we consider a hybrid system consisting of SHIQ(D) extended
with DL-safe rules. The integration of rules and description logics is achieved by
allowing concepts and roles to occur as unary and binary predicates, respectively,
in the atoms of the rule head or body. To achieve decidability, the DL-safety
restriction is imposed, requiring each variable in the rule to occur in an atom in
the rule body whose predicate is neither a concept nor a role. Intuitively, the DL-
safety requirement makes query answering decidable, since it ensures that rules
are applicable only to individuals explicitly occurring in the knowledge base.
For query answering, DL-safe rules may simply be appended to the disjunctive
datalog program obtained by the reduction from Chapter 5.

• In Chapter 8 we extend our algorithms to handle answering and checking sub-
sumption of conjunctive queries over SHIQ(D) knowledge bases. Conjunctive
queries provide a formal foundation for the vast majority of database queries
commonly used in practice [29], so they lend themselves naturally as an expres-
sive query language for description logics.

• In Chapter 9 we consider extending the logic to allow for treating concepts as
individuals and vice versa, and thus to provide for metamodeling. We show that,
if metamodeling is given semantics as specified in the Semantic Web standard
OWL-Full [91], the logic becomes undecidable. Therefore, we propose an alter-
native semantics for metamodeling based on HiLog [30] — a logic which aims to
simulate second-order reasoning in a first-order framework. We show that un-
der such semantics, our algorithms can be easily extended to provide a decision
procedure.

Certain parts of this work were published previously. In particular, the resolution
decision procedure and the reduction to disjunctive datalog for SHIQ− were published
in [66], algorithms for reasoning with a concrete domain were published in [65], and
reasoning with DL-safe rules was published in [81].

Chapter 2

Preliminaries

2.1 Multi-sorted First-order Logic

We assume standard definitions of first-order logic ([42] is a good text book), which
we extend with multi-sorted signatures as usual. Let Σ = (P,F ,V,S) be a first-
order signature, where P is a finite set of predicate symbols, F a finite set of function
symbols, V a countable set of variables and S a finite set of sorts. Each n-ary function
symbol f ∈ F is associated with a sort signature r1 × . . . × rn → r, and each n-ary
predicate symbol P ∈ P is associated with a sort signature r1× . . .×rn, where r(i) ∈ S.
The sort of each variable is determined by the function sort : V → S.

We now define the set of terms T (Σ), and extend the function sort to terms, as
follows: the set T (Σ) is the smallest set such that (i) V ⊆ T (Σ), and (ii) if f ∈ F
has the signature r1 × . . . × rn → r, and ti ∈ T (Σ) with sort(ti) = ri for i ≤ n, then
t = f(t1, . . . , tn) ∈ T (Σ) with sort(t) = r. The set of atoms A(Σ) is the smallest set
such that, if P ∈ R has the signature r1× . . .× rn, and ti ∈ T (Σ) with sort(ti) = ri for
i ≤ n, then P (t1, . . . , tn) ∈ A(Σ). Terms (atoms) not containing variables are called
ground terms (atoms).

A position p is a finite sequence of integers. The empty position is denoted with
ǫ. If a position p1 is a proper prefix of a position p2, then and p1 is above p2, and
p2 is below p1. A subterm of t at position p, denoted with t|p, is defined inductively
as t|ǫ = t and, if t = f(t1, . . . , tn), then t|ip = ti|p. A replacement of a subterm of
t at position p with s, denoted with t[s]p, is defined inductively as t[s]ǫ = s and, if
t = f(t1, . . . , tn), then t[s]ip = f(t1, . . . , ti[s]p, . . . , tn).

The set of formulae L(Σ) defined over the signature Σ is the smallest set such that
⊤ and ⊥ are in L(Σ), A(Σ) ⊆ L(Σ) and, if ϕ,ϕ1, ϕ2 ∈ L(Σ) and x ∈ V, then ¬ϕ,
ϕ1 ∧ϕ2, ϕ1 ∨ϕ2, ∃x : ϕ and ∀x : ϕ are in L(Σ). As usual, ϕ1 → ϕ2 is an abbreviation
for ¬ϕ1 ∨ ϕ2, ϕ1 ← ϕ2 is equivalent to ϕ2 → ϕ1, and ϕ1 ↔ ϕ2 is an abbreviation for
(ϕ1 → ϕ2) ∧ (ϕ1 ← ϕ2). A variable x in a formula ϕ is free it it does not occur under
the scope of a quantifier. If ϕ does not have free variables, it is closed.

The notion of a subformula of ϕ at position p, denoted with ϕ|p, is defined induc-
tively as ϕ|ǫ = ϕ; (ϕ1 ◦ ϕ2)|ip = ϕi for ◦ ∈ {∧,∨,←,→,↔} and i ∈ {1, 2}; ϕ|1p = ψ

10

2.1 Multi-sorted First-order Logic 11

for ϕ = ¬ψ, ϕ = ∀x : ψ or ϕ = ∃x : ψ. A replacement of a subformula of ϕ at position
p with ψ is denoted as ϕ[ψ]p and is defined in the obvious way.

The polarity of the subformula ϕ|p at position p in a formula ϕ, written pol(ϕ, p), is
defined as follows: pol(ϕ, ǫ) = 1; pol(¬ϕ, 1p) = −pol(ϕ, p); pol(ϕ1 ◦ ϕ2, ip) = pol(ϕi, p)
for ◦ ∈ {∧,∨} and i ∈ {1, 2}; pol(∃x : ϕ, 1p) = pol(ϕ, p); pol(∀x : ϕ, 1p) = pol(ϕ, p);
pol(ϕ1 → ϕ2, 1p) = −pol(ϕ1, p); pol(ϕ1 → ϕ2, 2p) = pol(ϕ2, p); pol(ϕ1 ↔ ϕ2, ip) = 0
for i ∈ {1, 2}.

A substitution σ is a function from V into T (Σ) for which σ(x) 6= x only for a
finite number of variables x, and, if σ(x) = t, then sort(x) = sort(t). We often write
a substitution σ as a finite set of mappings {x1 7→ t1, . . . , xn 7→ tn}. The result of
applying a substitution σ to a term t is denoted with tσ, and is defined recursively as
follows: xσ = σ(x) and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). For a substitution σ and a
variable x, the substitution σx is defined as follows:

yσx =

{
yσ if y 6= x
y if y = x

Now the application of a substitution σ to a formula ϕ, written ϕσ, is defined as follows:
A(t1, . . . , tn)σ = A(t1σ, . . . , tnσ); (ϕ1 ◦ ϕ2)σ = ϕ1σ ◦ ϕ2σ for ◦ = {∧,∨,←,→,↔};
(¬ϕ)σ = ¬(ϕσ); (∀x : ϕ)σ = ∀x : (ϕσx); and (∃x : ϕ)σ = ∃x : (ϕσx).

A composition of substitutions τ and σ, written στ , is defined as xστ = (xσ)τ . The
empty substitution is denoted as {}. A substitution σ is called a variable renaming if
it contains only mappings of the form x 7→ y. A substitution σ is equivalent to θ up to
variable renaming if there is a variable renaming η such that θ = ση; in such a case,
θ is also equivalent to σ up to variable renaming [8]. A substitution σ is more general
than a substitution θ if there is a substitution η such that θ = ση.

A substitution σ is a unifier of terms s and t if sσ = tσ. A unifier σ of s and t is
called a most general unifier if, for any unifier θ of s and t, σ is either more general
than θ, or it is equivalent to θ up to variable renaming. The notion of unifiers is
extended to atoms in the obvious way. If a most general unifier σ of s and t exists, it
is unique up to variable renaming [8], so we write σ = MGU(s, t).

The semantics of multi-sorted first-order logic is defined as follows. An interpre-
tation is a pair I = (D, ·I), where D is a function assigning to each sort s ∈ S an
interpretation domain Ds such that, if ri, rj ∈ S and ri 6= rj , then Dri

∩ Drj
= ∅, and

·I is a function assigning to each predicate symbol A with a signature r1 × . . .× rn an
interpretation relation AI ⊆ Dr1

× . . . × Drn , and to each function symbol f with a
signature r1×. . .×rn → r an interpretation function f I : Dr1

×. . .×Drn → Dr. A vari-
able assignment is a function B assigning to each variable x ∈ V a value from Dsort(x).
An x-variant of B, written Bx, is a variable assignment which assigns the same values
as B to all variables, except possibly to the variable x. The value of a term t ∈ T (Σ)
under I and B, written tI,B, is defined as follows: if t = x, then tI,B = B(x), and if
t = f(t1, . . . , tn), then tI,B = f I(tI,B

1 , . . . , tI,B
n). The value of a formula ϕ under I and

B, written ϕI,B, is defined as follows: [⊤]I,B = t, [⊥]I,B = f , [A(t1, . . . , tn)]I,B = t
if and only if (tI,B

1 , . . . , tI,B
n) ∈ AI ; [¬ϕ]I,B = ¬ϕI,B; [ϕ1 ◦ ϕ2]

I,B = ϕI,B
1 ◦ ϕI,B

2 for

12 2. Preliminaries

◦ ∈ {∧,∨}; [∃x : ϕ]I,B = t if and only if ϕI,Bx = t for some Bx; and [∀x : ϕ]I,B = t if
and only if ϕI,Bx = t for all Bx. If ϕ is closed, then ϕI,B does not depend on the choice
of B, so we write ϕI instead. For a closed formula ϕ, an interpretation I is a model
of ϕ, written I |= ϕ, if ϕI = t. A closed formula ϕ is valid, written |= ϕ, if I |= ϕ
for all interpretations I; ϕ is satisfiable if I |= ϕ for at least one interpretation I; and
ϕ is unsatisfiable if an interpretation I, such that I |= ϕ, does not exist. A closed
formula ϕ1 entails a formula ϕ2, written ϕ1 |= ϕ2, if I |= ϕ2 for each interpretation I
for which I |= ϕ1. It is well-known that ϕ1 |= ϕ2 if and only if ϕ1∧¬ϕ2 is unsatisfiable.
Formulae ϕ1 and ϕ2 are equisatisfiable if ϕ1 is satisfiable if and only if ϕ2 is satisfiable.

Let ϕ be a closed first-order formula, and Λ a set of positions in ϕ. Then DefΛ(ϕ)
is the definitional normal form of ϕ with respect to Λ and is defined inductively as
follows, where p is maximal in Λ∪{p} with respect to the prefix ordering on positions,
Q is a new predicate not occurring in ϕ, x1, . . . , xn are the free variables of ϕ|p, and ◦
is → if pol(ϕ, p) = 1, ← if pol(ϕ, p) = −1 and ↔ if pol(ϕ, p) = 0:

Def∅(ϕ) = ϕ
DefΛ∪{p}(ϕ) = DefΛ(ϕ[Q(x1, . . . , xn)]p) ∧ ∀x1, . . . , xn : Q(x1, . . . , xn) ◦ ϕ|p

It is well-known [93, 9, 86] that, for any Λ, ϕ and DefΛ(ϕ) are equisatisfiable, and that
DefΛ(ϕ) can be computed in polynomial time.

Let ϕ be a formula and p a position in ϕ, such that either pol(ϕ, p) = 1 and
ϕ|p = ∃x : ψ, or pol(ϕ, p) = −1 and ϕ|p = ∀x : ψ, where x, x1, . . . , xn are exactly the
free variables of ψ. Then ϕ[ψ{x 7→ f(x1, . . . , xn)}]p, where f is a new function symbol
not occurring in ϕ, is a formula obtained by skolemization of ϕ at position p. The
formula sk(ϕ) is obtained from ϕ by skolemization at all positions where skolemization
is possible. Usually, we assume that sk(ϕ) is computed by outer skolemization, where
a position p is skolemized before any position below p. It is well-known that ϕ and
sk(ϕ) are equisatisfiable [42].

The subset of ground terms of F(Σ) is called the Herbrand universe HU of Σ.
A Herbrand interpretation is an interpretation I where (i) Dr ⊆ F(Σ) such that
for each t ∈ F(Σ), we have t ∈ Dr if and only if sort(t) = r, and (ii) function
symbols are interpreted by themselves, i.e. for each f ∈ F and ti ∈ HU , we have
f I(t1, . . . , tn) = f(t1, . . . , tn). The Herbrand base HB of Σ is the set of all ground atoms
built over the Herbrand universe of Σ. A Herbrand interpretation I can equivalently be
considered a subset of the Herbrand base, i.e. I ⊆ HB . A formula ϕ is satisfiable if and
only if sk(ϕ) is satisfiable in a Herbrand interpretation [42] (this holds for multi-sorted
logic as well).

A multiset M over a set N is a function M : N → N0, where N0 is the set of all
non-negative integers. A multiset is finite if M(x) 6= 0 for a finite number of x; in
the rest, we consider only finite multisets. For two multisets M1 and M2, M1 ⊆ M2

if M1(x) ≤ M2(x) for each x ∈ N , and M1 = M2 if M1 ⊆ M2 and M2 ⊆ M1.
Furthermore, the union of M1 and M2 is defined as (M1 ∪M2)(x) = M1(x) +M2(x),
and the intersection is defined as (M1 ∩M2)(x) = min(M1(x),M2(x)). A multiset M
is empty, written M = ∅, if M(x) = 0 for all x ∈ N .

2.2 Relations and Orderings 13

A literal is an atom A or a negated atom ¬A. A clause is a multiset of literals
and is usually written as C = L1 ∨ . . . ∨ Ln. A clause C is semantically equivalent
to ∀x : C, where x is the vector of free variables of C. Satisfiability of clauses is
usually considered in a Herbrand interpretation I, as follows: for a ground clause Cg,
I |= Cg if a literal Ai ∈ Cg exists, such that Ai ∈ I, or else a literal ¬Aj ∈ Cg exists,
such that Aj /∈ I; and for a non-ground clause C, I |= C if and only if I |= Cg for
each ground instance Cg of C. For a first-order formula ϕ, Cls(ϕ) is the set of clauses
obtained by clausification of ϕ, i.e. by transforming sk(ϕ) into conjunctive normal form
by exhaustive application of de Morgan’s laws. It is well-known that ϕ is satisfiable if
and only if Cls(ϕ) is satisfiable in a Herbrand model. A clause C is safe if each variable
x occurring in any literal of C occurs also in a negative literal of C.

Unless otherwise noted, we denote atoms by letters A and B, clauses by C and D,
literals by L, predicates by P , R, S, T and U , constants by a, b and c, variables by x,
y and z, and terms by s, t, u, v and w.

2.2 Relations and Orderings

For a set of objects D, a (binary) relation R on D is a subset of D ×D. R is total if,
for any two x, y ∈ D, either R(x, y) or R(y, x) or x = y. An inverse relation of R is
defined as R− = {(y, x) | (x, y) ∈ R}. A relation R is (i) reflexive if x ∈ D implies
(x, x) ∈ R; (ii) symmetric if R− ⊆ R; (iii) asymmetric if (x, y) ∈ R implies (y, x) /∈ R;
(iv) antisymmetric if (x, y) ∈ R and (y, x) ∈ R implies x = y; and (v) transitive if
(x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R. A ◦-closure, written R◦, where ◦ can be a
combination of reflexive, symmetric or transitive, is the smallest relation on D fulfilling
the property ◦ such that R ⊆ R◦. The transitive closure of R is usually written as R+,
and the reflexive-transitive closure of R is usually written as R∗.

A relation R is well-founded if there is no infinite sequence (α0, α1), (α1, α2), . . .
of tuples in R. An object α ∈ D is in normal form w.r.t. R if R does not contain
an element (α, β), for any β. An object β is a normal form of α w.r.t. R if β is in
normal form w.r.t. R and (α, β) ∈ R∗. For a general relation R, an object can have
any number of normal forms.

A partial ordering � over D is a reflexive, antisymmetric and transitive relation
on D. A strict ordering ≻ over D is an irreflexive and transitive relation on D. A
multiset extension of a strict ordering ≻ to multisets on D, written ≻mul, is defined
as follows: M ≻mul N if M 6= N and if N(x) > M(x) for some x, then there is some
y ≻ x for which M(y) > N(y). It is well-known that for finite multisets, if ≻ is total,
then ≻mul is total as well.

A term ordering is an ordering where D = T (Σ), for some multi-sorted first-order
signature Σ. A term ordering ≻ is stable under substitutions if for all terms s and t
and all substitutions sigma σ, s ≻ t implies sσ ≻ tσ; it is stable under contexts if for all
terms s, t and u and all positions p, s ≻ t implies u[s]p ≻ u[t]p; it satisfies the subterm
property if u[s]p ≻ s for all terms u and s and all positions p 6= ǫ. A rewrite ordering if
an ordering stable under contexts and stable under substitutions. A reduction ordering

14 2. Preliminaries

is a well-founded rewrite ordering, and a simplification ordering is a reduction ordering
with a subterm property.

The lexicographic path ordering (LPO) [34, 7] is a term ordering induced over a
precedence on function symbols >P . Each LPO has the subterm property and, if >P

is total, then LPO is total on ground terms. It is defined as follows: s ≻lpo t if

1. t is a variable occurring as a proper subterm of s or

2. s = f(s1, . . . , sm), t = g(t1, . . . , tn), and at least one of the following holds:

(a) f >P g and, for all i with 1 ≤ i ≤ n, we have s ≻lpo ti or

(b) f = g and, for some j, we have (s1, . . . , sj−1) = (t1, . . . tj−1), sj ≻lpo tj , and
s ≻lpo tk for all k with j < k ≤ n or

(c) sj �lpo t for some j with 1 ≤ j ≤ m.

2.3 Rewrite Systems

A good text-book introduction to rewrite systems is [7]; an overview of the theory
of rewrite systems can be found in [34]. A rewrite system R is a set of rewrite rules
s⇒ t where s and t are terms. A rewrite relation induced by R, written as ⇒R, is the
smallest relation such that s ⇒ t ∈ R implies u[sσ]p ⇒R u[tσ]p, for all terms s, t and
u, all substitutions σ and all positions p. For two terms s and t, we write s ⇓R t if there
is a term u such that s ⇒∗

R u and t ⇒∗
R u. If ⇓R and symmetric-reflexive-transitive

closure of ⇒R coincide, then R is confluent. For a confluent well-founded rewrite
system R, each element α has a unique normal form w.r.t. ⇒R, which is denoted as
nfR(α).

For a confluent well-founded rewrite system R consisting of ground rewrite rules
only, R∗ is the smallest set of ground equalities s ≈ t such that, for all ground terms
s and t, if nfR(s) = nfR(t), then s ≈ t ∈ R∗.

2.4 Basic Superposition Calculus

Paramodulation is one of the fundamental techniques for theorem proving with equal-
ity. In order to improve its performance, in [10] the superposition calculus has been
presented, where stronger ordering restrictions restrict unnecessary inferences. How-
ever, further optimizations of paramodulation and superposition were presented in [15],
by adding a so called “basicness” restriction. These optimizations are very general,
but a simplified version, called basic superposition, may be found in [11, 13]. A very
similar calculus, based on an inference model with constrained clauses, was presented
in [83].

The idea of the basic superposition calculus is to render superposition inferences
into terms introduced by previous unification steps redundant. In practice, this tech-
nique has been shown essential for solving some particularly difficult problems in first-

2.4 Basic Superposition Calculus 15

order logic with equality [78]. Furthermore, basic superposition shows that superpo-
sition into arguments of Skolem function symbols is not necessary for completeness.
Namely, any Skolem function symbol f occurs in the original clause set with variable
arguments. Hence, for any term f(t), if t is not a variable, it was introduced by a
previous unification step.

It is a common practice in equational theorem proving to consider logical theories
consisting of the equality predicate exclusively. This simplifies the theoretical treat-
ment without losing generality. Literals P (t1, . . . , tn), where P is not the equality
predicate, are encoded as P (t1, . . . , tn) ≈ ⊤, so predicate symbols actually become
function symbols. It is well-known that this transformation preserves satisfiability. To
avoid considering terms where predicate symbols occur as proper subterms, one usually
employs a multi-sorted framework: all predicate symbols and the symbol ⊤ are of a
sort different from the sort of function symbols and variables. In the rest, P (t1, . . . , tn)
is considered a syntactic shortcut for P (t1, . . . , tn) ≈ ⊤. When ambiguities do not
arise, we still call P a predicate symbol, and not a function symbol (although it tech-
nically is a function symbol due to the encoding). Finally, the predicate ≈ has built-in
symmetry: a literal s ≈ t may also be interpreted as t ≈ s.

The inference rules are formulated by breaking a clause into two parts: (i) the
skeleton clause C and (ii) the substitution σ representing the cumulative effects of
previous unifications. These two components together are called a closure, written as
C ·σ, which is logically equivalent to a clause Cσ. A closure C ·σ can, for convenience,
equivalently be represented as Cσ, where the terms occurring at variable positions of C
are marked1 by []. Any position at or below a marked position is called a substitution
position. Basic superposition can be summarized as a calculus where superposition
into a substitution position is not necessary.

The following closure is logically equivalent to the clause P (f(y)) ∨ g(b) ≈ b. On
the left-hand side the closure is represented by a skeleton and a substitution explicitly,
whereas on the right-hand side it is represented by marking the positions of variables
in the skeleton.

(P (x) ∨ z ≈ b) · {x 7→ f(y), z 7→ g(b)} ≡ P ([f(y)]) ∨ [g(b)] ≈ b

Note that all variable positions are always marked, so we usually do not show this
for readability purposes. A closure C · σ is ground if Cσ is ground. To technically
simplify the presentation, we consider each closure to be in the standard form, which
is the case if the following conditions are satisfied:

• the substitution σ does not contain trivial mappings of the form x 7→ y and

• all variables from dom(σ) occur in C.

1In [15], framing was used for marked positions. We decided to use a different notation, because
framing introduced problems with the text layout. Our notation should not be confused with the
notation for modalities in multi-modal logic.

16 2. Preliminaries

A closure C ·σ can be brought into the standard form in the following way: if x 7→ t
is a mapping in σ violating some of the conditions above, then let σ′ be σ \ {x 7→ t},
and replace the closure with C{x 7→ t} · σ′{x 7→ t}.

A closure (Cσ1) · σ2 is a retraction of a closure C · σ if σ = σ1σ2. Intuitively,
a retraction is obtained by moving some marked positions lower in the closure. For
example, the following is a retraction of the example above:

(P (x) ∨ g(z) ≈ b) · {x 7→ f(y), z 7→ b} ≡ P ([f(y)]) ∨ g([b]) ≈ b

Basic Superposition Parameters. The basic superposition calculus is parameter-
ized with a term ordering ≻ and a selection function. An admissible term ordering ≻
is a reduction ordering total on ground terms, such that ⊤ is the smallest element. An
ordering ≻ can be extended to an ordering on literals (ambiguously denoted also with
≻) by identifying each positive literal s ≈ t with a multiset {{s}, {t}}, each negative
literal s 6≈ t with a multiset {{s, t}}, and comparing these multisets by a two-fold
multiset extension (≻mul)mul over ≻. The literal ordering obtained in such a way is
total on ground literals. The literal L ·σ is (strictly) maximal with respect to a closure
C · σ if there is no literal L′ ∈ C such that L′σ ≻ Lσ (L′σ � Lσ) (observe that this
definition does not assume that L ∈ C). Similarly, for a closure C · σ and a literal
L ∈ C, L · σ is (strictly) maximal in C · σ if and only if it is (strictly) maximal with
respect to (C \ L) · σ.

A selection function selects a (possibly empty) subset of negative literals in a clo-
sure. There are no other constraints on the selection function.

Inference Rules. The basic superposition is a refutation calculus: for N a set of
closures saturated up to redundancy, N is unsatisfiable if and only if it contains the
empty closure. Intuitively, “saturated up to redundancy” means that any further
inference with closures from N produces a closure that has already been derived.
To present the rules of basic superposition, we make a technical assumption that
all premises are variable-disjoint, and that all premises are expressed using the same
substitution. A literal L · θ is (strictly) eligible for superposition in a closure (C ∨L) · θ
if there are no selected literals in (C ∨L) · θ and L · θ is (strictly) maximal with respect
to C · θ. A literal L · θ is eligible for resolution in a closure (C ∨L) · θ if it is selected in
(C∨L) ·θ or there are no selected literals in (C∨L) ·θ and L ·θ is maximal with respect
to C · θ. The basic superposition calculus, BS for short, consists of the following rules:

Positive superposition:
(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨D ∨ w[t]p ≈ v) · θ

where (i) σ = MGU(sρ, wρ|p) and θ = ρσ, (ii) tθ � sθ and vθ � wθ, (iii) (s ≈ t) · θ is
strictly eligible for superposition in (C ∨ s ≈ t) · θ, (iv) (w ≈ v) · θ is strictly eligible
for superposition in (D ∨w ≈ v) · θ, (v) sθ ≈ tθ � wθ ≈ vθ, (vi) w|p is not a variable.

2.4 Basic Superposition Calculus 17

Negative superposition:
(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨D ∨ w[t]p 6≈ v) · θ

where (i) σ = MGU(sρ, wρ|p) and θ = ρσ, (ii) tθ � sθ and vθ � wθ, (iii) (s ≈ t) · θ
is strictly eligible for superposition in (C ∨ s ≈ t) · θ, (iv) (w 6≈ v) · θ is eligible for
resolution in (D ∨ w 6≈ v) · θ, (v) w|p is not a variable.

Reflexivity resolution:
(C ∨ s 6≈ t) · ρ

C · θ

where (i) σ = MGU(sρ, tρ) and θ = ρσ, (ii) (s 6≈ t) · θ is eligible for resolution in
(C ∨ s 6≈ t) · θ.

Equality factoring:
(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

where (i) σ = MGU(sρ, s′ρ) and θ = ρσ, (ii) tθ � sθ and t′θ � s′θ, (iii) (s ≈ t) · θ is
eligible for superposition in (C ∨ s ≈ t ∨ s′ ≈ t′) · θ.

Ordered Hyperresolution:
E1 . . . En N

(C1 ∨ . . . ∨ Cn ∨D) · θ

where (i) Ei are of the form (Ci ∨ Ai) · ρ, for 1 ≤ i ≤ n, (ii) N is of the form
(D ∨¬B1 ∨ . . .∨¬Bn) · ρ, (iii) σ is the most general substitution such that Aiθ = Biθ
for 1 ≤ i ≤ n and θ = ρσ, (iv) each Ai · θ is strictly eligible for superposition in Ei,
(v) each ¬Bi · θ is eligible for resolution in N .

In the ordered hyperresolution inference rule, the closures Ei are called the electrons
or the side premises, and the closure N is called the nucleus or the main premise. In
[15, 83] BS has been presented without the hyperresolution rule. However, as noted
in [10], hyperresolution is actually a “macro:” it combines the effects of n negative
superpositions of (Ai ≈ ⊤) · ρ from Ei into (Bi 6≈ ⊤) · ρ of N , resulting in (⊤ 6≈ ⊤) · θ,
which is immediately eliminated by reflexivity resolution. Furthermore, notice that
a positive superposition of a main premise into a positive literal (B ≈ ⊤) · ρ results
in a tautology (⊤ ≈ ⊤) · θ, which can be eliminated. Hence, ordered hyperresolution
captures all inferences from several premises involving literals with predicates other
than the equality predicate. One might also define ordered factoring, which combines
equality resolution on (C ∨A ≈ ⊤∨B ≈ ⊤) · ρ with reflexivity resolution. We decided
not to do this to keep the presentation simpler.

To understand how inference rules of BS govern the propagation of markers, con-
sider the example of superposition from [f(x)] ≈ [g(x)] into R(x′, f(x′)). We first
represent the premises by showing the skeleton and the substitution explicitly: the
first premise is equivalent to (y ≈ z) · {y 7→ f(x), z 7→ g(x)}, and the second one to
R(x, f(x′)) · {}. By the definition of the positive superposition rule, the conclusion is
R(x′, z) · {z 7→ g(x′)}, which can be rewritten conveniently as R(x′, [g(x′)]).

18 2. Preliminaries

Completeness of Basic Superposition. We now briefly overview the completeness
proof of the basic superposition. We base our presentation on the proof by Nieuwenhuis
and Rubio from [83, 84], which is compatible with the one from [15].

The literal ordering is extended to closures by a multiset extension, where closures
are treated as multisets of literals. We denote thus obtained ordering ambiguously
with ≻. Observe that, since the literal ordering is total on ground literals, the closure
ordering is total on ground closures.

Let C · σ be a closure and τ a ground substitution. The set of succeedent-top-left
variables of C ·σ w.r.t. τ , written as stlvars(C ·σ, τ), is defined as the set of all variables
x occurring in a literal x ≈ s ∈ C, such that xστ ≻ sστ .

Let R be a ground and convergent rewrite system and τ a ground substitution. A
variable x occurring in the skeleton C of C ·σ is variable irreducible w.r.t. R if (i) xστ
is irreducible by rewrite rules in R or (ii) for all x ≈ s ∈ C, we have x ∈ stlvars(C ·σ, τ)
and xστ is irreducible by those rules l ⇒ r from R for which xστ ≈ sστ ≻ l ≈ r.
A ground instance C · στ is variable irreducible w.r.t. R if all variables x from C are
variable irreducible w.r.t. R. Let irredR(C · σ) be the set of all variable irreducible
ground instances of C · σ w.r.t. R. For a set of closures N , let irredR(N) be the
set of all variable irreducible ground instances of closures in N w.r.t. R. Finally, let
irredR(N)≺D (irredR(N)�D) be the subset of closures of irredR(N) smaller than (or
equal to) a ground closure D (w.r.t. ordering on closures ≺).

Let ξ by a BS inference with premises D1 · σ and D2 · σ and a conclusion C · ρ.
For a rewrite system R and a ground substitution τ such that ξτ is a ground instance
of ξ, ξτ is variable irreducible w.r.t. R if all D1 · στ , D2 · στ and C · ρτ are variable
irreducible w.r.t. R.

The notion of redundancy for BS is defined as follows. A closure C ·σ is redundant
in N if, for all rewrite systems R and all ground substitutions τ such that C · στ is
variable irreducible w.r.t. R, we have R∪ irredR(N)�C·στ |= C ·στ . An inference ξ with
premises D1 · σ and D2 · σ and a conclusion C · ρ is redundant in N if, for all rewrite
systems R and all ground substitutions τ such that ξτ is a variable irreducible ground
instance of ξ w.r.t. R, R∪ irredR(N)≺D |= C ·ρτ , where D = max(D1 ·στ,D2 ·στ). The
set of closures N is saturated up to redundancy by BS if all inferences from premises
in N are redundant in N .

A set of closures N is well-constrained if irredR(N)∪R |= N for any rewrite system
R. If, for all C · ρ ∈ N , ρ is the empty substitution, then N is well-constrained: any
variable reducible position of a ground instance of C ·ρ can be reduced with rules from
R to a closure in irredR(N). Furthermore, if N ′ is obtained from a well-constrained set
N by a sound inference rule, then N ′ is also well-constrained.

Let N be the set of closures obtained by saturating a well-constrained set N0 up
to redundancy by BS; then N is satisfiable if it does not contain the empty closure.
Namely, using a variant of the model building technique [15, 83], one may generate a
ground convergent rewrite system RN , which uniquely defines the Herbrand modelRN

∗

such that s ≈ t ∈ RN
∗ if and only if nfR(s) = nfR(t). Furthermore, RN

∗ |= irredRN
(N).

2.4 Basic Superposition Calculus 19

Finally, since N0 is well-constrained, N is also well-constrained. Since RN ⊆ RN
∗, it

follows that RN
∗ |= N .

Redundancy Elimination. Based on the general redundancy notion for basic su-
perposition, several effective redundancy elimination rules have been presented in [15],
providing means for deleting certain closures or replacing them with simpler ones,
without jeopardizing completeness. We overview the most important rules next.

A closure C · σ is reduced modulo substitution η relative to a closure D · θ if, for
each rewrite systems R and each ground substitution τ , C · σητ is variable irreducible
w.r.t. R whenever D · θτ is variable irreducible w.r.t. R. Checking this condition is
difficult, since one needs to consider all ground substitutions and all rewrite systems.
However, approximate checks suitable for practice are known. One of them involves
the notion of η-domination: for two terms s · σ and t · θ, we say that s is η-dominated
by t, written s · σ ⊑η t · θ, if and only if sση = tθ and, whenever some variable x from
σ occurs in s at position p, then p is in t at or below a variable.

For example, let s · σ = f(g(x), [g(y)]) and t · θ = f([g(c)] , [g(h(z))]). For a
substitution η = {x 7→ c, y 7→ h(z)}, obviously sση = tθ. Furthermore, each marked
position from s can be overlaid at or inside a marked position of t, so s · σ ⊑η t · θ.

This notion can be extended to literals: (s ≈ t) · σ ⊑η (w ≈ v) · θ if and only if
s·σ ⊑η w ·θ and t·σ ⊑η v ·θ, or s·σ ⊑η v ·θ and t·σ ⊑η w ·θ. The definition is analogous
for negative literals. Furthermore, a positive literal does not η-dominate a negative
literal and vice versa. The extension to closures is performed like this: C · σ ⊑η D · θ
if and only if, for each literal L1 ·σ from C ·σ, there exists a distinct literal L2 · θ from
D · θ, such that L1 · σ ⊑η L2 · θ. Note that D · θ is allowed to have more literals than
C · σ.

Now if C · σ ⊑η D · θ, then C · σ is reduced relative to D · θ modulo η. It may
happen that, for some η, it holds that L′ση = Lθ, but not L′ · σ ⊑η L · θ. One can
make L′ · σ reduced relative to L · θ by replacing L′ · σ with a retraction L′′ · σ′ by
instantiating those positions from L that do not overlay into a substitution position
of L′. In this way, the application of a simplification or deletion rule may be enabled,
while retracting from σ as little information as possible.

With these notions we can finally present the simplification rules. Closure C · σ is
a basic subsumer of D · θ if there is a substitution η such that Cση ⊆ Dθ and C · σ is
reduced relative to D · θ modulo η. Additionally, if C · σ has fewer literals than D · θ,
then D · θ may be deleted.

A closure (C ∨A ∨B) · σ can be replaced with (C ∨A) · σ if A · σ ⊑{} B · σ. This
is called duplicate literal deletion.

A closure C · σ can be deleted if Cσ is a tautology, meaning that |= Cσ. This is
called tautology deletion. Testing whether Cσ is a tautology requires itself theorem
proving. However, the following simple syntactic checks are typically sufficient: C · σ
is a tautology if it contains a pair of literals (s ≈ t) · σ and (s′ 6≈ t′) · σ, such that
sσ = s′σ and tσ = t′σ, or a literal of the form (s ≈ t) · σ with sσ = tσ.

20 2. Preliminaries

A closure (C ∨ x 6≈ s) · σ, where xσ ≻ sσ is called a basic tautology and can be
safely deleted. For example, if f(x) ≻ g(x), then the closure [f(x)] 6≈ g(x) is a basic
tautology. Note that f(x) 6≈ g(x) is not a basic tautology, since f(x) does not occur
at a substitution position.

All presented redundancy elimination rules are decidable. In fact, duplicate literal
deletion and tautology deletion can be performed in time polynomial in the number
of literals. It is well-known that the subsumption check is NP-complete in the number
of literals [46], and η-domination can be checked in polynomial time. Finally, the
complexity of basic tautology deletion is determined by the complexity of checking
ordering constraints.

2.5 Splitting

In some proofs we apply an additional splitting inference rule, presented below. It is
borrowed from the semantic tableau calculus and performs an explicit case analysis. If
some closure consists of two parts not having variables in common, one may separately
assume that either part is true. If unsatisfiability is proved in both cases, the initial
closure set is evidently unsatisfiable. Each of the cases introduced by the splitting rule
is called a branch.

Splitting:
N ∪ {C ∨D}

N ∪ {C} | N ∪ {D}

where (i) N is a set of closures, (ii) C and D do not have variables in common.

2.6 Disjunctive Datalog

In this section we briefly present the syntax and semantics of disjunctive datalog. This
presentation is standard and may be found in [38, 48].

Let Σ be a first-order signature such that (i) for each function symbol f ∈ F(Σ)
the arity of f is zero and (ii) ≈ ∈ P(Σ) is a special equality predicate with the arity of
two. A disjunctive datalog program with equality P is a finite set of rules of the form

A1 ∨ ... ∨An ← B1, ..., Bm

where n ≥ 0, m ≥ 0, and Ai and Bi are atoms defined over Σ. Furthermore, each rule
must be safe, that is, each variable occurring in a head literal must occur in a body
literal as well. For a rule r, the set of atoms head(r) = {Ai} is called the rule head,
whereas the set of atoms body(r) = {Bi} is called the rule body. A ground rule with
an empty body is called a fact.

Typical definitions of a disjunctive datalog program, e.g. from [38, 48], allow
negated atoms in the body. This negation is usually non-monotonic, and is different
from negation in first-order logic. Our approach produces only positive disjunctive
datalog programs, so we omit non-monotonic negation from the definitions.

2.7 Description Logic SHIQ 21

The semantics of disjunctive datalog programs is defined as follows. The ground
instance of P over the Herbrand universe of P , written ground(P,HU), is the set of
ground rules obtained by replacing variables in each rule of P with constants from
HU in all possible ways. The Herbrand base HB of P is the set of all ground atoms
defined over predicates from P(Σ). An interpretation M of P is a subset of HB . We
say that some ground atom A is true in an interpretation M if A ∈M ; A is false in M
if A /∈M . An interpretation M is a model of P if, for each rule r ∈ ground(P,HU), if
body(r) ⊆M , then head(r)∩M 6= ∅ and if all atoms from M involving the ≈ predicate
yield an equality relation (i.e. a relation that is reflexive, symmetric, transitive, and,
for any predicate symbol R ∈ P(Σ), if R(. . . , a, . . .) ∈ M and a ≈ b ∈ M , then
R(. . . , b, . . .) ∈M as well).

A model M is minimal if no subset of M is a model. The semantics of P is the set
of all minimal models of P , which is denoted byMM(P). Finally, the notion of query
answering is defined as follows. A ground literal A is a cautious answer of P (written
P |=c A) if all minimal models of the program contain A; A is a brave answer of P
(written P |=b A) if at least one minimal model of the program contains A. First-order
entailment coincides with cautious entailment for positive ground atoms.

The size of a rule r is defined as |r| = 1 +
∑

1≤i≤n |Ai| +
∑

1≤j≤m |Bj |, where the
size of atoms Ai and Bj is defined as |S(t1, . . . , tn)| = 1 + n: predicates and terms
are encoded with one symbol, and the leading 1 in the definition of |r| accounts for
the implication symbol separating the head from the body. The size of a program P ,
written |P |, is the sum of the sizes of all its rules.

2.7 Description Logic SHIQ

Definition 2.7.1. Let NRa be the set of abstract role names. The set of SHIQ
abstract roles is the set NRa ∪ {R

− | R ∈ NRa}. Let Inv(R) = R− and Inv(R−) = R
for R ∈ NRa. A SHIQ RBox R over NRa is a finite set of transitivity axioms
Trans(R) and abstract role inclusion axioms R ⊑ S, such that R ⊑ S ∈ R implies
Inv(R) ⊑ Inv(S) ∈ R, and Trans(R) ∈ R implies Trans(Inv(R)) ∈ R.

Let ⊑∗ denote the reflexive-transitive closure of ⊑. A role R is transitive if
Trans(S) ∈ R or Trans(Inv(S)) ∈ R for some S with S ⊑∗ R and R ⊑∗ S; R is
simple if there is no role S such that S ⊑∗ R and S is transitive; R is complex if it is
not simple.

Let NC be a set of atomic concept names. The set of SHIQ concepts over NC

and NRa is defined inductively as the minimal set for which the following holds: ⊤ and
⊥ are SHIQ concepts, each atomic concept name A ∈ NC is a SHIQ concept, and,
if C and D are SHIQ concepts, R is an abstract role, S is an abstract simple role
and n is an integer, then ¬C, C ⊓D, C ⊔D, ∃R.C, ∀R.C, ≤ nS.C, ≥ nS.C, are also
SHIQ concepts.

A SHIQ TBox T over NC and R is a finite set of concept inclusion axioms C ⊑ D
or concept equivalence axioms C ≡ D, where C and D are SHIQ concepts.

22 2. Preliminaries

Let NIa be a set of abstract individual names. A SHIQ ABox A is a set of concept
and abstract role membership axioms C(a), R(a, b), ¬S(a, b), and (in)equality axioms
a ≈ b and a 6≈ b, where C is a SHIQ concept, R is an abstract role, S is an abstract
simple role and a and b are abstract individuals.

A SHIQ knowledge base KB is a triple (KBR,KBT ,KBA), where KBR is an
RBox, KBT is a TBox, and KBA is an ABox.

Definition 2.7.1 differs from typical definitions in two aspects. First, since OWL-DL
lacks the unique name assumption (UNA), we do not incorporate UNA into the defi-
nition of SHIQ, but allow the user to axiomatize it by including an inequality axiom
ai 6≈ aj for each pair of distinct abstract individuals, respectively, cf. [5, page 60].
Second, usual definitions do not provide for ABox axioms involving negative roles. We
allow such assertions as they allow checking entailment of ground role facts.

Definition 2.7.2. The semantics of a SHIQ knowledge base KB is given by the
mapping π which transforms KB axioms into a first-order formula, as shown in Table
2.1. Each atomic concept is mapped into a unary predicate and each abstract role is
mapped into a binary predicate.

The basic inference problem for SHIQ is checking satisfiability of KB, that is,
determining whether a first-order model of π(KB) exists. Other interesting inference
problems can be reduced to satisfiability as follows, where α denotes a new abstract
individual not occurring in the knowledge base:

• Concept satisfiability. A concept C is satisfiable with respect to KB if and only
if there exists a model of KB in which the interpretation of C is not empty. This
is the case if and only if KB ∪ {C(α)} is satisfiable.

• Subsumption. A concept C is subsumed by a concept D with respect to KB if and
only if π(KB) |= π(C ⊑ D). This is the case if and only if KB ∪ {(C ⊓¬D)(α)}
is unsatisfiable.

• Instance checking. An individual a is an instance of a concept C with respect to
KB if and only if π(KB) |= π(C(a)). This is the case if and only if KB∪{¬C(a)}
is unsatisfiable.

• Role checking. A simple abstract role S relates individuals a and b with respect
to KB if and only if π(KB) |= π(S(a, b)). This is the case if and only if KB ∪
{¬S(a, b)} is unsatisfiable.

The semantics of description logics is usually given by a direct model-theoretic
semantics. An interpretation I = (△I , ·I) consists of a domain set △I and an inter-
pretation function ·I , which assigns to each individual a an element aI , to each atomic
concept A a set AI ⊆ △I , and to each role R a relation RI ⊆ △I ×△I . The semantics
of concepts and axioms is given in Table 2.2, where C and D are concepts, R and S are
roles and a and b are individuals. These two semantics are equivalent, as first shown

2.7 Description Logic SHIQ 23

Table 2.1: Semantics of SHIQ by Mapping to FOL

Mapping Concepts to FOL

πy(⊤, X) = ⊤
πy(⊥, X) = ⊥
πy(A,X) = A(X)
πy(¬C,X) = ¬πy(C,X)

πy(C ⊓D,X) = πy(C,X) ∧ πy(D,X)
πy(C ⊔D,X) = πy(C,X) ∨ πy(D,X)
πy(∀R.C,X) = ∀y : R(X, y)→ πx(C, y)
πy(∃R.C,X) = ∃y : R(X, y) ∧ πx(C, y)

πy(≤ nR.C,X) = ∀y1, . . . , yn+1 :
∧
R(X, yi) ∧

∧
πx(C, yi)→

∨
yi ≈ yj

πy(≥ nR.C,X) = ∃y1, . . . , yn :
∧
R(X, yi) ∧

∧
πx(C, yi) ∧

∧
yi 6≈ yj

Mapping Axioms to FOL

π(C ⊑ D) = ∀x : πy(C, x)→ πy(D,x)
π(C ≡ D) = ∀x : πy(C, x)↔ πy(D,x)
π(R ⊑ S) = ∀x, y : R(x, y)→ S(x, y)

π(Trans(R)) = ∀x, y, z : R(x, y) ∧R(y, z)→ R(x, z)
π(C(a)) = πy(C, a)

π((¬)R(a, b)) = (¬)R(a, b)
π(a ◦ b) = a ◦ b for ◦ ∈ {≈, 6≈}

Mapping KB to FOL

π(R) = ∀x, y : R(x, y)↔ R−(y, x)
π(KBR) =

∧
α∈KBR

π(α) ∧
∧

R∈NRa
π(R)

π(KBT) =
∧

α∈KBT
π(α)

π(KBA) =
∧

α∈KBA
π(α)

π(KB) = π(KBR) ∧ π(KBT) ∧ π(KBA)

Notes:
(i): X is a meta variable and is substituted by the actual variable,
(ii): πx is defined as πy by substituting x and xi for all y and yi, respectively.

24 2. Preliminaries

Table 2.2: Direct Model-theoretic Semantics of SHIQ

Interpreting Concepts

⊤I = △I

⊥I = ∅
(¬C)I = △I \ CI

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∩DI

(∀R.C)I = {x | ∀y : (x, y) ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

(≤ nR.C)I = {x | ♯{y | (x, y) ∈ RI ∧ y ∈ CI} ≤ n}
(≥ nR.C)I = {x | ♯{y | (x, y) ∈ RI ∧ y ∈ CI} ≥ n}

Semantics of Axioms

C ⊑ D CI ⊆ DI

C ≡ D CI = DI

R ⊑ S RI ⊆ SI

Trans(R) R is transitive
C(a) aI ∈ CI

R(a, b) (aI , bI) ∈ RI

¬R(a, b) (aI , bI) /∈ RI

a ◦ b aI ◦ bI for ◦ ∈ {≈, 6≈}

by Borgida in [21]. We now define several restrictions of SHIQ, which we consider in
our work.

Definition 2.7.3. For a knowledge base KB, a role R is called very simple if no role
S exists, such that S ⊑ R ∈ KBR. Description logic SHIQ− has the same syntax and
semantics as SHIQ, with the additional syntactical restriction that only very simple
roles are allowed to occur in number restrictions ≤ nR.C and ≥ nR.C.
ALCHIQ (ALCHIQ−) is a fragment of SHIQ (SHIQ−), which does not allow

transitivity axioms to occur in an RBox. ALC is the fragment of ALCHIQ which does
not provide for role hierarchies, inverse roles and qualified number restrictions.

Notice that the relation ⊑∗ can be a cyclic relation in general. In [114] it has
been shown that a SHIQ knowledge base KB with a cyclic role hierarchy can be
reduced to a knowledge base KB ′ with an acyclic role hierarchy, as follows. First, we
compute the set of maximal, strongly connected components (or maximal cycles) of
the role inclusion relation ⊑ of KB . For each strongly connected component Γ, we
select one representative role, denoted as role(Γ), such that, if R ∈ Γ, Inv(R) ∈ Γ′ and
role(Γ) = R, then role(Γ′) = Inv(R). (Since we assume that R ⊑ S ∈ KBR implies
Inv(R) ⊑ Inv(S) ∈ KBR, we have that, if R,S ∈ Γ and Inv(R) ∈ Γ′, then Inv(S) ∈ Γ′,
so the definition of role(Γ) is correct.) Next, we form the new TBox KB ′

T and ABox

2.7 Description Logic SHIQ 25

KB ′
A by replacing, in all axioms of KBA and KBT , each role R with role(Γ), where Γ is

the maximal, strongly connected component that R belongs to. Finally, we construct
the new RBox KB ′

R as follows: (i) for each pair of strongly connected components
Γ 6= Γ′, we add the axiom role(Γ) ⊑ role(Γ′) to KB ′

R if there are roles R ∈ Γ and
R′ ∈ Γ′ with R ⊑ R′, and (ii) for each strongly connected component C, we add the
axiom Inv(role(Γ)) ⊑ role(Γ) to KB ′

R if there is a role R ∈ Γ, such that also Inv(R) ∈ Γ.
Since the strongly connected components of ⊑ can be computed in time quadratic in
the number of roles, this reduction can be performed in polynomial time. Hence, we
can assume without loss of generality that RBoxes are acyclic.

A concept C is in negation-normal form if all negations in it occur in front of atomic
concepts only. C can be transformed in time linear in the size of C into an equivalent
concept in negation-normal form, denoted as NNF(C), by exhaustively applying the
following rewrite rules to subconcepts of C:

¬⊤ ⊥ ¬⊥ ⊤
¬(C1 ⊓ C2) ¬C1 ⊔ ¬C2 ¬(C1 ⊔ C2) ¬C1 ⊓ ¬C2

¬(∃R.C) ∀R.¬C ¬(∀R.C) ∃R.¬C
¬(≥ (n+ 1)R.C) ≤ nR.C ¬(≤ nR.C) ≥ (n+ 1)R.C

With |KB | we denote the size of the knowledge base assuming unary coding of
numbers, which is computed recursively in the following way, for C and D concepts,
A an atomic concept, and R and S roles:

• |KB | = |KBR|+ |KBT |+ |KBA|,

• |KBR| =
∑

α∈KBR
|α|,

• |KBT | =
∑

α∈KBT
|α|,

• |KBA| =
∑

α∈KBA
|α|,

• |R ⊑ S| = 3,

• |Trans(R)| = 2,

• |C ⊑ D| = |C ≡ D| = |C|+ |D|+ 1,

• |R(a, b)| = 3,

• |C(a)| = |C|+ 1,

• |⊤| = |⊥| = 1,

• |A| = |¬A| = 2,

• |C ⊔D| = |C ⊓D| = |C|+ |D|+ 1,

• |∃R.C| = |∀R.C| = 2 + |C|,

26 2. Preliminaries

• |≥ nR.C| = |≤ nR.C| = n+ 2 + |C|.

Intuitively, |KB | is the number of symbols needed to encode KB on the input tape
of a Turing machine using the unary encoding of numbers. We use a single symbol
for each atomic concept, role and individual. The n in the definition of the length
of concepts ≥ nR.C and ≤ nR.C stems from the assumption on unary coding of
numbers: a number n can be encoded in unary coding with n bits.

The notion of positions is extended to SHIQ concepts and axioms in the obvious
way:

• α|ǫ = α for α a concept or an axiom;

• (¬D)|1p = D|p;

• (D1 ◦D2)|ip = Di|p for ◦ ∈ {⊓,⊔,⊑,≡} and i ∈ {1, 2};

• for C = ⊲⊳ R.D with ⊲⊳ ∈ {∃,∀}, C|1 = R and C|2p = D|p;

• for C = ⊲⊳ nR.D with ⊲⊳ ∈ {≤,≥}, C|1 = n, C|2 = R and C|3p = D|p;

• Trans(R)|1 = R;

• for α = D(a), α|1p = D|p and α|2 = a;

• for α = R(a, b), α|1 = R, α|2 = a and α|3 = b;

• (a1 ◦ a2)|i = ai for ◦ ∈ {≈, 6≈} and i ∈ {1, 2}.

For α a SHIQ concept or an axiom and p a position in α, replacement of the sub-
object α|p with β is denoted as α[β]p and is defined in the obvious way. Furthermore,
if α|p is a concept, then the polarity of p is defined to agree with the polarity of the
corresponding position in translation of α into first-order logic, in the following way:

• pol(C, ǫ) = 1;

• pol(¬C, 1p) = −pol(C, p);

• pol(C1 ◦ C2, ip) = pol(Ci, p) for ◦ ∈ {⊓,⊔} and i ∈ {1, 2};

• pol(⊲⊳ R.C, 2p) = pol(C, p) for ⊲⊳∈ {∃,∀};

• pol(≤ nR.C, 3p) = −pol(C, p);

• pol(≥ nR.C, 3p) = pol(C, p);

• pol(C1 ⊑ C2, 1p) = −pol(C1, p) and pol(C1 ⊑ C2, 2p) = pol(C2, p);

• pol(C1 ≡ C2, ip) = 0 for i ∈ {1, 2};

• pol(C(a), 1p) = pol(C, p).

2.8 Description Logics with Concrete Domains 27

2.8 Description Logics with Concrete Domains

Practical applications of description logics usually require representing concrete prop-
erties such as height, name, or age, having values from a fixed domain such as integers
or strings, with built-in predicates. These requirements led to the extension of de-
scription logics with concrete domains [6]. Informally, a concrete domain consists of a
set of predicates with a predefined interpretation. If a decision procedure for checking
satisfiability of finite conjunctions over concrete domain predicates exists, many DLs
can be combined with a concrete domain while retaining decidability. Unfortunately,
in [75] it was shown that a logic with general inclusion axioms and concrete domains
is undecidable. Therefore, in [59, 89, 53] several alternatives have been investigated.
The cumulative results of this research influenced the design of the Ontology Web
Language (OWL) [91], which, in its DL version, supports a basic form of concrete
domains, so-called datatypes.

Before presenting the formal definition of description logics with concrete domains,
we give an intuitive example. Let us introduce an atomic concept Paper to repre-
sent bibliographical information about papers. The concrete role pages represents the
number of pages a paper has. We make this role functional by including the axiom
⊤ ⊑ ≤ 1 pages. To define long papers as papers with 25 pages or more, we use a unary
concrete domain predicate ≥25, which is interpreted as the set of all integers greater
than 25: LongPaper ≡ Paper ⊓ ∃pages. ≥25. Similarly, we define a short paper as
ShortPaper ≡ Paper ⊓ ∃pages. ≤8. From these definitions and the fact that the inter-
pretations of the predicates ≥25 and ≤8 are disjoint, we may infer that the concept
LongPaper ⊓ ShortPaper is unsatisfiable, and thus prevent a potential modeling error.

2.8.1 Concrete Domains

To present our definitions in a concise way, we introduce the following notation: with
x we denote a vector of variables x1, . . . , xn, and for a function δ, with δ(x) we denote
the application of δ to each element xi of x, i.e. δ(x1), . . . , δ(xn).

Definition 2.8.1. A concrete domain D is a pair (△D,ΦD), where △D is a set, called
the domain of D, and ΦD is a finite set of predicate names. Each d ∈ ΦD is associated
with an arity n and an extension dD ⊆ △n

D. A concrete domain D is admissible if:

• ΦD is closed under negation, i.e. for each d ∈ ΦD, there exists d ∈ ΦD with
dD = △n

D \ d
D,

• it contains a unary predicate ⊤D interpreted as △D, and

• D-satisfiability of finite conjunctions of the form
∧n

i=1 di(xi) is decidable. The
latter is the case if an assignment δ of variables to elements of △D exists, such
that δ(xi) ∈ d

D
i , for each 1 ≤ i ≤ n.

28 2. Preliminaries

Sometimes, we consider conjunctions over literals containing terms, rather than
variables. Let S = {di(ti)} be a set of literals, where ti is a vector of terms ti1, . . . , tik.
With Ŝ we denote a conjunction C =

∧
di(xi), obtained from S by replacing each

occurrence of a term with the same variable, such that different terms are replaced
with distinct variables. For two conjunctions C1 and C2, we write C1 ≡ C2 if they are
equivalent up to variable renaming.

Extending first-order logic with a concrete domain is significantly simplified if the
interpretation of concrete objects is separated from the interpretation of other objects.
Hence, we assume that the set of sorts S of a signature Σ contains the sort c for
the concrete objects, and the sort a for all other so-called abstract objects. Since the
concrete domain does not provide an interpretation for function symbols, we do not
allow nesting function symbols of sort c. Furthermore, all arguments of predicates from
ΦD must be of sort c. To distinguish the sorts syntactically, we denote the variables
(function symbols) of sort c as xc (f c).

Definition 2.8.2. Let D be an admissible concrete domain, and Σ a signature such
that c ∈ S, ΦD ⊆ P, the signature of each predicate from ΦD is c× . . .×c, and for each
function symbol f ∈ F , no argument is of sort c. Let ϕ be a formula defined over Σ and
I a “classic” multi-sorted model of ϕ, i.e. I |= ϕ, where concrete predicates are treated
as normal predicates. I is a D-model of ϕ, written I |=D ϕ, if and only if a valuation
δ : Dc → △D exists, such that for each (α1, . . . , αn) ∈ dI , (δ(α1), . . . , δ(αn)) ∈ dD.
The usual notions of validity, satisfiability and entailment are generalized to D-validity,
D-satisfiability and D-entailment in the obvious way.

The following simple lemma demonstrates that the D-satisfiability can be consid-
ered with respect to Herbrand models only, without loss of generality.

Lemma 2.8.3. A formula ϕ is D-satisfiable if and only if sk(ϕ) is D-satisfiable in a
Herbrand model.

Proof. The (⇐) direction follows immediately by definition of D-satisfiability. For the
(⇒) direction, if ϕ is D-satisfiable in some model I with valuation δ, then there is a
Herbrand model I ′ such that I ′ |= sk(ϕ), where each term t′i from the Herbrand model
corresponds to some αi in I [42]. We then define the valuation δ′ over the Herbrand
universe of I ′ by setting δ′(t′i) = δ(αi). Obviously, I ′ |=D sk(ϕ).

Notice that, since admissible concrete domains are closed under negation of predi-
cates, we may assume that concrete domain predicates occur in all clauses positively.
Also, when ambiguity does not arise, we do not stress D for satisfiability, equisatisfia-
bility, entailment etc.

2.8.2 Description Logic SHIQ(D)

We now present the formal definition of the SHIQ(D) description logic, which is
obtained by combining SHIQ with an admissible concrete domain D. The syntax

2.8 Description Logics with Concrete Domains 29

of SHIQ from Definition 2.7.1 can be extended to allow for concrete domains in the
following way:

Definition 2.8.4. Let NRc be the set of concrete roles. Additionally to SHIQ RBox
axioms, a SHIQ(D) RBox R can contain a finite number concrete role inclusion
axioms T ⊑ U2.

Let D be an admissible concrete domain. In addition to SHIQ concepts, the set
of SHIQ(D) concepts contains ∃T1, . . . , Tm.d, ∀T1, . . . , Tm.d, ≤ nT , ≥ nT , for T(i)

concrete roles, d an m-ary concrete domain predicate and n an integer. A SHIQ(D)
TBox T is defined analogously to Definition 2.7.1, with the difference that concepts
occurring in axioms are SHIQ(D) concepts.

Let NIc be a set of concrete individual names. Additionally to SHIQ ABox axioms,
a SHIQ(D) RBox R can contain a finite number of concrete role membership axioms
(¬)T (a, bc) and (in)equality axioms ac ≈ bc and ac 6≈ bc, where T is a concrete role, a
an abstract individual, and ac and bc are concrete individuals.

The semantics of SHIQ from Definition 2.7.2 can be extended to give semantics
to SHIQ(D) in the following way:

Definition 2.8.5. The semantics of a SHIQ(D) knowledge base KB is given by
extending the mapping π from Definition 2.7.2 to translate KB into a multi-sorted
first-order formula, as presented in Table 2.3. Atomic concept predicates have the
signature a, abstract roles have the signature a × a, concrete roles have the signature
a× c, and n-ary concrete domain predicates have the signature c× . . .× c.

The basic inference problem for SHIQ(D) is checking satisfiability of KB, that
is, determining whether a D-model of π(KB) exists. The other inference problems are
defined analogously as in Definition 2.7.2.

Direct model-theoretic semantics can be easily extended to SHIQ(D), by assigning
to each concrete individual ac an element (ac)I ∈ △D, and by assigning to each concrete
role T a set T I ⊆ △I × △D. The semantics of new concepts and axioms is given in
Table 2.4, where T(i) and U are concrete roles, and d is a concrete predicate.

The SHIQ−(D) and ALCHIQ−(D) fragments of SHIQ(D) are defined as in
Section 2.7. Below are the additional rewrite rules for reducing SHIQ(D) concepts to
negation-normal form:

¬(≥ (n+ 1)T) ≤ nT ¬(≤ nT) ≥ (n+ 1)T

¬(∃T1, . . . , Tn.d) ∀T1, . . . , Tn.d ¬(∀T1, . . . , Tn.d) ∃T1, . . . , Tn.d

The size of a SHIQ(D) knowledge base KB is obtained by extending the definition
from Section 2.7 to handle new constructs in the following way:

2Inverse concrete roles do not make sense semantically, so we do not distinguish between con-
crete roles and concrete role names. Furthermore, transitive concrete roles also do not make sense
semantically, so transitivity axioms are not allowed for concrete roles and all concrete roles are simple.

30 2. Preliminaries

Table 2.3: Semantics of SHIQ(D) by Mapping to FOL

Mapping Concepts to FOL

πy(∀T1, . . . , Tm.d,X) = ∀yc
1, . . . , y

c
m :

∧
Ti(X, y

c
i)→ d(yc

1, . . . , y
c
m)

πy(∃T1, . . . , Tm.d,X) = ∃yc
1, . . . , y

c
m :

∧
Ti(X, y

c
i) ∧ d(y

c
1, . . . , y

c
m)

πy(≤ nT ,X) = ∀yc
1, . . . , y

c
n+1 :

∧
T (X, yc

i)→
∨
yc

i ≈ y
c
j

πy(≥ nT ,X) = ∃yc
1, . . . , y

c
n :

∧
T (X, yc

i) ∧
∧
yc

i 6≈ y
c
j

Mapping Axioms to FOL

π(T ⊑ U) = ∀xc, yc : T (xc, yc)→ U(xc, yc)
π((¬)T (a, bc)) = (¬)T (a, bc)

π(ac ◦ bc) = ac ◦ bc for ◦ ∈ {≈, 6≈}

Table 2.4: Direct Model-theoretic Semantics of SHIQ(D)

Interpreting Concepts

(∀T1, . . . , Tm.d)
I = {x | ∀y1, . . . , ym : (x, y1) ∈ T

I
1 ∧ . . . ∧ (x, ym) ∈ T I

m →
(y1, . . . , ym) ∈ dD}

(∃T1, . . . , Tm.d)
I = {x | ∃y1, . . . , ym : (x, y1) ∈ T

I
1 ∧ . . . ∧ (x, ym) ∈ T I

m∧
(y1, . . . , ym) ∈ dD}

(≤ nT)I = {x | ♯{y | (x, y) ∈ T I} ≤ n}
(≥ nT)I = {x | ♯{y | (x, y) ∈ T I} ≥ n}

Semantics of Axioms

T ⊑ U T I ⊆ U I

T (a, bc) (aI , (bc)I) ∈ T I

¬T (a, bc) (aI , (bc)I) /∈ T I

ac ◦ bc (ac)I ◦ (bc)I for ◦ ∈ {≈, 6≈}

• |∃T1, . . . , Tm.d| = |∀T1, . . . , Tm.d| = 2 +m,

• |≥ nT | = |≤ nT | = n+ 2.

The notion of positions is defined for the new SHIQ(D) constructs as follows:

• for C = ⊲⊳ T1, . . . , Tm.d with ⊲⊳ ∈ {∃,∀}, C|i = Ti for 1 ≤ i ≤ m, and C|m+1 = d;

• for C = ⊲⊳ nT with ⊲⊳ ∈ {≤,≥}, C|1 = n and C|2 = T .

Since the new constructs do not contain nested concepts, the notion of polarity
carries over from SHIQ to SHIQ(D) without change.

Chapter 3

Deciding SHIQ by Basic

Superposition

For a SHIQ knowledge base KB , our ultimate goal is to derive a disjunctive datalog
program DD(KB) which is satisfiable if and only if KB is. The intuitive principle
by which the equisatisfiability of KB and DD(KB) is achieved is relatively simple.
Namely, if KB is unsatisfiable, this can be demonstrated by a refutation in some
sound and complete calculus I. If it is possible to simulate inferences of I in DD(KB),
a refutation in KB by I can be reduced to a refutation in DD(KB). Conversely, if
DD(KB) is unsatisfiable, there is a refutation in DD(KB). If it is possible to simulate
inferences in DD(KB) by I, then a refutation in DD(KB) can be reduced to a refutation
in KB by I. To summarize, if the simulation of inferences can be performed in both
directions, DD(KB) and KB are equisatisfiable.

To obtain a sound, complete and terminating algorithm from the high-level idea
outlined above, it is necessary to select the appropriate calculus I, capable of effectively
deciding satisfiability of KB . Positive disjunctive datalog is strongly related to clausal
first-order logic. Intuitively, simulation of inferences using disjunctive datalog will be
easier if I is a clausal refutation calculus. Hence, in the rest of this chapter we present a
procedure for deciding satisfiability of SHIQ knowledge bases by basic superposition.
The algorithm presented in this chapter is then used in Chapter 5 to obtain the desired
reduction.

In Section 3.6 we give an overview of existing decision procedures for various de-
cidable fragments of first-order logic based on clausal calculi. However, SHIQ cannot
be directly embedded into any of these fragments. An exception is the two-variable
fragment with counting quantifiers, but we find it difficult to use the decision proce-
dure from [95] to simulate inference steps as sketched above. Hence, we designed a
new, worst-case optimal decision procedure for SHIQ, which itself has several novel
aspects. It is well-known that the combination of inverse roles and counting quanti-
fiers is difficult to handle algorithmically. On the model-theoretic side, it makes the
logic lose the finite model property, and on the proof-theoretic side, tableau decision

31

32 3. Deciding SHIQ by Basic Superposition

procedures for such logics require sophisticated pair-wise blocking techniques to ensure
termination [61]. It turns out that this combination makes a resolution-based decision
procedure more complicated as well: contrary to most existing decision procedures
(such as [43] or [105]), to decide SHIQ it is necessary to consider clauses contain-
ing terms of depth two. To block certain undesirable inferences with such clauses, a
stronger calculus for equality than superposition [10] is needed. The solution we adopt
is to use basic superposition [15].

3.1 Decision Procedure Overview

Before delving into the details, in this section we present a high-level overview of the
principles we base our decision procedure upon.

Basic superposition alone unfortunately does not decide SHIQ. A minor problem
are transitivity axioms, which in a clausal representation require clauses without so-
called covering literals — literals containing all variables of a clause [64]. As shown in
[70], termination of resolution on such clauses is very difficult to achieve. To address
this, in Section 3.2 we show how to eliminate transitivity axioms by polynomially
encoding a SHIQ knowledge base KB into an equisatisfiable ALCHIQ knowledge
base Ω(KB). After this initial transformation step, we focus on deciding satisfiability
of ALCHIQ knowledge bases only.

A significantly more complex problem is that basic superposition alone decides only
ALCHIQ−, where number restrictions are allowed only on roles not having subroles.
Namely, the combination of role hierarchies, inverse roles and counting quantifiers may
produce clauses which, during saturation by basic superposition, produce terms of ever
increasing depth, so the saturation does not necessarily terminate. We address this
problem in two stages.

In Section 3.3 we present a decision procedure for deciding satisfiability of an
ALCHIQ− knowledge base KB . First, we preprocess KB into a clausal representation
as explained in Subsection 3.3.1. Let us denote the resulting set of closures with Ξ(KB).
It is not difficult to see that Ξ(KB) will contain only closures of a certain syntactic form,
as shown in Table 3.1. We then saturate Ξ(KB) under BSDL with eager application
of redundancy elimination rules, where BSDL is the BS calculus, parameterized as
described in Definition 3.3.3. We denote the saturated set of closures by Sat(Ξ(KB)).
Since BSDL is sound and complete [15], Sat(Ξ(KB)) will contain the empty closure if
and only if Ξ(KB) is unsatisfiable. In order to obtain a decision procedure, we show
that saturation always terminates. This is done in a proof-theoretic way as follows:

• We generalize the types of closures from Table 3.1 to so called ALCHIQ−-
closures, which are presented in Table 3.2. In Lemma 3.3.4, we show that each
closure occurring in Ξ(KB) is an ALCHIQ−-closure.

• In Lemma 3.3.5, we show that in any BSDL-derivation starting from Ξ(KB), each
inference produces either an ALCHIQ−-closure, or a closure which is redundant
(and may be deleted).

3.2 Eliminating Transitivity Axioms 33

• In Lemma 3.3.8, we show that, for some finite knowledge base, the set of possible
ALCHIQ−-closures occurring in any BSDL-derivation is finite.

• Termination is now a simple consequence of these two lemmata: in the worst case,
one will derive all possible ALCHIQ−-closures, after which all further inferences
are redundant. The bound on the size of the set of ALCHIQ−-closures gives us
the complexity of the decision procedure, as demonstrated in Theorem 3.3.9.

To handle ALCHIQ, in Section 3.4 we extend the basic superposition calculus with
a new decomposition inference rule. This rule decomposes certain closures with unde-
sirable terms into several simpler closures. We show that decomposition is sound and
complete, and that it guarantees the termination of basic superposition for ALCHIQ.
It turns out that the decomposition rule is quite general and versatile; in Section 3.5
we use it to decide a slightly stronger logic ALCHIQb, which allows certain safe role
expressions.

3.2 Eliminating Transitivity Axioms

In this section we show how to eliminate transitivity axioms from a SHIQ knowledge
base KB , by transforming it polynomially into an ALCHIQ knowledge base Ω(KB).
Since Ω(KB) is satisfiable exactly when KB is, without loss of generality we restrict our
attention in the remaining sections to ALCHIQ knowledge bases. As one can easily
see from Definition 3.2.2, for a SHIQ− knowledge base KB , Ω(KB) is an ALCHIQ−

knowledge base. Therefore, we do not consider very simple roles explicitly in the
definition of Ω.

The transformation presented here is similar to the one found in [114], where an al-
gorithm for transforming SHIQ concepts to concepts in ALCIQb logic was presented
(ALCIQb does not provide role hierarchy, but allows certain types of boolean oper-
ations on roles). Another similar transformation has been presented in [105], where
it is demonstrated, among others, how K4m (i.e. the multi-modal logic with transi-
tive modalities) formulae can be encoded into Km (i.e. the multi-modal logic without
transitive modalities) formulae.

Definition 3.2.1. For a SHIQ knowledge base KB, let clos(KB) denote the concept
closure of KB, defined as the smallest set of concepts satisfying the following conditions:

• If C ⊑ D ∈ KBT , then NNF(¬C ⊔D) ∈ clos(KB).

• If C ≡ D ∈ KBT , then NNF(¬C⊔D) ∈ clos(KB) and NNF(¬D⊔C) ∈ clos(KB).

• If C(a) ∈ KBA, then NNF(C) ∈ clos(KB).

• If C ∈ clos(KB) and D occurs in C, then D ∈ clos(KB).

• If ≤ nR.C ∈ clos(KB), then NNF(¬C) ∈ clos(KB).

34 3. Deciding SHIQ by Basic Superposition

• If ∀R.C ∈ clos(KB), S ⊑∗ R, and Trans(S) ∈ KBR, then ∀S.C ∈ clos(KB).

Notice that all concepts in clos(KB) are in NNF. We define next the operator
Ω which encodes any SHIQ knowledge base KB into an equisatisfiable ALCHIQ
knowledge base Ω(KB).

Definition 3.2.2. For a SHIQ knowledge base KB, let Ω(KB) denote the following
ALCHIQ knowledge base:

• Ω(KB)R is obtained from KBR by removing all axioms Trans(R),

• Ω(KB)T is obtained by adding to KBT the axiom ∀R.C ⊑ ∀S.(∀S.C) for each
concept ∀R.C ∈ clos(KB) and role S such that S ⊑∗ R and Trans(S) ∈ KBR,

• Ω(KB)A = KBA.

Observe that, for any concept C, the number of subconcepts in clos(KB) is bounded
by the number of subexpressions of C. Furthermore, for each concept from clos(KB),
we may generate at most |NR| axioms in Ω(KB)T . Hence, the encoding is polynomial
in |KB |. Furthermore, it does not affect satisfiability, as we show next.

Theorem 3.2.3. KB is satisfiable if and only if Ω(KB) is satisfiable.

Proof. Out of convenience, we use the model-theoretic semantics of SHIQ in this
proof.

(⇒) Assume that I is a model of KB , but that I is not a model of Ω(KB), i.e. some
axiom from Ω(KB) is not satisfied in I. Since Ω(KB)R ⊆ KBR and KBT ⊆ Ω(KB)T ,
such an axiom must have been added in the second point of Definition 3.2.2. Hence,
there is a domain element α such that α ∈ (∀R.C)I , but α /∈ (∀S.(∀S.C))I . There are
two possibilities:

• There is no domain element β for which (α, β) ∈ SI . Then α ∈ (∀S.X)I , regard-
less of X. Hence, α ∈ (∀S.(∀S.C))I holds, which is a contradiction.

• There is a domain element β such that (α, β) ∈ SI . There are two possibilities:

– If no domain element γ exists such that (β, γ) ∈ SI , then β ∈ (∀S.C)I . Since
this holds for any β, we have α ∈ (∀S.(∀S.C))I , which is a contradiction.

– If there is γ such that (β, γ) ∈ SI , by transitivity of S we have (α, γ) ∈ SI .
Since SI ⊆ RI and α ∈ (∀R.C)I , we have γ ∈ CI . Since this holds for
any γ, we have β ∈ (∀S.C)I . Since this holds for any β, we have that
α ∈ (∀S.(∀S.C))I , which is a contradiction.

3.2 Eliminating Transitivity Axioms 35

Hence, I is a model of Ω(KB).

(⇐) As explained in Section 2.7, without loss of generality we may focus only on knowl-
edge bases with acyclic RBoxes. Let I be a model of Ω(KB), and I ′ an interpretation
constructed from I as follows:

• △I′ = △I .

• For each individual a, aI′ = aI .

• For each atomic concept A ∈ clos(KB), AI′ = AI .

• If Trans(R) ∈ KBR, RI′ = (RI)+.

• If Trans(R) /∈ KBR, RI′ = RI ∪
⋃

S⊑∗R,S 6=R S
I′ .

Since we may assume that KBR is acyclic, the above induction is well-defined. We
will now show that I ′ satisfies every RBox axiom of KB . By construction I ′ satisfies all
transitivity axioms in KBR. Furthermore, I ′ satisfies each inclusion axiom in KBR: if
R is not transitive, this is obvious from the construction; otherwise, this follows from
the fact that A+ ∪B+ ⊆ (A ∪B)+ for any A and B. Furthermore, for any role R we
have RI ⊆ RI′ , and, if R is simple, then RI′ = RI .

For concepts C and D from clos(KB), let C ⋖ D if and only if C or NNF(¬C)
occurs in D. We now show by induction on ⋖ that, for each D ∈ clos(KB), DI ⊆ DI′ .
The relation ⋖ is obviously acyclic, so the induction is well-founded. For the base case
when D is an atomic concept A or a negation of an atomic concept ¬A, the claim
follows immediately from the definition of I ′. For the induction step we examine each
possible form D might have:

• D = C1 ⊓ C2. Assume for some α we have α ∈ (C1 ⊓ C2)
I . Then α ∈ CI

1 and
α ∈ CI

2 . By the induction hypothesis, α ∈ CI′

1 and α ∈ CI′

2 , so α ∈ (C1 ⊓ C2)
I′ .

• D = C1⊔C2. Assume for some α we have α ∈ (C1⊔C2)
I . Then either α ∈ CI

1 , so
by the induction hypothesis α ∈ CI′

1 , or α ∈ CI
2 , so by the induction hypothesis

α ∈ CI′

2 . Either way, α ∈ (C1 ⊔ C2)
I′ .

• D = ∃R.C. Assume for some α we have α ∈ (∃R.C)I . Then there is a β such
that (α, β) ∈ RI and β ∈ CI , so by the induction hypothesis β ∈ CI′ . Since
RI ⊆ RI′ , we have (α, β) ∈ RI′ , so α ∈ (∃R.C)I′ .

• D = ∀R.C. Assume that α ∈ (∀R.C)I . If there is no object β such that
(α, β) ∈ RI′ , then α ∈ (∀R.C)I′ . Otherwise, assume there is such a β. There are
two possibilities:

– (α, β) ∈ RI . Then β ∈ CI , so by the induction hypothesis β ∈ CI′ .

36 3. Deciding SHIQ by Basic Superposition

– (α, β) /∈ RI . Then there must be a role S ⊑∗ R with Trans(S) ∈ KBR,
and a path (α, γ1) ∈ SI , (γ1, γ2) ∈ SI , . . ., (γn−1, β) ∈ SI , n > 1. But
then ∀R.C ⊑ ∀S.(∀S.C) ∈ Ω(KB)T , so α ∈ (∀S.(∀S.C))I and γ1 ∈ (∀S.C)I .
Furthermore, ∀S.C ⊑ ∀S.(∀S.C) ∈ Ω(KB)T , so γi ∈ (∀S.C)I for 1 < i < n.
For n− 1 we have β ∈ CI , so by the induction hypothesis β ∈ CI′ .

Since for any β, in both cases we have that β ∈ CI′ , we have α ∈ (∀R.C)I′ .

• D = ≥ nR.C. Assume that α ∈ (≥ nR.C)I . Then there are at least n distinct
domain elements βi such that (α, βi) ∈ RI and βi ∈ CI , so by the induction
hypothesis βi ∈ C

I′ . Since RI ⊆ RI′ , we have α ∈ (≥ nR.C)I′ .

• D = ≤ nR.C. Since R is simple, RI = RI′ . Let E = NNF(¬C). Assume
now that α ∈ (≤ nR.C)I , but α /∈ (≤ nR.C)I′ . Then a β must exist such that
(α, β) ∈ RI , β /∈ CI , β ∈ CI′ , β ∈ EI and β /∈ EI′ . However, since E ∈ clos(KB),
by induction hypothesis we have β ∈ EI′ , which is a contradiction. Hence,
α ∈ (≤ nR.C)I′ .

Now it is obvious that any ABox axiom of the form C(a) from KB is satisfied in I ′:
since I is a model of Ω(KB), we have aI ∈ CI , but since CI ⊆ CI′ , we have aI ∈ CI′ .
Also, any ABox axiom of the form R(a, b) from KB is satisfied in I ′: since I is a
model of Ω(KB), we have (aI , bI) ∈ RI , but since RI ⊆ RI′ , we have (aI , bI) ∈ RI′ .
For an ABox axiom of the form ¬S(a, b), S must be a simple role so SI = SI′ and
(aI , bI) /∈ SI implies (aI , bI) /∈ SI′ . Finally, any TBox axiom of the form C ⊆ D from
KB is satisfied in I ′: since I is a model of Ω(KB), we have that △I ⊆ (¬C ⊔D)I , but
since (¬C ⊔D)I ⊆ (¬C ⊔D)I′ , we have △I′ ⊆ (¬C ⊔D)I′ . Similar arguments hold for
any TBox axiom of the form C ≡ D.

Notice that for α of the form (¬)A(a) with A an atomic concept, or of the form
(¬)R(a, b) with R a simple role, Ω(KB ∪ {α}) = Ω(KB)∪ {α}, so KB |= α if and only
if Ω(KB) |= α. Hence, transitivity axioms can be eliminated once, and thus obtained
knowledge base can be used for query answering. Unfortunately, the models of KB and
Ω(KB) may differ in the interpretation of complex roles. Therefore, Ω(KB) cannot be
used to answer such ground queries where R is a complex role. This is why we restrict
negative ground role atoms in Definition 2.7.1 of SHIQ knowledge bases to simple
roles only.

3.3 Deciding ALCHIQ−

In this section we present in detail each step of the algorithm for deciding satisfiability
of an ALCHIQ− knowledge base KB , which we outlined in Section 3.1.

3.3 Deciding ALCHIQ− 37

3.3.1 Preprocessing

The first step in deciding satisfiability of KB is to transform it into clausal form.
Straightforward transformation of π(KB) into disjunctive normal form has two signif-
icant drawbacks. Firstly, the structure of formulae would be destroyed. Secondly, the
usual transformation into clausal normal form might increase the size of the closure
set exponentially. To overcome these drawbacks, we first apply the structural transfor-
mation [93, 86, 9], also known as renaming. Intuitively, for some first-order formula ϕ,
the structural transformation introduces a new name for each subformula of ϕ. Thus,
the original formula structure is preserved and, since the number of subformulae of ϕ
is linear in the size of ϕ, the exponential blowup is avoided.

In the rest, we assume without loss of generality that all ABox concept membership
axioms in KB are expressed using atomic concepts: for each membership axiom C(a)
where C is not atomic, one may introduce a new atomic concept AC , add the axiom
AC ⊑ C to the TBox and replace C(a) with AC(a). Such a transformation is obviously
polynomial, and we call such knowledge bases extensionally reduced.

Definition 3.3.1. Let C be a concept, and Λ(C) the set of positions p 6= ǫ of subcon-
cepts of C such that C|p is neither an atomic concept, nor a negation of an atomic
concept, and for all positions q below p, C|q is either an atomic concept or a negation
of an atomic concept. Def(C) is defined recursively as follows:

Def(C) =

{C} if Λ(C) = ∅
{¬Q ⊔ C|p} ∪ Def(C[Q]p) if p ∈ Λ(C) and pol(C, p) = 1
{Q ⊔ ¬C|p} ∪ Def(C[Q]p) if p ∈ Λ(C) and pol(C, p) = −1

where Q is a new globally unique atomic concept. Furthermore, let

Cls(Def(C)) =
⋃

D∈Def(C)

Cls(∀x : πy(D,x))

For an ALCHIQ knowledge base KB, Ξ(KB) is the smallest set of closures satis-
fying the following conditions:

• For each abstract role name R ∈ NRa, Cls(π(R)) ⊆ Ξ(KB).

• For each RBox or ABox axiom α in KB, Cls(π(α)) ⊆ Ξ(KB).

• For each TBox axiom C ⊑ D in KB, Cls(Def(¬C ⊔D)) ⊆ Ξ(KB).

• For each TBox axiom C ≡ D in KB, Cls(Def(¬C ⊔D)) ⊆ Ξ(KB) and
Cls(Def(¬D ⊔ C)) ⊆ Ξ(KB).

In the above definition, for C = C1 ⊔ . . . ⊔ Cn, one can safely omit the positions
1, . . . , n in Λ(C), since this reduces the number of closures generated. For example,
the negation normal form of the axiom ¬C ⊓¬D ⊑ ∃R.⊤ is C ⊔D ⊔ ∃R.⊤, which can
be readily transformed into a closure C(x)∨D(x)∨R(x, f(x)), without introducing a
new name for the subconcept ∃R.⊤.

38 3. Deciding SHIQ by Basic Superposition

Table 3.1: Closure Types after Preprocessing

1 ¬R(x, y) ∨ Inv(R)(y, x)
2 ¬R(x, y) ∨ S(x, y)
3

∨
(¬)Ci(x) ∨R(x, f(x))

4
∨

(¬)Ci(x) ∨ (¬)D(f(x))
5

∨
(¬)Ci(x) ∨ fi(x) 6≈ fj(x)

6
∨

(¬)Ci(x)
7

∨
(¬)Ci(x) ∨

∨n
i=1 ¬R(x, yi) ∨

∨n
i=1D(yi) ∨

∨n
i,j=1;j>i yi ≈ yj

8 (¬)C(a)
8 (¬)R(a, b)

10 a ≈ b
11 a 6≈ b

Lemma 3.3.2. Let KB be an ALCHIQ knowledge base. Then KB is satisfiable if and
only if Ξ(KB) is satisfiable. Furthermore, Ξ(KB) can be computed in time polynomial
in |KB | for unary coding of numbers in input.

Proof. Let ψC =
∧

D∈Def(C) ∀x : πy(C, x). It is easy to see that ψC is actually the
definitional normal form of ϕ = ∀x : πy(C, x) with respect to the set of positions of all
non-atomic subformulae of ϕ. By the definition of π and Cls, and since transformation
into definitional normal form does not affect satisfiability, it is easy to see that KB and
Ξ(KB) are equisatisfiable. The inductive step of Def(C) is applied at most once for each
subconcept of C, so the number of new concepts Q introduced by Def is polynomial
in |C|, and Def(C) can be computed in polynomial time. For each D ∈ Def(C), the
number of function symbols f introduced by the skolemization of ∀x : πy(D,x) is
bounded by the maximal number occurring in a number restriction in D. For unary
coding of numbers, f is linear in |D|, so Cls(D) can obviously be computed in time
polynomial in |D|, thus implying the claim of the lemma.

Using binary coding, a number n can be represented with ⌈log2 n⌉ bits. In this case,
the number of function symbols introduced by skolemization is exponential in the size
of the input, so translation into first-order logic would incur exponential blowup.

By definition of π from Table 2.1, it is easy to see that all closures obtained by this
transformation share some common syntactic properties. Table 3.1 lists the types of
closures that Ξ(KB) may contain.

3.3.2 Parameters for Basic Superposition

For the following definition it is necessary to keep in mind that literals A(t1, . . . , tn)
are encoded as A(t1, . . . , tn) ≈ ⊤, as discussed in Section 2.4. Due to this encoding,

3.3 Deciding ALCHIQ− 39

predicate symbols become function symbols, so atoms can be compared using a term
ordering given below.

Definition 3.3.3. Let BSDL denote the BS calculus parameterized as follows:

• The term ordering ≻ is a lexicographic path ordering induced over a total prece-
dence >P over function, constant and predicate symbols, such that, for any func-
tion symbol f , constant symbol c, and predicate symbol p, f >P c >P p >P ⊤.

• The selection function selects in each closure C · σ every negative binary literal.

In BSDL, we need to compare terms and literals only in closures of types 3–6 and
8 from Table 3.2. It is easy to see that, since LPOs are total on ground terms, and
terms in closures of type 3–6 and 8 have at most one variable, any LPO is total on
non-ground terms from these closures. In this case, one can use a more direct definition
of the literal ordering. We associate with each literal L = s ◦ t, ◦ ∈ {≈, 6≈}, the triple
cL = (max(s, t), pL,min(s, t)), where max(s, t) is the bigger of the two terms, pL is 1
if ◦ is 6≈, and 0 otherwise, and min(s, t) is the smaller of the two terms. Then L1 ≻ L2

if and only if cL1
≻ cL2

, where cLi
are compared lexicographically. An LPO is used to

compare the first and the third position of cL, where for the second position we take
1 ≻ 0. It is easy to see that, since ≻ is total on terms, this definition is equivalent to
the one based on two-fold multiset extension, given in Section 2.4.

Ordering and selection constraints in BS are checked a posteriori, that is, after
computing the unifier. This is more general, since some terms may be comparable
only after unification. For example, s = f(x) and t = y are not comparable using
an LPO. However, for σ = {x 7→ a, y 7→ g(f(a))}, we have tσ ≻ sσ. The drawback
is that the unifier is often computed in vain, just to determine that constraints are
not satisfied. However, LPOs are total on terms from closures 3–6 and 8, so we may
check ordering and selection constraints a priori, that is, before computing the unifier.
Namely, if s and t are two terms to be compared, they are either both ground or both
have the same, single free variable, so they can always be compared before computing
σ. Also, if s ≻ t, then sσ ≻ tσ for any substitution σ.

3.3.3 Closure of ALCHIQ−-closures under Inferences

We now generalize types of closures from Table 3.1 to so-called ALCHIQ−-closures
presented in Table 3.2. For a term t, with P(t) we denote a possibly empty disjunction
of the form (¬)P1(t) ∨ . . . ∨ (¬)Pn(t). With P(f(x)) we denote a possibly empty
disjunction of the form P1(f1(x))∨ . . .∨Pn(fm(x)). Notice that this definition allows
each Pi(fi(x)) to contain positive and negative literals. With 〈t〉 we denote that the
term t may, but need not be marked. In all closure types, some of the disjuncts may
be empty. Finally, with ≈/6≈ we denote a positive or a negative equality literal.

Lemma 3.3.4. Each closure from Ξ(KB) is of exactly one of the types from Table
3.2. Furthermore, for each function symbol f occurring in Ξ(KB), there is exactly one

40 3. Deciding SHIQ by Basic Superposition

Table 3.2: Types of ALCHIQ−-closures

1 ¬R(x, y) ∨ Inv(R)(y, x)

2 ¬R(x, y) ∨ S(x, y)

3 Pf (x) ∨R(x, 〈f(x)〉)
4 Pf (x) ∨R([f(x)] , x)

5 P1(x) ∨P2(〈f(x)〉) ∨
∨
〈fi(x)〉≈/6≈ 〈fj(x)〉

6 P1(x) ∨P2([g(x)]) ∨P3(〈f([g(x)])〉) ∨
∨
〈ti〉≈/6≈ 〈tj〉

where ti and tj are either of the form f([g(x)]) or of the form x

7 P1(x) ∨
∨
¬R(x, yi) ∨P2(y) ∨

∨
yi ≈ yj

8 R(〈a〉 , 〈b〉) ∨P(〈t〉) ∨
∨
〈ti〉≈/6≈ 〈tj〉

where t, ti and tj are either some constant b or a functional term fi([a])

Conditions:

(i): In any term f(t), the inner term t occurs marked.
(ii): In all positive equality literals with at least one function symbol,

both sides are marked.
(iii): Any closure containing a term f(t) contains Pf (t) as well.
(iv): In a literal [fi(t)] ≈ [fj(t)], role(fi) = role(fj).
(v): In a literal [f(g(x))] ≈ x, role(f) = Inv(role(g)).
(vi): For each [fi(a)] ≈ [b] a witness closure of the form R(〈a〉 , 〈b〉) ∨D exists,

with role(fi) = R, D does not contain functional terms or negative
binary literals, and is contained in this closure.

closure of type 3 containing f(x) unmarked; this closure is called the Rf -generator,
the disjunction Pf (x) is called the f-support, and R is called the designated role for
f and is denoted as role(f).

Proof. The first claim follows trivially from the definition of Ξ(KB). For the second
claim, observe that each closure of type 3 is generated by skolemizing an existentially
quantified subformula. Since each skolemization introduces a fresh function symbol,
this symbol will be associated with exactly one closure of type 3.

We now prove the core result that our decision procedure is based upon.

Lemma 3.3.5. Let Ξ(KB) = N0, . . . , Ni ∪ {C} be a BSDL-derivation, where C is the
conclusion derived from premises in Ni. Then C is either an ALCHIQ−-closure or it
is redundant in Ni.

Proof. We first prove the property (max), determining which literals can be maximal
in closures of types 3, 4, 5, 6 and 8 under ordering and selection function of BSDL:

• In a closure of type 3, the literal R(x, 〈f(x)〉) is always maximal.

3.3 Deciding ALCHIQ− 41

• In a closure of type 4, the literal R([f(x)] , x) is always maximal.

• In a closure of type 5, the literal of the form (¬)P (x) can be maximal only if the
closure does not contain a term of the form f(x).

• In a closure of type 6, only a literal containing a term of the form f([g(x)]) can
be maximal.

• In a closure of type 8, a literal of the form (¬)R(a, b), (¬)P (a), a ≈ b, or a 6≈ b
can be maximal only if the closure does not contain a function symbol.

For closures of type 3 and 4, the claims follow directly from the properties of the
precedence >P from Definition 3.3.3 and the definition of LPO. Furthermore, for any
term t, function symbol f , and predicate symbol P , since f >P P and f(t) ≻ t, we
have f(t) ≻ P (t). For a closure of type 5, we have P ′(f(x)) ≻ f(x) ≻ P (x), so P (x)
may be maximal only if the closure does not contain a term of the form f(x). For
a closure of type 6, we have P ′′(f(g(x))) ≻ f(g(x)) ≻ P ′(g(x)) ≻ g(x) ≻ P (x), so
only a literal containing a term of the form f(g(x)) may be maximal. Finally, for
any function symbol f , constants a, b, and c, unary predicate symbol P and a binary
predicate symbol R, by the properties of >P we have f(a) ≻ P (b), f(a) ≻ R(b, c) and
f(a) ≻ b. Hence, a literal not containing function symbols can be maximal only if a
closure it occurs in does not contain a function symbol.

We now prove the lemma by induction on the derivation length. By Lemma 3.3.4,
N0 contains only ALCHIQ−-closures, so the induction base holds. For the induction
step, we examine all possible applications of inference rules of BSDL to closures in Ni.
We show first that the conclusion has the structure of an ALCHIQ−-closure, and later
show that conditions (i)–(vi) hold for it.

Inferences with closures of types 1 and 2. Since negative binary literals are
always selected and superposition into variables is not necessary, closures of type 1
and 2 can participate only as negative premises in resolution inferences with closures
of types 3, 4 and 8. Obviously, the unifier binds the variables x and y to corresponding
terms in the positive premise, and the result is of type 3, 4 or 8.

Inferences between closures of types 5, 6 and 8. Consider any inference be-
tween closures of types 5 or 6 with free variables x and x′, respectively. Since the
term g(x) in some f([g(x)]) is always marked, terms can be unified only at their root
position. The following pairs of terms from premises can be unifiable:

• x and x′; f(x) and f(x′); or f([g(x)]) and f([g(x′)]). The unifier is σ = {x 7→ x′},
and the conclusion is obviously a closure of type 5 or 6. Notice that superposition
from f(g(x)) ≈ x into f(g(x′)) 6≈ x′ results in x′ 6≈ x′, which can eagerly be
eliminated by reflexivity resolution.

42 3. Deciding SHIQ by Basic Superposition

• x and g(x′); or f(x) and f([g(x′)]). The unifier is σ = {x 7→ g(x′)}, and the
conclusion is also a closure of type 5 or 6.

Inferences between closures of type 6 and 8 are not possible since a term of the
form f(g(x)) does not unify with a term of the form a or f(a). For closures of type 5
and 8, the unifier may be σ = {x 7→ a} or σ = {x 7→ f(a)}, and the conclusion is of
type 8. Inferences between closures of type 8 have an empty unifier and the conclusion
is trivially of type 8.

Inferences with a closure of type 7. Since all binary literals are always selected,
a closure of type 7 can participate only in a hyperresolution inference as the main
premise C. The side premises can have the maximal literals of the form R(xi, 〈fi(xi)〉),
R([gi(xi)] , xi) or R(〈a〉 , 〈bi〉). These combinations are possible:

• Assume there are two (or more) side premises with the maximal literal of the
form R([gi(xi)] , xi). Without loss of generality these premises may be assigned
indices 1 and 2. Since g1(x1) and g2(x2) must be unified with x, σ contains
mappings y1 7→ x1, y2 7→ x1 and x2 7→ x1. Since C contains a literal yi ≈ yj for
each pair of i and j, the conclusion contains x1 ≈ x1 and is a tautology.

• Assume the first side premise has the maximal literal of the form R([g(x′)] , x′).
Since g(x′) does not unify with a constant, no side premise may be of type 8. The
unifier σ is of the form x 7→ g(x′), xi 7→ g(x′), y1 7→ x′, yi 7→ fi(g(x

′)), 2 ≤ i ≤ n.
If n = 1, the conclusion is of type 5; otherwise it is of type 6.

• Assume all side premises have the maximal literals of the form R(xi, 〈fi(xi)〉).
The unifier σ is of the form xi 7→ x, yi 7→ fi(x) and the conclusion is of type 5.

• Assume some side premises have the maximal literal of the form R(xi, 〈fi(xi)〉)
for 1 ≤ i ≤ k, and R(〈a〉 , 〈bi〉) for k < i ≤ n (all ground premises must have the
same first argument in the maximal literal since all these arguments should unify
with x). The unifier σ contains mappings of the form x 7→ a, xi 7→ a, yi 7→ fi(a)
for 1 ≤ i ≤ k and yi 7→ bi for k + 1 ≤ i ≤ n. The conclusion is of type 8.

Superposition into a closure of type 3. The only remaining possible inference is
superposition into a closure of type 3 with the free variable x′. By condition (max),
(w ≈ v) · ρ can only be the literal R(x′, f(x′)) with R being the designated role for f .
There are these possibilities:

• (C∨s ≈ t)·ρ is a closure of type 5, 6 or 8 with (s ≈ t)·ρ of the form [f(ι)] ≈ [g(ι)].
The unifier σ is {x′ 7→ ι}, so the conclusion is S = Pf ([ι]) ∨R([ι] , [g(ι)]) ∨ C · ρ,
where Pg([ι]) ⊆ C · ρ. By Condition (iv), the Rg-generator P g(y) ∨ R(y, g(y))
exists, so it subsumes S by the substitution {y 7→ ι}.

3.3 Deciding ALCHIQ− 43

• (C ∨s ≈ t) ·ρ is a closure of type 6 with (s ≈ t) ·ρ of the form [f(g(x))] ≈ x. The
unifier σ is {x′ 7→ g(x)}, so the conclusion is S = Pf ([g(x)])∨R([g(x)] , x)∨C ·ρ,
where Pg(x) ⊆ C · ρ. By Condition (v), the closure Pg(y) ∨ R([g(y)] , y) exists,
so it subsumes S by the substitution {y 7→ x}.

• (C ∨ s ≈ t) · ρ is a closure of type 8 with (s ≈ t) · ρ of the form [f(a)] ≈ [b]. The
unifier σ is {x′ 7→ a}, so the conclusion is S = Pf ([a]) ∨ R([a] , [b]) ∨ C · ρ. By
Condition (vi), a witness of the form R(〈a〉 , 〈b〉)∨D, where D ⊆ C ·ρ, exists, and
it subsumes S by the empty substitution. If the witness has been subsumed by
some other closure, then, since the subsumption relation is transitive, this other
closure subsumes the conclusion.

In all cases, the superposition conclusion is subsumed by an existing closure, so a
superposition into a closure of type 3 is always redundant.

Equality factoring. Ordering constraints allow optimizing the application of equal-
ity factoring. Only closures of types 5, 6 or 8 are candidates for equality factoring.
The premise has the form (C ∨ s ≈ t ∨ s′ ≈ t′) · ρ, where sρ ≈ tρ is maximal with
respect to Cρ ∨ s′ρ ≈ t′ρ, tρ � sρ, and t′ρ � s′ρ. The unifier σ is always empty. If we
assume that simplification by duplicate literal elimination is applied eagerly, we safely
conclude that (s ≈ t) · ρ is strictly maximal, so t′ and t cannot be ⊤. Hence, terms
sρ, tρ, s′ρ and t′ρ are either all ground or all contain the same free variable x. The
ordering ≻ is total on such terms, so we may rewrite ordering constraints as tρ ≺ sρ
and t′ρ ≺ s′ρ. By the fact that sρ ≈ tρ is strictly maximal, we conclude that tρ ≻ t′ρ.

Consider now the case where all equalities involved in the inference are marked, so
s, t, s′ and t′ are variables. This is the case for all closures of type 5 and 6, and some
closures of type 8. The conclusion has then the form (C ∨ t 6≈ t′ ∨ s′ ≈ t′) · ρ, where t
is a variable and tρ ≻ t′ρ. Thus, the conclusion is a basic tautology and is redundant.

Hence, provided that duplicate literal elimination is applied eagerly, equality factor-
ing is redundant for all closures, apart from closures of type 8, where it can be applied
to equalities of the form 〈a〉 ≈ 〈b〉 with at least one non-marked term. Depending on
the marking, equality factoring either yields a basic tautology which is redundant or
a closure of type 8. Notice that a closure of type 8 might contain disjunctions of the
form R([a] , b) ∨ R(a, [b]), to which duplicate literal removal does not apply directly
due to incompatible markers. However, we assume that in such a case the markers are
eagerly retracted, i.e. the disjunction is converted into R(a, b) ∨ R(a, b) which is then
collapsed into R(a, b).

Reflexivity resolution. Reflexivity resolution can only be applied to a closure of
type 5, 6 and 8 with the empty unifier, so it produces a closure of type 5, 6 or 8. Since
the unifier is always empty, the conclusion subsumes the premise, so this inference
should be applied eagerly.

44 3. Deciding SHIQ by Basic Superposition

Conditions. From the above case analysis, one may observe that the following prop-
erty (uni) hold: closures of type 3, 4 and 5 with a free variable x participate in in-
ferences only with a unifier containing mappings x 7→ x′, x 7→ g(x′), x 7→ f(g(x′)) or
x 7→ a. We now show that all conditions from Table 3.2 hold for each non-redundant
inference conclusion.

Condition (i): If a closure C satisfies Condition (i), by the property (uni) the
unifier σ may only instantiate x. Hence, Cσ will satisfy (i) as well. Since no inference
removes markers from functional terms, Condition (i) holds for any conclusion.

Condition (ii): All positive equality literals with at least one function symbol are
generated by hyperresolution with a closure of type 7, so all terms in positive equalities
in the conclusion are marked. Since no inference removes markers from the roots of
the terms occurring in equalities, Condition (ii) holds for any conclusion.

Condition (iii): If a closure C contains f([t]) and satisfies Condition (iii), by the
property (max) literals from Pf ([t]) cannot participate in an inference. Furthermore,
by the property (uni), any variable x is instantiated simultaneously in f([t]) and
P f ([t]). Since no inference adds new functional terms in the conclusion, Condition
(iii) holds for any conclusion.

Conditions (iv) and (v): All equality literals with functional terms are generated
by hyperresolution with the nucleus C of type 7. Since the role R occurring in C is very
simple, a closure of type 3 or 4 cannot be resolved with a closure of type 2. Hence, for
all electrons of the form Pf (x)∨R(x, 〈f(x)〉) we have role(f) = R, and for an electron
of the form Pg(x)∨R([g(x)] , x) we have role(g) = Inv(R). Hence, Conditions (iv) and
(v) are satisfied for each conclusion of a hyperresolution inference. Furthermore, by
Condition (ii) superposition into equality literals with functional terms is not possible,
and in any literal [fi(x)] ≈ [fj(x)] the variable x is instantiated simultaneously. Hence,
Conditions (iv) and (v) hold for each conclusion of any inference.

Condition (vi): All literals of the form [f(a)] ≈ [b] are generated by hyperresolution
involving an electron E1 of type 8 with the maximal literal R(〈a〉 , 〈b〉) and an electron
E2 of type Pf (x) ∨ R(x, 〈f(x)〉). Since R occurring in such C must be very simple, a
closure of type 8 cannot be resolved with a closure of type 2, so role(f) = R. Since
the literal R(〈a〉 , 〈b〉) is maximal in E1, by the property (max) no literal from E1

contains a functional term, and E2 does not contain a negative binary literal. Hence,
the conclusion satisfies Condition (vi). Assume now that Condition (vi) holds for some
closure C, where D is a witness of [f(a)] ≈ [b]. Since no literal from D is functional
or is a negative binary literal, by the property (max) no literal from C occurring in D
may participate in an inference, so all literals are present in the conclusion. Finally,
both sides of the all equality literals containing functional terms are marked, so each
equality literal with functional terms derived in an inference must always occur in some
of the premises. Hence, Condition (vi) holds for each conclusion.

The following corollary can be easily shown by inspecting the proof of Lemma 3.3.5:

Corollary 3.3.6. If a closure of type 8 participates in a BSDL inference in a derivation
from Lemma 3.3.5, the unifier σ contains only ground mappings of the form x 7→ a

3.3 Deciding ALCHIQ− 45

and x 7→ f(b), and the conclusion is a closure of type 8. Furthermore, a closure of
type 8 cannot participate in an inference with a closure of type 4 or 6.

The following corollary is useful for optimizing certain algorithms we present later.

Corollary 3.3.7. Let KB be an ALCHIQ− knowledge base, containing neither at-
most number restrictions occurring under positive, nor at-least number restrictions
occurring under negative polarity. Then, in a saturation of Ξ(KB) by BSDL, closures of
type 8 do not contain functional terms. Furthermore, a closure of type 8 can participate
in an inference only with closures not containing functional terms.

Proof. For a KB as in the corollary, with (*) we denote the fact that each closure of
type 7 in Ξ(KB) contains exactly one literal ¬R(x, y) and does not contain equality
literals. Now the claim of the corollary can be shown by induction on the derivation
length. The base case is obvious, since all ABox closures in Ξ(KB) = N0 are of type
from Table 3.1, so they do not contain functional terms. For the induction step, we
consider all inferences generating a closure of type 8 inNi+1. A closure with an equality
literal containing a functional term might be generated only by a hyperresolution with
a closure of type 7 containing equality literals, but this is not possible by (*). A literal
(¬)C([g(a)]) might be derived by hyperresolving a closure of type 7 with an electron
of type 3 and of type 8, but this is again not possible by (*). The only remaining
possibility to derive a literal (¬)C([g(a)]) is by superposition from [f(a)] ≈ [g(a)] into
(¬)C(f(x)), but this is not possible, since Ni does not contain equality literals with
functional terms. Finally, since a closure of type 8 does not contain a functional term,
it can participate in an inference only with a literal not containing a functional term.
Since such a literal must be maximal, it may occur only in a closure not containing a
functional term.

3.3.4 Termination and Complexity Analysis

We show that the number of ALCHIQ−-closures is finite for a finite signature. This,
in combination with Lemma 3.3.5 and the soundness and completeness of BSDL shows
that BSDL, with eager application of redundancy elimination rules, is a decision pro-
cedure for checking satisfiability of ALCHIQ− knowledge bases.

Lemma 3.3.8. Let Ni be any closure set obtained in a derivation as defined in Lemma
3.3.5. If C is a closure in Ni, then the number of literals in C is at most polynomial in
|KB |, for unary coding of numbers in input. Furthermore, |Ni| is at most exponential
in |KB |, for unary coding of numbers in input.

Proof. By Lemma 3.3.5, Ni can contain only ALCHIQ−-closures. Since redundancy
elimination is applied eagerly, Ni cannot contain closures with duplicate literals or
closures identical up to variable renaming. Let r denote the number of role predicates,
a the number of atomic concept predicates, c the number of constants and f the number
of function symbols occurring in the signature of Ξ(KB). By definition of |KB |, r and

46 3. Deciding SHIQ by Basic Superposition

c are obviously linear in |KB |. Furthermore, a is also linear in |KB |, since the number
of new atomic concept predicates introduced during preprocessing is bounded by the
number of subconcepts of each concept, which is linear in |KB |. The number f is
bounded by the sum of all numbers n in ≥ nR.C and ≤ nR.C plus one for each ∃R.C
and ∀R.C occurring in KB . Since numbers are coded in unary, f is linear in |KB |. Let
n denote the maximal number occurring in any number restriction. For unary coding
of numbers, n is linear in |KB |.

Consider now the maximal number of literals in a closure of type 5. The maximal
number of literals for P1(x) is 2a (factor 2 allows for each atomic concept predicate to
occur positively or negatively), for P2(〈f(x)〉) it is 2a · 2f (f is multiplied by 2 since
each term may or may not be marked), for equalities it is f2 (both terms are always
marked), and for inequalities it is 4f2 (factor 4 allows for each side of the equality to
be marked or not). Hence, the maximal number of literals is 2a+4af+f2 +4f2. For a
closure of type 6, the maximal number of literals is 2a+2a+4af+(f2+f)+(4f2+2f):
possible choices for g do not contribute to the closure length, and the expressions in
parenthesis take into account that each term in an equality or an inequality can be
fi(g(x)) or x. For a closure of type 8, the maximal number of literals is 2r · 2c · 2c +
2a · 2c+ 2a · 2f · c+ 2 · (4c2 + c · f2 + cf · 2c): the factor 2 in front of the parenthesis
takes into account that equalities and inequalities may have the same form, and the
expression in the parenthesis counts all possible forms these literals may have. The
maximal number of literals of closures of type 1 and 2 is obviously 2, and for closures
of type 3 and 4 it is a+1. For a closure of type 7, the number of variables yi is bounded
by n: each such closure in Ξ(KB) contains at most n variables, and no inference steps
increases the number of variables. The maximal number of literals in a closure of type
7 is n+4c+n2, since the choice for R does not contribute to the closure length. Hence,
the maximal number of literals in any closure is polynomial in |KB |, for unary coding
of numbers.

The maximal number of closures of type 1–6 and 8 in Ni is now easily obtained as
follows: if Cℓ is the closure with maximal number of literals ℓ for some closure type,
then there are 2ℓ subsets of literals of Cℓ. To obtain the total number of closures, one
must multiply 2ℓ with the number of closure-wide choices. For closures of type 6, the
function symbol g can be chosen in f ways. For closures of type 3 and 4, one can choose
R and f in rf ways. For closures of type 1, one can choose R in r ways. For closures
of type 2, one can choose R and S in r2 ways. Since all these factors are polynomial
in |KB | for unary coding of numbers, we obtain an exponential bound on the number
of closures of types 1–6 and 8. Finally, no inference derives a new closure of type 7, so
Ni contains only those closures of type 7 which are contained in Ξ(KB).

Theorem 3.3.9. For an ALCHIQ− knowledge base KB, saturation of Ξ(KB) by
BSDL with eager application of redundancy elimination rules decides satisfiability of
KB and runs in time exponential in |KB |, for unary coding of numbers in input.

Proof. Translation of KB into Ξ(KB) can be performed in time polynomial in |KB | by
Lemma 3.3.2, and contains only ALCHIQ−-closures by Lemma 3.3.4. Let ℓ denote the

3.4 Removing the Restriction to Very Simple Roles 47

maximal number of closures occurring in the closure set in a derivation as specified in
Lemma 3.3.5, and let l denote the maximal number of literals in a closure. By Lemma
3.3.8, ℓ is exponential, and l polynomial in |KB |, for unary coding of numbers. Since
all terms are unary, ordering constraints can be checked in time polynomial in l. In
[46], a subsumption decision algorithm was presented, running in time exponential in l.
Furthermore, the subsumption check is performed at most for each pair of closures, so
it takes at most exponential time. Apart from ordered hyperresolution with a closure
of type 7, each of the four inference rules can potentially be applied to any closure
pair. Since for closures other than of type 7 exactly one literal is maximal/selected,
this gives rise to at most 4ℓ2 inferences. For a hyperresolutiuon inference with a closure
of type 7, n side premises can be chosen in ℓn ways. Hence, the number of applications
of inference rules of BSDL is bounded by 4ℓ2 + ℓn, which is exponential in |KB | for
unary coding of numbers in input. Now it is obvious that, after at most an exponential
number of steps, the set of closures will be saturated, and the procedure will terminate.
Since BSDL is sound and complete with eager application of redundancy elimination
rules, the claim of the theorem follows.

In the proof of Theorem 3.3.9, we assumed an exponential algorithm for checking
subsumption. In practice, it is known that modern theorem provers spend up to
90% of their time in subsumption checking, so an algorithm with a better worst case
complexity on ALCHIQ−-closures is useful in practice.

Lemma 3.3.10. Subsumption checks for ALCHIQ−-closures may be performed in
polynomial time.

Proof. In [46] it was shown that subsumption between closures having at most one
variable can be checked in polynomial time. This algorithm can be easily extended
to additionally check η-reducibility, so subsumption checking for closures of type 3,
4, 5, 6 and 8 can be performed in polynomial time. Checking whether a closure of
type 1 or 2 subsumes some other closure can be performed by matching the negative
literal first, and then checking whether the positive literal matches as well, which can
be performed in quadratic time.

Let C and C ′ be two closures of type 7. For C to subsume C ′, the only possibility
is that σ contains mappings yi 7→ y′i and x 7→ x′. Hence, C subsumes C ′ only if the
number of variables yi in C is smaller than in C ′, both closures contain the same role
R, and the predicates occurring in P1(x) and P2(y) of C are a subset of the predicates
occurring in C ′, respectively. These checks can obviously be performed in polynomial
time.

3.4 Removing the Restriction to Very Simple Roles

In this section we show how to remove the restriction to very simple roles and thus
obtain an algorithm for deciding satisfiability of anALCHIQ knowledge base KB . Our
main problem is that by saturating Ξ(KB), we may obtain closures whose structure

48 3. Deciding SHIQ by Basic Superposition

corresponds to the Table 3.2, but for which conditions (iii)–(vi) do not hold; we call
such closures ALCHIQ-closures.

Consider the following knowledge base KB and its translation into closures Ξ(KB):

R ⊑ T ¬R(x, y) ∨ T (x, y) (3.1)

S ⊑ T ¬S(x, y) ∨ T (x, y) (3.2)

C ⊑ ∃R.⊤ ¬C(x) ∨R(x, f(x)) (3.3)

⊤ ⊑ ∃S−.⊤ S−(x, g(x)) (3.4)

⊤ ⊑ ≤ 1T ¬T (x, y1) ∨ ¬T (x, y2) ∨ y1 ≈ y2 (3.5)

∃S.⊤ ⊑ D ¬S(x, y) ∨D(x) (3.6)

∃R.⊤ ⊑ ¬D ¬R(x, y) ∨ ¬D(x) (3.7)

⊤ ⊑ C C(x) (3.8)

¬S−(x, y) ∨ S(y, x) (3.9)

Consider a saturation of Ξ(KB) by BSDL. Resolving (3.4) with (3.9) yields (3.10).
Furthermore, (3.3) and (3.10) are resolved with (3.1) and (3.2) to produce (3.11) and
(3.12), respectively. These can then be resolved with (3.5) to produce (3.13):

S([g(x)] , x) (3.10)

¬C(x) ∨ T (x, [f(x)]) (3.11)

T ([g(x)] , x) (3.12)

¬C([g(x)]) ∨ [f(g(x))] ≈ x (3.13)

For (3.13), Condition (v) is not satisfied: role(f) = R 6= Inv(role(g)) = Inv(S−) = S.
Obviously, this is because in (3.5), a number restriction was stated on a role that is
not very simple. Now (3.13) can be superposed into (3.3), resulting in (3.14):

¬C([g(x)]) ∨R([g(x)] , x) (3.14)

Since condition (v) is not satisfied for (3.13), we cannot assume that there is a
closure that subsumes (3.14), as we did in the proof of Lemma 3.3.5. Hence, we must
keep (3.14), which is obviously not an ALCHIQ-closure. This might cause termination
problems, as, in general, (3.14) might be resolved with some closure of type 6 of the
form C([g(h(x))]), producing a closure of the form R([g(h(x))] , [h(x)]). The term
depth in the binary literal is now two, and it is not difficult to see that, by resolving
it with some closure of type 7, it is possible to derive closures with ever deeper terms.
Hence, Lemma 3.3.8, stating that the number of closures that can be derived is finite,
does not hold any more, so saturation does not necessarily terminate.

A careful analysis of the problem reveals that various refinements of the ordering
and the selection function will not help. Furthermore, (3.14) is necessary for complete-
ness. Namely, KB is unsatisfiable, and the empty clause may be derived only by the
following deduction, which involves (3.14):

3.4 Removing the Restriction to Very Simple Roles 49

D([g(x)]) (3.15)

¬D([g(x)]) ∨ ¬C([g(x)]) (3.16)

¬C([g(x)]) (3.17)

� (3.18)

3.4.1 Transformation by Decomposition

To remedy the problems outlined above, we introduce decomposition — an additional
transformation which may be applied to the result of any BS inference. This trans-
formation is generally applicable and is not limited to ALCHIQ or description logic.
We show that decomposition can be combined with basic superposition, but in a sim-
ilar way one can show that decomposition can be combined with any clausal calculus
compatible with the general notion of redundancy [14]. In Subsection 3.4.2 we extend
BSDL with decomposition to obtain a decision procedure for ALCHIQ.

In the following, for x a vector of distinct variables x1, . . . , xn, and t a vector
of (not necessarily distinct) terms t1, . . . , tn, let {x 7→ t} denote the substitution
{x1 7→ t1, . . . , xn 7→ tn}, and let Q([t]) denote Q([t1] , . . . , [tn]).

Definition 3.4.1. Let C · ρ be a closure and N a set of closures. A decomposition of
C · ρ w.r.t. N is a pair of closures C1 · ρ∨Q([t]) and C2 · θ∨¬Q(x) where t is a vector
of n terms and x is a vector of n distinct variables, n ≥ 0, such that (i) C = C1 ∪C2,
(ii) ρ = θ{x 7→ t}, (iii) the set of free variables of C2θ is equal to x and, (iv) if
C2 · θ ∨¬Q

′(x) ∈ N , then Q = Q′, otherwise Q is a new predicate not occurring in N .
The closure C2 · θ is called the fixed part, the closure C1 · ρ is called the variable part,
and the predicate Q is called the definition predicate. An application of decomposition
is often written as

C · ρ
C1 · ρ ∨ Q([t])
C2 · θ ∨ ¬Q(x)

With BS+ we denote the BS calculus where (a) the conclusion of any inference
performed on a non-definition predicate can be replaced by its decomposition w.r.t. the
set of closures derived thus far, (b) in each saturation only a finite number of definition
predicates is introduced, and (c) definition predicates are smaller than non-definition
predicates.

As an example, consider superposition from a closure [f(g(x))] ≈ [h(g(x))] into a
closure C(x) ∨ R(x, f(x)), resulting in a closure C([g(x)]) ∨ R([g(x)] , [h(g(x))]). The
conclusion is obviously not an ALCHIQ-closure, so performing further inferences with
it might lead to non-termination. However, the closure can be decomposed into closures
C([g(x)])∨QR,f ([g(x)]) and ¬QR,f (x)∨R(x, [h(x)]), which are bothALCHIQ-closures,
and do not cause termination problems. We first show that BS+ is sound.

50 3. Deciding SHIQ by Basic Superposition

Lemma 3.4.2. Let N0, . . . , Ni be a BS+-derivation, and let I0 be a model of N0. Then
for i > 1, Ni has a model Ii such that, if the inference deriving Ni from Ni−1 involves
a decomposition step as specified in Definition 3.4.1 introducing a new predicate Q,
then Ii = Ii−1 ∪ {Q(s) | s is a vector of ground terms such that C2θ{x 7→ s} is true in
Ii−1}; otherwise Ii = Ii−1.

Proof. The proof proceeds by induction on the length of the derivation N0, . . . , Ni.
The base case is trivial, since I0 is a model of N0 by the assumption. For the induction
step, we assume that Ni−1 has a model Ii−1 satisfying the conditions of the lemma
and consider possible inferences deriving Ni. For inferences without a decomposition
step, the claim is trivial. For example, consider a positive superposition inference from
(s ≈ t ∨ C) · ρ into (w ≈ v ∨D) · ρ with unifier σ resulting in (C ∨D ∨ w[t]p ≈ v) · θ,
where θ = ρσ, and let τ be a ground substitution. If (s ≈ t) · θτ is false in Ii−1, then
C · θτ is true in Ii−1; if (w ≈ v) · θτ is false in Ii−1, then D · θτ is true in Ii−1; and if
both (s ≈ t) · θτ and (w ≈ v) · θτ are true in Ii−1, then (w[t]p ≈ v) · θτ is true in Ii−1.
The cases for other inference rules are similar.

If the inference deriving Ni from Ni−1 involves a decomposition step, then two
cases are possible. If the predicate Q is new, then Ii−1 can be extended to Ii by adding
those ground literals Q(s) for which C2θ{x 7→ s} is true in Ii−1. Hence, for any ground
substitution τ , in C2 · θτ ∨¬Q(x)τ either C2 · θτ or ¬Q(x)τ is true in Ii. Furthermore,
if C · ρτ is true in Ii−1, then C1 · ρτ ∨Q([t])τ is obviously true in Ii. If the predicate Q
is not new, then Ii = Ii−1. Then, by the induction hypothesis Q(s) is true if and only
if C2θ{x 7→ s} is true, and C1 · ρτ ∨Q([t])τ is true in Ii as in the previous case.

We now show that, if the result of an inference is decomposed in a way that makes
the literals involving Q minimal, then the fixed and the variable part together make
the inference redundant. This is the key step in showing completeness of BS+.

Lemma 3.4.3. Let ξ be a BS inference applied to premises D1 · σ and D2 · σ from a
closure set N on a literal not containing a definition predicate, resulting in a closure
C · ρ. If C · ρ can be decomposed into closures C1 · ρ∨Q([t]) and C2 · θ ∨¬Q(x) which
are both redundant in N , then the inference ξ is redundant in N .

Proof. Let ξ be an inference with premises D1 ·σ and D2 ·σ resulting in a closure C ·ρ,
R a rewrite system, and τ a ground substitution such that ξτ is a variable irreducible
ground instance of ξ w.r.t. R. Let E1 = (C1 · ρ∨Q([t]))τ and E2 = (C2 · θ ∨¬Q(x))τ .
Finally, let D = max(D1 · στ,D2 · στ).

It is not hard to see that, for any conclusion C · ρτ of a ground BS inference ξτ ,
we have C · ρτ ≺ D. Namely, the side premise participates in an inference always
on the maximal literal Ls which is, by the ordering constraints of BS inference rules,
always smaller than the corresponding literal Lm of the main premise. Furthermore,
superposition inferences are allowed only from the maximal side of the equality, so the
literal L′

m produced by superposition of Ls into Lm is always smaller than Lm. Similar
observations hold for non-superposition inferences. Hence, L′

m � C · ρτ ≺ Lm.

3.4 Removing the Restriction to Very Simple Roles 51

By Definition 3.4.1, all definition predicates are smaller than non-definition pred-
icates, so Q(x)τ � L′

m and Q([t])τ � L′
m. Hence, E1 � L′

m ≺ Lm � D and
E2 � L′

m ≺ Lm � D. Notice that, unless definition predicates are required to be
smallest, decomposition might introduce a literal which is bigger than the literals in
the premises; this is the reason for restriction (c) of Definition 3.4.1. Furthermore, if ξ
is performed on a literal containing a decomposition predicate Q′, then decomposition
might introduce a predicate Q which is larger than Q′; this is the reason for restriction
(a) of Definition 3.4.1.

Now the vector of terms t is “extracted” from the substitution part of C ·ρ. Hence,
if a term t occurs in E1 and E2 at a substitution position, then t occurs in C · ρτ also
at a substitution position. Therefore, if C · ρτ is variable irreducible w.r.t. R, so are
E1 and E2.

To summarize, for all rewrite systems R and all ground substitutions τ such that
ξτ is a variable irreducible ground instance of ξ w.r.t. R, the closures E1 and E2

are ≺-smaller than D, and they are variable irreducible w.r.t R if C · ρτ is variable
irreducible w.r.t R. The closure C1 · ρ ∨ Q([t]) is redundant in N by assumption, so
R ∪ irredR(N)�E1 |= E1 but, since E1 ≺ D, we have R ∪ irredR(N)≺D |= E1. Similarly
R ∪ irredR(N)≺D |= E2. Since {E1, E2} |= C · ρτ , we have R ∪ irredR(N)≺D |= C · ρτ ,
so the claim of the lemma holds.

We are now ready to show that BS+ is a sound and complete refutation calculus.

Theorem 3.4.4. For N0 a set of closures of the form C · {}, let N be a set of closures
obtained by saturating N0 under BS+. Then N0 is satisfiable if and only if N does not
contain the empty closure.

Proof. The (⇒) direction follows immediately from Lemma 3.4.2. For the (⇐) di-
rection, assume that N is saturated under BS+ and contains only a finite number
of definition predicates. Then, by Lemma 3.4.3, N is saturated under BS as well,
so using the model generation method, we can build a rewrite system R, such that
R∗ |= irredR(N). Unlike for basic superposition without decomposition, the set of
closures N does not need to be well-constrained, so we cannot immediately assume
that R∗ is a model of N . However, we may conclude that R∗ |= irredR(N0): consider
a closure C ∈ N0 and its variable irreducible ground instance Cτ . If C ∈ N , then R∗

is obviously a model of Cτ . Furthermore, C /∈ N only if it is redundant in N , but
then, for any τ , there are variable irreducible ground closures Diτ ∈ irredR(N) such
that D1τ, . . . , Dnτ |= Cτ . Hence, since R∗ |= Diτ by assumption, we have R∗ |= Cτ
as well.

Now consider a closure C ∈ N0 and its (not necessarily variable irreducible) ground
instance Cη. Let η′ be a substitution obtained from η by replacing each mapping x 7→ t
with x 7→ nfR(t). Since the substitution part of C is empty, Cη′ ∈ irredR(N0) and,
since R∗ |= Cη′, we have R∗ |= Cη. Hence, R∗ |= N0, and by Lemma 3.4.2, there is a
model of N .

52 3. Deciding SHIQ by Basic Superposition

We explain the intuition behind the result of Theorem 3.4.4. Decomposition is
essentially the structural transformation applied in the course of the theorem proving
process. Since the formulae obtained by the structural transformation are equisatisfi-
able with the original formula, the application of the structural transformation does
not affect soundness of completeness of the calculus. The only potential problem might
be that decomposition somehow interferes with markers of basic superposition. This
does not occur since, for any rewrite system R, decomposing C · ρ into C1 · ρ ∨Q([t])
and C2 ·θ∨¬Q(x) actually decomposes any variable irreducible ground instance of the
premise into corresponding variable irreducible ground instances of the conclusions.
In this way, we do not loose any variable irreducible ground instance “relevant” for
detecting potential inconsistency of the closure set. It is worth mentioning that in a
rewrite system R, closures C1 ·ρ∨Q([t]) and C2 ·θ∨¬Q(x) can have variable irreducible
ground instances which do not correspond to a variable irreducible ground instance
of C · ρ. However, this “excessive” variable irreducible ground instances do not cause
problems, since decomposition is a sound inference. The restriction to introducing a
finite number of definition predicates ensures that we do not get an infinite signature
of the closure set, which might invalidate the basic assumptions of resolution-based
theorem proving.

For any other sound clausal calculus, Lemma 3.4.2 applies identically. Furthermore,
for any calculus compatible with the standard notion of redundancy [14], Lemma 3.4.3
can be proved in a similar manner with minor differences.

3.4.2 Deciding ALCHIQ by Decomposition

We now show how to apply the decomposition rule from Subsection 3.4.1 to obtain a
decision procedure for checking satisfiability of ALCHIQ knowledge bases.

Definition 3.4.5. Let BS+
DL be the BSDL calculus where conclusions, whenever pos-

sible, are decomposed as follows, for an arbitrary term t:

D · ρ ∨R([t] , [f(t)])
D · ρ ∨ QR,f ([t])

¬QR,f (x) ∨ R(x, [f(x)])

D · ρ ∨R([f(x)] , x)
D · ρ ∨ QInv(R),f (x)

¬QInv(R),f (x) ∨ R([f(x)] , x)

The precedence of the LPO is f >P c >P p >P QS,f >P ⊤, for any function symbol f ,
constant symbol c, non-definition predicate p and definition predicate QS,f .

By Definition 3.4.1, for a (possibly inverse) role S and a function symbol f , the
definition predicate QS,f is unique. Furthermore, a strict application of Definition
3.4.1 would require introducing a distinct definition predicate Q′

R,f for R([f(x)] , x).
However, due to the translation operator π, R([f(x)] , x) and Inv(R)(x, [f(x)]) are
logically equivalent. Therefore, the predicate QInv(R),f may be used instead of Q′

R,f

3.4 Removing the Restriction to Very Simple Roles 53

as the definition predicate for R([f(x)] , x), thus avoiding the need to introduce an
additional definition predicate in the second form of decomposition in Definition 3.4.5.

Intuitively, BS+
DL decides satisfiability of ALCHIQ knowledge bases because de-

composition replaces a non-ALCHIQ-closure with two ALCHIQ-closures. Further-
more, since the definition predicate QR,f is unique for a pair of role and function
symbols R and f , at most a polynomial number of definition predicates may be intro-
duced during saturation, so the result of Theorem 3.4.4 applies. Since the number of
ALCHIQ-closures is finite according to Lemma 3.3.8, BS+

DL terminates.

Theorem 3.4.6. For an ALCHIQ knowledge base KB, saturation of Ξ(KB) by BS+
DL

decides satisfiability of KB, and runs in time exponential in |KB |, for unary coding of
numbers in input.

Proof. The proof of Lemma 3.3.5 obviously applies even if conditions (iii)–(vi) from
Table 3.2 do not hold; the only exception is a superposition into a generator closure
Pf (x)∨R(x, f(x)). For the latter, there are these three possibilities, depending on the
structure of the premise that superposition is performed from:

• Superposition from a closure of type 5, 6 or 8 of the form [f(t)] ≈ [g(t)] ∨D · ρ,
where t is either a variable x′, a term g(x) or a constant a, results in a closure
of the form Pf ([t]) ∨ R([t] , [g(t)]) ∨D · ρ, which is decomposed into a closure of
type 3 and a closure of type 5, 6 or 8.

• Superposition from a closure of type 6 of the form [f(g(x′))] ≈ x′∨D ·ρ results in
a closure of the form Pf ([g(x′)])∨R([g(x′)] , x′)∨D·ρ. This closure is decomposed
into a closure of type 4 and a closure of type 5 or 6. Since R([g(x′)] , x′) and
Inv(R)(x′, [g(x′)]) are logically equivalent due to the translation operator π, the
predicate QInv(R),f can be used as the definition predicate for R([g(x′)] , x′).

• Superposition from a closure of type 8 of the form [f(a)] ≈ [b] ∨D · ρ results in
a closure of the form Pf (a) ∨R([a] , [b]) ∨D · ρ, which is of type 8.

Hence, by decomposition, the conclusion of each inference of BS+
DL is transformed

into an ALCHIQ-closure. Let r be a number of roles and f the number of function
symbols occurring in Ξ(KB); as in Lemma 3.3.8, both r and f are linear in |KB | for
unary coding of numbers. The number of definition predicates QR,f introduced by
decomposition is then bounded by r · f , which is quadratic in |KB |, so the number of
different predicates is polynomial in |KB |. Hence, Lemma 3.3.8 applies in this case
as well, so the maximal set of closures derived in a saturation is at most exponential
in |KB | for unary coding of numbers. After deriving this set, all inferences of BS+

DL

are redundant and the saturation terminates. Since only a finite number of definition
predicates are introduced, by Theorem 3.4.4, BS+

DL is sound and complete, so the
claim of this theorem follows.

Although this result supersedes the Theorem 3.3.9, in practice it is useful to know
that, for roles not having superroles, superposition into a generator is not necessary. In

54 3. Deciding SHIQ by Basic Superposition

this way a practical implementation can be optimized not to perform inferences whose
conclusions are immediately subsumed.

We note that for most knowledge bases, not all predicates QR,f will occur in a
derivation. Rather, only predicates from the set dec(KB), defined next, may be intro-
duced by decomposition:

Definition 3.4.7. For an ALCHIQ knowledge base KB, dec(KB) is the set of those
predicates QR,f , for which R 6= role(f) and there exists a role S such that:

• S occurs in an at-least number restriction under positive, or in an at-most number
restriction under negative polarity in KB,

• R ⊑∗ S or Inv(R) ⊑∗ S and

• role(f) ⊑∗ S or Inv(role(f)) ⊑∗ S.

Furthermore, let gen(KB) = {¬QR,f ∨R(x, [f(x)]) | QR,f ∈ dec(KB)}.

Lemma 3.4.8. In any saturation of Ξ(KB) by BS+
DL, only predicates from dec(KB)

can be introduced by the decomposition rule.

Proof. A predicate QR,f is introduced by decomposing the conclusion of a superpo-
sition into a generator Pg(x) ∨ R(x, g(x)) from a literal of the form [g(f(x))] ≈ x
where role(g) 6= Inv(role(f)), or [g(t)] ≈ [f(t)] where role(g) 6= role(f). However, such
a literal can only be generated by a resolution with a closure of type 7, obtained by
translating an at-least restriction on some role S into clausal form. Unless R ⊑∗ S or
Inv(R) ⊑∗ S, the function symbol g cannot occur in any literal of the form [g(f(x))] ≈ x
or [g(t)] ≈ [f(t)]. Similarly, unless role(f) ⊑∗ S or Inv(role(f)) ⊑∗ S, the function sym-
bol f cannot occur in any such literal either.

The sets dec(KB) and gen(KB) are used in the algorithm for reducing an ALCHIQ
knowledge base KB to a disjunctive datalog program presented in Chapter 5.

3.5 Safe Role Expressions

The decomposition rule introduced in Subsection 3.4.1 is actually very versatile, and
can be used to decide a stronger logic ALCHIQb, which additionally allows a certain
type of safe role expressions.

Definition 3.5.1. A role expression is a finite expression built over the set of abstract
roles using the connectives ⊔, ⊓ and ¬ in the usual way. Let safe+ and safe− be
functions defined on the set of all role expressions as specified below, where R is an
abstract role, and E and Ei are role expressions:

safe+(R) = ⊤ safe−(R) = ⊥
safe+(¬E) = ¬safe−(E) safe−(¬E) = ¬safe+(E)
safe+(⊔Ei) =

∧
safe+(Ei) safe−(⊔Ei) =

∨
safe+(Ei)

safe+(⊓Ei) =
∨

safe+(Ei) safe−(⊓Ei) =
∧

safe+(Ei)

3.5 Safe Role Expressions 55

A role expression E is safe if safe+(E) = ⊤. The description logic ALCHIQb is
obtained from ALCHIQ by allowing concepts ∃E.C, ∀E.C, ≥ nE.C and ≤ nE.C,
inclusion axioms E ⊑ F and ABox axioms E(a, b), where E is a safe role expression,
and F is any role expression. The semantics of ALCHIQb is obtained by extending
the translation operator π as specified in Table 3.3.

Safe expressions allow stating negative or disjunctive knowledge for roles. Roughly
speaking, “relativized” statements such as

∀x, y : isParentOf (x, y)→ isMotherOf (x, y) ∨ isFatherOf (x, y)

are allowed, but “fully negated” statements such as the one below are not allowed:

∀x, y : ¬isMotherOf (x, y)→ isFatherOf (x, y)

In [114], a similar logic ALCIQb was considered. There, the safety condition
for role expressions required that, if the expression is transformed into disjunctive
normal form, then each disjunct contains at least one non-negated conjunct. It is
straightforward to see that these two definitions coincide. We use the above definition
because transformation into disjunctive normal form can introduce exponential blowup,
which we avoid by using the structural transformation. The above definition makes
it easier to identify those role expressions, for which the structural transformation
produces closures with syntactic properties needed to show termination.

To decide satisfiability of an ALCHIQb knowledge base KB , we extend the pre-
processing of KB to transform each role expression into negation-normal form, and to
introduce a new name for each non-atomic role expression. The set of closures obtained
by preprocessing is also denoted with Ξ(KB). From [86] it is known that Ξ(KB) can
be computed in polynomial time.

Theorem 3.5.2. For an ALCHIQb knowledge base KB, saturation of Ξ(KB) by
BS+

DL decides satisfiability of KB in time exponential in |KB |, for unary coding of
numbers in input.

Proof. In addition to ALCHIQ closures, Ξ(KB) can contain closures obtained by
translating role expressions. For a role expression E occurring in concepts ∃E.C and
≥ nE.C under positive polarity, or in concepts ∀E.C and ≤ nE.C under negative

Table 3.3: Semantics of Role Expressions

π(R,X, Y) = R(X,Y)
π(¬R,X, Y) = ¬R(X,Y)
π(⊓Ei, X, Y) =

∧
Ei(X,Y)

π(⊔Ei, X, Y) =
∨
Ei(X,Y)

56 3. Deciding SHIQ by Basic Superposition

polarity, structural transformation introduces a formula of the following form, where
Q is a new predicate:

∀x, y : Q(x, y)→ π(E, x, y) (3.19)

For a role expression E occurring in concepts ∃E.C and ≥ nE.C under negative
polarity, or in concepts ∀E.C and ≤ nE.C under positive polarity, the structural
transformation introduces a formula of the following form, where Q is a predicate:

∀x, y : π(E, x, y)→ Q(x, y) (3.20)

Finally, for an inclusion axiom E ⊑ F , the structural transformation introduces
formulae of the form (3.19) and (3.20). Regardless of whether E is safe in (3.19)
or not, the structural transformation and clausification of (3.19) produces closures
containing the literal ¬Q(x, y). Furthermore, in (3.20), E is safe, which means that, in
the disjunctive normal form of E, each conjunct contains at least one positive literal.
Hence, each disjunction in the conjunctive normal form of ¬π(E, x, y) contains at least
one negative literal, so the structural transformation and clausification of (3.20) also
produces a closure with at least one negative literal. Hence, all closures produced by
role expressions have the form (3.21), where n > 0 and m ≥ 0:

¬R1(x, y) ∨ . . . ∨ ¬Rn(x, y) ∨ S1(x, y) ∨ . . . ∨ Sm(x, y) (3.21)

Since such a closure always contains at least one negative literal, the only possible
inference with it is hyperresolution on all negative literals. If one of the side premises is
a ground closure, no side premise can have the maximal literal of the form R(x, 〈f(x)〉)
or R([f(x)] , x) (since f(x) does not unify with a constant). Hence, the resolvent is a
ground closure of type 8. Furthermore, if one side premise has a maximal literal of
the form R(x, 〈f(x)〉), then no side premise can have a maximal literal of the form
R′([g(x′)] , x′), because this would require unifying x with g(x′) and f(x) with x′ si-
multaneously, which is not possible due to the occurs-check in unification [8]. If all
side premises have the maximal literal the form Ri(xi, 〈f(xi)〉), the resolvent has the
form (3.22), for S(s, t) = S1(s, t) ∨ . . . ∨ Sm(s, t):

P(x) ∨ S(x, [f(x)]) (3.22)

This closure can be decomposed into (3.23)–(3.25):

P(x) ∨QS1,f (x) ∨ . . . ∨QSm,f (x) (3.23)

¬QS1,f (x) ∨ S1(x, [f(x)]) (3.24)

...

¬QSm,f (x) ∨ Sm(x, [f(x)]) (3.25)

3.6 Related Work 57

Finally, if all side premises have the maximal literal of the form Ri([f(xi)] , xi), the
resolvent has the form (3.26):

P(x) ∨ S([f(x)] , x) (3.26)

This closure can further be decomposed into (3.27)–(3.29). Since Si([f(x)] , x) and
Inv(Si)(x, [f(x)]) are logically equivalent due to the translation operator π, the pred-
icate QInv(Si),f can be used as the definition predicate for Si([f(x)] , x), for each i,
1 ≤ i ≤ m.

P(x) ∨QInv(S1),f (x) ∨ . . . ∨QInv(Sm),f (x) (3.27)

¬QInv(S1),f (x) ∨ S1([f(x)] , x) (3.28)

...

¬QInv(Sm),f (x) ∨ Sm([f(x)] , x) (3.29)

The closures we obtain match the ones from Table 3.2, so the proof of Lemma 3.3.5
applies to this case as well. Furthermore, the number of literals in a closure of type
(3.21) is linear in the size of the role expression, so the claim of this theorem holds in
the same way as for Theorem 3.4.6.

Definition 3.4.7, specifying the set dec(KB) of possible predicates QR,f that can
occur in the saturation, can be simply extended to require that R or Inv(R) occur in
the same role expression as S or Inv(S).

We briefly comment why role safety is important for decidability. Namely, due to
safety, closures of type (3.21) always contain a negative literal which is selected. If this
were not the case, a closure of the form R(x, y) might participate in resolution with a
closure P1(x)∨¬R(x, y)∨P2(x), producing a closure P1(x)∨P2(y). This closure does
not match any closure from Table 3.2. Since P1(x) and P2(y) do not have variables
in common, one may don’t-know non-deterministically assume that either one is true,
and thus reduce this closure to a closure of type from Table 3.2. This obviously
increases the complexity of reasoning from ExpTime to NExpTime. In fact, in [76]
it was shown that reasoning in a description logic with non-safe role expressions is
NExpTime-complete.

3.6 Related Work

Decision procedures for various logics were at the focus of the automated theorem prov-
ing research from its early days. Three such procedures were already implemented by
Wang in 1960: a procedure capable of deciding validity in propositional logic, a proce-
dure for deriving theorems in propositional logic, and a procedure for deciding validity
in the so-called AE-fragment of first-order logic, consisting of first-order formulae with
a quantifier prefix of the form ∀x1 . . .∀xm∃y1 . . .∃yn.

58 3. Deciding SHIQ by Basic Superposition

At the beginning of the sixties, Robinson introduced the resolution principle [100]
for first-order logic consisting of a single inference rule. An automated theorem prover
based on resolution does not need to make a choice as to which rule to apply next, so
inference rule can be implemented in a straightforward manner. Soon after the initial
work of Robinson, various refinements of resolution were developed, such as hyperres-
olution [101], ordered resolution [97] or lock resolution [22], to name just a few. The
common goal of all of these refinements is to reduce the number of consequences gen-
erated in the theorem proving process without loosing completeness. A good overview
of resolution and related refinements is given in the classical text-book by Chang and
Lee [25].

Soon after the introduction of the resolution principle and its refinements, attempts
were made to use these principles to obtain efficient decision procedures for various
classes of first-order logic. The first such procedure was presented by Kallick [69] for
the class of formulae with the quantification prefix ∀x1∀x2∃y. This decision procedure
is based on a refinement of resolution which is incomplete for first-order logic and is
therefore difficult to extend.

In [68] Joyner established the basic principles of resolution-based decision proce-
dures. He observed that, if clauses derivable in a saturation by a resolution refinement
have a bounded term depth and clause length, then saturation necessarily terminates.
By choosing appropriate refinements, he presented decision procedures for the Acker-
mann class (where the formulae are restricted to the quantification prefix ∃∗∀∃∗), the
Monadic class (where only unary predicates are allowed) and the Maslov class (where
formulae are restricted to quantification prefix ∃∗∀∗∃∗ and the matrix is a conjunction
of binary disjunctions).

In the years to follow, the approach by Joyner was applied to numerous other
decidable classes, such as the E+ class [112], the PVD class [71], and the PVDg

= class
[92], to name just a few. An overview of these results is given in a monograph by
Fermüller, Leitsch, Tammet and Zamov [41].

Decidability of description logics in the resolution framework has been studied ex-
tensively in [85, 67, 64]. There, the description logic ALB is embedded in the DL*
clausal class, which is then decided using the resolution framework by Bachmair and
Ganzinger [14]. The main advantage of using this framework lies in its effective redun-
dancy elimination methods, which have proven themselves essential for the practical
applicability of resolution calculi. ALB is a very expressive logic and allows for unsafe
role expressions, but does not provide counting quantifiers.

In [44] a decision procedure for the modal logic with a single transitive modality K4
was presented. To deal with transitivity, the algorithm is based on the ordered chaining
calculus [12]. This calculus consists of inference rules aimed at optimizing theorem
proving with chains of binary roles. Unfortunately, our attempts to decide SHIQ
using ordered chaining proved unsuccessful, mainly due to certain negative chaining
inferences, which produced undesirable equality literals. Therefore, we adopted the
approach for eliminating transitivity from Section 3.2.

3.6 Related Work 59

The guarded fragment was introduced in [4] to explain and generalize the good
properties of modal and description logic, such as decidability. A resolution decision
procedure based on a non-liftable ordering was given in [32], and was later modified to
handle the (loosely) guarded fragment with equality [43] by basing the algorithm on
superposition [10]. Since the basic description logic ALC is actually a syntactic variant
of the multi-modal logic Km [103], it can be embedded into the guarded fragment and
decided by [43]. Using the approach from [105], certain extensions of ALC, such as
role transitivity, can be encoded into ALC knowledge bases, so the algorithm from [43]
can decide these extensions as well. However, the (loosely) guarded fragment is not
capable of expressing SHIQ, because of the counting quantifiers: equality is available
in the logic, but each two pairs of free variables of a guarded formula must occur in
a guard atom. In fact, in [55] it was shown that the guarded fragment has the finite
model property, which is known not to hold for SHIQ [5, Chapter 2], thus hinting
that other mechanisms are necessary for handling SHIQ.
SHIQ can easily be embedded into the two-variable fragment of first-order logic

with counting quantifiers C2. This fragment was shown to be decidable in [47] and
a decision procedure based on a combination of resolution and integer programming
was given in [95]. However, deciding satisfiability of C2 is NExpTime-complete, and
SHIQ is an ExpTime-complete [114] logic. Thus, the decision procedure from [95]
introduces an unnecessary overhead for SHIQ. Furthermore, we do not see how to
derive the desired reduction to disjunctive datalog based on this procedure.

The decomposition rule from Section 3.4 is closely related to the structural transfor-
mation [86]. However, structural transformation is usually applied as a preprocessing
step and not in the theorem proving process. In [33] and [99] splitting by propositional
symbols was considered, which allows splitting variable-disjoint subsets of a clause and
connecting them by a propositional symbol. Finally, a so-called separation rule, similar
to decomposition, was used to decide fluted logic in [104]. It was shown that resolu-
tion remains complete if the separation rule is applied a finite number of times during
saturation. Our approach differs in that we demonstrate compatibility of the decompo-
sition rule with the standard redundancy notion for basic superposition. Furthermore,
contrary to all approaches cited above, our rule allows decomposing a complex term
into simpler terms.

Chapter 4

Reasoning with Concrete

Domains

Reasoning for description logics with a concrete domain has been studied predom-
inately in the context of tableaux and automata algorithms. Hence, extending the
results from Chapter 3 to handle concrete domains is not trivial: our algorithm is
based on basic superposition, which is a clausal refutation calculus. Since clauses are
disjunctions of literals, it is not straightforward to combine basic superposition with
concrete domain constraint checking, which works with conjunctions of literals.

We extend our algorithm in two stages. Firstly, in Section 4.1 we present a general
approach for combining concrete domain reasoning with clausal calculi whose com-
pleteness proof is based on the model generation method. In short, we introduce
so-called concrete domain resolution inference rule, for which we show soundness and
completeness. Since the model generation method is the standard technique for prov-
ing completeness of many state-of-the-art calculi, such as ordered resolution [14], basic
superposition [15] or ordered chaining [12], concrete domain resolution can readily be
used with any of them.

Secondly, in Section 4.2 we apply the concrete domain resolution rule to extend the
decision procedure from Chapter 3 to handle SHIQ(D). We show that, assuming a
bound on the arity of concrete predicates, extending the logic with a concrete domain
does not increase the reasoning complexity, i.e. it remains in ExpTime.

4.1 Resolution with a Concrete Domain

We now present a general approach for reasoning with a concrete domain in the resolu-
tion framework. As usual for various resolution calculi, in Subsection 4.1.1 we consider
first the resolution with a concrete domain on ground clauses, and in Subsection 4.1.3
we lift the ground calculus to general clauses.

60

4.1 Resolution with a Concrete Domain 61

4.1.1 Concrete Domain Resolution with Ground Clauses

We now present the ground concrete domain resolution calculus, GD for short, for
checking D-satisfiability of a set of clauses, where D is an admissible concrete domain.
In order not to make the presentation too technical, we add the concrete domain
resolution rule to the ordered resolution calculus [14] only, and argue later that the
rule can be combined with other calculi as well. As for ordinary resolution, GD is
parameterized with an admissible ordering ≻ on literals, which is a reduction ordering
total on ground literals such that ¬A ≻ A, for any atom A. A literal L is (strictly)
maximal with respect to a clause C if there is no literal L′ ∈ C, such that L′ ≻ L
(L′ � L). A literal L ∈ C is (strictly) maximal in C if and only if L is (strictly) maximal
with respect to C \ L. We extend the literal ordering ≻ to clauses by identifying each
clause with a multiset of literals, and compare clauses by the multiset extension of the
literal ordering; we denote the clause ordering ambiguously with ≻. Since the literal
ordering is total and well-founded on ground literals, the clause ordering is total and
well-founded on ground clauses. Since ΦD is closed w.r.t. negation, we assume without
loss of generality that all concrete domain predicates occur in all clauses positively.

Definition 4.1.1. A set S = {di(ti)} of positive concrete literals is a D-constraint
if Ŝ is not D-satisfiable. A D-constraint S is minimal if Ŝ′ is D-satisfiable for each
S′ (S; S is connected if it cannot be decomposed into two disjoint non-empty subsets
S1 and S2 not sharing a common term (S1 and S2 do not share a common term if for
all di(ti) ∈ S1 and dj(tj) ∈ S2, we have ti ∩ tj = ∅).

Lemma 4.1.2. Each minimal D-constraint S is connected.

Proof. Assume that S is a D-constraint, but it is not connected. Hence, S can be
decomposed into subsets S1 and S2 not sharing a common term. Since S is a minimal
D-constraint, Ŝ1 and Ŝ2 are D-satisfiable. However, since Ŝ1 and Ŝ2 do not have a
common variable, Ŝ1 ∧ Ŝ2 = Ŝ is D-satisfiable as well, which is a contradiction.

Note that in its contrapositive form, Lemma 4.1.2 states that if S is not connected,
then it is not a minimal D-constraint. We now present the inference rules of GD.

Positive factoring:
C ∨A ∨ . . . ∨A

C ∨A

where (i) A is strictly maximal with respect to C.

Ordered resolution:
C ∨A D ∨ ¬A

C ∨D

where (i) A is strictly maximal with respect to C, (ii) ¬A is maximal with respect to
D.

62 4. Reasoning with Concrete Domains

Concrete domain resolution:
C1 ∨ d1(t1) . . . Cn ∨ dn(tn)

C1 ∨ . . . ∨ Cn

where (i) di(ti) are strictly maximal with respect to Ci, (ii) the set S = {di(ti)} is a
minimal D-constraint.

In GD, the clauses C∨A∨ . . .∨A and D∨¬A are called the main premises, whereas
the clauses C ∨A and Ci ∨ d1(t1) are called the side premises. Notice that, under this
definition, the concrete domain resolution rule does not have a main premise.

It is well-known that effective redundancy elimination criteria are necessary for
theorem proving to be applicable in practice. A powerful standard notion of redundancy
was introduced in [14]. We adapt this notion slightly to take into account the fact that
the concrete domain resolution rule does not have a main premise.

Definition 4.1.3. Let N be a set of ground clauses. A ground clause C is redundant
in N if clauses Di ∈ N exist, such that C ≻ Di and D1, . . . , Dm |= C. A ground
inference ξ with side premises Ci and a conclusion D is redundant in N if clauses
Di ∈ N exist, such that C1, . . . , Cn, D1, . . . , Dm |= D; if ξ has a main premise C, then
additionally C ≻ Di.

We now prove the soundness and completeness of GD under the standard notion
of redundancy.

Lemma 4.1.4 (Soundness). Let N be a set of ground clauses, I a D-model of N , and
N ′ = N ∪ {C}, where C is the conclusion of an inference by GD with premises from
N . Then I is a D-model of N ′.

Proof. For an inference by positive factoring or ordered resolution, soundness is trivial
and is shown in the same way as in [14]. Let C be obtained by the concrete domain
resolution rule, with S being as in the rule definition. Since S is a D-constraint, I is
a D-model of N only if there exists a literal di(ti) ∈ S, such that di(ti) /∈ I. Since
Ci ∨ di(ti) is by assumption true in I, some literal from Ci is true in I. Since Ci ⊆ C,
C is true in I as well.

Lemma 4.1.5 (Completeness). Let N be a set of ground clauses such that each infer-
ence by GD from premises in N is redundant in N . If N does not contain the empty
clause, then N is D-satisfiable.

Proof. We extend the model building method from [14] to handle the concrete domain
resolution rule. For a set of ground clauses N , we define an interpretation I by induc-
tion on the clause ordering ≻ as follows: for some clause C, we set IC =

⋃
C≻D εD,

where εD = {A} if (i) D ∈ N , (ii) D is of the form D′∨A, such that A is strictly maxi-
mal with respect to D′, and (iii) D is false in ID; otherwise, εD = ∅. Let I =

⋃
D∈N εD.

A clause D such that εD = {A} is called productive, and it is said to produce the atom
A in I. Before proving the lemma, we show the following three properties.

Invariant (*): if C is false in IC ∪ εC , then C is false in I. Since C is false in
IC , all negative literals from C are false in IC , and since IC ⊆ I, all negative literals

4.1 Resolution with a Concrete Domain 63

from C are false in I as well. Furthermore, since ¬A ≻ A, any atom produced by a
clause D ≻ C is larger than any literal occurring in C, so no clause greater than C
can produce an atom that will make C true.

Invariant (**): if C is true in IC ∪ εC , then C is true in I. If C is true in IC ∪ εC
because some positive literal is true in IC ∪ εC , since IC ∪ εC ⊆ I, C is true in I as
well. Otherwise, C can be true in IC ∪ εC because some negative literal ¬A is true
in IC ∪ εC . Since ¬A ≻ A, any atom produced by a clause D ≻ C is larger than any
literal occurring in C. Hence, no such clause D can produce A, so ¬A is true in I as
well. We often use this invariant in its contrapositive form: if C is false in I, it is false
in IC ∪ εC .

Property (***): if an inference ξ with a main premise C, side premises Ci and
a conclusion D is redundant in N , then there are clauses Di ∈ N which are not
redundant in N , such that D1, . . . , Dm, C1, . . . , Cn |= D and C ≻ Di. If ξ is redundant,
by definition of the standard notion of redundancy, there are clauses D′

j ∈ N such that
D′

1, . . . , D
′
m, C1, . . . , Cn |= D and C ≻ D′

i. Namely, if some D′
j is redundant, then there

are clausesD′′
k such thatD′′

1 , . . . , D
′′
m′ |= D′

j andD′
j ≻ D

′′
k . Since ≻ is well-founded, this

process can be continued recursively until we obtain the set of smallest non-redundant
clauses for which (***) obviously holds. This property holds analogously if ξ does not
have a main premise.

We now show that, if all inferences by GD from premises in N are redundant in N ,
then I is a D-model of N . The proof is by contradiction: let us assume that I is not
a D-model of N . There may be two causes for that:

• There is a clause C ∈ N which is false in I; such a clause is called a counterex-
ample for I. Since ≻ is well-founded and total, we may assume w.l.o.g. that C is
the smallest counterexample. C is obviously not productive, since all productive
clauses are true in I. C can be non-productive and false in I if it has one of the
following two forms:

– C = C ′ ∨ A ∨ . . . ∨ A. Then, C is not productive since A is not strictly
maximal in C. Since C is false in I, by (**) it is false in IC ∪ εC . Since
εC = ∅, C ′ is false in IC , and by (*) C ′ is false in I. Since N is saturated,
the inference by positive factoring resulting in D = C ′ ∨ A is redundant in
N . D is obviously false in I. By the fact that N is saturated and by (***),
a set of clauses Di ∈ N exists, such that C ≻ Di and D1, . . . , Dn |= D.
Since C is the smallest counterexample, all Di are true in I, but then D is
true in I as well, which is a contradiction.

– C = C ′∨¬A. Since C is false in I, it must hold thatA ∈ I, which is produced
by some smaller clause D = D′ ∨A. Similarly as in the previous case, C ′ is
false in I. Since D is productive, D′ is false in ID, and since A is strictly
maximal with respect to D′, by (*) D′ is false in I. Since N is saturated,
the inference by ordered resolution resulting in E = C ′∨D′ is redundant in

64 4. Reasoning with Concrete Domains

N . E is obviously false in I. By the fact that N is saturated and by (***), a
set of clauses Di ∈ N exists, such that C ≻ Di and D1, . . . , Dn, D

′∨A |= E.
Since C is the smallest counterexample, all Di are true in I, and since
D′ ∨ A is productive, it is also true in I. Hence, E is true in I, which is a
contradiction.

• All clauses from N are true in I, but I contains a minimal set of concrete domain
literals S = {di(ti)} such that Ŝ is D-unsatisfiable. The literals from S must
have been produced by clauses Ei = Ci∨di(ti) ∈ N , where Ei is false in IEi

. For
any i, since di(ti) is strictly maximal with respect to Ci, Ci is false in IEi

∪ εEi
,

and by (*) Ci is false in I. Since N is saturated, the inference by concrete domain
resolution resulting in D = C1∨ . . .∨Cn is redundant in N . Obviously, D is false
in I. Since the inference is redundant, by property (***), non-redundant clauses
Di ∈ N exist, such that D1, . . . , Dm, C1 ∨ d1(t1), . . . , Cn ∨ dn(tn) |= D. All Di

and Ci ∨ di(ti) are by assumption true in I, implying that D is true in I, which
is a contradiction.

Hence, I is a D-model of N , so N is D-satisfiable.

A derivation by GD from a set of clauses N0 is a sequence of clause sets N0, N1, . . .
where Ni = Ni−1 ∪ {C} and C is a consequence of some inference rule of GD from
premises in Ni−1, or Ni = Ni−1 \ {C} where C is redundant in Ni−1. A derivation
is fair with limit N∞ =

⋃
j

⋂
k≥j Nk, if each clause C that can be deduced from non-

redundant premises in N∞ is contained in some set Nj . In [14] it was shown that under
the standard notion of redundancy, each inference from premises in N∞ is redundant
in N∞. From this and lemmata 4.1.4 and 4.1.5, we get the following result:

Theorem 4.1.6. The set of ground clauses N is D-unsatisfiable if and only if the
limit N∞ of a fair derivation by GD contains the empty clause.

4.1.2 Most General Partitioning Unifiers

Lifting the concrete domain resolution rule to general clauses is not trivial, since uni-
fication can only partly guide the rule application. Consider, for example, the set of
clauses N = {d1(x1, y1), d2(x2, y2)}. N has ground instances d1(a1, b1) and d2(a2, b2),
which do not share a common term. Hence, a conjunction consisting of these literals
is not connected, so by Lemma 4.1.2 it cannot be minimal and the conditions of the
concrete domain resolution are not satisfied. However, clauses d1(a, b1) and d2(a, b2)
are also ground instances of N , but they do share common terms. Hence, a conjunction
of these literals is connected, so the conditions of the concrete domain resolution rule
should be checked. This is the consequence of the fact that it is possible to unify x1

and x2 from d1(x1, y1) and d2(x2, y2). Another possibility is to unify e.g. x2 and y1.
Even for a set consisting of a single clause, such as M = {d(x, y)}, it is possible to
obtain a D-constraint d(x, x) by unifying x and y. These examples show that, to check

4.1 Resolution with a Concrete Domain 65

all potential D-constraints at the ground level, one has to consider all possible substi-
tutions which produce a minimal D-constraint at the non-ground level. We formalize
this idea by the following definition.

Definition 4.1.7. Let S = {di(ti)} be a multiset of positive concrete domain literals.
A substitution σ is a partitioning unifier of S if the set Sσ is connected. Furthermore,
σ is a most general partitioning unifier if, for any partitioning unifier θ such that
Ŝσ ≡ Ŝθ, a substitution η exists such that θ = ση. With MGPU(S) we denote the set
of all most general partitioning unifiers of S.

Note that in Definition 4.1.7 we assume S is a multiset, so it can contain repeated
literals. If no terms from literals in S are unifiable, a most general partitioning unifier
of S does not exist. Furthermore, the previous example shows that several most
general partitioning unifiers of S may exist. However, for a given Ŝσ, all most general
partitioning unifiers are identical up to variable renaming, as demonstrated next.

Let S = {di(ti)} be a multiset of positive concrete domain literals, and C a con-
junction over literals in S, obtained by replacing terms of each di(ti) with arbitrary
variables (it is not necessary to use different variables in C for different terms from S,
but the same term in S should always be replaced with the same variable in C). For
such a C, let m be the number of distinct variables in C; for each such variable xi,
1 ≤ i ≤ m, let Txi

denote the set of all terms occurring in a literal in S at a position
corresponding to an occurrence of xi in C; finally, let n = max |Txi

|. With SC we
denote the set of terms tj = f(s1j , . . . , s

m
j), where si

j is the j-th term of Txi
if j ≤ |Txi

|,
and a fresh variable if j > |Txi

|, for 1 ≤ j ≤ n. Most general partitioning unifiers of S
and most general unifiers of SC are closely related, as demonstrated next.

Lemma 4.1.8. Let θ be a partitioning unifier of a multiset of concrete domain literals
S = {di(ti)}. Then the substitution σ = MGU(SC), where C = Ŝθ, is the most general

partitioning unifier of S, unique up to variable renaming, such that Ŝσ ≡ Ŝθ.

Proof. To obtain the variable xi in C, θ must be such that si
1θ = . . . = si

nθ = Txi
θ.

Furthermore, xi 6= xj for i 6= j, so Txi
θ 6= Txj

θ. Because of the first property, θ is
obviously a unifier of SC , so it is well-known [8] that σ = MGU(SC) exists and is unique
up to variable remaining. Furthermore, it is obvious that si

1σ = . . . = si
nσ = Txi

σ and
Txi

σ 6= Txj
σ for i 6= j. Namely, since σ is the most general unifier of SC , then a

substitution η exists, such that θ = ση. Hence, it is impossible that Txi
σ = Txj

σ and

Txi
ση 6= Txj

ση. Hence, Ŝσ ≡ Ŝθ, so the claim of the lemma follows.

Lemma 4.1.9. For a multiset of concrete domain literals S = {di(ti)}, MGPU(S)
consists exactly of all MGU(SC), where C is a conjunction over literals of S.

Proof. For σ ∈ MGPU(S), C = Ŝσ is obviously a conjunction over literals of S satisfy-
ing conditions of Lemma 4.1.8, so σ is equivalent to MGU(SC) up to variable renaming.
Conversely, let C be a conjunction over literals of S. Now σ = MGU(SC) is obviously

a partitioning unifier of S. Let C ′ = Ŝσ. Observe that C ≡ C ′ does not necessarily

66 4. Reasoning with Concrete Domains

hold: it is possible that Txi
σ = Txj

σ, i 6= j. However, C ′ satisfies conditions of Lemma
4.1.8, so MGU(SC′) exists, and is a most general partitioning unifier of S.

Hence, Lemma 4.1.9 gives a brute-force algorithm for computing MGPU(S): one
should systematically examine all connected conjunctions C over literals in S. The
main performance drawback of this algorithm is that one must examine all such con-
junctions C. For n literals in S of maximal arity m, the number of possible assignments
of variables in C is bounded by (nm)nm, which is obviously exponential. However, for
certain logics, it is possible to construct a specialized, but much more efficient algo-
rithm. In Chapter 4, we present such an algorithm applicable to SHIQ(D).

4.1.3 Concrete Domain Resolution with General Clauses

As usual in a resolution setting, we assume that all clauses involved in an inference rule
do not share common variables. The inference rules of the concrete domain resolution
calculus, RD for short, are presented below.

Positive factoring:
C ∨A ∨B

Cσ ∨Aσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ.

Ordered resolution:
C ∨A D ∨ ¬B

Cσ ∨Dσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ, (iii) ¬Bσ
is maximal with respect to Dσ.

Concrete domain resolution:
C1 ∨ d1(t1) . . . Cn ∨ dn(tn)

C1σ ∨ . . . ∨ Cnσ

where (i) clauses Ci ∨ di(ti) are not necessarily unique, (ii) for the set S = {di(ti)},
σ ∈ MGPU(S), (iii) di(ti)σ are strictly maximal with respect to Ciσ, (iv) the set Sσ
is a minimal D-constraint.

We briefly comment on the constraint (i) of the concrete domain resolution rule.
Consider a clause d(x, y). It is possible that, for the set S = {d(a, b), d(b, c)} of
ground instances of d(x, y), the conjunction Ŝ is D-unsatisfiable. This is detected by
the concrete domain resolution rule only if several “copies” of the clause d(x, y) are
considered simultaneously. Without any assumptions on the nature of the predicate
d, there is no upper bound on the number of “copies” that should be considered
simultaneously. This property of the calculus obviously leads to undecidability in the
general case. To obtain a decision procedure for SHIQ(D), in Section 4.2 we show
that the number of such “copies” that must be considered is bounded.

To prove the completeness of RD, we show now that for each ground derivation,
there is a corresponding non-ground derivation.

4.1 Resolution with a Concrete Domain 67

Lemma 4.1.10 (Lifting). Let N be a set of clauses with the set of ground instances
NG. For each ground inference ξG by GD applicable to premises CG

i ∈ N
G, there is

an inference ξ by RD applicable to premises Ci ∈ N , where ξG is an instance of ξ.

Proof. Let CG
i be ground premises from NG participating in ξG, resulting in a ground

clause DG. The ground inference ξG of GD can be simulated by a corresponding
non-ground inference ξ, where for each ground premise CG

i we take the corresponding
non-ground premise Ci that CG

i is an instance of. Since all Ci are variable-disjoint,
there is a ground substitution τ such that CG

i = Ciτ . Let us denote with D the result
of ξ on Ci. We now show that ξ is an inference of RD.

Let ξG be an inference by positive factoring on ground literals AG
i of CG. Sub-

stitution τ is obviously a unifier of corresponding non-ground literals Ai of C. Since
any unifier is an instance of the most general unifier σ of Ai, a substitution η exists
such that τ = ση. Furthermore, if AG

i is strictly maximal with respect to CG, since
≻ is a reduction ordering, corresponding Ai is strictly maximal with respect to Cσ, so
DG = Dη. Hence, ξ is an inference of RD. Similar reasoning applies in the case of
ordered resolution.

Let ξG be an inference by concrete domain resolution, and let S = {di(ti)} be
the set of corresponding non-ground literals. Since Sτ is a minimal D-constraint, by
Lemma 4.1.2, Sτ is connected, so τ is obviously a partitioning unifier of S. Then, by
Lemma 4.1.8, there exists some most general partitioning unifier σ such that τ = ση
for some η, and Ŝσ ≡ Ŝτ . Obviously, if Sτ is a minimal D-constraint, so is Sσ.
Furthermore, if literals from Sτ are strictly maximal with respect to CG

i , since ≻ is a
reduction ordering, corresponding literals from Sσ are strictly maximal with respect
to Ciσ, so DG = Dη. Hence, ξ is an inference of RD.

The notion of redundancy is lifted to the non-ground case as usual [14]: a clause
C (an inference ξ) is redundant in a set of clauses N if all ground instances of C (ξ)
are redundant in NG. This is enough for soundness and completeness of RD.

Theorem 4.1.11. The set of clauses N is D-unsatisfiable if and only if the limit N∞

of a fair derivation by RD contains the empty clause.

Proof. The set N is unsatisfiable if and only if the set of its ground instances NG is
unsatisfiable. By Theorem 4.1.6, NG is unsatisfiable if and only if there is a ground
derivation NG = NG

0 , N
G
1 , . . . , N

G
∞ where the limit NG

∞ contains the empty clause. By
Lemma 4.1.10 and the definition of the redundancy for non-ground clauses, for each
ground derivation, a non-ground derivation N = N0, N1, . . . , N∞ exists, where each
NG

i is a subset of ground instances of Ni. Hence, NG
∞ contains the empty clause if and

only if N∞ contains the empty clause, so the claim of the theorem follows.

4.1.4 Combining Concrete Domains with Other Resolution Calculi

In order not to make the presentation too technical, we extended only the ordered
resolution calculus with the concrete domain resolution rule. However, from the proof

68 4. Reasoning with Concrete Domains

of Lemma 4.1.5, one may see that the concrete domain resolution rule is largely in-
dependent from the actual calculus, and may be combined with other calculi whose
completeness proof is based on the model generation method [14]. For example, it is
straightforward to extend RD with selection of negative literals. Similarly, concrete
domain can be combined with an equational theorem proving calculus, such as BS; we
denote thus obtained calculus with BSD.

To apply the concrete domain resolution rule to other calculi, the premises of the
concrete domain resolution rule must be those clauses which can have at least one
productive ground instance. For the ordered resolution with selection, this means that
premises are not allowed to contain selected literals (since such clauses do not have
productive ground instances). The usual arguments for the calculus at hand show
that, if N∞ does not contain the empty clause, one may generate an interpretation
I using the model generation method, such that all clauses from N∞ are true in I.
Furthermore, the argument from the second part of Lemma 4.1.5 shows independently
that, if all inferences by the concrete domain resolution rule are redundant in N∞,
then I is a D-model of N .

4.2 Deciding SHIQ(D)

In this section we combine the concrete domain resolution rule from Section 4.1 with
the algorithm from Chapter 3 to obtain a decision procedure for checking satisfiability
of SHIQ(D) knowledge bases. We also show that this extension does not increase the
complexity of reasoning, assuming a bound on the arity of concrete predicates.

It is easy to see that the operator Ω from Section 3.2 can be used to eliminate
transitivity axioms from a SHIQ(D) knowledge base KB by encoding in into an
equisatisfiable knowledge base Ω(KB). Namely, concrete roles cannot be transitive, so
Theorem 3.2.3 applies without changes. Hence, without loss of generality, in the rest
of this section we focus on deciding satisfiability of ALCHIQ(D) knowledge bases.
This we achieve in two steps.

We first derive a decision procedure for ALCHIQ−(D). With BSD
DL we denote the

BS calculus extended with the concrete domain resolution rule, parameterized as spec-
ified in Definition 3.3.3. To obtain a decision procedure for ALCHIQ−(D), we show
that the results of Lemma 3.3.5 remain valid when ALCHIQ−(D)-closures are satu-
rated under BSD

DL. In particular, we show that the application of the concrete domain
resolution rule does not lead to generation of terms of arbitrary depth. Furthermore,
we show that the maximal length of a D-constraint to be considered is polynomial
in |KB |, assuming a limit on the arity of concrete predicates, so the complexity of
reasoning does not increase.

Next, to obtain a decision procedure for full ALCHIQ(D), in Subsection 4.2.4 we
simply observe that the decomposition rule from Section 3.4 applies without change.

4.2 Deciding SHIQ(D) 69

Table 4.1: Additional Closures after Preprocessing

12 ¬T (x, yc) ∨ U(x, yc)
13

∨
(¬)Ci(x) ∨ T (x, f c(x))

14
∨

(¬)Ci(x) ∨ d(f
c
1(x), . . . , f c

m(x))
15

∨
(¬)Ci(x) ∨ f

c
i (x) 6≈ f c

j (x)

16
∨

(¬)Ci(x) ∨
∨
¬Ti(x, y

c
i) ∨ d(y

c
1, . . . , y

c
m)

17
∨

(¬)Ci(x) ∨
∨n

i=1 ¬T (x, yc
i) ∨

∨n
i,j=1;j>i y

c
i ≈ y

c
j

18 (¬)T (a, bc)
19 ac ≈ bc

20 ac 6≈ bc

4.2.1 Closures with Concrete Predicates

As before, with Ξ(KB) we denote the set of closures obtained from KB by structural
transformation, as explained in Definition 3.3.1. By definition of π from Table 2.1 and
Table 2.3, it is easy to see that Ξ(KB) may contain closures with structure as in Table
3.1, with all variables, function symbols and predicate arguments being of the sort a,
and additionally closures with structure as in Table 4.1.

We now generalize the closures from Table 4.1 to include closure types produced
in a saturation of Ξ(KB) by BSD

DL. So called ALCHIQ−(D)-closures include those
with structure as in Table 3.2 and in Table 4.2. By the definition of Ξ, it is obvious
that Lemma 3.3.2 and Lemma 3.3.4 hold for ALCHIQ−(D)-closures as well. To make
a distinction with generators of type 3, we call closures of type 10 where f c(x) occurs
unmarked c-generators.

Table 4.2: Types of ALCHIQ−(D)-closures

8 in addition to literals from Table 3.2, a closure can additionally contain
. . . ∨T(〈a〉 , 〈bc〉) ∨ d(〈tc

1〉 , . . . , 〈t
c
n〉) ∨

∨
〈tci 〉≈/6≈ 〈tcj〉

where tci and tcj are either some constant bc or a functional term f c
i ([a])

9 ¬T (x, yc) ∨ U(x, yc)

10 Pf c

(x) ∨ T (x, 〈f c(x)〉)
11 P(x) ∨ d(〈f c

1(x)〉 , . . . , 〈f c
n(x)〉) ∨

∨
〈f c

i (x)〉≈/6≈
〈
f c

j(x)
〉

12 P(x) ∨
∨
¬T (x, yc

i) ∨
∨
yc

i ≈ y
c
j

13 P(x) ∨
∨
¬Ti(x, y

c
i) ∨ d(y

c
1, . . . , y

c
n)

Note: Conditions from Table 3.2 apply analogously.

70 4. Reasoning with Concrete Domains

4.2.2 Closure of ALCHIQ−(D)-closures under Inferences

We now extend Lemma 3.3.5 to handle ALCHIQ−(D)-closures.

Lemma 4.2.1. Let Ξ(KB) = N0, . . . , Ni ∪ {C} be a BSD
DL-derivation, where C is the

conclusion derived from premises in Ni. Then C is either an ALCHIQ−(D)-closure
or it is redundant in Ni.

Proof. Since names and sorts of the abstract and concrete domain predicates are dis-
joint, and since in closures of type 11 literals with concrete predicates or concrete
equalities are always maximal, an inference between closures of types 1–7 and 9–13 is
not possible. Furthermore, a closure of type 8 can participate in an inference with a
closure of type 1–7 only on abstract, and with a closure of type 9–13 only on concrete
predicates. Hence, the proof of Lemma 3.3.5 remains valid for closures of types 1–8.

Similarly as in the proof of Lemma 3.3.5, one can show that a superposition into
a c-generator is redundant. This follows from the fact that by Condition (i), each
ALCHIQ−(D)-closure containing f c(x) contains Pf c

(x) as well, and that for each
equality [f c

i (x)] ≈
[
f c

j(x)
]
, role(f c

i) = role(f c
j), so each superposition into a generator

is subsumed by some other generator or a witness closure. For other basic superposition
inferences, the claim of the lemma can be trivially demonstrated.

The most important difference to the proof of Lemma 3.3.5 lies in the application
of the concrete domain resolution rule, with n side premises of the form Ci ∨ di(〈ti〉).
For side premises of type 11, we denote their free variables with xi. Let S = {di(ti)}.
For any most general partitioning unifier σ of S, Sσ must be connected. Hence, there
are two possibilities:

• If all side premises are of type 11, σ is of the form {x2 7→ x1, . . . , xn 7→ x1}. The
result is obviously a closure of type 11.

• Assume there is a side premise of type 8 and that Sσ is connected. If Sσ would
contain a variable xi, then the literal di(f

c
i(xi)) would not contain a ground

term, so Sσ would not be connected. Hence, all literals from Sσ are ground, and
σ is of the form {x1 7→ c1, . . . , xn 7→ cn}. The result is a closure of type 8.

Hence, all non-redundant inferences of BSD
DL applied to ALCHIQ−(D)-closures

produce an ALCHIQ−(D)-closure.

By inspecting the proof of Lemma 4.2.1, one may easily extend the Corollary 3.3.6
to include ALCHIQ−(D) closures:

Corollary 4.2.2. If a closure of type 8 participates in a BSD
DL inference in a derivation

from Lemma 4.2.1, the unifier σ contains only ground mappings and the conclusion is
a closure of type 8. Furthermore, a closure of type 8 cannot participate in an inference
with a closure of type 4 or 6.

4.2 Deciding SHIQ(D) 71

4.2.3 Termination and Complexity Analysis

Establishing termination and determining the complexity is slightly more difficult. Let
m denote the maximal arity of a concrete domain predicate, d the number of concrete
domain predicates, and f the number of function symbols. As in Lemma 3.3.8, f
is linear in |KB | for unary coding of numbers, since by skolemizing ∃T1, . . . , Tm.d
we introduce m function symbols. In addition to literals from ALCHIQ−-closures,
ALCHIQ−(D)-closures may contain literals of the form d(〈f1(x)〉 , . . . , 〈fm(x)〉). The
maximal non-ground closure will contain all such literals, of which there can be d(2f)m

many (the factor 2 takes into account that each functional term can be marked or
not). Hence, there are 2d(2f)m

different combinations of concrete domain literals. This
presents us with a problem: in general, m is linear in |KB |, so the number of closures
becomes doubly-exponential, thus invalidating the results of Lemma 3.3.8.

A possible solution to this problem is to assume a bound on the arity of concrete
predicates. This is justifiable from a practical point of view: it is hard to imagine
a practically useful concrete domain with predicates of unbounded arity as well as
a sequence of concrete domains with increasing arities, but where the arity of each
domain is bounded. In this case, m becomes a constant, and does not depend on
|KB |. The maximal length of a closure is then polynomial in |KB |, and the number of
closures is exponential in |KB |. Hence, Lemma 3.3.8 can be easily extended to include
ALCHIQ−(D)-closures. The following lemma shows the last step in determining the
complexity of the decision algorithm.

Lemma 4.2.3. The maximal number of side premises participating in a concrete do-
main resolution rule in a BSD

DL derivation from Lemma 4.2.1 is at most polynomial
in |KB |, assuming a limit on the arity of concrete predicates.

Proof. Let S = {di(ti)} be the multiset of maximal concrete domain literals of n side
premises Ci∨di(ti), and let σ be a most general partitioning unifier of S. Obviously, Sσ

should not contain repeated literals di(ti)σ; otherwise Ŝσ contains repeated conjuncts
and is not minimal. Hence, the longest set Sσ is the one where each di(ti)σ is distinct.

Let m be the maximal arity of a concrete domain predicate, f the number of
function symbols, d the number of concrete domain predicates, and c the number of
constants in the signature of Ξ(KB). Then there are at most ℓng = dfm distinct non-
ground concrete domain literals, and at most ℓg = d(c+ cf)m distinct ground concrete
domain literals. Assuming a bound on m and for unary coding of numbers, both ℓng

and ℓg are polynomial in |KB |.
If all side premises are non-ground, since Sσ should be connected, the only possible

form σ can take is {x2 7→ x1, . . . , xn 7→ x1}. Hence, Sσ contains only one variable x1,
so the maximal number of distinct literals in Sσ is ℓng. Thus, the maximal number of
non-ground side premises n to be considered is bounded by ℓng, and all side premises
are unique up to variable renaming.

If there is a ground side premise, since Sσ should be connected, σ can be of the
form {x1 7→ c1, . . . , xn 7→ cn}. All literals in Sσ are ground, so the maximum number

72 4. Reasoning with Concrete Domains

of distinct literals in Sσ is ℓg. Thus, the maximal number of side premises n (by
counting each “copy” of a premise separately) to be considered is bounded by ℓg.

Theorem 4.2.4. Let KB be an ALCHIQ−(D) knowledge base, defined over an ad-
missible concrete domain D, for which D-satisfiability of finite conjunctions over ΦD

can be decided in deterministic exponential time. Then saturation of Ξ(KB) by BSD
DL

with eager application of redundancy elimination rules decides D-satisfiability of KB
and runs in time exponential in |KB |, for unary coding of numbers and assuming a
bound on the arity of concrete predicates.

Proof. As already explained, a polynomial bound on the length, and an exponential
bound on the number of ALCHIQ−(D)-closures follows in the same way as in Lemma
3.3.8. By substituting Lemma 3.3.5 for Lemma 4.2.1, the proof of the Theorem 3.3.9
can straightforwardly be extended to the case of ALCHIQ−(D) knowledge bases, for
all inferences apart from the concrete domain resolution rule. The only remaining
problem is to show that, in applying the concrete domain resolution rule, the number
of satisfiability checks of conjunctions over D is exponential in |KB |, and that the
length of each conjunction is polynomial in |KB |.

To apply the concrete domain resolution rule to a set of closures N , a subset
N ′ ⊆ N must be selected, for which maximal concrete domain literals are unique
up to variable renaming. By Lemma 4.2.3, ℓ = |N ′| is polynomial in |KB |, and N ′

contains at most ℓ variables. If all closures from N ′ are non-ground, there is exactly
one substitution σ which unifies all of these variables. If there is at least one ground
closure, then each one of ℓ variables can be assigned to one of c constants, producing
cℓ combinations, which is exponential in |KB |. Closures in N ′ are chosen from the
maximal set of all closures which is exponential in |KB |, and since |N ′| is polynomial
in |KB |, the number of different sets N ′ is exponential in |KB |. Hence, the maximal
number of D-constraints that should be examined by the concrete domain resolution
rule is exponential in |KB |, where the length of each D-constraint is polynomial in
|KB |. Under the assumption that the satisfiability of each D-constraint can be checked
in deterministic exponential time, all inferences by the concrete domain resolution rule
can be performed in exponential time, so the claim of the theorem follows.

The proof of Lemma 4.2.3 demonstrates how to implement the concrete domain
resolution rule in practice. There are two cases:

• For concrete domain resolution on non-ground closures, the most general parti-
tioning unifier is of the form σ = {x2 7→ x1, . . . , xn 7→ x1}. Hence, one should
consider only closures with maximal literals unique up to variable renaming, so
several “copies” of a closure need not be considered.

• For concrete domain resolution where at least one closure is ground, one first
chooses a connected set of ground closures ∆. Let ∆c be the set of constants,
and ∆f the set of function symbols occurring in a ground functional term f(c)
in a closure from ∆. The most general partitioning unifier σ may contain only

4.3 Related Work 73

mappings of the form xi 7→ c, where c ∈ ∆c. Hence, one selects the set ∆ng

of non-ground closures containing a function symbol from ∆f . To apply the
concrete domain resolution rule, one considers at most |∆c| “copies” of a closure
from ∆ng, since σ might assign a distinct value from ∆c to each such closure.

4.2.4 Deciding ALCHIQ(D) and ALCHIQb(D)

It is obvious that decomposition rule from Subsection 3.4.1 applies in the case of
concrete domains as well. Hence, let BSD,+

DL be the BSD
DL calculus extended with

the decomposition rule from Definition 3.4.1. For an ALCHIQ(D) (ALCHIQb(D))
knowledge base, saturation of Ξ(KB) by BSD,+

DL decides D-satisfiability of KB . As-
suming a bound on the arity of concrete predicates, for unary coding numbers and if
D-satisfiability of conjunctions of concrete domain literals can be decided in exponen-
tial time, saturation runs in time exponential in |KB |.

4.3 Related Work

The need to represent and reason with concrete data was recognized in description
logic systems early on. The early systems such as MESON [37] and CLASSIC [20]
provided such features, mostly by means of built-in predicates.

The first rigorous treatment of reasoning with concrete data in description logics
was given by Baader and Hanschke in [6]. The authors introduce the notion of a
concrete domain and consider reasoning in ALC(D), a logic allowing feature chains
(chains of functional roles) to occur in existential and universal restrictions. The au-
thors show that adding a concrete domain does not increase the complexity of checking
concept satisfiability, i.e. it remains in PSpace. Sound and complete reasoning can
be performed by extending the standard tableaux algorithm for ALC with an addi-
tional branch closure check, which detects potential unsatisfiability of concrete domain
constraints on a branch. Furthermore, if transitive closure of roles is allowed, the au-
thors show that checking concept satisfiability becomes undecidable. The approach of
Baader and Hanschke was implemented in the TAXON system [1].

Contrary to modern description logic systems, the approach from [6] does not
allow TBoxes. In [75] it was shown that allowing cyclic TBoxes makes reasoning with
a concrete domain undecidable in general. More importantly, undecidability holds
for all numeric concrete domains, which are probably the most practically relevant
ones. Still, in [74] it was shown that reasoning with a temporal concrete domain is
decidable even with cyclic TBoxes, thus providing for an expressive description logic
with features for temporal modeling.

It turned out that even without cyclic TBoxes, extending the logic is difficult. In
[75] it was shown that extending ALC(D) with either acyclic TBoxes, inverse roles
or role-forming concrete domain constructor makes reasoning NExpTime-hard. The
main reason for this is the presence of feature chains, which may be used to force
equivalence of objects at the end of two distinct feature chains. Hence, feature chains

74 4. Reasoning with Concrete Domains

with concrete domains destroy the tree-model property, which was identified in [115]
as the main explanation for the good properties of modal and description logics.

Since obtaining expressive logics with concrete domains turned out to be difficult,
another path to extending the logic was taken in [53], by prohibiting feature chains. In
this way, concrete domain reasoning is restricted only to immediate successors of an ab-
stract individual, so the tree-model property remains preserved. A decision procedure
for an expressive ALCNHR+ logic extended with concrete domains without features is
presented in [53], obtained by extending the tableaux algorithm with concrete domain
constraint checking. In [59] the term datatypes was introduced for a concrete domain
without feature chains, and a tableaux decision procedure for SHOQ(D) (a logic pro-
viding nominals and datatypes) was presented. This approach was extended to allow
for n-ary concrete roles in [89]. The results of this research influenced significantly
the development of the Semantic Web ontology language OWL [91], which, in its DL
version, supports datatypes.

Apart from fundamental issues, such as decidability and complexity or reasoning,
other issues were considered to make concrete domains practically applicable. In prac-
tice, usually several different datatypes are needed. For example, an application might
use the string datatype to represent a person’s name and the integer datatype to rep-
resent a person’s age. It is natural to model each datatype as a separate concrete
domain, and then to integrate several concrete domains for reasoning purposes. An
approach for integrating concrete domains was already presented in [6], and was fur-
ther extended by the datatype groups approach in [88], which additionally simplifies
the integration process by taking care of the extension of the negative concrete literals.

Until now, all existing approaches consider reasoning with a concrete domain in
tableaux and automata frameworks. In the resolution setting, many Prolog-like sys-
tems, such as XSB1, provide built-in predicates to handle elementary datatypes. How-
ever, to the best of our knowledge, none of these approaches is complete for even the
basic logic ALC(D). Built-in predicates are only capable of handling explicit datatype
constants, and cannot cope with individuals introduced by existential quantification.
Hence, ours is the first approach that we are aware of which supports reasoning with
a concrete domain in the resolution setting and is complete w.r.t. semantics from [6].

Concrete domain resolution calculus can be viewed as an instance of theory reso-
lution [111]. In fact, it is similar to ordered theory resolution [16], in which inferences
with theory literals are restricted to maximal literals only. It has been argued in [16]
that tautology deletion is not compatible with ordered theory resolution. However,
the concrete domain resolution calculus is fully compatible with the standard notion
of redundancy, so all existing deletion and simplification techniques can be freely used.
Furthermore, in our work we explicitly address the issues related to concrete domains,
such as the necessity to consider several “copies” of a clause in a concrete domain
resolution inference.

1http://xsb.sourceforge.net/

Chapter 5

Reducing Description Logics to

Disjunctive Datalog

Based on the decision procedure for SHIQ(D) from Chapter 3 and Chapter 4, in
this chapter we present an algorithm for reducing a SHIQ(D) knowledge base KB to
a disjunctive datalog program DD(KB). The program DD(KB) entails the same set
of ground facts as KB , so it can be used for query answering. Furthermore, we also
present an algorithm for query answering in DD(KB) running in worst-case exponential
time, and thus show that query answering by reduction to disjunctive datalog is worst-
case optimal. As discussed in Section 5.6, although we do not use existing techniques
for reasoning in disjunctive datalog, the reduction to disjunctive datalog still makes
sense, as it allows applying the magic sets optimization [17, 48].

For the algorithms in this chapter the distinction between the skeleton and the sub-
stitution part of a closure is not important. Hence, instead of “closure”, we use a more
common term “clause”. Furthermore, for readability purposes we do not explicitly
emphasize D in notation and terminology related to entailment and satisfiability.

5.1 Overview

Our reduction is based on the observation that all ground functional terms encountered
during saturation of Ξ(KB) by BSD,+

DL are of depth at most one. The main idea is to
introduce a fresh constant for each ground functional term, and thus to simulate ground
inference steps of BSD,+

DL in a function-free version of Ξ(KB). The reduction algorithm
proceeds as follows:

• Transitivity axioms are eliminated using the transformation from Section 3.2.
Hence, in the rest we focus on ALCHIQ(D) knowledge bases only.

• The TBox and RBox clauses of Ξ(KB) are saturated together with gen(KB) by
BSD,+

DL . As shown by Lemma 5.2.1, certain clauses can be removed from the
saturated set, as they may not participate in further inferences.

75

76 5. Reducing Description Logics to Disjunctive Datalog

• If the saturated set does not contain the empty clause, function symbols are
eliminated from saturated clauses cf. Section 5.2. Lemma 5.2.3 demonstrates that
this transformation does not affect satisfiability. Intuitively, this is so because
(i) if ABox clauses are added to the saturated set and saturation is continued,
all remaining inferences will involve a ground clause and produce a ground clause
and (ii) each such inference can be simulated in the function-free clause set.

• In order to reduce the size of the datalog program, some irrelevant clauses may
be removed, cf. Section 5.3. Lemma 5.3.2 demonstrates that this transformation
also does not affect satisfiability.

• Transformation of KB into a disjunctive datalog program, cf. Section 5.4, is
now straightforward: it suffices to transform each clause into the equivalent
sequent form. This transformation does not affect entailment, which is trivially
demonstrated by Theorem 5.4.2.

5.2 Eliminating Function Symbols

For an ALCHIQ(D) knowledge base KB , let ΓT Rg = Ξ(KBT ∪ KBR) ∪ gen(KB).
Let SatR(ΓT Rg) denote the relevant set of saturated clauses, that is, clauses of type

1, 2, 3, 5, 7 and 9–13 obtained by saturating ΓT Rg using BSD,+
DL with eager applica-

tion of redundancy elimination rules. Finally, let Γ = SatR(ΓT Rg) ∪ Ξ(KBA). Intu-
itively, Sat(ΓT Rg) contains all non-redundant clauses derivable from TBox and RBox

by BSD,+
DL . Hence, any inference in the saturation of Γ will involve a clause of type 8.

Such a clause cannot participate in an inference with a clause of type 4 or 6, so we can
safely delete these clauses and consider only the SatR(ΓT Rg) subset. Adding gen(KB)
is necessary to compute all non-ground consequences of clauses possibly introduced by
decomposition.

Lemma 5.2.1. KB is unsatisfiable if and only if Γ is unsatisfiable.

Proof. KB is equisatisfiable with Ξ(KB). Let Γ′ = Ξ(KB)∪gen(KB). Since all clauses
from gen(KB) contain a new predicate QR,f , any interpretation of Ξ(KB) can be
extended to an interpretation of Γ′ by adjusting the interpretation of QR,f as needed.
Hence, Ξ(KB) is equisatisfiable with Γ′. Γ′ is unsatisfiable if and only if the set of
clauses derived by saturating Γ′ with BSD,+

DL contains the empty clause. Since the order
in which the inferences are performed can be chosen don’t-care non-deterministically,
we perform all non-redundant inferences among clauses from ΓT Rg first. Let us denote
the resulting set of intermediate clauses with Ni = Sat(ΓT Rg) ∪ Ξ(KBA).

If Ni contains the empty clause, Γ contains it as well by definition (the empty
clause is of type 5), and the claim of the lemma follows. Otherwise, we continue the
saturation of Ni. In such a derivation, each Nj , j > i, is obtained from Nj−1 by
an inference involving at least one clause not in Ni. By induction on the derivation
length, one can easily show that Nj \ Ni contains only clauses of type 8: namely, all

5.2 Eliminating Function Symbols 77

non-redundant inferences between clauses of type other than 8 have been performed
in Ni, and, by Corollary 4.2.2, each inference involving a clause of type 8 produces
a clause of type 8. A clause of type 8 can be decomposed into a ground and a non-
ground clause. However, according to Lemma 3.4.8, the non-ground clause of the form
¬QR,f (x) ∨R(x, [f(x)]) is in gen(KB), so only a clause of type 8 is added to Nj .

Furthermore, by Corollary 4.2.2, a clause of type 4 and 6 can never participate in
an inference with a clause of type 8. Hence, such a clause cannot be used to derive a
clause in Nj \Ni, j > i, so Ni can safely be replaced by Γ. Any set of clauses Nj , j > i,
which can be obtained by saturation from Γ′, can be obtained by saturation from Γ
as well, modulo clauses of type 4 and 6. Hence, the saturation of Γ′ by BSD,+

DL derives

the empty clause if and only if the saturation of Γ by BSD,+
DL derives the empty clause,

so the claim of the lemma follows.

If KB does not use number restrictions, further optimizations are possible. By
Corollary 3.3.7, clauses of types 3 or 5 containing a functional term cannot participate
in an inference with a clause of type 8. Hence, such clauses can also be eliminated from
the saturated set and need not be included in SatR(ΓT Rg). Observe that this does not
necessarily hold for clauses of type 10 and 11; namely, if there is a clause of type 13
with more than one literal ¬Ti(xi, y

c
i), then such a clause might derive a ground literal

containing a functional term.
We now show how to eliminate function symbols from clauses in Γ. Intuitively, the

idea is to replace each ground functional term f(a) with a new constant, denoted as
af . For each function symbol f we introduce a new predicate symbol Sf , containing,
for each constant a, a tuple of the form Sf (a, af). Thus, Sf contains the f -successor
of each constant. A clause C is transformed to replace each occurrence of a term f(x)
with a new variable xf and, for each such xf , to append the literal ¬Sf (x, xf) to C.
Under this transformation, the Herbrand universe of the clause set becomes finite, and
can be represented by a predicate symbol HU whose extension contains all constants
a and af . The predicate symbol HU is used to bind unsafe variables in clauses. We
formalize this process by defining the operator λ as follows:

Definition 5.2.2. Let KB be an ALCHIQ(D) knowledge base. The operator λ is
defined on the set of terms and produces a term as follows:

• λ(a) = a.

• λ(f(a)) = af , where af is a new globally unique constant1.

• λ(x) = x.

• λ(f(x)) = xf , where xf is a new globally unique variable.

We extend λ to ALCHIQ(D)-clauses, such that for an ALCHIQ(D)-clause C,
λ(C) gives a function-free clause as follows:

1Globally unique means that, for some f and a, the constant af is always the one and the same.

78 5. Reducing Description Logics to Disjunctive Datalog

1. Each term t in the clause is replaced by λ(t).

2. For each variable xf introduced in the first step, the literal ¬Sf (x, xf) is appended
to the clause.

3. If after steps 1 and 2 some variable x occurs in a positive literal, but not in a
negative literal, the literal ¬HU (x) is appended to the clause.

For a position p in a clause C, let λ(p) denote the corresponding position in λ(C).
For a substitution σ, let λ(σ) denote the substitution obtained from σ by replacing each
assignment x 7→ t with x 7→ λ(t). Let λ− denote the inverse of λ (i.e. λ−(λ(α)) = α
for any term, clause, position or a substitution α)2.

Let FF(KB) = FFλ(KB)∪FFSucc(KB)∪FFHU (KB)∪Ξ(KBA) denote the function-
free version of Ξ(KB), where FFλ, FFSucc and FFHU are defined as follows, with a and
f ranging over all constant and function symbols in Ξ(KB), and C ranging over all
clauses in SatR(ΓT Rg):

FFλ(KB) =
⋃
λ(C)

FFSucc(KB) =
⋃
Sf (a, λ(f(a)))

FFHU (KB) =
⋃

HU (a) ∪
⋃

HU (λ(f(a)))

We now show that KB and FF(KB) are equisatisfiable.

Lemma 5.2.3. KB is unsatisfiable if and only if FF(KB) is unsatisfiable.

Proof. Since KB and Γ are equisatisfiable by Lemma 5.2.1, the claim of the lemma
can be demonstrated by showing that Γ and FF(KB) are equisatisfiable.

(⇐) If FF(KB) is unsatisfiable, since hyperresolution with superposition, concrete
domain resolution and splitting, where all negative literals are selected, is sound and
complete [10], a derivation of the empty clause from FF(KB) exists. We now show that
such a derivation can be reduced to a derivation of the empty clause from Γ by sound
inference rules, in particular, hyperresolution, paramodulation, instantiation and split-
ting. In FF(KB), all clauses are safe, so electrons are always positive ground clauses,
and each hyperresolvent is a positive ground clause. Furthermore, since superposition
into variables is not necessary for completeness, positive and negative superposition
inferences are performed only between ground clauses. Finally, splitting ground clauses
simplifies the proof, since all ground clauses on a branch are unit clauses.

Let B be a branch FF(KB) = N0, . . . , Nn of a derivation from FF(KB) by hyperres-
olution with superposition and eager splitting, where all negative literals are selected.
We show now by induction on n that, for any branch B, there exists a corresponding
branch B′ in a derivation from Γ by sound inference steps, and a set of clauses N ′

m on
B′ such that: (*) if C is some clause in Nn not of the form Sf (u, v) or HU (u), then

2Notice that λ is injective, but not surjective, so the definition of λ− is correct.

5.2 Eliminating Function Symbols 79

N ′
m contains the counterpart clause of C, equal to λ−(C). The induction base n = 0 is

obvious, since FF(KB) and Γ contain only one branch, on which, other than Sf (u, v)
or HU (u), all ground clauses are ABox clauses. Now assume that the proposition (*)
holds for some n and consider all possible inferences from premises in Nn deriving a
clause C in Nn+1 = Nn ∪ {C}:

• A superposition into a literal HU (u) is redundant, since HU is instantiated for
each constant occurring in FF(KB), so the conclusion is already on the branch.

• Assume that the inference is a superposition from s ≈ t into the ground unit
clause L. If L is of the form Sf (u, v), then the proposition obviously holds.
Otherwise, clauses s ≈ t and L are derived in at most n steps on B, so, by the
induction hypothesis, counterpart clauses λ−(s ≈ t) and λ−(L) are derivable on
B′. Thus, superposition can be performed on these clauses on B′ to derive the
required counterpart clause.

• Reflexivity resolution can only be applied to a clause u 6≈ u on B. By the
induction hypothesis λ−(u 6≈ u) is then derivable on B′. Hence, reflexivity
resolution can be applied on B′ as well to derive the required counterpart clause.

• Equality factoring is not applicable to a clause on B, since all positive clauses on
B are ground unit clauses.

• Consider a hyperresolution inference with a nucleus C, a set of positive ground
electrons E1, . . . , Ek and a unifier σ, resulting in a hyperresolvent H. Let σ′ be
the substitution obtained from σ by including a mapping x 7→ λ−(xσ) for each
variable x ∈ dom(σ) not of the form xf . Let us now perform an instantiation step
C ′ = (λ−(C))σ′ on B′. Obviously, λ−(Cσ) and C ′ may differ only at a position
p in C, at which a variable of the form xf occurs. Let p′ = λ−(p). The term in
λ−(C) at p′ is f(x), so with p′x we denote the position of the inner x in f(x).
In the hyperresolution inference generating H, the variable xf is instantiated by
resolving ¬Sf (x, xf) with some ground literal Sf (u, v). Hence, Cσ contains at
p the term v, whereas C ′ contains at p′ the term f(u), and λ−(v) 6= f(u). We
show that all such discrepancies can be eliminated with sound inferences on B′.
Observe that the literal Sf (u, v) is obtained on B from some Sf (a, af) by n or
less superposition inference steps. Let us with ∆1 (∆2) denote the sequence of
ground unit equalities applied to the first (second) argument of Sf (a, af). All
si ≈ ti from ∆1 or ∆2 are derivable on B in n steps or less, so corresponding
equalities λ−(si ≈ ti) are derivable on B′ by the induction hypothesis; we denote
these sequences with ∆′

1 and ∆′
2. We now perform superposition with equalities

from ∆′
1 into C ′ at p′x in the reverse order. After this, p′x will contain the

constant a, and p′ will contain the term f(a). Hence, we can apply superposition
with equalities from ∆′

2 at p′ in the original order. After this is done, each
position p′ will contain the term λ−(v). Let C ′′ denote the result of removing
discrepancies at all positions. Obviously, C ′′ = λ−(Cσ). All electrons Ei are

80 5. Reducing Description Logics to Disjunctive Datalog

derivable in n steps or less on B, so if Ei is not of the form Sf (u, v) or HU (u),
λ−(Ei) is derivable on B′. We hyperresolve these electrons with C ′′ to obtain
H ′. Obviously, H ′ = λ−(H), so the counterpart clause is derivable on B′.

• Since non-ground clauses contain selected literals and all concrete domain literals
are positive, concrete domain resolution can be applied only to a set of positive
ground clauses Ci. By the induction hypothesis, all λ−(Ci) are derivable on B′.
Hence, concrete domain resolution can be applied on B′ in the same way as on
B, so the counterpart clause is derivable on B′.

• Since all ground clauses on branch B are unit clauses, and no clause in FF(KB)
contains a positive literal with Sf or HU predicates, a ground non-unit clause
C generated by an inference on B cannot contain Sf (u, v) and HU (a) literals.
Hence, if C is of length k and causes B to be split into k sub-branches, then
λ−(C) is of length k and B′ can be split into k sub-branches, each of them
satisfying (*).

Hence, if there is a derivation of the empty clause on all branches from FF(KB),
then there is a derivation of the empty clause on all branches from Γ as well.

(⇒) If Γ is unsatisfiable, since BSD,+
DL is sound and complete, a derivation of the empty

clause from Γ exists. We show that such a derivation can be reduced to a derivation
of the empty clause in FF(KB) by sound inference rules.

Let B′ be a derivation Γ = N ′
0, . . . , N

′
n by BSD,+

DL . We show by induction on n
that there exists a corresponding derivation B of the form FF(KB) = N0, . . . , Nm by
sound inference steps, such that: (**) if C ′ is some clause in N ′

n, then Nm contains the
counterpart clause C = λ(C ′). The induction base n = 0 is trivial. Assume now that
(**) holds for some n and consider possible inferences deriving N ′

n+1 = N ′
n ∪ {C

′},
where the clause C ′ is derived from premises P ′

i ∈ N
′
n, 1 ≤ i ≤ k. By the induction

hypothesis, we know that there is a derivation B from FF(KB) with a clause set Nm

containing the counterpart clauses of each P ′
i , denoted with Pi, 1 ≤ i ≤ k. Let σ′ denote

the unifier that the inference is performed with. By Corollary 4.2.2, σ′ is ground and
contains only assignments of the form xi 7→ a or xi 7→ f(a). Let σ = λ(σ′). Since
all Pi are derivable by the induction hypothesis, we can instantiate each Pi into Piσ.
Obviously, apart from the literals involving Sf and HU , the only difference between
Piσ and λ(P ′

iσ
′) may be that the latter contains a term f(a) at position p, whereas

the former contains xf at λ(p). But then Piσ contains a literal ¬Sf (a, xf), which
can be resolved with Sf (a, af) to produce af at λ(p). All such differences can be
removed iteratively, and the remaining ground literals involving HU can be resolved
away. Hence, each λ(P ′

iσ
′) is derivable from premises in Nm.

Observe that in all literals of the form f(a), the inner term is marked. Hence,
superposition inferences are possible only on the outer position of such terms, which
correspond via λ to af . Therefore, regardless of the inference type, C = λ(C ′) can be
derived from λ(P ′

iσ
′) by the same inference on the corresponding literals.

5.3 Removing Irrelevant Clauses 81

The result of a superposition inference in B′ may be a clause C ′ containing a literal
R([a] , [f(a)]), which is decomposed into a clause C ′

1 of type 8 and a clause C ′
2 of type

3. However, since gen(KB) ⊆ Γ, we have C ′
2 ∈ Γ, so the conclusion C ′ should only be

replaced with the conclusion C ′
1. The decomposition inference rule can obviously be

applied on B as well to produce a counterpart clause C1 = λ(C ′
1). Since λ(C ′

2) ∈ Nm,
this inference is sound by Lemma 3.4.2, so the property (**) holds.

Now it is obvious that, if there is a derivation of the empty clause from Γ, then
there is a derivation of the empty clause from FF(KB) as well.

The result above means that KB |= α if and only if FF(KB) |= α, where α is of the
form (¬)A(a) or (¬)R(a, b), for A an atomic concept and R a simple role. The proof
also reveals the fact that, in checking satisfiability of FF(KB), it is not necessary to
perform a superposition inference into a literal of the form HU (a).

5.3 Removing Irrelevant Clauses

The saturation of ΓT Rg derives new clauses which enable the reduction to FF(KB).
However, the same process introduces many clauses which are not necessary. Consider,
for example, the knowledge base KB = {A ⊑ C,C ⊑ B}. If the precedence of the
predicate symbols is C >P B >P A, the saturation process will derive the clause
¬A(x) ∨ B(x), which is not necessary: all ground consequences of this clause can be
obtained from clauses ¬A(x) ∨ C(x) and ¬C(x) ∨ B(x) only. Hence, we present an
optimization, by which we reduce the number of clauses in the resulting disjunctive
datalog program.

Definition 5.3.1. For N ⊆ FF(KB), let C ∈ N be a clause such that λ−(C) was
derived in the saturation of ΓT Rg from premises Pi, 1 ≤ i ≤ k, by an inference
with a substitution σ. Then C is irrelevant w.r.t. N if λ−(C) is not derived by the
decomposition rule, and, for each premise Pi, λ(Pi) ∈ N and each variable occurring
in λ(Piσ) occurs in C. Relevant is the opposite of irrelevant.

Let C1, C2, . . . , Cn be a sequence of clauses from FF(KB) such that the sequence
of clauses λ−(Cn), . . . , λ−(C2), λ

−(C1) corresponds to the order in which clauses are
derived in saturation of ΓT Rg. Let FF(KB) = N0, N1, . . . , Nn be a sequence of clause
sets such that Ni = Ni−1 if Ci is relevant w.r.t. Ni−1, and Ni = Ni−1 \ {Ci} if Ci

is irrelevant w.r.t. Ni−1, for 1 ≤ i ≤ n. Then FFR(KB) = Nn is called the relevant
subset of FF(KB).

Removing irrelevant clauses preserves satisfiability, as demonstrated by the follow-
ing lemma.

Lemma 5.3.2. FFR(KB) is unsatisfiable if and only if FF(KB) is unsatisfiable.

Proof. Let N be a (not necessarily proper) subset of FF(KB). Furthermore, let C ∈ N
be an irrelevant clause w.r.t. N , where λ−(C) is derived in the saturation of ΓT Rg

from premises Pi by an inference ξ with a substitution σ, and λ(Pi) ∈ N , i ≤ i ≤ k.

82 5. Reducing Description Logics to Disjunctive Datalog

We now show the following property (***): N is unsatisfiable if and only if N \ {C} is
unsatisfiable. The (⇐) direction is trivial, since N \ {C} ⊂ N . For the (⇒) direction,
by Herbrand’s theorem, N is unsatisfiable if and only if some finite set M of ground
instances of N is unsatisfiable. For such M , we construct the set of ground clauses M ′

in the following way:

• For each D ∈M such that D is not a ground instance of C, let D ∈M ′.

• For each D ∈ M such that D is a ground instance of C with substitution τ , let
λ(Pi)λ(σ)τ ∈M ′, 1 ≤ i ≤ k.

Let τ be a ground substitution such that D = Cτ . Clauses Pi can be of type 1,
2, 3, 5, 7 or 9–13, so σ can contain only mappings of the form x 7→ x′, x 7→ f(x′) or
yi 7→ f(x′). The sets of variables in λ(Piσ) and λ(Pi)λ(σ) obviously coincide. Since
C is irrelevant, each variable in C occurs in λ(Piσ), so τ instantiates all variables in
each λ(Pi)λ(σ). Therefore, each λ(Pi)λ(σ)τ is a ground instance of a clause λ(Pi) in
N \ {C}. Furthermore, it is easy to see that λ(Pi)λ(σ)τ ⊆ λ(Piσ)τ . If the inclusion is
strict, this is due to literals of the form ¬Sf (a, b) in the latter clause, which do not occur
in the first one because σ instantiates some variable from Pi to a functional term f(x′)
originating from some premise Pj . But then λ(Pj) contains the literal ¬Sf (x′, x′f), so
λ(Pj)λ(σ)τ contains ¬Sf (a, b). Therefore, all λ(Pi)λ(σ)τ can participate in a ground
inference corresponding to ξ and derive D. Hence, if M is unsatisfiable, the set M ′

is unsatisfiable as well. Since M ′ is a finite unsatisfiable set of ground instances of
N \ {C}, N \ {C} is unsatisfiable by Herbrand’s theorem, so the property (***) holds.

Consider the sequence of clause sets FF(KB) = N0, N1, . . . , Nn = FFR(KB) from
Definition 5.3.1. For each Ni = Ni−1 \ {Ci}, i ≥ 1, the preconditions of property (***)
are fulfilled, so by (***), Ni is satisfiable if and only if Ni−1 is satisfiable. The claim
of the lemma now follows by a straightforward induction on i.

5.4 Reduction to Disjunctive Datalog

Reduction of an ALCHIQ(D) knowledge base KB to a disjunctive datalog program
is now easy.

Definition 5.4.1. For an ALCHIQ(D) knowledge base KB, the disjunctive datalog
program DD(KB) is obtained by rewriting each clause A1 ∨ . . .∨An ∨¬B1 ∨ . . .∨¬Bm

from FFR(KB) as the rule A1 ∨ . . . ∨An ← B1, . . . , Bm.

Theorem 5.4.2. Let KB be an ALCHIQ(D) knowledge base, defined over a concrete
domain D, such that D-satisfiability of finite conjunctions over ΦD can be decided in
deterministic exponential time. Then the following claims hold:

1. KB is unsatisfiable if and only if DD(KB) is unsatisfiable.

5.5 Answering Queries in DD(KB) 83

2. KB |= α if and only if DD(KB) |=c α, where α is of the form A(a) or R(a, b)
and A is an atomic concept.

3. KB |= C(a) for a non-atomic concept C if and only if, for Q a new atomic
concept, DD(KB ∪ {C ⊑ Q}) |=c Q(a).

4. The number of rules in DD(KB) is at most exponential, the number of literals
in each rule is at most polynomial, and DD(KB) can be computed in exponential
time in |KB |, assuming a bound on the arity of the concrete domain predicates
and for unary coding of numbers in input.

Proof. The first claim is an obvious consequence of Lemma 5.3.2. The second claim
follows from the first one, since DD(KB ∪ {¬α}) = DD(KB) ∪ {¬α} is unsatisfiable
if and only if DD(KB) |=c α. Furthermore, KB |= C(a) if and only if KB ∪ {¬C(a)}
is unsatisfiable, which is the case if and only if KB ∪ {¬Q(a),¬Q ⊑ ¬C} = KB ∪
{¬Q(a), C ⊑ Q} is unsatisfiable. Now the third claim follows from the second one,
and the fact that Q is atomic.

By Lemma 3.3.8, |Sat(ΓT Rg)| is at most exponential in |KB |, and, for each clause
C ∈ Sat(ΓT Rg), the number of literals in C is at most polynomial in |KB |. It is easy to
see that the application of λ to C can be performed in time polynomial in the number
of terms and literals in C. The number of constants af added to DD(KB) is equal to
c · f , where c is the number of constants, and f the number of function symbols in
the signature of Ξ(KB). If numbers are unary coded, both c and f are polynomial in
|KB |, so the number of constants af is also polynomial in |KB |. By Theorem 4.2.4,
Sat(ΓT Rg) can be computed in time at most exponential in |KB |, so the fourth claim
follows.

5.5 Answering Queries in DD(KB)

We discuss briefly the techniques for answering queries in DD(KB). Many techniques
have been developed for disjunctive datalog without equality. These techniques can
be used, provided that the usual congruence properties of equality are axiomatized
correctly. This can be done by adding the following axioms to DD(KB), where the last
axiom is instantiated for each predicate occurring in DD(KB) other than HU [42]:

x ≈ x← HU (x). (5.1)

x ≈ y ← y ≈ x. (5.2)

x ≈ z ← x ≈ y, y ≈ z. (5.3)

P (. . . , y, . . .)← P (. . . , x, . . .), x ≈ y. (5.4)

Currently, the state-of-the-art technique for reasoning in disjunctive datalog is so-
called intelligent grounding [39]. The algorithm is based on model building, which
is performed by generating the ground instantiation of the program rules, generating

84 5. Reducing Description Logics to Disjunctive Datalog

candidate models, and using model checking algorithms to eliminate models which do
not satisfy the ground rules. In order to avoid generating the entire grounding of the
program, carefully designed heuristics are applied to generate the subset of the ground
rules which have exactly the same set of the stable models as the original program.
Query answering is reduced to model building, since A is not a certain answer if and
only if there is a model not containing A.

The intelligent grounding technique is currently the state-of-the-art technique for
reasoning in disjunctive datalog and has been implemented successfully in the DLV
disjunctive datalog engine [39]. Namely, computing models of a disjunctive program
is of interest in many disjunctive datalog applications. For example, disjunctive dat-
alog has been successfully applied to planning problems, where each plan is usually
“decoded” from a model.

On the contrary, the models of DD(KB) are of no interest, as they do not reflect
the structure of the models of KB . Hence, we propose query answering in DD(KB)
by hyperresolution and basic superposition, which may be viewed as an extension of
the fixpoint computation of plain datalog. A similar technique was presented in [24].
However, the algorithm presented there has two drawbacks: it does not take equality
into account, and it does not specify whether application of redundancy elimination
techniques is allowed.

Roughly speaking, our technique consists of saturating the rules and facts of
DD(KB) by hyperresolution with basic superposition under an ordering in which all
ground query literals are smallest. Additionally, it is required that the query predicate
does not occur in the body of any rule. Under these assumptions, one may show that
the saturated set of clauses contains all ground query literals cautiously entailed by
the program. Because the ordering is total, in each ground disjunction there is exactly
one maximal literal. Hence, the semi-näıve bottom-up computation or the join order
optimizations can be adapted to the disjunctive case.

It is important to understand that even though we do not propose to reuse intel-
ligent grounding, the reduction to disjunctive datalog has the benefit that it enables
the application of the magic sets transformation [48]. This technique is independent
of the query answering algorithm and can be reused as-is.

Definition 5.5.1. For a predicate symbol Q, let BSD
Q denote the BSD calculus para-

meterized in the following way:

• All ground atoms of the form Q(a) are smallest in the term ordering ≻.

• All negative literals are selected.

Furthermore, for any two closures s ≈ t ∨ C where s ≈ t is strictly maximal with
respect to C and s ≻ t, and Q(a)∨D where Q(a) is strictly maximal with respect to D,
BSD

Q performs any possible superposition from t into Q(a), even if the corresponding
position in Q(a) is marked.

5.5 Answering Queries in DD(KB) 85

A remark about the first condition of the above definition is in order. Namely, any
admissible ordering is stable under contexts and under substitutions, and is total on
ground terms; therefore, it has the subterm property for ground terms [7]. However,
such an ordering does not fulfill the first condition from the above definition: for literals
a ≈ b and Q(a) with a ≻ b, we always have Q(a) ≻ a, so Q(a) ≻ a ≈ b.

This situation can be remedied by dropping the requirement on ≻ to be stable
under substitutions. Hence, for ground terms the term ordering ≻ must be total,
well-founded and stable under contexts (i.e. for all ground terms s, t and u, and all
positions p, s ≻ t implies u[s]p ≻ u[t]p). An example is a query ordering ≻Q induced
over a total precedence of over constant symbols >C and predicate symbols >P such
that Q is the smallest element in >P , defined in the following way (a(i) and b(i) are
arbitrary constants, P and R are arbitrary predicate symbols, and Q is the query
predicate symbol):

• a ≻Q b if a >C b,

• P (a1, . . . an) ≻Q b,

• P (a1, . . . an) ≻Q R(b1, . . . , bm) if R >P R,

• P (a1, . . . an) ≻Q P (b1, . . . , bn) if there is some k, 1 ≤ k ≤ n, such that ai = bi for
i < k and ak ≻ bk,

• a ≻Q Q(b1, . . . , bn).

It is easy to see that ≻Q is well-founded, stable under contexts, and that it fulfills
the requirements of Definition 5.5.1. However, it is not defined for non-ground terms,
since extending ≻Q to non-ground terms would require x ≻ Q(x). Therefore, ≻Q

cannot be used to decide satisfiability of a general first-order theory by BSD.
However, satisfiability of a positive program P can be decided by saturating P

under BSD
Q . Let P∞ be the set of closures obtained by saturating P under BSD

Q and
consider applying model-generation method to P∞. All non-ground closures in P∞

have selected negative literals, so they are not productive. Therefore, all productive
clauses in P∞ are positive ground clauses without functional terms. Literals from such
clauses can be compared using ≻Q, and a model can be generated in the same way as
in [15, 83]. In fact, to saturate P and to generate a model of P∞ it is not necessary to
compare non-ground terms, so stability under substitutions is not needed. Therefore,
we conclude that BSD

Q is sound and complete for deciding satisfiability of P . From
this we obtain the following result:

Lemma 5.5.2. Let P be a positive satisfiable disjunctive datalog program and Q a
predicate not occurring in the body of any rule in P . Then P |=c Q(a) if and only if
Q(a) ∈ N , where N is the set of closures obtained by saturating P under BSD

Q up to
redundancy.

86 5. Reducing Description Logics to Disjunctive Datalog

Proof. P |=c Q(a) if and only if the set of closures N ′, obtained as the result of
saturating P ∪{¬Q(a)} by BSD

Q up to redundancy, contains the empty closure. Notice
that, since all closures in P are safe, all hyperresolvents are positive ground closures.

Consider first the case when no superposition inference is applied to the literal
¬Q(a) in the saturation of N ′. Since P is satisfiable, N ′ contains the empty closure if
and only if a hyperresolution with ¬Q(a) is performed in saturation. Since the literals
containing Q are smallest in the ordering, a positive literal Q(a) can be maximal only
in a closure C = Q(a)∨D, where D contains only literals with the Q predicate. Since
¬Q(a) is the only closure where Q occurs negatively, if D is not empty, no literal from
D can be eliminated by a subsequent hyperresolution inference. Hence, the empty
closure can be derived from such C if and only if D is empty, which is the case if and
only if Q(a) ∈ N .

Assume now that, in the saturation deriving N ′, several negative superposition
inferences from closures ai ≈ bi ∨ Ci, ai ≻ bi, are applied to ¬Q(a), resulting in a
closure ¬Q(b)∨C, which then is resolved with a closure Q(b)∨D, producing C ∨D.
Such a derivation can be transformed into a derivation where superposition inferences
are performed on bi into Q(b)∨D, yielding Q(a)∨C ∨D, which can then participate
in a resolution with ¬Q(a) to obtain C ∨D. Thus, we may successively eliminate each
superposition into some ¬Q(a) and obtain a derivation in which no superposition into
¬Q(a) has been performed. Since in saturating N , all superposition inferences from
the smaller side of the equality are performed into all literals containing Q, and all
such inferences are sound, Q(a) ∈ N , so the claim of the lemma follows.

Assuming that Q is a single predicate, or that it does not occur in the body of any
rule in P , does not reduce the generality of the approach, as one can always add a new
rule of the form Q(x)← A(x) to satisfy the conditions of Lemma 5.5.2.

We now consider the complexity of query answering in DD(KB). Namely, it is well-
known that the combined complexity of checking whether P |=c A for any program
P is co-NExpTimeNP-complete in |P | [38]. Since |DD(KB)| is exponential in |KB |,
a straight-forward reasoning gives an algorithm in co-2NExpTimeNP. However, in
DD(KB), each rule is of length polynomial in |KB |. Hence, the hardness argument
from [38] does not apply directly to DD(KB), since DD(KB) is a program of a restricted
form.

Theorem 5.5.3. Let KB be an ALCHIQ(D) knowledge base, defined over a concrete
domain D, such that D-satisfiability of finite conjunctions over ΦD can be decided in
deterministic exponential time. Then computing the set of all ground literals of the
form C(a) or R(a, b), entailed by DD(KB), can be done in time exponential in |KB |,
assuming a bound on the arity of concrete predicates and for unary coding of numbers
in input.

Proof. In a way similar to Lemma 3.3.8, it is easy to see that the maximal length of
each ground clause obtained in the saturation of DD(KB) by BSD

Q is polynomial in
|KB |, so the number of ground clauses is exponential in |KB |. Furthermore, in each

5.6 Discussion 87

application of the hyperresolution inference to some rule r, one selects a ground clause
for each body literal of r, which is polynomial in |KB |, giving rise to exponentially
many different hyperresolution inferences. Hence, the saturation of DD(KB) may be
performed in time exponential in |KB |. Since by Lemma 5.5.2 saturation of DD(KB)
computes all certain answers of DD(KB), the claim of the theorem follows.

We finish with a note about an optimization which may be applied if unique names
assumption is assumed in KB . By assuming an ordering where all individual constants
a are smaller in the ordering than all constants bf , then superposition inferences from
the smaller side of an equation are not needed. Namely, since bf ≻ a, no superposition
inference may replace some a with bf in a saturation of DD(KB)∪ {¬Q(a)}. Further-
more, for any clause D = a ≈ b ∨ C, there is a clause a 6≈ b, so D may be replaced
immediately with C. Hence, no equality can reduce a position in ¬Q(a), so we always
have the first case from the proof of Lemma 5.5.2.

5.6 Discussion

It is important to note that our reduction to disjunctive datalog preserves entailment
under descriptive semantics. Namely, in [82] Nebel has shown that knowledge bases
containing terminological cycles are not definitorial. This means that, for some fixed
partial interpretation of atomic concepts, several interpretations of non-atomic con-
cepts may exist. In such a case, it might be reasonable to designate a particular
interpretation as the intended one, with least and greatest fixpoint models being the
obvious candidates. However, in [82] it is argued that it is not clear which inter-
pretation best matches the intuition, as choosing either of the fixpoint models has
its drawbacks. Consequently, most description logic systems implement the so-called
descriptive semantics, which coincides with that of Definition 2.8.5.

Obviously, our decision procedure implements exactly the descriptive semantics.
Furthermore, Theorem 5.4.2 shows that DD(KB) entails exactly those ground facts
which are entailed by our decision procedure, so DD(KB) also implements the descrip-
tive semantics. Hence, one may say that the set of facts contained in any minimal
model of DD(KB) coincides with the set of facts entailed by KB under descriptive
semantics. Intuitively, the saturation process is responsible for this fact.

We point out that basic superposition is crucial for the correctness of the reduction.
Namely, the basicness restriction renders superposition into Skolem function symbols
redundant, which allows treating ground functional terms as constants.

Finally, we note that, although all lemmas and theorems consider ALCHIQ(D),
it is easy to see that they equally apply to the case of ALCHIQb(D) as well.

5.7 Related Work

Our work was largely motivated by [49], where a decidable intersection of description
logic and logic programming was investigated. In particular, the authors concentrate

88 5. Reducing Description Logics to Disjunctive Datalog

on description logic constructs that can be encoded and executed using existing rule
engines. Thus, the description logic component allows only existential quantifiers to
occur under negative, and universal quantifiers to occur under positive polarity. The
authors present an operator for translating a description logic knowledge base into a
logic program. This approach was later extended in [116] to support more expressive
description logic, provided that the rule engine supports advanced features. For exam-
ple, if the rule engine supports equality, then functionality restrictions can be expressed
in the knowledge base and executed by the translation. However, our approach is a
significant extension, since we handle full SHIQ(D).

In [54] it was show how to convert SHIQ∗ knowledge bases into so-called con-
ceptual logic programs (CLP). The CLPs generalize the good properties of description
logic to the answer set programming setting. Apart from the usual constructs, SHIQ∗

supports the transitive closure of roles. Although the presented transformation pre-
serves the semantics of the knowledge base, the obtained answer set program is not
safe. Hence, its grounding is infinite and therefore cannot be evaluated using exist-
ing answer set solvers. The problem of decidable reasoning for CLPs is addressed by
an automata-based technique. On the contrary, our transformation produces a safe
program with a finite grounding. Hence, issues related to decidability of reasoning
are is handled by the transformation, and not by the query answering algorithm: the
disjunctive program obtained by our approach can be evaluated using any technique
for reasoning in disjunctive datalog programs.

Another approach for reducing description logic knowledge bases to answer set
programming was presented in [3]. To deal with existential quantification, this ap-
proach uses function symbols. Thus, Herbrand’s universe of the programs obtained by
the reduction is infinite, so existing answer set solvers cannot be used for decidable
reasoning. In fact, decidability of reasoning is not considered at all.

The query answering algorithm from Section 5.5 was inspired by [24], where the
authors suggested that the fixpoint computation of disjunctive semantics can be op-
timized by introducing an appropriate literal ordering. Our approach extends the
one from [24] by showing that simplification techniques can be applied in the fixpoint
computation, and by extending the calculus to handle equality.

Chapter 6

Data Complexity of Reasoning

Algorithms from chapters 3, 4 and 5 run in worst-case exponential time in |KB |,
assuming unary coding of numbers, a bound on the arity of concrete predicates and an
exponential oracle for reasoning with a concrete domain. In [114] SHIQ was shown
to be ExpTime-complete for any coding of numbers, so our algorithms are (almost)
worst-case optimal. We stress that our complexity results, as well as the results from
[114], actually address the combined complexity of reasoning, which is measured in the
size of the knowledge base |KB |, including the sizes of RBox, TBox and ABox.

ExpTime-completeness is a rather discouraging result, since |KB | can be large
in practice. However, by drawing a parallel with traditional database applications,
|KB | often depends mainly on the size of the ABox, which has a role of a database
instance; on the contrary, the size of the TBox, having the role of a database schema,
is usually limited. For such applications, data complexity, where |KBR ∪ KBT | is
assumed to be bound by a constant and complexity is measured in |KBA| (the size
of the ABox of KB) only, provides a much better performance estimate. In practice,
data complexity provides a much better performance estimate when the size of the
assertional knowledge is much bigger than the size of the terminological knowledge,
i.e. where |KBR|+ |KBT | = |KBT R| ≪ |KBA|.

To fully separate the terminological from assertional knowledge, in this chapter we
assume that KB is extensionally reduced, i.e. that ABox axioms contain only (negation
of) atomic concepts. Namely, complex concept axioms in ABox assertions actually
specify terminological knowledge. For extensionally reduced knowledge bases, |KBA|
is the measure of “raw” input data processed by the algorithm.

Until now, data complexity of testing knowledge base satisfiability even for the basic
logic ALC with general TBoxes was unknown. Based on results from Chapter 5, in
Section 6.1 we show that satisfiability checking is NP-complete in the size of ABox for
any logic between ALC and SHIQ(D) (regardless of how numbers are encoded), and
that instance and role checking — the basic query answering problems for description
logics — are co-NP-complete.

In Section 6.2 we define Horn-SHIQ(D), a logic related to SHIQ(D) analogously
as Horn logic is related to full first-order logic. Namely, Horn-SHIQ(D) provides ex-

89

90 6. Data Complexity of Reasoning

istential and universal quantifiers, but does not provide for disjunctive reasoning. This
restriction allows us to show that basic reasoning problems for Horn-SHIQ(D) are
P-complete in |KBA|. Hence, along the traditional lines of knowledge representation
research, the capability of representing disjunctive information is traded for polyno-
mial data complexity. Since disjunctive reasoning is not needed for many applications,
Horn-SHIQ(D) is a very appealing logic because it is still very expressive, but gives
theoretical reasons for hope that it can be implemented efficiently in practice.

To develop an intuition and to provide a more detailed account behind these in-
teresting results, in Section 6.3 we compare our results with the similar known results
for datalog and its variants [31].

6.1 Data Complexity of Satisfiability

Our results from Chapter 5 show almost immediately that checking satisfiability of a
SHIQ(D) knowledge base KB is NP-complete in the size of data.

Lemma 6.1.1 (Membership). For an extensionally reduced SHIQ(D) knowledge base
KB, if D-satisfiability of finite conjunctions over ΦD can be decided in polynomial time,
data complexity of checking D-satisfiability of KB is in NP, assuming a bound on the
arity of concrete predicates.

Proof. Let c be the number of constants, f the number of function symbols in the
signature of Ξ(KB), and s the number of facts in Ξ(KB). By Definition 5.2.2, the
number of constants in DD(KB) is bounded by ℓ1 = c+ cf (cf accounts for constants
of the form af), and the number of facts in DD(KB) is bounded by ℓ2 = s + c + 2cf
(c accounts for facts of the form HU (a), one cf accounts for the facts of the form
Sf (a, af), and the other cf accounts for the facts of the form HU (af)). Since we
assume that |KBT R| is bounded by a constant, f is bounded by a constant (regardless
of how numbers are encoded), so both ℓ1 and ℓ2 are polynomial in |KBA|.

Hence, |DD(KB)| is exponential in |KB | only because the number of rules in
DD(KB) is bounded by the number of closures obtained by saturating the set of clo-
sures ΓT Rg = Ξ(KBT ∪ KBR) ∪ gen(KB) by BSD,+

DL . Since ΓT Rg does not contain
ABox closures, by Lemma 3.3.8 the number of closures in Sat(ΓT Rg) is exponential in
|KBT R|. Since we assume that the latter is bounded by a constant, both the number
of rules in DD(KB) and their length are bounded by constants, so |DD(KB)| is poly-
nomial in |KBA|, and can be computed from KB in polynomial time. Now the claim
of the lemma follows from a well-known fact that checking satisfiability of a disjunctive
datalog program is NP-complete [31]. A minor difference is that DD(KB) may contain
concrete predicates, so for the sake of completeness we prove this result as well.

Assuming DD(KB) contains r rules and at most v variables in a rule, the number
of literals in a ground instantiation ground(DD(KB)) is bounded by r · ℓv1 + ℓ2 (in
each rule, each variable can be replaced in ℓ1 possible ways). Assuming r and v
are bounded by constants, |ground(DD(KB))| is polynomial in |KBA|. Satisfiability of
ground(DD(KB)) can be checked by non-deterministically generating an interpretation

6.1 Data Complexity of Satisfiability 91

I and then checking whether it is a D-model. Checking whether I is a model can be
performed in polynomial time. To additionally check whether I is a D-model, it is
sufficient to check whether Î is D-satisfiable, which can be done in polynomial time by
assumption. Since DD(KB) and KB are equisatisfiabile by Theorem 5.4.2, the claim
of the lemma follows.

Lemma 6.1.2 (Hardness). Checking satisfiability of an ALC knowledge base KB is
NP-hard in |KBA|.

Proof. The proof is by the reduction from a well-known Graph 3-Coloring problem: a
graph G is 3-colorable if and only if it is possible to assign a singe color from the set
{Red ,Green,Blue} to each of the graph’s vertices such that no two adjoining vertices
have the same color. Deciding whether G is 3-colorable is known to be NP-complete
in the number of edges [90].

Assuming that G is given as a symmetric relation edge, we construct the knowledge
base KBG whose ABox contains only the edge assertions, and whose TBox contains
the following axioms:

⊤ ⊑ Red ⊔Green ⊔ Blue (6.1)

Red ⊓Green ⊑ ⊥ (6.2)

Green ⊓ Blue ⊑ ⊥ (6.3)

Red ⊓ Blue ⊑ ⊥ (6.4)

Red ⊑ ∀edge.¬Red (6.5)

Green ⊑ ∀edge.¬Green (6.6)

Blue ⊑ ∀edge.¬Blue (6.7)

Obviously, G is 3-colorable if and only if KBG is satisfiable. Namely, (6.1) specifies
that each individual (i.e. vertex) in the model must be assigned at least one color,
(6.2) – (6.4) specify that colors are pair-wise disjoint so each vertex is assigned at most
one color, and (6.5) – (6.7) specify the conditions of 3-colorability. Hence, each model
of KBG gives an assignment of colors to vertices of G; conversely, each assignment of
colors of G specifies a model of KBG. Since the size of the TBox of KBG is constant,
and the size of ABox of KBG is double the number of edges of G, the claim of the
lemma follows.

We now state the main result of this section.

Theorem 6.1.3. Let KB be an extensionally reduced knowledge base expressed in
any logic between ALC and SHIQ(D). Assuming a polynomial oracle for reasoning
with concrete domains and a bound on the arity of concrete domain predicates, data
complexity of certain reasoning problems is as follows:

• checking KB satisfiability is NP-complete,

92 6. Data Complexity of Reasoning

• checking KB unsatisfiability is co-NP-complete, and

• checking whether KB |= α, for α of the form (¬)C(a) with |C| bounded or of the
form (¬)R(a, b), is also co-NP-complete.

Proof. The first claim is a direct consequence of lemmata 6.1.1 and 6.1.2. Checking
unsatisfiability is a complementary problem to checking satisfiability, so the second
claim follows from the first one. Furthermore, both instance checking (assuming |C| is
bounded) and role checking can be reduced to unsatisfiability in constant time, so the
third claim follows from the second one.

We finish this section with a remark that, if a knowledge base is extensionally
reduced, then ABox assertions do not contain number restrictions, so |KBA| and data
complexity do not depend on the used number coding.

6.2 A Horn Fragment of SHIQ(D)

Horn logic is a well-known fragment of first-order logic where formulae are restricted to
clauses containing at most one positive literal. Hence, each Horn clause can be under-
stood as a rule where several body literals imply one head literal. The main limitation
of Horn logic is the inability to represent disjunctive information; however, the main
benefit of Horn logic is the existence of refutation procedures, such as SLD-resolution,
which can be efficiently implemented in practice [94]. Furthermore, if function symbols
are not used, data complexity of query answering in Horn logic is P-complete [31], thus
making function-free Horn logic suitable for practical usage.

Following this idea, in this section we identify the Horn fragment of SHIQ(D) en-
joying similar properties. In Horn-SHIQ(D) the capability of representing disjunctive
information is traded for P-complete data complexity of reasoning. This fragment is
not defined by enumerating DL constructors; rather, it is defined by the way construc-
tors are used, as specified by the following test:

Definition 6.2.1. Let pl+ and pl− be two mutually recursive functions assigning a
non-negative integer to a SHIQ(D) concept D, defined inductively as in Table 6.1,
where ⌈0⌉ = 0 and ⌈n⌉ = 1 for n > 0. For a concept D and a position p of a subconcept
in D, let pl(D, p) be defined as follows:

pl(D, p) =

{
pl+(D|p) if pol(D, p) = 1
pl−(D|p) if pol(D, p) = −1

A SHIQ(D) concept C is a Horn concept if pl+(C, p) ≤ 1 for each position
p of a subconcept in C (including the empty position ǫ). An extensionally reduced
ALCHIQ(D) knowledge base KB is Horn if for each axiom C ⊑ D ∈ KBA, the con-
cept ¬C⊔D is Horn. An extensionally reduced SHIQ(D) knowledge base KB is Horn
if Ω(KB) is Horn.

6.2 A Horn Fragment of SHIQ(D) 93

Table 6.1: Definitions of pl+ and pl−

D pl+(D) pl−(D)
⊤ 0 0
⊥ 0 0
A 1 0
¬C pl−(C) pl+(C)
C1 ⊓ . . . ⊓ Cn max1≤i≤n⌈pl+(Ci)⌉

∑
1≤i≤n

⌈pl−(Ci)⌉

C1 ⊔ . . . ⊔ Cn

∑
1≤i≤n

⌈pl+(Ci)⌉ max1≤i≤n pl−(Ci)

∃R.C 1 ⌈pl−(C)⌉
∀R.C ⌈pl+(C)⌉ 1

≥ nR.C 1 (n−1)n
2 + n · ⌈pl+(C)⌉

≤ nR.C n(n+1)
2 + (n+ 1) · ⌈pl−(C)⌉ 1

∃T1, . . . , Tm.d 1 1
∀T1, . . . , Tm.d 1 1

≥ nT 1 (n−1)n
2

≤ nT n(n+1)
2 1

As we show in the example below, the structural transformation from Subsec-
tion 3.3.1 should be fine-tuned in order to preserve Horness. We first define the
extended version of the transformation, and then discuss the intuition behind this
definition.

Definition 6.2.2. A Horn-compatible structural transformation is identical to the one
from Definition 3.3.1 with the following difference in the definition of Def(C), where
α = Q if pl(C, p) > 0, and α = ¬Q if pl(C, p) = 0, Q is a new atomic concept, and
¬(¬Q) = Q:

Def(C) =

{C} if Λ(C) = ∅
{¬α ⊔ C|p} ∪ Def(C[α]p) if p ∈ Λ(C) and pol(C, p) = 1
{¬α ⊔ ¬C|p} ∪ Def(C[¬α]p) if p ∈ Λ(C) and pol(C, p) = −1

Unless otherwise explicitly mentioned, in the rest of this section we assume that
Ξ(KB) is computed using the Horn-compatible structural transformation. It is obvious
that Lemma 3.3.2 holds in this case as well, i.e. that KB and Ξ(KB) are equisatisfiable.
The only difference to Definition 3.3.1 is that a concept at a position p in C can be
replaced with ¬Q instead of with Q, depending on pol(C, p) and pl(C, p). This change
does not affect the correctness of the transformation.

We now explain the intuition behind definitions 6.2.1 and 6.2.2. By Table 2.1,
one can see that pl+(C) yields the maximal number of positive literals in closures
obtained by clausifying ∀x : πy(C, x) for a concept C. In counting the literals, one
has to take care in handling subconcepts. For example, let C = ∀R.D1 ⊔ ∀R.¬D2; in
clausification of C, subconcepts ∀R.D1 and ∀R.¬D2 are replaced with new names α1

94 6. Data Complexity of Reasoning

and α2. The above definitions ensure that α1 = ¬Q1 and α2 = Q2. Namely, clausifying
∀R.¬D2 does not yield positive literals; therefore, one can freely let ¬α1 be a positive
atomic concept. On the contrary, translating ∀R.D1 does yield one positive literal,
so one should ensure that ¬α2 is a negative atomic concept; otherwise, the structural
transformation would introduce a non-Horn concept ¬α ⊔ C|p. To summarize, C|p
is replaced with α being a positive atomic concept if clausification of C|p produces a
positive literal, and a negative atomic concept otherwise.

The function ⌈ ⌉ takes into account that C|p will be replaced with only one positive
atomic concept even if clausification of C|p produces more than one positive literal.
For example, clausifying D1 ⊔ D2 in the concept C = ∀R.(D1 ⊔ D2) produces two
positive literals; however, D1 ⊔D2 will be replaced in C by structural transformation
with only one positive literal.

One also needs to distinguish between subconcepts occurring under positive and
negative polarity: in ¬(¬A⊓¬B) the concepts ¬A and ¬B are effectively positive, and
⊓ is effectively ⊔. Hence, pl+(C|p) (pl−(C|p)) counts the number of positive literals
used to clausify C|p, provided that C|p occurs in C under positive (negative) polarity.

Now a concept C is Horn if closures obtained by clausifying C (and indirectly
each subconcept of C) contain at most one positive literal. For Horn knowledge
bases, special care must be taken in handling transitivity axioms. Namely, although
transitivity axioms are translated by π into Horn closures in the reduction to dis-
junctive datalog they are encoded by axioms of the form ∀R.C ⊑ ∀S.(∀S.C). Now
pl+(∃R.¬C ⊔ ∀S.(∀S.C)) = 1 + pl+(C), so if pl+(C) > 0, Ω(KB) is not a Horn knowl-
edge base. Definition 6.2.1 simply takes the effect of Ω into account.

Lemma 6.2.3. For a Horn-SHIQ(D) knowledge base KB, each closure from Ξ(KB)
contains at most one positive literal.

Proof. We first show the following property (*): for a Horn concept C, all concept
in Def(C) are Horn concepts. The proof is by induction on the application of the
operator Def. The induction base for Λ(C) = ∅ is obvious. Consider an application of
Def(C), where C is a Horn concept and p a position of a subconcept of C, such that
C|p is neither an atomic concept, nor a negation of an atomic concept, and for each
position q below p, C|q is either an atomic concept or a negation of an atomic concept.
Observe that in all cases, we have pl+(α) = pl(C, p) and pl+(¬α) = 1 − pl(C, p). We
now consider two cases, depending on pol(C, p):

• Consider pol(C, p) = 1. We have pl+(¬α⊔C|p) = pl+(¬α)+pl+(C|p) = pl+(¬α)+
pl(C, p) = 1. Furthermore, since pl(C, p) = pl(C[α]p, p), C[α]p is a Horn concept.

• Consider pol(C, p) = −1. We have pl+(¬α ⊔ ¬C|p) = pl+(¬α) + pl−(C|p) =
pl+(¬α) + pl(C, p) = 1. Furthermore, since pl(C, p) = pl(C[¬α]p, p), C[¬α]p is a
Horn concept.

Hence, each application of the operator Def decomposes a Horn concept into C two
simpler Horn concepts, so (*) holds. Furthermore, for each C|p or ¬C|p in the definition

6.2 A Horn Fragment of SHIQ(D) 95

of Def, each immediate subconcept is either an atomic concept, or a negation of an
atomic concept.

For D ∈ Def(C), by definition of π it is easy to see that pl+(D) gives the maximal
number of positive literals occurring in a closure from Cls(∀x : πy(D,x)). Thus, if C
is a Horn concept, all closures from Cls(Def(C)) have at most one positive literal. All
closures obtained by translating RBox and ABox axioms of Ω(KB) obviously contain
at most one positive literal, so the claim of the lemma follows.

We now show that BSD,+
DL , when applied to Horn premises, produces only Horn

conclusions.

Lemma 6.2.4. If all premises of an inference by BSD,+
DL contain at most one positive

literal, the inference conclusions contain at most one positive literal as well.

Proof. In ordered hyperresolution and positive or negative superposition, each side
premise participates in an inference on the positive literal, which does not occur in
the conclusion. Hence, the number of the positive literals in the conclusion is equal to
the number of positive literals in the main premise. Furthermore, reflexivity resolution
only reduces the number of negative literals in a closure, and equality factoring is never
applicable to a closure with only one positive literal. All side premises of a concrete
domain resolution inference participate in the inference on the positive literals, so
the conclusion contains only negative literals. Finally, a closure participating in a
decomposition inference must contain the single positive literal R(t, f(t)), so both
resulting closures have exactly one positive literal.

The following corollary is a direct consequence of lemmas 6.2.3 and 6.2.4:

Corollary 6.2.5. If KB is a Horn ALCHIQ(D) knowledge base, then DD(KB) is a
Horn datalog program.

We are now ready to show the main result of this section.

Lemma 6.2.6 (Membership). For an extensionally reduced Horn-SHIQ(D) knowl-
edge base KB, if D-satisfiability of finite conjunctions over ΦD can be decided in poly-
nomial time, data complexity of checking D-satisfiability of KB is in P, assuming a
bound on the arity of concrete predicates.

Proof. Since KB is satisfiable if and only if DD(KB) is satisfiable, data complexity of
checking satisfiability of KB is bounded by the data complexity of checking satisfiability
of a Horn program DD(KB). It is well-known that the latter can be performed e.g.
using bottom-up fixpoint saturation in polynomial time [31]. In our case DD(KB) can
contain constraints and concrete predicates, which may be used to derive the empty
closure. However, concrete domain resolution may be applied once, after fixpoint has
been computed. Hence, saturation of DD(KB) can be performed in time polynomial
in the number of facts. As in Lemma 6.1.2, |DD(KB)| is polynomial in |KBA|, so the
claim of this lemma follows.

96 6. Data Complexity of Reasoning

Lemma 6.2.7 (Hardness). Checking satisfiability of a Horn ALC knowledge base KB
is P-hard in |KBA|.

Proof. The proof is by the reduction from the well-known Reachability problem, i.e.
deciding whether there is a path from a node a1 to a node an in a graph G. This
problem is known to be P-complete [90] in the number of edges of G.

Assuming that G is given as a symmetric relation edge, we construct the knowledge
base KBG whose ABox contains only the edge assertions and the axioms C(a1) and
¬C(an), and whose TBox contains only the following axiom:

C ⊑ ∀edge.C (6.8)

Obviously, there is a path from a1 to an in G if and only if KBG is unsatisfiable.
Namely, if there is such a path in G, the axiom 6.8 makes sure that for all individuals
ai on a path, aI

i ∈ CI for any interpretation I, thus forcing a contradiction on an.
Conversely, if there is not such a path, an model I of KBG can be generated from G
by setting edgeI = edge, and aI

i ∈ C
I if and only if ai is reachable from a1. Since the

size of the TBox of KBG is constant, the size of ABox of KBG is double the number
of edges of G plus two, and KBG is obviously a Horn knowledge base, unsatisfiability
is P-complete. Since satisfiability is a complementary problem to unsatisfiability, it is
also P-complete.

The following theorem is an immediate consequence of these two lemmata.

Theorem 6.2.8. Let KB be an extensionally reduced Horn knowledge base expressed
in any logic between ALC and SHIQ(D). Assuming a polynomial oracle for reasoning
with concrete domains and a bound on the arity of concrete domain predicates, then
the problems of checking KB (un)satisfiability, and checking whether KB |= α, for α
of the form (¬)C(a) with |C| bounded or of the form (¬)R(a, b), are P-complete in the
size of data.

6.3 Discussion

To better understand the results from the previous two sections, we contrast them with
well-known results for (disjunctive) datalog [31]. Since datalog has been successfully
applied in practice, this analysis gives interesting insights into practical applicability
of DLs.

Interestingly, the data complexities of datalog variants and of corresponding SHIQ
fragments coincide. Namely, without disjunctions a SHIQ knowledge base and a
datalog program always have at most one model, which can be computed in polynomial
time. With disjunctions, several models are possible, and this must be dealt with using
reasoning-by-cases. Intuitively, one needs to “guess” a model, and this increases data
complexity to NP.

The key difference between datalog and DLs is reflected in the parametric com-
plexity. For a datalog program P and a ground atom α, checking whether P |= α can

6.4 Related Work 97

be performed in time O(|P |v), where v is the maximal number of distinct variables
in a rule of P . Namely, the problem can be solved by grounding P , i.e. replacing in
each rule of P all variables with individuals from P in all possible ways. The size of
the grounding is obviously bounded by |P |v, and propositional logic programming is
P-complete, which gives the above estimate. In general, v is linear in |P |, so the size of
the grounding is exponential; thus, the combined complexity of datalog coincides with
the combined complexity of SHIQ. However, in practical applications v is usually
small, so it makes sense to assume a bound on v. Under this assumption, datalog
actually exhibits polynomial behavior.

An intuitive analogous limitation for DLs might be to restrict the size of concepts
in axioms. However, this is not an adequate limitation, since axioms with complex
concepts can be polynomially reduced to axioms with just elementary DL concepts by
structural transformation. Namely, DLs are closely related to two-variable fragment of
first-order logic: ALC concepts correspond to first-order formulae with only two vari-
ables regardless of nesting. By limiting the numbers occurring in number restrictions,
for SHIQ the number of variables in axioms is “intrinsically” bounded.

We summarize the difference between datalog and DLs as follows: assuming a
bound on the axiom length, but not on the number of axioms, reasoning in datalog is
(non-deterministically) polynomial, but in DLs it is exponential. The reason for this is
that DLs provide the existential quantifier, which can succinctly encode models with
paths of exponential length. The saturation step eliminates the function symbols, but
it also incurs an exponential blowup in the program size to account for such paths.
Hence, although combined complexity of both datalog and DLs is exponential, the
reasons for exponential behavior are different.

In [5, Chapter 5] two sources of complexity in DLs have been identified: OR-
branching caused by the existence of numerous possible models, and AND-branching
caused by the existence of paths within a model. Our results show that OR-branching
is not so “bad” as AND-branching: the former incurs “only” an increase to NP, whereas
the latter incurs an increase in complexity to ExpTime.

6.4 Related Work

Data complexity of reasoning in description logics was not considered by many re-
searchers so far. We are only aware of [102], where the complexity bounds of instance
checking for certain description logics were given. In particular, it was shown that
combined complexity of instance checking for languages with polynomial subsumption
algorithm, such as AL and ALN , is also polynomial. For language ALE it was shown
that instance checking is co-NP-hard in the size of data; however, ΠP

2 is given as the
upper bound. Furthermore, it was shown that the combined complexity of instance
checking in ALE is PSpace-complete. Finally, for ALR, it was shown that the com-
bined complexity of instance checking is NP-complete. It was pointed out that the
additional source of complexity in ALE over ALR arises from qualified existential
quantification.

98 6. Data Complexity of Reasoning

None of the logics considered in [102] is as expressive as ALC or SHIQ(D). In
particular, no considered logic allows general inclusion axioms, which are known to have
a significant impact on the computation complexity. Furthermore, the complexity of
reasoning in [102] is measured in the size of the ABox which is allowed to contain
complex concept expressions. Our work addresses the logic with general inclusion
axioms, but requires ABox not to contain complex concept expressions. Hence, our
results measure the complexity in the number of simple facts, with no terminological
knowledge in the ABox.

Chapter 7

Integrating Description Logics

with Rules

Although SHIQ(D) is very expressive, it is a decidable fragment of first-order logic,
and thus cannot express arbitrary axioms. More importantly, the only axioms it can
express are of a certain tree-structure [49]. Decidable rule-based formalism such as
function-free Horn rules1 do not have this restriction, but lack some of the expressive
power of SHIQ(D), since they are restricted to universal quantification and provide,
in their basic form, no negation. To overcome the limitations of both approaches,
description logics were extended with rules in [58], but this extension is undecidable
[58]. Intuitively, the undecidability is due to the fact that adding rules to SHIQ(D)
causes the loss of any form of tree model property. In a logic with such a property,
every satisfiable knowledge base has a model of a certain tree-shaped form, so to decide
satisfiability, it suffices to search for such a model only. For most DLs, it is possible to
ensure termination of such a search.

It is natural to ask what kind of (non-tree) rules can be added to SHIQ(D) while
preserving decidability. This follows a classic line of research in knowledge representa-
tion, namely to investigate the trade-off between expressivity and complexity, and to
provide different formalisms with varying expressive power and complexity. This not
only allows to understand the causes for the undecidability of the full combination,
but also enables a more detailed analysis of the complexity and, ultimately, the design
of “specialized” decision procedures. Applications that do not require the expressive
power of the full combination can use such procedures, and rely on the known up-
per time and space bounds required to return a correct answer. Finally, in the last
decade, it turned out that these specialized decision procedures are amenable to op-
timizations, thus achieving surprisingly good performance in practice even for logics
with high worst-case complexity [5, Chapter 9].

In this chapter, we present a decidable combination of SHIQ(D) with rules, where
decidability is due to restricting the rules to so-called DL-safe ones. Importantly, we

1Throughout this chapter, we use “rules” and “clauses” synonymously, following [58].

99

100 7. Integrating Description Logics with Rules

Table 7.1: Example Knowledge Base

Person(Peter) Peter is a person.
Person ⊑ ∃father .Person Each person has a father who is a person.
∃father .(∃father .Person) ⊑ Grandchild Things having a father of a father who

is a person are grandchildren.

do not restrict, the component languages, but only reduce the interface between them.
Generalizing the approach of other decidable combinations of rules and description
logics [72, 35], in DL-safe rules, concepts and roles are allowed to occur in both rule
bodies and heads as unary, respective binary predicates in atoms, but each variable of
a rule is required to occur in some body literal whose predicate is neither a concept
nor a role. We discuss the expressive power and the limitations of our approach on a
non-trivial example. Moreover, we show that query answering with DL-safe rules can
be performed by simply appending the rules to a program obtained by the reduction
from Chapter 5.

7.1 Reasons for Undecidability of SHIQ(D) with Rules

In [58], an extension of OWL-DL with rules was presented, where the integration is
achieved by requiring that NC ∪ NRa ∪ NRc ⊆ NP . In other words, integration of
OWL-DL and rules is achieved by simply allowing concepts and roles to be used in
rules as unary and binary atoms, respectively. Furthermore, it was shown that such
an extension unfortunately leads to undecidability of the following problem: given an
OWL-DL knowledge base KB and a program P , is there a common model of π(KB)
and P , i.e. is KB consistent with P? As a consequence, subsumption and query
answering w.r.t. knowledge bases and programs are also undecidable. Investigating
this proof and the ones in [72] more closely, we note that the undecidability is caused
by the interaction between some very basic features of description logics and rules. In
this section, we try to give an intuitive explanation of this result and its consequences.

Consider the simple knowledge base KB from Table 7.1. It is not too difficult to
see that this knowledge base implies the existence of an infinite chain of fathers: since
Peter must have a father, there is some x1 who is a Person. In turn, x1 must have
some father x2 , which must be a Person, and so on. An infinite model with such a
chain is shown in Figure 7.1, upper part a). Observe that Peter is a grandchild, since
he has a father of a father, who is a person.

Let us now check whether KB |= Grandchild(Jane); this is the case if and only
if KB ∪ {¬Grandchild(Jane)} is unsatisfiable, i.e. if it does not have a model. We
can check this by trying to build such a model; if we fail, then we conclude that
KB ∪ {¬Grandchild(Jane)} is unsatisfiable. However, we have a problem: starting

7.1 Reasons for Undecidability of SHIQ(D) with Rules 101

from Peter , a näıve approach to building a model will expand the chain of Peter’s
fathers indefinitely, and will therefore not terminate.

This very simple example intuitively shows that we have to be careful if we want to
ensure termination of a satisfiability checking algorithm. For many DLs, termination
can be ensured without losing completeness because we can restrict our attention to
certain “nice” models. For numerous DLs, we can restrict our attention to tree models,
i.e. to models where the underlying relational structure forms a tree [115]. This is
so because every satisfiable knowledge base has such a tree model (to be precise, we
actually consider tree-like abstractions of non-tree models). Even if such a tree model
is infinite, we can wind this infinite tree model into a finite one. In our example, since
KB does not require each father in the chain to be distinct (i.e. there is no axiom
requiring the role father to be acyclic), the model in Figure 7.1, lower part b) is the
result of “winding” an infinite tree into a “nice”, finite model. Due to their regular
structure, these “windings” of tree models can be easily constructed in an automated
way. To understand why every satisfiable SHIQ(D) knowledge base has a tree model
[61], consider the mapping π from tables 2.1 and 2.3 more closely (we abstract some
technicalities caused by the transitive roles): in all formulae obtained by transforming
the result of π into prenex normal form, variables are connected by roles only in a
tree-like manner, as shown in the following example:

∃S.(∃R.C ⊓ ∃R.D) ⊑ Q ⇒
∀x : {[∃y : S(x, y) ∧ (∃x : R(y, x) ∧ C(x)) ∧ (∃x : R(y, x) ∧D(x))]→ Q(x)} ⇒
∀x, x1, x2, x3 : {S(x, x1) ∧R(x1, x2) ∧ C(x2) ∧R(x1, x3) ∧D(x3)→ Q(x)}

Let us contrast these observations with the kind of reasoning required for function-
free Horn rules. In such rules, all variables are universally quantified, i.e. there are no
existentially quantified variables in rule consequents. Hence, we never have to infer the
existence of “new” objects. Thus, reasoning algorithms must consider only individuals
which are explicitly introduced and are given a name in the knowledge base. Reasoning
can be performed by grounding the rules, i.e. replacing the variables in the rules with
all individuals from the knowledge base in all possible ways. Through grounding, first-
order reasoning becomes propositional, since a ground rule is essentially equivalent to
a propositional clause. For a finite program, the number of ground rules is also finite,
and satisfiability of a set of propositional clauses is decidable. Hence, the rules, such as

peter x1 x2

peter x’1

Person Ù Grandchild

Legend:

father

equivalent nodes

a)

b)

Figure 7.1: Two Similar Models

102 7. Integrating Description Logics with Rules

the one defining hasAunt(x, y) from the introduction, are allowed to enforce arbitrary
but finite, non-tree models, and not only “nice” models.

Now let us see what happens if we extend SHIQ(D) with function-free Horn rules.
Then, we combine a logic whose decidability is due to the fact that we can restrict
our attention to “nice” models (but with individuals whose existence may be implied
by a knowledge base) with the one whose decidability is due to the fact that we can
restrict our attention to “known” individuals (but with arbitrary relations between
them). Unsurprisingly, this and similar combinations are undecidable [72, 58].

7.2 Combining Description Logics and Rules

We now formalize the interface between SHIQ(D) and rules.

Definition 7.2.1 (DL Rules). Let KB be a SHIQ(D) knowledge base and let NP

be the set of predicate symbols such that {≈} ∪ NC ∪ NRa ∪ NRc ⊆ NP . For s and t
constants or variables, a DL-atom is an atom of the form A(s), where A ∈ NC , or of
the form R(s, t), where R ∈ NRa ∪ NRc and is simple in KB. A non-DL-atom is an
atom with a predicate from NP \ (NC ∪ NRa ∪ NRc ∪ {≈}). A (disjunctive) DL rule
is a (disjunctive) rule allowed to contain DL- and non-DL-atoms. A DL program is a
set of (disjunctive) DL rules.

The semantics of the combined knowledge base (KB , P), where KB is a SHIQ(D)
knowledge base and P is a DL program, is given by translation into first-order logic
as π(KB) ∪ P , where each rule A1 ∨ ... ∨ An ← B1, ..., Bm is treated as a clause
A1 ∨ ... ∨ An ∨ ¬B1 ∨ ... ∨ ¬Bm. The main inferences in (KB , P) are satisfiability
checking, i.e. determining whether a first-order model of π(KB)∪P exists, and query
answering, i.e. determining whether π(KB) ∪ P |= α for a ground atom α, written as
(KB , P) |= α.

A few remarks regarding Definition 7.2.1 are in order.

Relationship with Existing Formalisms. The above definition yields a formalism
compatible with the ones from [58, 72]. The main difference from [58] is that we allow
non-DL-atoms to occur in a rule, and that we require only complex concepts to occur
in a rule. The latter is a technical assumption and is not really a restriction: for a
complex concept C, one can always introduce a new atomic concept AC , add the axiom
AC ≡ C to the TBox, and use AC in the rule. This transformation is obviously linear
in the size of P .

Decidability. Since the formalism is compatible with [58], we immediately have
that the reasoning in DL rules is undecidable. To achieve decidability we introduce
the notion of DL-safety in Section 7.3.

7.3 DL-safety 103

Minimal vs. First-order Models. Rules are usually interpreted under minimal
model semantics, i.e. only models minimal w.r.t. set inclusion are considered; we write
P |=c α if a formula α is true in all minimal models of P . However, in Definition
7.3.1 we assume the standard first-order semantics for rules, where P |= α means that
α is true in all models of P . We briefly discuss the differences between these two
approaches, and their practical consequences.

Assume that α is a positive ground atom. It is easy to see that in such a case,
P |= α if and only if P |=c α. Namely, if α is true in each model of P , it is true in
each minimal model of P as well, and vice versa. Therefore, for entailment of positive
ground atoms, it is not important whether the semantics of P is defined w.r.t. minimal
or w.r.t. general first-order models.

Assume now that α is a negative ground atom. In this case, there is a difference
between minimal model semantics and first-order semantics, as shown by the following
example. For α = ¬A(b) and P = {A(a)}, it is clear that P 6|= α. Namely, ¬A(b)
is not explicitly derivable from the facts in P : M1 = {A(a), A(b)} is a perfectly valid
first-order model of P and α is false in M1. However, P has exactly one minimal model
M2 = {A(a)} and ¬A(b) is obviously true in M2, so P |=c α.

The type of semantics also affects concept subsumption: let α = ∀x : C(x)→ D(x)
and P = {C(a), D(a)}. Similarly as above, P 6|= α; namely, M1 = {C(a), D(a), C(b)}
is a model of P in which α is false. However, M2 = {C(a), D(a)} is the only minimal
model of P and α is true in M2, so P |=c α. The distinction between minimal models
and general first-order models fundamentally changes the computational properties of
concept subsumption: equivalence of general programs under minimal model semantics
is undecidable [110], whereas under first-order semantics it is decidable and can be
reduced to satisfiability checking using standard transformations.

To summarize, the difference between first-order and minimal model semantics is
not relevant for query answering if queries are positive atoms; however, it is relevant
for queries which involve negation or for concept subsumption. Negative queries are
usually considered in a more general framework of negation-as-failure, where negation
is interpreted as failure to prove a query, thus yielding a non-monotonic formalism.
Whereas non-monotonic features are certainly very important for the Semantic Web,
we do not address them in this paper. Instead, our results are an initial step towards
providing a practical hybrid knowledge representation formalism integrating descrip-
tion logics and rules. We also believe that our work may be used as a sound basis for
future non-monotonic extensions.

7.3 DL-safety

We now introduce DL-safety restriction as one possible way to make reasoning with
DL rules decidable.

104 7. Integrating Description Logics with Rules

Definition 7.3.1 (DL-safe Rules). A (disjunctive) DL rule r is DL-safe if each vari-
able occurring in r also occurs in a non-DL-atom in the body of r. A (disjunctive)
program P is DL-safe if all its rules are DL-safe.

DL-safety is similar to safety in datalog. In a safe rule, each variable occurs in a
positive atom in the body, and may therefore be bound only to constants explicitly
present in the database. Similarly, DL-safety ensures that each variable is bound only
to individuals explicitly introduced in the ABox. For example, if Person, livesAt , and
worksAt are concepts and roles from KB , the following rule is not DL-safe:

Homeworker(x)← Person(x), livesAt(x, y),worksAt(x, y)

The reason for this is that both variables x and y occur in DL-atoms, but do not occur
in a body atom with a predicate outside of KB . This rule can be made DL-safe by
adding special non-DL-atoms O(x), O(y) and O(z) to the body of the rule, and by
adding a fact O(a) for each individual a occurring in KB and P . Thus, the above rule
becomes

Homeworker(x)← Person(x), livesAt(x, y),worksAt(x, y),O(x),O(y),O(z)

This rule is obviously DL-safe. In Subsection Section 7.4 we discuss the consequences
that this transformation has on the semantics.

7.4 Expressivity of DL-safe Rules

It is important to notice that, to achieve decidability, we do not restrict the component
languages. Rather, we combine full SHIQ(D) with function-free Horn rules, and thus
extend both formalisms. DL-safety only restricts the interchange of consequences be-
tween the component languages to those consequences involving individuals explicitly
introduced in the ABox.

To illustrate the expressive power of DL-safe rules, consider the axioms and rules
from Table 7.2. We use a rule to define the only non-DL-predicate BadChild as a
grandchild who hates some of his siblings (or himself). Notice that this rule involves
relations forming a triangle between two siblings and a parent, and thus cannot be
expressed in SHIQ(D). Moreover, the rule is not DL-safe since each variable in the
rule does not occur in a non-DL-atom in the rule body.

Now consider the first group of ABox facts. Since Cain is a Person, as in Section 7.1
one may infer that Cain is a Grandchild . Since Cain and Abel are children of Adam,
and Cain hates Abel , we derive that Cain is a BadChild .

Similarly, since Romulus and Remus are persons, they have a father. Due to the
second rule, the father of Romulus and Remus must be the same. Now Romulus hates
Remus, so Romulus is a BadChild as well. We are able to derive this without knowing
exactly who the father of Romulus and Remus is2.

2Actually, the father of Romulus and Remus is Mars, but this fact is not well-known. Still, the
father’s existence is certain, and this is exactly what the knowledge base represents.

7.4 Expressivity of DL-safe Rules 105

Table 7.2: Example with DL-safe Rules

Person ⊑ ∃father .Person Each person has a father who is a person.
∃father .(∃father .Person) ⊑ Grandchild Things having a father of a father who

is a person are grandchildren.
father ⊑ parent Fatherhood is a kind of parenthood.
BadChild(x)← Grandchild(x), A bad child is a grandchild who hates

parent(x, y), parent(z, y), hates(x, z) one of his siblings.
BadChild ′(x)← Grandchild(x), DL-safe version of a bad child.

parent(x, y), parent(z, y), hates(x, z),
O(x),O(y),O(z)

Person(Cain) Cain is a person.
father(Cain,Adam) Cain’s father is Adam.
father(Abel ,Adam) Abel’s father is Adam.
hates(Cain,Abel) Cain hates Abel.

Person(Romulus) Romulus is a person.
Person(Remus) Remus is a person.
x ≈ y ← father(Romulus, x), father(Remus , y) Romulus and Remus have the same father.
x ≈ y ← father(Romulus, x), father(Remus , y), DL-safe version.
O(x),O(y)

hates(Romulus,Remus) Romulus hates Remus.

Child(x)← GoodChild(x),O(x) Good children are children.
Child(x)← BadChild ′(x),O(x) Bad children are children.
(GoodChild ⊔ BadChild ′)(Oedipus) Oedipus is a good or a bad child.

O(α) for each explicitly named individual α Enumeration of all ABox individuals.

Consider now the DL-safe rule defining BadChild ′: since the father of Cain and
Abel is known by name (i.e. Adam is in the ABox), the literal O(y) from the rule
for BadChild ′ can be matched to O(Adam), and we may conclude that Cain is a
BadChild ′. In contrast, the father of Romulus and Remus is not known in the ABox.
Hence, in the DL-safe version of the second rule, O(x) and O(y) cannot be matched to
the father’s name, so the rule does not derive that the fathers of Romulus and Remus
are the same. Similarly, in the rule defining BadChild ′, the literal O(y) cannot be
matched to the father’s name, so we cannot derive that Romulus is a BadChild ′.

This may seem confusing. However, DL-safe rules do have a “natural” reading:
just append the phrase “where the identity of all objects is known” to the meaning
of the rule. For example, the rule defining BadChild ′ can be read as “A BadChild ′

is a known grandchild for which we know a parent, and who hates one of his known
siblings.”

Combining description logics with DL-safe rules increases the expressivity of both
components. Namely, a SHIQ(D) knowledge base cannot imply that Cain is a

106 7. Integrating Description Logics with Rules

BadChild ′ because the “triangle” rule cannot be expressed in SHIQ(D). Similarly,
a set of function-free Horn rules cannot imply this either: we know that Cain has a
grandfather because Cain is a person, but we do not know who he is. Hence, we need
the existential quantifier to infer the existence of ancestors, and then infer that Cain
is a Grandchild .

Finally, we point out that it is incorrect to compute all consequences of the de-
scription logic component first, and then to apply the rules to the consequences.
Consider the KB part about Oedipus: he is a GoodChild or a BadChild ′, but we
do not know exactly which. Either way, one of the rules derives that Oedipus is a
Child , so (KB , P) |= Child(Oedipus). This would not be derived by applying the
rules defining Child to the consequences of KB , since KB 6|= GoodChild(Oedipus) and
KB 6|= BadChild ′(Oedipus).

7.5 Query Answering for DL-safe Rules

In a nutshell, we show that reasoning in (KB , P) can be performed by simply appending
P to DD(KB). To show that, we modify the proofs of several lemmata leading to
Theorem 5.4.2.

For a SHIQ(D) knowledge base KB , the first step in query answering is to elimi-
nate transitivity axioms by encoding KB into an equisatisfiable ALCHIQ(D) knowl-
edge base Ω(KB), as explained in Section 3.2. Observe that Definition 7.3.1 allows
only simple roles to occur in DL-atoms, and that in Section 3.2 we show that the en-
coding preserves entailment of such atoms. Hence, for a DL-safe program P , it is easy
to see that (KB , P) and (Ω(KB), P) are equisatisfiable. Hence, in the rest we assume
without loss of generality that KB is an ALCHIQ(D) knowledge base.

We now show that saturation of Ξ(KB) ∪ P by BSD,+
DL decides satisfiability of

(KB , P). To obtain a decision procedure, we extend the selection function of BSD,+
DL

in the following way: if a closure contains negative non-DL-atoms, then all such atoms
are selected and nothing else is selected; if there are no negative non-DL-atoms, the
selection function is the same as in Definition 3.3.3, i.e. it selects all negative binary
literals.

We define the extended ALCHIQ(D)-closures to include the closure types from
Table 3.2 without conditions (iii) – (vi), the closure types from Table 4.2, and closures
corresponding to DL-safe rules. Furthermore, closures of type 8 are allowed to contain
positive or negative non-functional ground non-DL-atoms.

Lemma 7.5.1. For an ALCHIQ(D) knowledge base KB, saturation of Ξ(KB) ∪ P
by BSD,+

DL decides satisfiability of (KB , P).

Proof. (KB , P) is satisfiable if and only if Ξ(KB) ∪ P is satisfiable. Furthermore, all
closures from Ξ(KB) ∪ P are obviously extended ALCHIQ(D)-closures. To show the
claim of the lemma, it is sufficient to show that the following property (*) holds: let
Ξ(KB) ∪ P = N0, . . . , Ni ∪ {C} be a BSD,+

DL -derivation, where C is the conclusion

7.5 Query Answering for DL-safe Rules 107

derived from premises in Ni. Then C is either an extended ALCHIQ(D)-closure or it
is redundant in Ni.

All ground non-DL-atoms in Ξ(KB)∪P contain constants. Hence, a superposition
into a ground non-functional non-DL-atom is possible only from a literal 〈a〉 ≈ 〈b〉, and
in the superposition conclusion all non-DL-atoms contain constants. Consider an infer-
ence with some rule r. Since r is DL-safe, it can participate only in a hyperresolution
inference with electrons of type 8 on non-DL-literals. Furthermore, r is safe, so, since
all ground non-DL-atoms contain constants, the hyperresolution binds all variables in
a rule to constants. Hence, the resolvent is a ground closure where non-DL-atoms do
not contain functional terms, so it is of type 8. Closures of type 8 can participate
in BSD,+

DL inferences with other closures in exactly the same way as in Lemma 3.3.5,

Lemma 4.2.1 and Theorem 3.4.6. Hence, the property (*) holds. Since BSD,+
DL is sound

and complete, the claim of the lemma follows.

The next step is to show that rules can simply be appended to the function-free
version of KB .

Lemma 7.5.2. (KB , P) is unsatisfiable if and only if FF(KB) ∪ P is unsatisfiable.

Proof. (KB , P) is unsatisfiable if and only if Ξ(KB) ∪ P is unsatisfiable. The latter
can be decided by a BSD,+

DL saturation, in which all non-ground inferences are per-
formed first. Since rules from P contain negative non-DL-atoms selected, they cannot
participate in an inference with non-ground closures from Ξ(KB) ∪ P . Hence, as in
Lemma 5.2.1, Ξ(KB)∪P is satisfiable if and only if Γ = SatR(ΓT Rg)∪Ξ(KBA)∪P is
satisfiable.

It is now straightforward to extend Lemma 5.2.3 to show that Γ is unsatisfiable if
and only if FF(KB)∪P is unsatisfiable. For both directions of the proof, a hyperreso-
lution with a rule r in one closure set can directly be simulated with a hyperresolution
with r in the other closure set.

We now state our main result:

Theorem 7.5.3. Let KB be an ALCHIQ(D) knowledge base and P a DL-safe dis-
junctive datalog program. Then (KB , P) is unsatisfiable if and only if DD(KB) ∪ P is
unsatisfiable. Furthermore, (KB , P) |= α if and only if DD(KB)∪P |=c α, where α is
a DL-atom A(a) or R(a, b), or α is a ground non-DL-atom.

Proof. The first claim is a direct consequence of Lemma 7.5.2. For the second claim,
observe that (KB , P) |= α if and only if (KB ∪ {¬α}, P) is unsatisfiable. This is the
case if and only if FF(KB ∪ {¬α})∪P = FF(KB)∪P ∪ {¬α} is unsatisfiable, which is
the case if and only if DD(KB) ∪ P |=c α.

Query answering in DD(KB) ∪ P can be performed using the algorithm from Sec-
tion 5.5. We now determine its complexity.

108 7. Integrating Description Logics with Rules

Theorem 7.5.4. Let KB be an ALCHIQ(D) knowledge base, defined over a concrete
domain D, such that D-satisfiability of finite conjunctions over ΦD can be decided
in deterministic exponential time, and let P be a DL-safe program. Assuming unary
coding of numbers and a bound on the arity of concrete domain predicates, computing
all answers to a non-ground query in (KB , P) can be done in time exponential in
|KB | + |P |, assuming a bound on the arity of predicates in P , and in time doubly
exponential in |KB |+ |P | otherwise.

Proof. Similarly to Lemma 3.3.8, to determine the complexity of the algorithm we
compute the maximal number of closures derived during saturation by BSD

Q . Let p
denote the number of non-DL-predicates, r the maximal arity of a predicate, c the
number of constants occurring in (KB , P), and b the maximal number of literals in a
body of a rule from P . Under the assumptions of the theorem, p, c and b are linear in
|KB |+ |P |. If r is not bounded, it is also linear in |KB |+ |P |.

The number of non-DL-literals occurring in a maximal ground closure is bounded
by ℓ1 = 2p(2c)r (the first factor 2 allows each literal to occur positively or negatively,
and the second factor 2 allows each term to be marked or not). If the predicate
arity is bounded, then ℓ1 is polynomial, and if the predicate arity is unbounded, it
is exponential in |KB | + |P |. From Lemma 3.3.8 we know that the maximal number
of DL-atoms in a closure, denoted as ℓ2, is polynomial in |KB | assuming a bound on
the arity of concrete domain predicates and for unary coding of numbers. Since each
ground closure can contain an arbitrary subset of these literals, the maximal number
of ground closures derived by BSD

Q is bounded by k = 2ℓ1+ℓ2 , which is exponential for
bounded arity, and doubly exponential for unbounded arity of predicates in P .

Each rule from DD(KB) ∪ P can participate in a hyperresolution inference with
ground closures in kb ways, which is exponential in |P |. Furthermore, by Theorem 5.4.2
the number of rules t in DD(KB)∪P is exponential in |KB |+|P |. Hence, the number of
hyperresolution inference steps is bounded by tkb = t · 2b·(ℓ1+ℓ2). For bounded arity of
predicates in P , this number is exponential, and doubly exponential otherwise. Hence,
in the same way as in Lemma 4.2.4, the number of concrete domain inference steps is
exponential for bounded arity of predicates in P , and doubly exponential otherwise,
thus implying the claim of the theorem.

Note that most applications require predicates of small arity. Hence, the assump-
tion that the arity of predicates is bounded is realistic in practice, thus giving a worst-
case optimal algorithm.

Finally, it is easy to see that the same results apply even if the description logic
component is ALCHIQb(D), instead of ALCHIQ(D).

7.6 Related Work

AL-log [35] is a logic which combines a TBox and ABox expressed in the basic de-
scription logic ALC with datalog rules, which may be constrained with unary atoms

7.6 Related Work 109

having ALC concepts as predicates in the body. Query answering in AL-log is decided
by a variant of constrained resolution, combined with a tableaux algorithm for ALC.
The combined algorithm is shown to run in single non-deterministic exponential time.
The fact that atoms with concept predicates can occur only as constraints in the body
makes rules applicable only to explicitly named objects. Our restriction to DL-safe
rules has the same effect. However, our approach is more general in the following ways:
(i) it supports a more expressive description logic, (ii) it allows using both concepts
and roles in DL-atoms and (iii) DL-atoms can be used in rule heads as well. Fur-
thermore, (iv) we present a query answering algorithm as an extension of deductive
database techniques which runs in deterministic exponential time.

A comprehensive study of the effects of combining datalog rules with description
logics is presented in [72]. The logic considered isALCNR, which, although less expres-
sive than SHIQ, contains constructors that are characteristic of most DL languages.
The results of the study can be summarized as follows: (i) answering conjunctive
queries over ALCNR knowledge bases is decidable, (ii) query answering in a logic
obtained by extending ALCNR with non-recursive datalog rules, where both concepts
and roles can occur in rule bodies, is also decidable, as it can be reduced to comput-
ing a union of conjunctive query answers, (iii) if rules are recursive, query answering
becomes undecidable, (iv) decidability can be regained by disallowing certain combi-
nations of constructors in the logic, and (v) decidability can be regained by requiring
rules to be role-safe, where at least one variable from each role literal must occur in
some non-DL-atom. As in AL-log, query answering is decided using constrained reso-
lution and a modified version of the tableaux calculus. Besides the fact that we treat
a more expressive logic, in our approach all variables in a rule must occur in at least
one non-DL-atom, but concepts and roles are allowed to occur in rule heads. Hence,
when compared to the variant (v), our approach is slightly less general in some, and
slightly more general in other aspects.

The Semantic Web Rule Language (SWRL) [58] combines OWL-DL with rules in
which concept and role predicates are allowed to occur in the head and in the body,
without any restrictions. Hence, apart from technicalities such as allowing concept
expressions to occur in the rules, the formalism is compatible with DL rules. As men-
tioned before, this combination is undecidable but, as pointed out by the authors,
(incomplete) reasoning in such a logic can be performed using general first-order the-
orem provers. DL-safe rules are a proper subset of SWRL, where some expressivity is
traded for decidability. Furthermore, we provide an optimal query answering algorithm
covering a significant portion of OWL-DL.

In [40] an approach for combining answer set programming with description logic
reasoning was presented. The interaction between the subsystems is enabled by ex-
changing ground consequences between the two components. Hence, the consequences
of the description logic knowledge base can be pushed as facts into the answer set pro-
gram and vice versa. The final set of derived facts is obtained by fixpoint computation.
In this approach, the two systems are not tightly integrated, since interaction between
the systems is performed through the exchange of consequences only.

110 7. Integrating Description Logics with Rules

The approaches from [49] and [116] for reducing certain fragments of description
logics to logic programming can easily be extended with rules, by simply appending
the rules to the result of the transformation. However, the description logic considered
there does not support existential quantifiers, negation, or disjunction under positive
polarity, so it is significantly less expressive than SHIQ(D). Hence, our approach is
a proper extension.

Chapter 8

Answering Conjunctive Queries

Conjunctive queries have been introduced in [29] as a formalism capable of expressing
the class of selection/projection/join/renaming relational queries [2]. The vast major-
ity of relational queries used in the practice can be expressed using the formalism of
conjunctive queries, so a great deal of database research has been devoted to devising
efficient algorithms for query answering and deciding query containment.

Since conjunctive queries have been found useful in diverse practical applications,
it is natural to consider conjunctive queries as an expressive formalism for querying
description logic knowledge bases. Hence, in this chapter we extend our algorithms
to handle reasoning with conjunctive queries. We first develop the query answering
algorithm, and then show how to apply this algorithm to decide query containment.
To the best of our knowledge, this is the first attempt to reasoning with conjunctive
queries over description logic knowledge bases in the framework of resolution.

8.1 Definition of Conjunctive Queries

The description logic we consider is SHIQ(D). However, to eliminate transitivity ax-
ioms, we encode a SHIQ(D) knowledge base KB into an equisatisfiable ALCHIQ(D)
knowledge base Ω(KB). As mentioned in Section 3.2, this transformation does not pre-
serve entailment of ground complex role atoms. Hence, in the rest we prohibit the usage
of complex roles in conjunctive queries, and focus on ALCHIQ(D).

Definition 8.1.1. Let KB be an ALCHIQ(D) knowledge base, and let x1, . . . , xn and
y1, . . . , ym be sets of distinguished and non-distinguished variables, denoted as x and
y, respectively. A conjunctive query over KB, written as Q(x,y), is a conjunction
of DL-atoms of the form (¬)A(s) or R(s, t), where s and t are individuals from KB,
distinguished or non-distinguished variables. The basic inferences are:

• Query answering. An answer of a query Q(x,y) w.r.t. KB is an assignment θ
of individuals to distinguished variables, such that KB |= ∃y : Q(xθ,y).

111

112 8. Answering Conjunctive Queries

• Query containment. A conjunctive query Q2(x,y1) is contained in a conjunctive
query Q1(x,y2) w.r.t. KB if KB |= ∀x : [∃y2 : Q2(x,y2)→ ∃y1 : Q1(x,y1)].

Negative concept atoms are usually not allowed in a conjunctive query. However,
allowing such atoms to occur in conjunctive queries makes the following presentation
much simpler. Such a definition is fully compatible with all previously considered
definitions.

8.2 Answering Conjunctive Queries

Let KB be an ALCHIQ(D) knowledge base. It is easy to see that, for a conjunctive
query Q(x,y), the assignment θ such that θx = a, is an answer of the query w.r.t. KB if
and only if the set of closures Γ′ = Ξ(KB)∪{¬Q(a,y)} is unsatisfiable, where ¬Q(a,y)
is a closure obtained by negating each conjunct of Q(a,y). To decide satisfiability of
Γ′ by basic superposition, we define first the notion of a query graph:

Definition 8.2.1. A query graph for a conjunctive query Q(a,y) is a directed graph
with the following structure, where s and t are terms in the query:

• Each variable y ∈ y is associated with a unique node.

• Each occurrence of a constant in Q(a,y) is associated with a unique node, i.e.
occurrences of the same constant are associated with distinct nodes.

• For each literal (¬)A(s) ∈ Q(a,y), the node s is labeled with (¬)A.

• For each literal R(s, t) ∈ Q(a,y), the nodes s and t are connected with a directed
arc labeled R.

Each conjunctive query defines a distinct query graph, so we do not make an explicit
distinction between the two. Hence, by saying that a query is connected, tree-like or
acyclic, we refer to the properties of the query graph.

Without loss of generality, we can assume that a conjunctive query graph is weakly
connected, i.e. that for each two nodes s and t in the graph, there is either a path from
s to t, or a path from t to s. Namely, assume that a conjunctive query Q(a,y) can be
split into n weakly connected mutually disjoint subqueries Q1(a1,y1), . . . , Qn(an,yn).
It is obvious that KB |=

∧
1≤i≤nQi(ai,yi) if and only if KB |= Qi(ai,yi) for all

1 ≤ i ≤ n. The subqueries Qi(ai,yi) can be computed in polynomial time, so this
assumption does not increase the complexity of reasoning.

A slight problem arises if ¬Q(a,y) contains unmarked constants. In such a case,
assuming that ai ∈ ai and a′i ∈ a′

i for i ∈ {1, 2}, a superposition of a1 ≈ a′1∨a2 ≈ a′2 into
¬Q1(a1,y1) and ¬Q2(a2,y2) may produce a closure ¬Q1(a

′
1,y1)∨¬Q2(a

′
2,y2). Such

an inference produces a conclusion with more variables than each of its premises, thus
leading to non-termination. To prevent this, we apply the structural transformation

8.2 Answering Conjunctive Queries 113

to ¬Q(a,y) and replace Γ′ with Γ, where for each a ∈ a, Oa is a new predicate unique
for a, xa is a new variable unique for a, and xa is the vector of variables obtained from
a by replacing each a ∈ a with xa:

Γ = Ξ(KB) ∪ {¬Q(xa,y) ∨
∨

a∈a

¬Oa(xa)} ∪
⋃

a∈a

{Oa(a)}

The sets Γ′ and Γ are obviously equisatisfiable. In the rest we write ¬Oa(xa) for∨
a∈a ¬Oa(xa). We now define the calculus used to decide query answering:

Definition 8.2.2. BSD,+
CQ is the BSD calculus parameterized as follows:

• The precedence for LPO is f >P c >P p >P Oa >P QR,f >P pa,b >P ⊤ for any
function symbol f , constant c, non-definition predicate p, predicate Oa, definition
predicate QR,f , and propositional symbol pa,b.

• If a closure C contains a literal ¬Oa(xa), then all such literals are selected;
otherwise, all negative binary literals are selected.

• Inference conclusions, whenever possible, are decomposed according to the follow-
ing table, where ti are terms of the form fi,1(. . . fi,m(x) . . .):

D · ρ ∨R([t] , [f(t)])
D · ρ ∨ QR,f ([t])

¬QR,f (x) ∨ R(x, [f(x)])

D · ρ ∨R([f(t)] , [t])
D · ρ ∨ QInv(R),f ([t])

¬QInv(R),f (x) ∨ R([f(x)] , x)

(¬)A1([t1]) ∨ . . . ∨ (¬)An([tn])
Q(¬)A1,t1(x) ∨ . . . ∨Q(¬)An,tn(x)

¬Q(¬)Ai,ti(x) ∨ (¬)Ai([ti]), 1 ≤ i ≤ n

C · ρ ∨ Oa(〈b〉)
C · ρ ∨ pa,b

¬pa,b ∨ Oa(b)

We extend the ALCHIQ(D)-closures to closures obtained in a saturation of Γ by
BSD,+

CQ :

Definition 8.2.3. The class of CQ-closures w.r.t. a conjunctive query Q(a,y) over
an ALCHIQ(D) knowledge base KB is obtained as a generalization of closures from
Table 3.2 and Table 4.2, with the following changes:

• Conditions (iii) – (vi) are dropped.

• Closure types 5 and 6 are replaced with a new type 5′, which contains all closures
C satisfying each of the following conditions:

114 8. Answering Conjunctive Queries

1. C contains only equality, unary or propositional literals.

2. C contains only one variable x.

3. The depth of a term in C is bounded by the number of literals of Q(a,y).

4. If C contains a term of the form f(t), then all terms of the same depth in
C are of the form g(t), and all terms of smaller depth are (not necessarily
proper) subterms of t.

5. Only the outmost position of a term in C can be unmarked, i.e. each func-
tional term is either of the form [f(t)] or of the form f([t]).

6. Equality and inequality literals in C can have the form [f(t)] ◦ [g(t)] or
[f(g(t))] ◦ [t] for ◦ ∈ {≈, 6≈}.

• Closure type 8 is modified to allow unary and (in)equality literals to contain
unary terms whose depth is bounded by the number of literals in Q(a,y); only
outermost positions in a term can be unmarked; all (in)equality literals are of the
form [f(a)] ◦ [b], [f(t)] ◦ [g(t)], [f(g(t))] ◦ [t] or 〈a〉 ◦ 〈b〉, for ◦ ∈ {≈, 6≈} and t a
ground term; and a closure can contain propositional literals (¬)pa,b.

• A new query closure type contains closures of the form ¬Q([a] ,y) ∨ p, where
Q([a] ,y) is weakly connected, it contains at least one binary literal and p is a
possibly empty disjunction of propositional literals p =

∨
(¬)pa,b.

• A new initial closure type contains closures of the form ¬Oa(xa) ∨ ¬Q(xa,y).

We now show that saturation of Γ by BSD,+
CQ terminates for each Γ, thus yielding

a decision procedure for answering conjunctive queries over KB :

Theorem 8.2.4. For a conjunctive query Q(a,y) over an ALCHIQ knowledge base
KB, saturation of Γ by BSD,+

CQ decides satisfiability of Γ in time doubly exponential in
|KB |+ |Q(a,y)|, assuming a bound on the arity of the concrete domain predicates and
for unary coding of numbers in input.

Proof. As in Lemma 3.3.5, Condition 5 of Definition 8.2.3 ensures that in each CQ-
closure of type 5′, the maximal literal contains the deepest term of a closure. Based
on this, we show the following property (*): application of a BSD,+

CQ inference to CQ-
closures results in one or more CQ-closures.

Namely, hyperresolution with a closure of type 7 is possible only with closures of
types 3, 4 and 8, and results in a closure of type 5′ or 8. Furthermore, each conclusion
of a superposition inference into a generator closure is decomposed into a generator
and a closure of type 5′. Notice that, since R([f(t)] , [t]) and Inv(R)([t] , [f(t)]) are
logically equivalent due to the translation operator π, the predicate QInv(R),f can be
used as the definition predicate for R([f(x)] , x). Finally, since only outermost position
of any term may be unmarked, two terms t1 and t2 can be unified only at the outer
positions. Since both terms are unary, they may be unified only if one of them is of

8.2 Answering Conjunctive Queries 115

the form f1(. . . fi(x) . . .) and the other is of the form f1(. . . fi(. . . fn(x′) . . .) . . .), so the
unifier is of the form x 7→ fi+1(. . . fn(x′) . . .). Therefore, the maximal term depth in
the conclusion is n, and the conclusion is a CQ-closure.

Observe that, due to decomposition, all ground closures involving the O predicate
are either of the form Oa(a) or of the form ¬pa,b ∨ Oa(b). Consider an inference with
an initial closure of the form ¬Oa(xa) ∨ ¬Q(xa,y). For all variables xa this closure
contains a literal ¬Oa(xa), and all such literals are selected, the only possible inference
is by hyperresolution on all ¬Oa(xa). This inference generates a query closure of the
form ¬Q([a] ,y) ∨ p.

A more complex case is an inference with a query closure ¬Q([a] ,y) ∨ p. All
constants in such a closure are marked, so superposition into it is not possible. Fur-
thermore, since the closure always contains at least one binary literal, it may only
participate as a main premise in a hyperresolution with a unifier σ on all binary liter-
als, with side premises Ei being of type 3, 4 or 8. For side premises of type 3 and 4,
with xi we denote the free variable of the i-th side premise. Observe that Q([a] ,y) is
weakly connected.

Assume that at least one side premise is of type 8 or that Q([a] ,y) contains a
constant term. Then, some term in Q([a] ,y)σ is a ground term α. Let Ei be the
side premise matched to the binary literal containing α and some other term β. If
Ei is ground, then β is obviously a ground term, and if Ei is non-ground, since the
maximal literal of Ei can only be of the form R(xi, 〈f(xi)〉) or R([f(xi)] , xi), Eiσ is
ground, so β is again a ground term. Since Q([a] ,y) is weakly connected, constants
are propagated to the entire query, so Q([a] ,y)σ is ground. Since all functional terms
in side premises are of the form fi(xi) and are of depth one, the maximal depth of
a functional term after unification is bounded by the length of the maximal path in
Q([a] ,y), which is bounded by the number of binary literals in Q([a] ,y). Hence, the
conclusion is a CQ-closure of type 8.

Assume that no side premise is of type 8 and that Q([a] ,y) does not contain a
constant. Since Q([a] ,y) is weakly connected, similarly as in the previous case we
conclude that the unifier σ contains mappings of the form xi 7→ si and yi 7→ ti, where
si and ti are terms of the form fi,1(. . . fi,m(x) . . .), and m is bounded by the length of
the maximal path in Q([a] ,y). Hence, the hyperresolution conclusion C contains only
unary literals of the form (¬)A([ti]), where ti is of the form f1,m(. . . fi,m(x) . . .) and
m is bounded by the number of binary literals in Q([a] ,y). Since the conclusion does
not have equality literals, it satisfies conditions 1, 2, 3, 5 and 6 of the CQ-closure type
5′, but terms ti need not satisfy condition 4. However, the closure is decomposed by
BSD,+

CQ into several CQ-closures.

This covers all different BSD,+
CQ inferences on CQ-closures, so the property (*) holds.

Let p and f be the number of predicates and function symbols occurring in Ξ(KB),
which are linear in |KB | for unary coding of numbers. The number p′ of predicates QS,f

introduced by decomposition after superposition into a generator is quadratic in |KB |.
Similarly, the number p′′ of propositional symbols pa,b introduced by decomposition

116 8. Answering Conjunctive Queries

into a literal Oa(b) is also quadratic in |KB |. For n the number of literals in Q(a,y),
the number of terms of the form f1(. . . fi(x) . . .) is bounded by ℓ = f + f2 + . . .+ fn,
which is exponential in |KB |+ |Q(a,y)|.

Consider a hyperresolution inference with a query closure. The conclusion of such
an inference is decomposed only if the conclusion is non-ground, which is possible only
if all premises are of type 3 or 4. Therefore, the hyperresolution conclusion may only
contain predicates from Ξ(KB) and definition predicates QS,f . The number of such
predicates is bounded by 2(p+ p′) (the factor 2 takes into account that unary literals
may occur positively or negatively), so the number of predicates Q(¬)A,t introduced
by decomposition after resolution with a query closure is bounded by ℘ = 2(p + p′)ℓ,
which is exponential in |KB | + |Q(a,y)|. Furthermore, the number of literals in the
longest closure of type 5′ is bounded by 2(℘ + p + p′)ℓ + p′′, which is exponential in
|KB | + |Q(a,y)|. Similarly, the maximal number of ground functional terms is c · ℓ,
where c is the number of constants in Ξ(KB), which gives an exponential bound on
the length of the maximal closure of type 8. Since in all cases a maximal closure is
exponential in length, the number of possible CQ-closures is doubly exponential in
|KB |+ |Q(a,y)|.

For Γ as assumed by the theorem, all closures in Γ are CQ-closures: closures from
Ξ(KB) are ALCHIQ-closures, and ¬Q(a,y) is either an initial closure, or of type 5′,
7 or 8. By property (*), in any derivation Γ = N0, . . . , Ni, each set Ni contains only
CQ-closures. Since the number of closures in each Ni is at most doubly exponential in
|KB |+|Q(a,y)|, saturation by BSD,+

CQ terminates in doubly exponential time. Since the

number of predicates introduced by decomposition is finite, by Theorem 3.4.4 BSD,+
CQ

is sound and complete, so it decides satisfiability of Γ.

8.3 Deciding Conjunctive Query Containment

The algorithm for answering conjunctive queries over ALCHIQ(D) knowledge bases is
a versatile tool which can be used for other reasoning tasks with conjunctive queries. In
this section we show that it can be used to decide containment of conjunctive queries.

Lemma 8.3.1. Let Q1(x,y1) and Q2(x,y2) be two conjunctive queries with the same
set of distinguished variables over an ALCHIQ(D) knowledge base KB. The query
Q2(x,y1) is contained in the query Q1(x,y2) w.r.t. KB if a is an answer to Q1(x,y1)
over KB∪{Q2(a,b)}, where a and b are sets of new distinct individuals, not occurring
in Q1(x,y1), Q2(x,y2) and KB.

Proof. The claim of the lemma can easily be established by transforming the definition
of query containment by well-known identities, as presented below:

8.4 Related Work 117

KB |= ∀x : [∃y2 : Q2(x,y2)→ ∃y1 : Q1(x,y1)] ⇔
KB ∪ {¬∀x : [¬∃y2 : Q2(x,y2) ∨ ∃y1 : Q1(x,y1)]} is unsatisfiable ⇔

KB ∪ {∃x,y2 : Q2(x,y2) ∧ ∀y1 : ¬Q1(x,y1)} is unsatisfiable ⇔
KB ∪ {Q2(a,b),∀y1 : ¬Q1(a,y1)} is unsatisfiable ⇔

KB ∪ {Q2(a,b)} |= ∃y1 : Q1(a,y1)} ⇔
a is an answer to Q1(x,y1) over KB ∪ {Q2(a,b)}

In the above transformation a and b are introduced by skolemization of ∃x,y2.

8.4 Related Work

Conjunctive queries have been introduced in [29] as a query language for the relational
model, capable of expressing a large number of practically relevant queries. The prob-
lem of deciding conjunctive query containment was shown to be NP-complete, where
the algorithm is based on deciding whether a homomorphism (i.e. an embedding of
non-distinguished variables) between the subsumed and the subsuming query exists.
Furthermore, the authors identify the close relationship between query answering and
query containment. In practice, query equivalence is used extensively for query opti-
mization in relation databases: the general idea is to transform a complex query into
an equivalent query which can be executed more efficiently [2].

In [109] it was shown that deciding equivalence of recursive queries is undecidable.
However, it is important to understand that this is so only if the minimal fixpoint
semantics is assumed for the queries. Such a semantics is common in logic program-
ming; however, it is principally different from the first-order semantics considered in
our work. Hence, the results from [109] do not directly apply to our results.

Answering conjunctive queries and conjunctive query containment over description
logic knowledge bases was studied in the CARIN system [72]. The description logic
considered is ALCNR, and is significantly less expressive than the logic considered
in our work. The decision procedure for query answering is based on constrained
resolution, which combines SLD-resolution backward-chaining with tableaux reasoning.

In [26] the authors study the containment of conjunctive queries over constraints,
expressed using the description logic DLRreg. This logic is distinguished by allowing
n-ary relations and regular expressions over projections of relations. The technique
used to decide query containment is based on a reduction to satisfiability of CPDLg

(propositional dynamic logic with converse and graded modalities) programs. A similar
technique was used to derive a procedure for rewriting queries over description logics
using views in [28].

In [60] a procedure for deciding containment of conjunctive queries over constraints,
based on the reduction to SHIQ, was presented. In this way the authors obtain a
practical procedure. Namely, they argue that the approach from [26] is not practical,
since a reasoner for CPDLg does not exists.

In [63] conjunctive queries have been proposed as the query language for the Seman-
tic Web. The approach presented there is restricted only to tree-like queries, possibly

118 8. Answering Conjunctive Queries

containing constants. However, the approach was generalized later in [113], where an
algorithm for answering conjunctive queries over SHf knowledge bases was presented,
thus being the first algorithm for answering conjunctive queries over a logic with tran-
sitive roles. The algorithm reduces query answering to deciding satisfiability of SHIQ
knowledge bases.

Contrary to the approach from [113], our approach supports inverse roles, but it
allows only simple roles to occur in the queries. To the best of our knowledge, this is
the first algorithm for query answering and deciding query containment based on the
resolution framework.

Chapter 9

Semantics of Metamodeling

Most description logics separate the domain being modeled into two distinct parts: the
intensional part, consisting of concepts and roles, and the extensional part, consisting
of individuals and relations among them. Although such a modeling style is intuitive,
in complex domains it is often difficult to decide whether an entity should be modeled
as a concept or as an individual.

A classical example has been presented in [108] for the biology domain. Consider
modeling relations among different species, and classifying animal specimens into ap-
propriate species. In such a model, the notion of an “Ape” might be considered an
individual of the “Species” concept. This modeling choice is justified by fact that
“Species” might be viewed as the set of all species, containing further species, such as
“Cat” or “Dog”. At the same time, one might want to represent information about
particular apes in the same knowledge base as well, such as “Nkima is an Ape”. This
observation suggests that “Ape” should be modeled as a concept.

Another discussion on metamodeling was presented in [117], where it was argued
that the choice whether some entity is a concept or an individual is context dependent.
A flexible knowledge representation system should be able to easily switch between the
contexts, thus providing a concept or an individual view on demand.

Such concerns exerted significant influence on the design of the family of OWL
languages used for ontology modeling in the Semantic Web. As the result, OWL-Full
[91] — the most general language of the family — supports metamodeling, i.e. it allows
a symbol to be used as a concept and as an instance in a knowledge base. Apart from
metamodeling, OWL-Full allows transitive roles to occur in number restrictions. As
this is known to lead to undecidability [61], OWL-Full is trivially undecidable. Cur-
rently, various first-order theorem proving techniques provide the only known means for
sound but incomplete reasoning in OWL-Full, and are as such often too cumbersome
for the application in the Semantic Web.

In contrast, many practical algorithms for reasoning with very expressive descrip-
tion logics are known [61, 56]. To be able to reuse these algorithms in the Semantic
Web, the OWL-DL variant of OWL was defined, which enforces all necessary con-
straints needed to make reasoning decidable. Since OWL-DL follows the traditional

119

120 9. Semantics of Metamodeling

modeling paradigm where concepts and instances are strictly separated, metamodeling
is not allowed in OWL-DL. In fact, the definition of OWL-DL explicitly requires the
sets of atomic concepts, individuals, abstract and concrete roles to be pairwise disjoint,
thus even prohibiting metamodeling at the syntactic level.

In this chapter we investigate whether it is possible to extend OWL-DL with meta-
modeling features, to obtain a decidable logic with a practical reasoning algorithm.
To achieve this goal, we first investigate whether metamodeling features of OWL-Full
themselves are decidable, i.e. whether imposing well-known restrictions of OWL-DL
on OWL-Full yields a decidable logic. Unfortunately, as we show in Section 9.1, even
ALC-Full— the basic ALC description logic extended with metamodeling features of
OWL-Full— is undecidable.

A careful analysis of this undecidability result shows that the problem lies is the
fact that OWL-Full not only allows interpreting concepts as individuals, but also allows
using modeling primitives (objects from the meta-language) as first-class objects. It is
not difficult to argue that allowing modelers to redefine the semantics of a modeling
primitive is simply a bad idea. Hence, in Section 9.2, we consider two alternative
semantics for metamodeling. The first one we call contextual, which is essentially
equivalent to the first-order semantics considered thus far. Furthermore, we present
a so-called HiLog semantics for metamodeling which corresponds more closely with
OWL-Full. To achieve decidability, we prohibit using modeling primitives as first-class
objects. The name of the semantics if due to HiLog [30] — a logic which simulates
second-order reasoning in a first-order setting — which use as the logical foundation
for our proposal. We show that our algorithms from chapters 3 and 4 can easily be
extended to handle such a semantics.

Finally, in Section 9.3, we analyze the added expressivity of metamodeling. It turns
out that, form a logical perspective, metamodeling does not add much, and that the
only new consequences that can be drawn involve reasoning with equality. By taking
this into account, along with the added complexity of the reasoning procedure and the
non-standard semantics, it is not clear whether metamodeling is really needed at the
logical level.

9.1 Undecidability of Metamodeling in OWL-Full

In this section we show that the metamodeling features of OWL-Full are undecidable,
even if combined with a very simple description logic ALC. We start by presenting
the definition of the ALC-Full syntax and semantics. We base the semantics on the
semantics of OWL-Full [91]; however, this semantics is quite complex, so we abstract
numerous technical details to make it easier to understand. Essentially, the semantics
is defined by mapping an ALC-Full knowledge base into a set of triples cf. [91, Section
4], and then interpreting the set of triples cf. [91, Section 5]. We assume rdf:, rdfs: and
owl: to be the RDF, RDFS and OWL namespace prefixes, respectively, cf. [91].

9.1 Undecidability of Metamodeling in OWL-Full 121

Definition 9.1.1. Let N be the set of names. Then each name is an ALC-Full concept
and, for A,R ∈ N , ¬C, C1⊓C2, C1⊔C2, ∃R.C and ∀R.C are also ALC-Full concepts.
An ALC-Full TBox KBT consists of a finite set of concept inclusion axioms of the form
C ⊑ D, where C and D are ALC-Full concepts. An ALC-Full ABox KBA consists of
a finite set of concept and role membership axioms, C(a) and R(a, b), respectively, and
individual (in)equality axioms a ◦ b with ◦ ∈ {≈, 6≈}, where C is an ALC-Full concept
and R, a, b ∈ N . An ALC-Full knowledge base KB consists of a TBox KBT and an
ABox KBA.

Let µ and ξ be operators which, when applied to an ALC-Full concept, produce a
set of triples and a symbol, respectively, defined as follows, where x is a new symbol
unique for each application of µ:

D µ(D) ξ(D)
A ∅ A
¬C {〈x, owl:complementOf, ξ(C)〉} ∪ µ(C) x
C1 ⊔ C2 {〈x, owl:unionOf1, ξ(C1)〉, 〈x, owl:unionOf2, ξ(C2)〉} ∪ µ(C1) ∪ µ(C2) x
C1 ⊓ C2 {〈x, owl:intersectionOf1, ξ(C1)〉, 〈x, owl:intersectionOf2, ξ(C2)〉}

∪ µ(C1) ∪ µ(C2) x
∃R.C {〈x, owl:onProperty, R〉, 〈x, owl:someValuesFrom, ξ(C)〉} ∪ µ(C) x
∀R.C {〈x, owl:onProperty, R〉, 〈x, owl:allValuesFrom, ξ(C)〉} ∪ µ(C) x

We extend µ to axioms and an ALC-Full knowledge base KB in the following way:

µ(C ⊑ D) = {〈ξ(C), rdfs:subClassOf, ξ(D)〉} ∪ µ(C) ∪ µ(D)
µ(C(a)) = {〈a, rdf:type, ξ(C)〉} ∪ µ(C)

µ(R(a, b)) = {〈a,R, b〉}
µ(a ≈ b) = {〈a, owl:sameAs, b〉}
µ(a 6≈ b) = {〈a, owl:differentFrom, b〉}
µ(KB) =

⋃
α∈KB µ(α)

Let NKB denote the set of objects occurring in triples of µ(KB). An interpretation
I of KB is a structure (△I , ·I ,EXTI), where △I is a set called the interpretation

domain, ·I : NKB → △
I is a name interpretation function and EXTI : △I → 2△

I×△I

is an extension function. Let CEXTI : △I → 2△
I

be the concept extension function
defined as

CEXTI(x) = {y | (y, x) ∈ EXTI(rdf:typeI)}

An interpretation I is a model of KB if, for every 〈s, p, o〉 ∈ µ(KB), we have
(sI , oI) ∈ EXTI(pI), and the following conditions are satisfied:

1. If (x, y) ∈ EXTI(owl:sameAsI), then x = y.

2. If (x, y) ∈ EXTI(owl:differentFromI), then x 6= y.

3. If (x, y) ∈ EXTI(rdfs:subClassOf I), then CEXTI(x) ⊆ CEXTI(y).

4. If (x, y) ∈ EXTI(owl:complementOf I), then CEXTI(x) = △I \ CEXTI(y).

122 9. Semantics of Metamodeling

5. If (x, u) ∈ EXTI(owl:unionOf I
1) and (x, v) ∈ EXTI(owl:unionOf I

2)), then
CEXTI(x) = CEXTI(u) ∪ CEXTI(v).

6. If (x, u) ∈ EXTI(owl:intersectionOf I
1) and (x, v) ∈ EXTI(owl:intersectionOf I

2),
then CEXTI(x) = CEXTI(u) ∩ CEXTI(v).

7. If (x, y) ∈ EXTI(owl:someValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I),
then CEXTI(x) = {u | (u, v) ∈ EXTI(p) ∧ v ∈ CEXTI(y)}.

8. If (x, y) ∈ EXTI(owl:allValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I), then
CEXTI(x) = {u | (u, v) ∈ EXTI(p)→ v ∈ CEXTI(y)}.

KB is satisfiable if and only if a model of KB exists. Checking KB satisfiability is
the main inference for ALC-Full.

The above definition differs from the one in [91] in that it does not provide for con-
crete predicates, the translation into triples does not include the meta-level resources
such as owl:Class, and the syntax is limited to only binary union and intersection of
classes. For the undecidability proof given later, these distinctions are not relevant.

We show now that, for KB an ALC-Full knowledge base, deciding whether KB is
satisfiable is undecidable. The proof is by reduction from a well-known domino tiling
problem [19]. A domino system is a triple D = (D,H, V), where D = {D1, . . . , Dn}
is a finite set of domino types, and H ⊆ D × D and V ⊆ D × D are horizontal and
vertical compatibility relations, respectively. A D-tiling of an infinite grid is a function
t : N × N → D such that t(0, 0) = D0 and, for all i, j ∈ N, (f(i, j), f(i, j + 1)) ∈ H
and (f(i, j), f(i+ 1, j)) ∈ V . For an arbitrary domino system D, determining whether
a D-tiling exists is undecidable [19].

For a domino system D, let KBD be the following ALC-Full knowledge base:

Di ⊓Dj ⊑ ⊥ for 1 ≤ i < j ≤ n (9.1)

GRID ⊑ D1 ⊓ . . . ⊓Dn (9.2)

Di ⊑ ∀owl:allValuesFrom.
⊔

(Di,d)∈H d (9.3)

Di ⊑ ∀rdf:type.
⊔

(Di,d)∈V d (9.4)

GRID ⊑ ∃owl:allValuesFrom.GRID (9.5)

GRID ⊑ ∃rdf:type.GRID (9.6)

owl:allValuesFrom ≈ GRID (9.7)

rdf:type ≈ owl:onProperty (9.8)

(GRID ⊓D0)(a) (9.9)

We show next that KBD exactly encodes the domino tiling problem.

Lemma 9.1.2. For a domino system D, a D-tiling exists if and only if KBD is satis-
fiable.

9.2 Extending DLs with Decidable Metamodeling 123

Proof. The (⇒) direction is trivial, since each D-tiling uniquely defines a model of
KBD, where horizontal links are represented by the owl:allValuesFrom relation, and
vertical links are represented by the rdf:type relation.

For the (⇐) direction, assume that KBD has a model I. An excerpt of I is shown
in Figure 9.1, where a triple 〈s, p, o〉 is represented as an arc with label p, pointing
from the node s to the node o. To easily refer to arcs, we assign them names ti, hi and
vi. These names do not represent the arc labels; rather, the arc label is encoded using
the legend at the bottom of the figure. For example, the arc h1 represents the triple
〈a, owl:allValuesFrom, b〉. Due to axiom (9.7), symbols owl:allValuesFrom and GRID
are synonyms, so the arc h1 also represents the triple 〈a,GRID , b〉.

The central node in the model corresponds to the symbol GRID . Due to axiom
(9.9), the node a is linked by t1 to GRID . Because of that and due to axioms (9.6)
and (9.7), a is linked to b and c through h1 and v1, respectively, and b and c are also
members of the GRID concept, i.e. arcs t2 and t3 exist. Finally, due to axiom (9.5), c
is linked by h2 to d, which is a member of the GRID concept by t4.

Consider now the situation at node c. The central node GRID can, due to axiom
(9.9), be read as owl:allValuesFrom. Hence, arc t3 can, due to axiom (9.8), be read as
〈c, owl:onProperty,GRID〉. By the item 8 of Definition 9.1.1, arcs t3 and h2 make the
node c correspond to the concept ∀owl:allValuesFrom.d. Since a is a member of c due
to arc v1, and it is linked to b through arc h1 which is labeled with owl:allValuesFrom,
this implies that b is a member of d, i.e. that b is connected to d through arc v2. Hence,
a, b, c and d are arranged in a two-dimensional grid, which continues indefinitely due
to axioms (9.5) and (9.6).

A node x in I is allowed to have multiple owl:allValuesFrom and rdf:type successors,
so I need not be a two-dimensional grid. However, a two-dimensional grid may easily be
extracted from I. Namely, one can arbitrarily choose any owl:allValuesFrom successor
x1 of x, any rdf:type successor x2 of x, and any owl:allValuesFrom successor x3 of x2.
Regardless of the choices, x3 is always connected to x2 by rdf:type, so x, x1, x2 and x3

are connected in a grid-like manner.
Hence, each interpretation I of KBD contains a two-dimensional infinite grid where

owl:allValuesFrom are horizontal, and rdf:type are vertical arcs. Axioms (9.1) – (9.4)
obviously correspond to compatibility relations H and V of D so it is possible to
construct a D-tiling from I.

Undecidability of ALC-Full follows as an immediate consequence of Lemma 9.1.2
and the known undecidability result for the domino tiling problem [19]:

Theorem 9.1.3. Checking whether an ALC-Full knowledge base KB is satisfiable is
undecidable.

9.2 Extending DLs with Decidable Metamodeling

The reduction used to prove Theorem 9.1.3 shows that undecidability arises due to
metamodeling features of ALC-Full. Hence, adding OWL-Full-style metamodeling to

124 9. Semantics of Metamodeling

a b

c d

GRID, owl:allValuesFrom

GRID, owl:allValuesFrom

rdf:type, owl:onProperty

h1

h2

v1

v2
t1

t3

t2

t4

Figure 9.1: Grid Structure in a Model of KBD

OWL-DL also results in an undecidable logic. It is a natural question to ask whether
metamodeling can be added to OWL-DL without losing decidability. In this section,
we show that this is indeed possible.

Notice that in the reduction in Lemma 9.1.2 we use owl:allValuesFrom and rdf:type
in role restrictions. This allowed us to change the default meaning of the modeling
primitives, and thus create a knowledge base capable of encoding a two-dimensional
grid. The approach we present in this section differs in an important aspect that, while
using concepts as individuals is allowed, using modeling primitives in the knowledge
base is not. Such a semantics is inspired by HiLog [30] — a logic with the goal of pro-
viding a second-order modeling flavor without leaving the confines of first-order logic.
Due to certain technical problems which we discuss later, we first extend ALCHIQ(D)
with metamodeling, and consider transitive roles subsequently.

9.2.1 Metamodeling Semantics for ALCHIQ(D)

In the rest, to facilitate metamodeling at the syntactic level, we adapt the syntax of
description logic to allow NC = NI = NRa = NRc = N . Hence, the same symbol can
be used to denote a concept, an individual, an abstract and a concrete role. Due to
technical complications, we assume that the set of concrete predicates ΦD is disjoint
from N . We do not believe that this poses any real restrictions in practice, i.e. we
cannot think of any example where treating concrete predicates as individuals might
be required.

We now define the so-called contextual semantics of metamodeling, which got its
name due to the fact that a symbol in the knowledge is interpreted as a concept, role
or individual due to syntactic context where it occurs.

Definition 9.2.1 (Contextual Semantics). Let KB be an ALCHIQ(D) knowledge base
over an admissible concrete domain D. A π-interpretation I = (△I , ·I , CI , RI

a, R
I
c) is

9.2 Extending DLs with Decidable Metamodeling 125

a 5-tuple where △I is a domain set, ·I : N →△I is a symbol interpretation function,
CI : N → 2△

I
is an atomic concept extension function, RI

a : N → 2△
I×△I

is an

abstract role extension function and RI
c : N → 2△

I×△D is a concrete role extension
function.

The function CI is extended to concepts as specified in tables 2.2 and 2.4, where
symbols are interpreted contextually, i.e. ·I (CI , RI

a and RI
c) is used for symbols occur-

ring in axioms as individuals (concepts, abstract roles and concrete roles, respectively).
For example, CI is extended to ∃R.C in the following way:

CI(∃R.C) = {x | ∃y : (x, y) ∈ RI(R) ∧ y ∈ CI(C)}

A π-interpretation I is a π-model of KB if it satisfies all axioms conditions tables 2.2
and 2.4. The notions of π-satisfiability, π-unsatisfiability and π-entailment (written
|=π) are defined as usual.

It is easy to see that contextual semantics is actually equivalent to standard first-
order semantics. Namely, first-order logic does not require the set of predicate symbols
and function symbols to be disjoint; rather, the interpretation of symbols depends on
the place of their occurrence. For example, in a first-order formula C(C), the outer
C is clearly a predicate symbol, and the inner C is clearly a constant. Hence, KB is
π-satisfiable if and only if π(KB) is (first-order) satisfiable. Notice that, as mentioned
in Section 2.4, in basic superposition we encode predicate symbols as function symbols.
For a correct encoding of contextual syntax, we simply use a separate sort for function
symbols obtained by encoding predicate symbols.

We now define the HiLog semantic for metamodeling which is more in the spirit
of OWL-Full.

Definition 9.2.2 (HiLog Semantics). Let KB be an ALCHIQ(D) knowledge base
over an admissible concrete domain D. A ν-interpretation I = (△I , ·I , CI , RI

a, R
I
c) is

a 5-tuple where △I is a domain set, ·I : N →△I is a symbol interpretation function,
CI : △I → 2△

I
is an atomic concept extension function, RI

a : △I → 2△
I×△I

is an

abstract role extension function and RI
c : △I → 2△

I×△D is a concrete role extension
function.

The function CI is extended to concepts as specified in Table 9.1, upper part, where
A is an atomic concept symbol, C and D are concepts, R and S are abstract roles, T(i)

and U are concrete roles, n an integer and d a concrete predicate. I is a ν-model of KB
if each axiom in KB is satisfied as specified in Table 9.1, lower part. The notions of
ν-satisfiability, ν-unsatisfiability and ν-entailment (written |=ν) are defined as usual.

We briefly discuss the essential difference between these two semantics. Consider
the knowledge base consisting only of one axiom C(C), where the symbol C is used
as an individual and as a concept. The π-model of such a knowledge base is depicted
on the left hand side of Figure 9.2, where both the individual interpretation ·I and
the concept interpretation CI are assigned directly to the symbol C. On the contrary,

126 9. Semantics of Metamodeling

Table 9.1: Direct Model-theoretic Semantics for Metamodeling

Interpreting Concepts
CI(A) = CI(AI)

CI(¬C) = △I \ CI(C)
CI(C ⊓D) = CI(C) ∩ CI(D)
CI(C ⊔D) = CI(C) ∪ CI(D)
CI(∀R.C) = {x | ∀y : (x, y) ∈ RI

a
(RI)→ y ∈ CI(C)}

CI(∃R.C) = {x | ∃y : (x, y) ∈ RI

a
(RI) ∧ y ∈ CI(C)}

CI(≤ nR.C) = {x | ♯{y | (x, y) ∈ RI

a
(RI) ∧ y ∈ CI(C)} ≤ n}

CI(≥ nR.C) = {x | ♯{y | (x, y) ∈ RI

a
(RI) ∧ y ∈ CI(C)} ≥ n}

CI(∀T1, . . . , Tm.d) = {x | ∀y1, . . . , ym : (x, y1) ∈ R
I

c
(T I

1) ∧ . . . ∧ (x, ym) ∈ RI

c
(T I

m
)→

(y1, . . . , ym) ∈ dD}
(∃T1, . . . , Tm.d)

I = {x | ∃y1, . . . , ym : (x, y1) ∈ R
I

c
(T I

1) ∧ . . . ∧ (x, ym) ∈ RI

c
(T I

m
)∧

(y1, . . . , ym) ∈ dD}
CI(≤ nT) = {x | ♯{y | (x, y) ∈ RI

c
(T I)} ≤ n}

CI(≥ nT) = {x | ♯{y | (x, y) ∈ RI

c
(T I)} ≥ n}

Semantics of Axioms
C ⊑ D CI(C) ⊆ CI(D)
C ≡ D CI(C) = CI(D)
R ⊑ S RI

a
(RI) ⊆ RI

a
(SI)

T ⊑ U RI

c
(SI) ⊆ RI

c
(U I)

(¬)C(a) aI ∈ (/∈) CI(C)
(¬)R(a, b) (aI , bI) ∈ (/∈) RI

a
(RI)

(¬)T (a, c) (aI , cI) ∈ (/∈) RI

c
(T I)

a ◦ b aI ◦ bI for ◦ ∈ {≈, 6≈}

a ν-model of the knowledge base is depicted on the right hand side of Figure 9.2.
There, the domain object x is assigned by the individual interpretation ·I directly to
the symbol C; however, the concept interpretation is not assigned to the symbol C,
but to the individual x. We discuss the practical consequences of HiLog semantics on
entailment in Section 9.3.

Since our algorithms are based on resolution calculi, we present an alternative
equivalent definition of ν-models by translation into first-order logic. This translation
follows the principles of transforming HiLog formulae into first-order formulae, i.e.
it reifies concept, abstract and concrete role symbols into constants, and represents
functions CI , RI

a and RI
c explicitly by predicates isa, arole and crole.

Definition 9.2.3. For an ALCHIQ(D) knowledge base KB, let ν(KB) be the trans-
lation of KB into first-order formulae, as specified in Table 9.2, where isa is a binary
predicate with signature a× a, arole is a ternary predicate with signature a× a× a and
crole is a ternary predicate with signature a× a× c.

Lemma 9.2.4. For an ALCHIQ(D) knowledge base KB, KB is ν-satisfiable if and
only if a first-order model of ν(KB) exists.

9.2 Extending DLs with Decidable Metamodeling 127

Table 9.2: Semantics of Metamodeling by Mapping into First-order Logic

Mapping Concepts to FOL

νy(A,X) = isa(A,X)
νy(¬C,X) = ¬νy(C,X)

νy(C ⊓D,X) = νy(C,X) ∧ νy(D,X)
νy(C ⊔D,X) = νy(C,X) ∨ νy(D,X)
νy(∀R.C,X) = ∀y : arole(R,X, y)→ νx(C, y)
νy(∃R.C,X) = ∃y : arole(R,X, y) ∧ νx(C, y)

νy(≤ nR.C,X) = ∀y1, . . . , yn+1 :
∧

arole(R,X, yi) ∧
∧
νx(C, yi)→

∨
yi ≈ yj

νy(≥ nR.C,X) = ∃y1, . . . , yn :
∧

arole(R,X, yi) ∧
∧
νx(C, yi) ∧

∧
yi 6≈ yj

νy(∀T1, . . . , Tm.d,X) = ∀yc
1, . . . , y

c
m :

∧
crole(Ti, X, y

c
i)→ d(yc

1, . . . , y
c
m)

νy(∃T1, . . . , Tm.d,X) = ∃yc
1, . . . , y

c
m :

∧
crole(Ti, X, y

c
i) ∧ d(y

c
1, . . . , y

c
m)

νy(≤ nT ,X) = ∀yc
1, . . . , y

c
n+1 :

∧
crole(T,X, yc

i)→
∨
yc

i ≈ y
c
j

νy(≥ nT ,X) = ∃yc
1, . . . , y

c
n :

∧
crole(T,X, yc

i) ∧
∧
yc

i 6≈ y
c
j

Mapping Axioms to FOL

ν(C ⊑ D) = ∀x : νy(C, x)→ νy(D,x)
ν(C ≡ D) = ∀x : νy(C, x)↔ νy(D,x)
ν(R ⊑ S) = ∀x, y : arole(R, x, y)→ arole(S, x, y)
ν(T ⊑ U) = ∀x, y : crole(T, x, y)→ crole(U, x, y)

ν((¬)C(a)) = (¬)νy(C, a)
ν((¬)R(a, b)) = (¬)arole(R, a, b)
ν((¬)T (a, bc)) = (¬)crole(T, a, bc)

ν(a(c) ◦ b(c)) = a(c) ◦ b(c) for ◦ ∈ {≈, 6≈}
Mapping KB to FOL

ν(R) = ∀x, y : arole(R, x, y)↔ arole(R−, y, x)∧
∀x, y : crole(R, x, y)↔ crole(R−, y, x)

ν(KBR) =
∧

α∈KBR
ν(α) ∧

∧
R∈N ν(R)

ν(KBT) =
∧

α∈KBT
ν(α)

ν(KBA) =
∧

α∈KBA
ν(α)

ν(KB) = ν(KBR) ∧ ν(KBT) ∧ ν(KBA)

Notes:
(i): X is a meta variable and is substituted by the actual variable,
(ii): νx is defined as νy by substituting x and xi for all y and yi, respectively.

128 9. Semantics of Metamodeling

C

Syntaxp-model n-model

¢
I

CI

CI¢
I

x x

Figure 9.2: π- and ν-models of the Example Knowledge Base

Proof. For the (⇒) direction, let Iν be a ν-model of KB . We construct a first-order
interpretation I for ν(KB) by setting △I = △Iν , aI = aIν , (x, y) ∈ isaI if and only if
y ∈ CIν (x), (x, y, z) ∈ aroleI if and only if (y, z) ∈ RIν

a (x), and (x, y, z) ∈ croleI if and
only if (y, z) ∈ RIν

c (x). By induction on the structure of formulae in ν(KB), one can
easily show that I is a model of ν(KB). The (⇐) direction is similar.

HiLog semantics is compatible with OWL-Full if resources defining modeling prim-
itives of OWL-Full are not used in knowledge base axioms. The formal proof for this
is simple, but is lengthy due to the very complex semantics of OWL-Full, so we omit
it for the sake of brevity.

9.2.2 Deciding ν-satisfiability

We now show that ν-satisfiability can be decided by extending the algorithms from
chapters 3 and 4 without an increase in complexity. It is difficult to ensure termination
of direct saturation of closures obtained by structural transformation of ν(KB), since
such closures contain unmarked constants corresponding to names of concepts and
roles. Consider, for example, the following set of closures obtained during saturation:

isa(C, x) (9.10)

isa(D,x) (9.11)

C ≈ C ′ ∨D ≈ D′ (9.12)

Superposition of (9.12) into (9.10) yields (9.13), which can be superposed into
(9.11) to obtain (9.14). The problem with this closure is that it contains two vari-
ables. Further inferences with (9.14) might yield a closure with even more variables,
thus preventing us from establishing the upper bound on the length of closures and
invalidating the termination proof.

isa(C ′, x) ∨D ≈ D′ (9.13)

isa(C ′, x) ∨ isa(D′, x′) (9.14)

9.2 Extending DLs with Decidable Metamodeling 129

Another problem occurs due to decomposition. Namely, a superposition inference
might derive a closure with a literal of the form arole(〈R〉 , [t] , [f(t)]). The problem is
that R may, but need not be marked, thus giving two different definition predicates
for a pair of R and f .

We solve these problems by modifying the preprocessing step. Firstly, a closure such
as (9.10) is decomposed into closures ¬OC(z) ∨ isa(z, x) and OC(C). Next, the literal
¬OC(z) is selected, so the first resolution inference involving that closure produces
isa([C] , x). Finally, we modify the calculus so that a ground closure of the form
OP (〈Q〉) ∨ C · ρ is decomposed into ¬qP,Q ∨ OP (Q) and qP,Q ∨ C · ρ.

Definition 9.2.5. For an ALCHIQ(D)-closure C, let

Clsν(Def(C)) =
⋃

D∈Def(C)

Cls(∀x : νy(D,x))

Furthermore, let ζ(C) be the closure obtained from C by replacing all literals according
to the following table, where the predicate OP is globally unique for the predicate symbol
P , zP is a new variable globally unique for P , and u and v are arbitrary terms:

isa(P, u) isa(zP , u) ∨ ¬OP (zP)
arole(P, u, v) arole(zP , u, v) ∨ ¬OP (zP)
crole(P, u, vc) crole(zP , u, v

c) ∨ ¬OP (zP)

The operator ζ is extended to a set of closures by applying it to each member of the set.
For an ALCHIQ knowledge base KB, let Ξν(KB) denote the smallest set of closures
satisfying the following conditions:

• For each name R ∈ N , ζ(Cls(ν(R))) ⊆ Ξν(KB).

• For each RBox or ABox axiom α in KB, ζ(Cls(ν(α))) ⊆ Ξν(KB).

• For each TBox axiom C ⊑ D in KB, ζ(Clsν(Def(¬C ⊔D))) ⊆ Ξν(KB).

• For each TBox axiom C ≡ D in KB, ζ(Clsν(Def(¬C ⊔D))) ⊆ Ξν(KB) and
ζ(Clsν(Def(¬D ⊔ C))) ⊆ Ξν(KB).

• For each predicate OP introduced by ζ, OP (P) ∈ Ξν(KB).

It is easy to see that Ξν(KB) is satisfiable if and only if KB is ν-satisfiable.

Lemma 9.2.6. Let KB be an ALCHIQ(D) knowledge base. Then KB is ν-satisfiable
if and only if Ξν(KB) is satisfiable. Furthermore, Ξν(KB) can be computed in time
polynomial in |KB | for unary coding of numbers in input.

Proof. By Lemma 9.2.4, KB is ν-satisfiable if and only if ν(KB) is satisfiable. Ξν(KB)
is obtained from ν(KB) by (i) applying structural transformation which is known not to
affect satisfiability, and by (ii) applying decomposition to literals isa(P, u), arole(P, u, v)
and crole(P, u, vc), which is shown not to affect satisfiability by Theorem 3.4.4.

130 9. Semantics of Metamodeling

Definition 9.2.7. Let BSD,+
ν be the BSD calculus parameterized as follows:

• The term ordering ≻ is a lexicographic path ordering induced over a total prece-
dence >P over function, constant and predicate symbols, such that, for any func-
tion symbol f , constant symbol c, predicate symbol p, and a propositional symbol
qP,Q, we have f >P c >P p >P qP,Q >P ⊤.

• If a closure contains a literal of the form ¬OC(z), then all such literals are
selected; otherwise, all negative arole and crole literals are selected.

• Inference conclusions, whenever possible, are decomposed according to the follow-
ing table, for an arbitrary term t:

D · ρ ∨ arole([R] , [t] , [f(t)])
D · ρ ∨ QR,f ([t])

¬QR,f (x) ∨ arole([R] , x, [f(x)])

D · ρ ∨ arole([R] , [f(x)] , x)
D · ρ ∨ QInv(R),f (x)

¬QInv(R),f (x) ∨ arole([R] , [f(x)] , x)

D · ρ ∨ crole([T] , [t] , [f c(t)])
D · ρ ∨ QT,f c([t])

¬QT,f c(x) ∨ crole([T] , x, [f c(x)])

OP (〈Q〉) ∨ C · ρ
C · ρ ∨ qP,Q

¬qP,Q ∨ OP (Q)

We extend the notion of ALCHIQ(D)-closures defined in Section 3.4 to so-called
ν-ALCHIQ(D)-closures, which have the same form as in Table 3.1 and Table 4.1,
without conditions (iii) – (vi), with the following differences:

• Atoms of the form C(t) take the form isa([C] , t).

• Atoms of the form R(u, v) take the form arole([R] , u, v).

• Atoms of the form T (u, vc) take the form crole([T] , u, vc).

• All closures may contain a disjunction of the form q =
∨

(¬)qP,Q.

Notice that closures in Ξν(KB) are technically not ν-ALCHIQ(D)-closures: in-
stead of literals of the form (¬)isa([C] , x), they contain (¬)isa(z, x)∨¬OC(z). We call
such closures initial closures.

Lemma 9.2.8. Let Ξν(KB) = N0, . . . , Ni∪{C} be a BSD,+
ν -derivation, where C is the

conclusion derived from premises in Ni. Then C is either a ν-ALCHIQ(D)-closure
or it is redundant in Ni.

9.2 Extending DLs with Decidable Metamodeling 131

Proof. Due to decomposition, it is obvious that the following property (*) holds: posi-
tive literals of the form OP (Q) occur only as unary closures, or in closures of the form
OP (Q) ∨ ¬qP,Q.

Now consider an inference with an initial closure C. Since C contains literals
of the form ¬OP (z), and all such literals are selected, C can participate only in a
hyperresolution inference on all ¬OP (zi). Because of (*), the inference instantiates all
variables zi, and the conclusion is a ν-ALCHIQ(D)-closure.

Due to term ordering of BSD,+
ν , only a literal with a functional term of the max-

imum depth can be maximal in a ν-ALCHIQ(D)-closure. Also, the term ordering
ensures that a propositional letter qP,Q is not maximal if a closure contains some other
literal. Hence, the claim of this lemma can be shown in the same way as in the proofs
of Lemma 3.3.5, Theorem 3.4.6 and Lemma 4.2.1.

Theorem 9.2.9. Let KB be an ALCHIQ(D) knowledge base, defined over an admis-
sible concrete domain D, for which D-satisfiability of finite conjunctions over ΦD can
be decided in deterministic exponential time. Then saturation of Ξν(KB) by BSD,+

ν

with eager application of redundancy elimination rules decides ν-satisfiability of KB
and runs in time exponential in |KB |, for unary coding of numbers and assuming a
bound on the arity of concrete predicates.

Proof. The number of propositional letters qP,Q is quadratic in |KB |, and the number
of predicates OP is linear in |KB |. Therefore, it is possible to obtain an exponential
bound on the number of closures derived in the same way as in Lemma 3.3.8, Theorem
3.4.6 and Theorem 4.2.4. Since decomposition is sound and complete by Theorem
3.4.4, the claim of this theorem follows.

9.2.3 Metamodeling and Transitivity

Since the decision procedure for checking ν-satisfiability of an ALCHIQ(D) knowledge
base KB does not differ essentially from a decision procedure for checking satisfiability
of KB , one might intuitively expect that allowing transitivity axioms in KB does not
affect termination of the algorithm. Unfortunately, this is not the case: for a SHIQ(D)
knowledge base KB , checking ν-satisfiability of KB is undecidable.

The reason for this dramatic change is that metamodeling allows referring to the
same role by different names. This, in turn, makes it impossible to define simple roles
by syntactic means. Consider the following knowledge base KB :

⊤ ⊑ ≥ 3R (9.15)

R ≈ S (9.16)

Trans(S) (9.17)

Notice that KB is a SHIQ knowledge base: the role R is simple, since it passes
the syntactic criterion specified in Definition 2.7.1 (i.e. it is neither transitive nor it
has transitive subroles). However, in any ν-interpretation I, axiom (9.16) ensures that

132 9. Semantics of Metamodeling

R and S are interpreted as the same domain element α. Due to axiom (9.17), RI
a(α)

is transitive. Hence, a transitive role is used in a number restriction in axiom (9.15),
although, syntactically, R is a simple role.

Extending the definition of simple roles might be difficult in general, since equality
of role names might be entailed by other facts in KB . Since in [61] it was shown that
using transitive roles in number restrictions leads to undecidability in general, we have
the following result:

Corollary 9.2.10. For a SHIQ knowledge base KB, deciding ν-satisfiability is un-
decidable.

Decidability can be regained by using unique role assumption. Intuitively, this
assumption requires two distinct role symbols to be interpreted as distinct domain
individuals. In such a case, simple roles can be defined and checked as usual.

Definition 9.2.11 (Unique Role Assumption). A SHIQ(D) knowledge base KB is
said to employ the unique role assumption if it contains an axiom R 6≈ S for each two
distinct symbols R and S occurring as roles in KB.

It is easy that to see that transitivity axioms can be eliminated from knowledge
bases employing unique roles assumption using the transformation from Section 3.2,
so we thus obtain an algorithm for checking ν-satisfiability of such knowledge bases.

Lemma 9.2.12. For a SHIQ(D) knowledge base KB employing the unique role as-
sumption, Ω(KB) is ν-satisfiable if and only if KB is ν-satisfiable.

Proof. Due to unique role assumption, in each ν-model Iν of KB , RIν 6= SIν for each
two distinct symbols R and S occurring as roles. Due to this fact, the proof of Theorem
3.2.3 can be adapted with minor differences.

9.3 Added Expressivity of Metamodeling

In this section we investigate how metamodeling increases the expressivity of the logic.
Here we consider only the logical aspects, namely, what kind of new consequences can
be drawn. Our discussion in this section does not consider non-logical aspects which
may be relevant in practice (such as e.g. increased search flexibility). The following
results are similar to the ones for HiLog in [30].

It is easy to see that ν-satisfiability is a strictly stronger notion than π-satisfiability.
Consider the following knowledge base KB :

C(a) (9.18)

¬D(a) (9.19)

C ≈ D (9.20)

Under the contextual semantics, the interpretations of symbols C andD as concepts
and as individuals are completely independent, so KB is π-satisfiable. However, KB

9.3 Added Expressivity of Metamodeling 133

is ν-unsatisfiable: in each ν-interpretation we have CI = DI = α, so it cannot be that
aI ∈ CI(α) and aI /∈ CI(α). For the other direction, we have the following simple
lemma:

Lemma 9.3.1. Each ν-satisfiable ALCHIQ(D) knowledge base is π-satisfiable.

Proof. Let Iν be a ν-model of an ALCHIQ(D) knowledge base KB . We construct
a π-interpretation Iπ in the following way: we set △Iπ = △Iν and we set xIπ = xIν ,
CIπ(x) = CIν (xIν), RIπ

a (x) = RIν
a (xIν), and RIπ

c (x) = RIν
c (xIν), where x ∈ N . It is

obvious that Iπ is a π-model of KB .

Furthermore, for a knowledge base with unique names assumption or without equal-
ity (either explicit or implicit, introduced through number restrictions), π-satisfiability
and ν-satisfiability coincide:

Lemma 9.3.2. Let KB be an ALCHIQ(D) knowledge base such that it employs unique
names assumption, or it contains neither explicit equality statements nor number re-
strictions. Then KB is π-satisfiable if and only if it is ν-satisfiable.

Proof. The (⇐) direction follows from Lemma 9.3.1. For the (⇒) direction, let KB
be π-satisfiable in some model Iπ. Due to the lemma assumptions, without loss of
generality we may assume that for a, b ∈ N , a 6= b implies aIπ 6= bIπ (in the first case,
this is because KB employs unique names assumption, and in the second case this is
because KB does not employ equality).

Given such a π-model Iπ, we construct a ν-interpretation Iν by setting △Iν = △Iπ ,
aIν = aIπ , CIν (aIν) = CIπ(a), RIν

a (aIν) = RIπ
a (a), and RIν

c (aIν) = RIπ
c (a), where

a ∈ N . Furthermore, for all α ∈ △Iν for which there is no a ∈ N such that α = aIν ,
let CIν (α) = RIν

a (α) = RIν
c (α) = ∅. Since we can assume that different names from

N are interpreted as different elements from △Iν , such a construction defines exactly
one value of CIν (α), RIν

a (α) and RIν
c (α) for each α ∈ △Iν , so Iν is correctly defined.

Furthermore, it is obvious that Iν is a ν-model of KB .

To summarize, metamodeling produces new consequences only if it is possible to
derive that two symbols are equal, such as in the example from the beginning of this
section. It is unclear whether this minor increase in expressivity is relevant in practice.
Hence, it is justified to wonder whether metamodeling at the logical level is worth
the trouble, in particular by taking into account potential problems with transitive
roles and a more complicated decision procedure. We conjecture that requirements
of most applications can be fulfilled by simply allowing the set of atomic concept
names, individual names, abstract and simple roles to coincide, and to interpret them
contextually, without any support for metamodeling in logic.

However, logical support for metamodeling becomes more interesting if it is com-
bined with non-monotonic features, such as default rules [98] or autoepistemic descrip-
tion logics [36]. However, non-monotonic reasoning currently our of our scope.

134 9. Semantics of Metamodeling

9.4 Related Work

The definition of ν-satisfiability given in Section 9.2 is inspired by HiLog, a logic
attempting to simulate second-order logic in a first-order framework [30]. HiLog gen-
eralizes the syntax of first-order logic by allowing general terms to occur in place of
function and predicate symbols. The semantics of HiLog is defined by interpreting each
individual as a member of the interpretation domain, and by assigning a functional
and a relational interpretation to domain elements. In [30], it was shown that HiLog
can be considered “syntactic sugar”, since each HiLog formula can be encoded into an
equisatisfiable first-order formula by reification. Our Definition 9.2.3 closely resembles
to this encoding. Finally, it was shown that a satisfiable first-order formula without
equality is also satisfiable under HiLog semantics.

In [87], the RDFS Model Theory was criticized for allowing infinite number of
meta-layers. The authors argue that such a non-standard metamodeling semantics
is inadequate for the Semantic Web since (i) it does not provide adequate support
for inferencing, (ii) it allows defining classes which contain themselves, thus leading
potentially to paradoxes, and (iii) by adding classes, one necessarily introduces objects
in the interpretation universe. As a reaction to these deficiencies, the authors propose
RDFS-FA, a stratified four-level semantics, consisting of the meta-language layer, the
language layer, the ontology layer and the instance layer. Each of these layers is
considered an instance of the layer above. Since we do not allow redefining modeling
primitives in knowledge bases, our proposal follows the principles of RDFS-FA, with
the difference that the ontology and the instance layer are combined.

To the best of our knowledge, we are unaware of any work which considered decid-
ability of metamodeling in OWL-Full or which proposed a decidable description logic
with metamodeling features.

Chapter 10

Conclusion

In this work we have developed several novel algorithms for reasoning with description
logics related to SHIQ. Our work is primarily motivated by the prospects of reusing
well-known deductive database techniques to optimize query answering in description
logics. However, techniques needed to achieve this goal are themselves new results.

In our approach we focus on the SHIQ(D) description logic. This logic is closely
related to the ontology language for the Semantic Web OWL-DL. The logical under-
pinning of OWL-DL is actually the SHOIN (D) description logic, which differs from
SHIQ(D) only in that SHOIN (D) supports nominals, but it does not provide for
qualified number restrictions.

The first algorithm we present is an algorithm for checking satisfiability of SHIQ
knowledge bases. We derived the procedure using basic superposition. The novel
aspect is that the procedure allows clauses to contain functional terms of depth two, and
relies on basic superposition to block certain undesirable inferences. Furthermore, it
relies on subsumption to restrict the term depth, and not just the clause length. Finally,
our procedure runs in ExpTime in the size of the knowledge base for unary coding of
numbers in the input, which makes it worst-case optimal for the logic considered. It is
worth noting that the assumption on unary coding of numbers is standard in practical
description logic reasoning systems. Basic superposition alone decides only a slightly
weaker logic SHIQ−, so to handle SHIQ, we extend basic superposition with the
decomposition rule, for which we show soundness and completeness.

An important aspect of OWL-DL is that it provides constructs for representing
concrete data, such as strings or integers. Generally, such capabilities are integrated
into description logics by the so-called concrete domain approach. Until now, reasoning
with a concrete domain has been studied predominantly in the context of tableaux
and automata calculi. These existing approaches to reasoning with a concrete domain
are not directly applicable to clausal saturation calculi, such as basic superposition.
Therefore, we have devised algorithms for reasoning with a concrete domain in the
resolution framework. This approach is general and is applicable to any clausal calculus
whose completeness proof is based on the model generation method. Furthermore, we
apply this extension and derive a decision procedure for SHIQ(D). For unary coding

135

136 10. Conclusion

of numbers, assuming an upper bound on the arity of concrete predicates and an
exponential decision procedure for checking satisfiability of concrete predicates, we
show that adding a concrete domain does not increase the complexity of reasoning, i.e.
our algorithm still runs in worst-case exponential time.

We next apply the decision procedure for SHIQ(D) to obtain the algorithm for re-
ducing a SHIQ(D) knowledge base to a disjunctive datalog program. This reduction
is possible because we can safely remove from the saturated set of clauses produced by
our procedure all clauses containing functional terms of depth greater than one, and
simulate the ground functional terms of depth one with fresh constants. We believe
that our approach will enable efficient ABox reasoning primarily because reduction
to disjunctive datalog allows us to use various optimizations, such as join order opti-
mizations or the magic sets transformation. The latter has been show to dramatically
improve the evaluation of disjunctive datalog programs, as it reduces the number of
models of the disjunctive program.

Based on this reduction, we showing that data complexity of checking satisfia-
bility for SHIQ(D) knowledge bases is NP-complete. This is a new and somewhat
surprising result, since this is much better than the combined complexity. We also
defined the Horn fragment of SHIQ(D), where capability for modeling disjunctive
information is traded for polynomial data complexity. We believe that this fragment is
very relevant for practice, since it is still expressive, but provides hope for a tractable
implementation.

We extend our algorithms with a simple, but useful feature. Namely, we show that
certain, so-called DL-safe disjunctive rules can freely be appended to the obtained
disjunctive program. The DL-safe rules are characterized by the restriction that each
variable occurring in a rule occurs in a non-DL-atom in the rule body. This restriction
limits the applicability of rules only to individuals introduced explicitly in the ABox.
Since the number of such individuals is finite, adding DL-safe rules to SHIQ(D) does
not cause termination problems.

We show that basic superposition can be used to answer conjunctive queries over
SHIQ(D) knowledge bases. We also show that conjunctive query containment can be
reduced to query answering. Conjunctive queries provide an expressive query languages
for description logic.

Finally, we have considered extending SHIQ(D) with metamodeling. We have
shown that metamodeling, as employed in the Semantic Web standard OWL-Full, is
undecidable. Therefore, we have proposed an alternative semantics for metamodeling,
for which we give a decision procedure for ALCHIQ(D).

For our future work, we see three theoretical and one practical challenge. The
theoretical challenges are: extending the logic with nominals, providing a decision
procedure running in ExpTime regardless of the coding of numbers and providing a
decision procedure capable of dealing with transitivity directly, without encoding tran-
sitivity axioms. From the practical point of view, we are currently implementing a new
description logic inference system, for which we shall perform a detailed performance
comparison.

Bibliography

[1] A. Abecker, D. Drollinger, and P. Hanschke. TAXON: A Concept Language
with Concrete Domains. In H. Boley and M. M. Richter, editors, Proc. of the
Int. Workshop on Processing Declarative Knowledge (PDK’91), pages 411–413.
Springer, Kaiserslautern, Germany, 1991.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[3] G. Alsaç and C. Baral. Reasoning in description logics using declarative logic
programming. Technical report, Arizona State University, Arizona, USA, 2002.
www.public.asu.edu/ cbaral/papers/descr-logic-aaai2.pdf.

[4] H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27:217–274, 1998.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, January
2003.

[6] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains into
Concept Languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI-91), pages 452–457, Sydney, Australia, 1991.

[7] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[8] F. Baader and W. Snyder. Unification Theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001.

[9] M. Baaz, U. Egly, and A. Leitsch. Normal Form Transformations. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 5, pages 273–333. Elsevier Science, 2001.

[10] L. Bachmair and H. Ganzinger. Rewrite-based Equational Theorem Proving with
Selection and Simplification. Journal of Logic and Computation, 4(3):217–247,
1994.

137

138 BIBLIOGRAPHY

[11] L. Bachmair and H. Ganzinger. Equational Reasoning in Saturation-Based The-
orem Proving. In W. Bibel and P. H. Schmidt, editors, Automated Deduction: A
Basis for Applications, volume I, Foundations: Calculi and Methods, chapter 11.
Kluwer Academic Publishers, Dordrecht, 1998.

[12] L. Bachmair and H. Ganzinger. Ordered Chaining Calculi for First-Order The-
ories of Transitive Relations. Journal of the ACM, 45(6):1007–1049, November
1998.

[13] L. Bachmair and H. Ganzinger. Strict Basic Superposition. In Automated
Deduction—CADE-15, volume 1421 of Lecture Notes in Computer Science, pages
160–174, Lindau, Germany, July 1998. Springer.

[14] L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

[15] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.
Information and Computation, 121(2):172–192, 1995.

[16] P. Baumgartner. An Ordered Theory Resolution Calculus. In A. Voronkov, ed-
itor, Proc. of the 1st Int. Conf. on Logic Programming and Automated Reason-
ing (LPAR’92), volume 624, pages 119–130, St. Petersburg, Russia, July 1992.
Springer.

[17] C. Beeri and R. Ramakrishnan. On the power of magic. In Proc. of the Sixth
ACM Symposium on Principles of Database Systems, pages 269–293, San Diego,
CA, March 1987.

[18] S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic In-
tegration of Heterogeneous Information Sources. Special Issue on Intelligent
Information Integration, Data and Knowledge Engineering, 36(1):215–249, 2001.

[19] R. Berger. The undecidability of the dominoe problem. Memoirs of the American
Mathematical Society, 66, 1966.

[20] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick. CLASSIC:
a structural data model for objects. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, pages 58–67, Portland, Oregon, United States, 1989.
ACM Press.

[21] Alexander Borgida. On the Relative Expressiveness of Description Logics and
Predicate Logics. Artificial Intelligence, 82(1-2):353–367, 1996.

[22] R. Boyer. Locking: A Restriction of Resolution. PhD thesis, University of Texas
at Austin, Texas, USA, 1971.

BIBLIOGRAPHY 139

[23] R. J. Brachman and J. G. Schmolze. An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science, 9(2):171–216, 1985.

[24] S. Brass and U. W. Lipeck. Generalized Bottom-Up Query Evaluation. In
A. Pirotte, C. Delobel, and G. Gottlob, editors, Advances in Database Technology
- Proceedings EDBT’92, pages 88–103, Berlin, 1992. Springer.

[25] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, Inc., 1997.

[26] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decidability of Query
Containment under Constraints. In Proc. of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 149–158. ACM
Press, 1998.

[27] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying Class-Based Representation
Formalisms. Journal of Artificial Intelligence Research, 11:199–240, 1999.

[28] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Answering
queries using views over description logics knowledge bases. In Proc. of the 16th
Nat. Conf. on Artificial Intelligence (AAAI 2000), pages 386–391. AAAI Press,
2000.

[29] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proc. of the 9th annual ACM Symposium on Theory
of Computing, pages 77–90, Boulder, Colorado, USA, 1977. ACM Press.

[30] W. Chen, M. Kifer, and D. S. Warren. HILOG: a foundation for higher-order
logic programming. Journal of Logic Programming, 15(3):187–230, 1993.

[31] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001.

[32] H. de Nivelle. A Resolution Decision Procedure for the Guarded Fragment. In
Proc. of the 15th Int. Conf. on Automated Deduction, pages 191–204. Springer,
1998.

[33] H. de Nivelle. Splitting through new proposition symbols. In R. Nieuwenhuis
and A. Voronkov, editors, Proc. of the 8th Int. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR 2001), volume 2250 of LNAI, pages
172–185, Havana, Cuba, December 2001. Springer.

[34] N. Dershowitz and D.A. Plaisted. Rewriting. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 9, pages 535–610.
Elsevier Science, 2001.

140 BIBLIOGRAPHY

[35] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating
Datalog and Description Logics. J. of Intelligent Information Systems, 10(3):227–
252, 1998.

[36] F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge
and Negation as Failure. ACM Transactions on Computational Logic, 3(2):177–
225, 2002.

[37] J. Edelmann and B. Owsnicki. Data Models in Knowledge Representation Sys-
tems: A Case Study. In C.-R. Rollinger and W. Horn, editors, Proc. of the
10th German Workshop on Artificial Intelligence (GWAI’86) and the 2nd Aus-
trian Symposium on Artificial Intelligence (ÖGAI’86), pages 69–74. Springer,
Ottenstein/Niederösterreich, September 1986.

[38] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions
on Database Systems, 22(3):364–418, 1997.

[39] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A Deductive System
for Non-Monotonic Reasoning. In J. Dix, U. Furbach, and A. Nerode, editors,
Proceedings of the 4th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’97), volume 1265 of Lecture Notes in Artificial
Intelligence, pages 364–375, Dagstuhl, Germany, July 1997. Springer.

[40] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer
Set Programming with Description Logics for the Semantic Web. In Proc. of
the 9th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR2004). AAAI Press, 2004. To appear.

[41] C. Fermuller, T. Tammet, N. Zamov, and A. Leitsch. Resolution Methods for
the Decision Problem. Springer, 1993.

[42] M. Fitting. First-Order Logic and Automated Theorem Proving, 2nd Edition.
Springer, 1996.

[43] H. Ganzinger and H. de Nivelle. A superposition decision procedure for the
guarded fragment with equality. In Proceedings of the 14th IEEE Symposium on
Logic in Computer Science, pages 295–305. IEEE Computer Society Press, 1999.

[44] H. Ganzinger, U. Hustadt, C. Meyer, and R. A. Schmidt. A Resolution-Based
Decision Procedure for Extensions of K4. In M. Zakharyaschev, K. Segerberg,
M. de Rijke, and H. Wansing, editors, Advances in Modal Logic, Volume 2,
volume 119 of Lecture Notes, pages 225–246. CSLI Publications, Stanford, USA,
2001.

[45] François Goasdoué and M.-C. Rousset. Answering Queries using Views: a KRDB
Perspective for the Semantic Web. ACM Journal - Transactions on Internet
Technology (TOIT), 2004. To appear.

BIBLIOGRAPHY 141

[46] G. Gottlob and A. Leitsch. On the efficiency of subsumption algorithms. Journal
of the ACM, 32(2):280–295, 1985.

[47] E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is De-
cidable. In Proc. of 12th IEEE Symposium on Logic in Computer Science LICS
‘97, Warsaw, Poland, 1997.

[48] S. Greco. Binding Propagation Techniques for the Optimization of Bound Dis-
junctive Queries. IEEE Transactions on Knowledge and Data Engineering,
15(2):717–736, March/April 2003.

[49] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs:
Combining Logic Programs with Description Logic. In Proc. of the Twelfth Int.
World Wide Web Conf. (WWW 2003), pages 48–57. ACM, 2003.

[50] V. Haarslev and R. Möller. RACER System Description. In 1st Int. Joint Conf.
on Automated Reasoning (IJCAR-01), pages 701–706. Springer, 2001.

[51] V. Haarslev and R. Möller. Optimization Strategies for Instance Retrieval. In
I. Horrocks, S. Tessaris, and J. Z. Pan, editors, Proc. Int. Workshop on Descrip-
tion Logics (DL-2002), Toulouse, France, April 2002.

[52] V. Haarslev and R. Möller. Incremental Query Answering for Implementing
Document Retrieval Services. In D. Calvanese, G. de Giacomo, and F. Franconi,
editors, Proc. Int. Workshop on Description Logics (DL-2003), pages 85–94,
Rome, Italy, September 2003.

[53] V. Haarslev, R. Möller, and M. Wessel. The Description Logic ALCNHR+ Ex-
tended with Concrete Domains: A Practically Motivated Approach. In T. Nip-
kow R. Gore, A. Leitsch, editor, Proc. of Int. Joint Conf. on Automated Reason-
ing, IJCAR 2001, pages 29–44, Siena, Italy, June 18-23 2001. Springer.

[54] S. Heymans and D. Vermeir. Integrating Semantic Web Reasoning and Answer
Set Programming. In M. De Vos and A. Provetti, editors, Answer Set Program-
ming, Advances in Theory and Implementation, Proc. of the 2nd Int. ASP’03
Workshop, Volume 78 of CEUR Proceedings, pages 194–208, Messina, Sicily,
September 2003.

[55] I. Hodkinson. Loosely guarded fragment of first-order logic has the finite model
property. Studia Logica, 70:217–274, 2002.

[56] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

[57] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In A. G.
Cohn, L. Schubert, and S. C. Shapiro, editors, Proc. 6th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR’98), pages 636–647, Trento,
Italy, June 1998. Morgan Kaufmann Publishers.

142 BIBLIOGRAPHY

[58] I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.
In Proc. of the Thirteenth Int. World Wide Web Conf.(WWW 2004). ACM,
2004.

[59] I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Description
Logic. In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI 2001), pages 199–204. Morgan Kaufmann, 2001.

[60] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide Query Con-
tainment under Constraints using a Description Logic. In Proc. of the 7th Int.
Conf. on Logic for Programming and Automated Reasoning (LPAR 2000), Lec-
ture Notes in Artificial Intelligence. Springer, 2000.

[61] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive
Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[62] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the De-
scription Logic SHIQ. In D. MacAllester, editor, Proc. of the 17th Int. Conf. on
Automated Deduction (CADE 2000), number 1831 in Lecture Notes in Artificial
Intelligence, pages 482–496. Springer, 2000.

[63] I. Horrocks and S. Tessaris. Querying the Semantic Web: a Formal Approach.
In I. Horrocks and J. Hendler, editors, Proc. of the 13th Int. Semantic Web
Conf. (ISWC 2002), number 2342 in Lecture Notes in Computer Science, pages
177–191. Springer, 2002.

[64] U. Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order
Logic. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, November
1999.

[65] U. Hustadt, B. Motik, and U. Sattler. Reasoning in Description Logics with a
Concrete Domain in the Framework of Resolution. In R. López de Mántaras
and L. Saitta, editors, Proc. of the 16th European Conf. on Artificial Intelligence
(ECAI 2004), pages 353–357, Valencia, Spain, August 2004.

[66] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to
Disjunctive Datalog Programs. In D. Dubois, C. Welty, and M.-A. Williams,
editors, Proc. of the 9th Int. Conf. on Knowledge Representation and Reasoning
(KR2004), pages 152–162, Menlo Park, California, USA, June 2004. AAAI Press.

[67] U. Hustadt and R. A. Schmidt. Issues of Decidability for Description Logics in
the Framework of Resolution. In R. Caferra and G. Salzer, editors, Automated
Deduction in Classical and Non-Classical Logics, volume 1761 of LNAI, pages
192–206. Springer, 1999.

[68] W. H. Joyner Jr. Resolution Strategies as Decision Procedures. Journal of the
ACM, 23(3):398–417, 1976.

BIBLIOGRAPHY 143

[69] B. Kallick. A decision procedure based on the resolution method. In A. J. H.
Morrell, editor, Proc. of the IFIP Congress, pages 269–275. Horth-Holland, 1968.
Volume 1 - Mathematics, Software.

[70] Y. Kazakov and H. de Nivelle. A Resolution decision procedure for the guarded
fragment with transitive guards. In Proc. of 2nd Int. Joint Conference on Auto-
mated Reasoning (IJCAR 2004), Cork, Ireland, 2004. To appear.

[71] A. Leitsch. Deciding clause classes by semantic clash resolution. Fundamenta
Informaticae, 18:63–182, 1993.

[72] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104(1-2):165–209, 1998.

[73] A. Y. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in
global information systems. Journal of Intelligent Information Systems - Special
Issue on Networked Information Discovery and Retrieval, 5(2):121–143, 1995.

[74] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis,
Teaching and Research Area for Theoretical Computer Science, RWTH Aachen,
2002.

[75] C. Lutz. NExpTime-complete Description Logics with Concrete Domains. ACM
Transactions on Computational Logic, 2003. To appear.

[76] C. Lutz and U. Sattler. The Complexity of Reasoning with Boolean Modal
Logics. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors,
Advances in Modal Logics, volume 3. CSLI Publications, Stanford, 2001.

[77] R. M. MacGregor. Inside the LOOM description classifier. SIGART Bull.,
2(3):88–92, 1991.

[78] William McCune. Solution of the Robbins Problem. Journal of Automated
Reasoning, 19(3):263–276, 1997.

[79] M. Minsky. A Framework for Representing Knowledge. In J. Haugeland, editor,
Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128. MIT
Press, Cambridge, MA, 1981.

[80] B. Motik, A. Maedche, and R. Volz. Optimizing Query Answering in Description
Logics using Disjunctive Deductive Databases. In 10th International Workshop
on Knowledge Representation meets Databases (KRDB-2003), Hamburg, Ger-
many, September 15-16 2003.

[81] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proc. of the
3rd Int. Semantic Web Conf. (ISWC 2004), volume 3298 of Lecture Notes in
Computer Science, pages 549–563, Hiroshima, Japan, 2004. Springer.

144 BIBLIOGRAPHY

[82] B. Nebel. Terminological Cycles: Semantics and Computational Properties. In
J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the Rep-
resentation of Knowledge, pages 331–361. Morgan Kaufmann Publishers, San
Mateo (CA), USA, 1991.

[83] R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality
Constrained Clauses. Journal of Logic and Computation, 19(4):312–351, April
1995.

[84] R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 7, pages 371–443. Elsevier Science, 2001.

[85] H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-Based Methods for
Modal Logics. Logic Journal of the IGPL, 8(3):265–292, May 2000.

[86] A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 6, pages 335–367. Elsevier Science, 2001.

[87] J. Pan and I. Horrocks. RDFS(FA) and RDF MT: Two Semantics for RDFS.
In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proc. of the 2003 Interna-
tional Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes
in Computer Science, pages 30–46. Springer, 2003.

[88] J. Pan and I. Horrocks. Web Ontology Reasoning with Datatype Groups. In
D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proc. of the 2nd International
Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in Com-
puter Science, pages 47–63. Springer, 2003.

[89] J.Z. Pan and I. Horrocks. Extending Datatype Support in Web Ontology Reason-
ing. In Proc. of the 2002 Int. Conf. on Ontologies, Databases and Applications of
SEmantics (ODBASE 2002), volume 2519 of Lecture Notes in Computer Science,
pages 1067–1081. Springer, 2002.

[90] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1993.

[91] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language;
Semantics and Abstract Syntax. http://www.w3.org/TR/owl-semantics/, No-
vember 2002.

[92] N. Peltier. On the decidability of the PVD class with equality. Logic Journal of
the IGPL, 9(4):601–624, 2001.

[93] D. A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Trans-
formation. Journal of Symbolic Logic and Computation, 2(3):293–304, 1986.

BIBLIOGRAPHY 145

[94] D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A Logical
Approach. Oxford University Press, 1997.

[95] I. Pratt-Hartmann. Counting Quantifiers and the Stellar Fragment. Technical
report, University of Manchester, UK, 2003. submitted for publishing.

[96] M. R. Quillian. Word concepts: A theorey and simulation of some basic capa-
bilities. Behavioral Science, 12:410–430, 1967.

[97] R. Reiter. Two Results on Ordering for Resolution with Merging and Linear
Format. Journal of the ACM, 18(4):630–646, 1971.

[98] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13(1-2):81–132,
1980.

[99] A. Riazanov and A. Voronkov. Splitting Without Backtracking. In B. Nebel,
editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 611–617, Seattle, WA, USA, August 2001. Morgan Kaufmann.

[100] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23–41, 1965.

[101] J. A. Robinson. Automatic deduction with hyper-resolution. International Jour-
nal of Computational Mathematics, 1(3):227–234, 1965.

[102] A. Schaerf. Query Answering in Concept-Based Knowledge Representation Sys-
tems: Algorithms, Complexity, and Semantic Issues. PhD thesis, Dipartimento
di Informatica e Sistemistica, Università di Roma “La Sapienza”, 1994.

[103] K. Schild. A correspondence theory for terminological logics: preliminary report.
In Proc. of 12th Int. Joint Conference on Artificial Intelligence (IJCAI ‘91),
pages 466–471, Sidney, AU, 1991.

[104] R. A. Schmidt and U. Hustadt. A Resolution Decision Procedure for Fluted
Logic. In D. McAllester, editor, Proc. of the 17th Int. Conf. on Automated
Deduction (CADE-17), volume 1831 of Lecture Notes in Artificial Intelligence,
pages 433–448. Springer, June 17–20 2000.

[105] R. A. Schmidt and U. Hustadt. A Principle for Incorporating Axioms into the
First-Order Translation of Modal Formulae. In F. Baader, editor, Automated
Deduction—CADE-19, volume 2741 of Lecture Notes in Artificial Intelligence,
pages 412–426. Springer, 2003.

[106] M. Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In R. J. Brachman,
H. J. Levesque, and R. Reiter, editors, Proc. of the 1st Inl’t Conf. on Principles
of Knowledge Representation and Reasoning (KR’89), pages 421–431, Los Altos,
1989. Morgan Kaufmann Publishers.

146 BIBLIOGRAPHY

[107] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

[108] G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems, 17(2):79–
80, March/April 2002. Contribution to the section “Trends & Controversies:
Ontologies KISSES in Standardization”, edited by S. Staab.

[109] O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proc. of
the 6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 237–249. ACM Press, 1987.

[110] O. Shmueli. Equivalence of datalog queries is undecidable. Journal of Logic
Programming, 15(3):231–241, 1993.

[111] M. E. Stickel. Automated Deduction by Theory Resolution. Journal of Auto-
mated Reasoning, 1(4):333–355, 1985.

[112] T. Tammet. Resolution Methods for Decision Problems and Finite-Model Build-
ing. PhD thesis, Chalmers University of Technology / University of Göteborg,
1992.

[113] S. Tessaris. Questions and answers: reasoning and querying in Description Logic.
PhD thesis, University of Manchester, UK, 2001.

[114] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, Germany, 2001.

[115] M. Vardi. Why is modal logic so robustly decidable? In N. Immerman and
P. Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 149–184. AMS, 1997.

[116] R. Volz. Web Ontology Reasoning With Logic Databases. PhD thesis, Universität
Fridericiana zu Karlsruhe (TH), Germany, 2004.

[117] C. Welty and D. Ferrucci. What’s in an instance? Technical Report 94-18,
Max-Planck-Institut, 1994. RPI Computer Science.

