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Abstract In this paper we introduce a calculus based on ordered reso-
lution for Coalition Logic (CL), improving our previous approach based
on unrefined resolution, and discuss the problems associated with impos-
ing an ordering refinement in the context of CL. The calculus operates
on ‘coalition problems’, a normal form for CL where we use coalition
vectors that can represent choices made by agents explicitly, and the in-
ference rules of the calculus provide the basis for a decision procedure
for the satisfiability problem in CL. We give correctness, termination
and complexity results for our calculus. We also present experimental
results for an implementation of the calculus and show that it outper-
forms a tableau-based decision procedure for Alternating-Time Temporal
Logic (ATL) on two classes of benchmark formulae for CL.

1 Introduction

Coalition Logic CL was introduced by Pauly [18] as a logic for reasoning about
what groups of agents can bring about by collective action. CL is a multi-modal
logic with modal operators of the form [A], where A is a set of agents. The
formula [A]ϕ, where A is a set of agents and ϕ is a formula, can be read as the
coalition of agents A can bring about ϕ or the coalition of agents A is effective
for ϕ or the coalition of agents A has a strategy to achieve ϕ. Applications of
Coalition Logic include the verification of properties of voting procedures and
reasoning about strategic games [18].

Coalition Logic is closely related to Alternating-Time Temporal Logic ATL
[1], a multi-modal logic with coalition quantifiers 〈〈A〉〉, where A is again a set
of agents, and temporal operators # (“next”), 2 (“always”) and U (“until”),
that extends propositional logic with formulae of the form 〈〈A〉〉#ϕ, 〈〈A〉〉2ϕ and
〈〈A〉〉ϕU ψ. CL is equivalent to the next-time fragment of ATL [9], where [A]ϕ
translates into 〈〈A〉〉#ϕ (read as the coalition A can ensure ϕ at the next moment
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in time). The satisfiability problems for ATL and CL are EXPTIME-complete
[23] and PSPACE-complete [18], respectively.

Methods for tackling the satisfiability problem for these logics include two
tableau-based methods for ATL [23,11], two automata-based methods [7,10] for
ATL, and one tableau-based method for CL [12]. An implementation of the two-
phase tableau calculus by Goranko and Shkatov for ATL [11] exists in the form of
TATL [6]. A first resolution-based method for CL, RESCL, consisting of a normal
form transformation and a resolution calculus, was presented in [16] and shown
to be sound, complete and terminating. In particular, the completeness of RESCL

is shown relative to the tableau calculus for ATL in [11]. If a CL formula ϕ is
unsatisfiable, the corresponding tableau is closed. In the completeness proof for
RESCL it is shown that deletions that produce the closed tableau correspond
to applications of the resolution inference rules of RESCL that in turn produce
a refutation of ϕ. A prototype implementation of RESCL in the programming
language Prolog exists in the form of CLProver [17].

In this paper we revisit the calculus RESCL for CL and its implementation.
RESCL is based on unrefined propositional resolution. It is natural from a the-
oretical perspective, as well as vital for practical applications, to consider the
question whether refinements of propositional resolution carry over to RESCL. In
this paper we focus on an ordering refinement, one of the most commonly used
refinements of resolution for both non-classical logics [13,14,25] and classical
logic [4]. First, we discuss why the naive use of an ordering to restrict inferences
in RESCL leads to incompleteness. Second, we introduce a new normal form for
CL that via so-called coalition vectors represent choices made by agents explic-
itly. This new normal form allows us to devise the calculus RES�CL, a sound and
complete ordered resolution calculus for CL. Finally, we provide an experimental
evaluation and comparison of CLProver++, an implementation of RES�CL in C++,
with CLProver and TATL.

The paper is organised as follows. In the next section, we present the syntax
and semantics of CL. In Section 3, we introduce the normal form transformation
for CL and the resolution calculus RES�CL. Section 4 motivates our approach to
ordered resolution for CL, defines the new normal form for CL, and describes
the calculus RES�CL. Section 5 briefly describes CLProver++ and presents the
evaluation and comparison with other theorem provers for CL. Conclusions and
future work are given in Section 6.

2 Coalition Logic

Let Σ ⊂ N be a non-empty, finite set of agents and Π = {p, q, . . . , p1, q1, . . .} be a
non-empty, finite or countably infinite set of propositional symbols. A coalition
A is a finite subset of Σ. Formulae in CL are constructed from propositional
symbols using Boolean operators and the coalition modalities [A] and 〈A〉.

Definition 1. The set WFFCL of CL formulae is inductively defined as follows.
– all propositional symbols in Π are CL formulae;
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– if ϕ and ψ are CL formulae, then so are ¬ϕ (negation) and (ϕ → ψ) (impli-
cation);

– if ϕi, 1 ≤ i ≤ n, n ∈ N0, are CL formula, then so are (ϕ1 ∧ . . . ∧ ϕn)
(conjunction), also written

∧n
i=1 ϕi, and (ϕ1 ∨ . . . ∨ ϕn) (disjunction), also

written
∨n
i=1 ϕi; and

– if A ⊆ Σ is a finite set of agents and ϕ is a CL formula, then so are [A]ϕ
( positive coalition formula) and 〈A〉ϕ ( negative coalition formula).

Parentheses will be omitted if the reading is not ambiguous. We consider the
conjunction and disjunction operators to be associative and commutative, that
is, we do not distinguish between, for example, (p ∨ (q ∨ r)), ((r ∨ p) ∨ q) and
(q ∨ r ∨ p). The formula

∨0
i=1 ϕi is called the empty disjunction, also denoted

by false, while
∧0
i=1 ϕi is called the empty conjunction, also denoted by true.

When enumerating a specific set of agents, we often omit the curly brackets.
For example, we write [1, 2]ϕ instead of [{1, 2}]ϕ, for a formula ϕ. A coalition
formula is either a positive or a negative coalition formula. In the following, we
use “formula(e)” and “well-formed formula(e)” interchangeably.

Definition 2. A literal is either p or ¬p, for p ∈ Π. For a literal l of the form
¬p, where p is a propositional symbol, ¬l denotes p; for a literal l of the form p,
¬l denotes ¬p. The literals l and ¬l are called complementary literals.

We use Concurrent Game Structures (CGSs) [1,11] for describing the semantics
of ATL. Also, the semantics given here uses rooted models, that is, models with
a distinguished state where a formula has to be satisfied. Concurrent Game
Structures yield the same set of validities as Multiplayer Game Models (MGMs)
[9] that were originally used by Pauly [18] to define the semantics of Coalition
Logic.

Definition 3. A Concurrent Game Frame (CGF) over Σ with root s0 is a tuple
F = (Σ,S, s0, d, δ), where

– Σ is a finite non-empty set of agents;
– S is a non-empty set of states, with a distinguished state s0;
– d : Σ×S −→ N+

0 , where the natural number d(a, s) ≥ 1 represents the number
of moves that the agent a has at the state s. Every move for agent a at the
state s is identified by a number between 0 and d(a, s) − 1. Let D(a, s) =
{0, . . . , d(a, s) − 1} be the set of all moves available to agent a at s. For a
tuple σ we use σ(n) to refer to the n-th element of σ. For a state s, a move
vector σ is a k-tuple (σ(1), . . . , σ(k)), where k = |Σ|, such that 0 ≤ σ(a) ≤
d(a, s)− 1, for all a ∈ Σ. Intuitively, σ(a) represents a move of agent a in s.
Let D(s) = Πa∈ΣD(a, s) be the set of all move vectors at s. We denote by σ
an arbitrary member of D(s).

– δ is a transition function that assigns to every s ∈ S and every σ ∈ D(s) a
state δ(s, σ) ∈ S that results from s if every agent a ∈ Σ plays move σ(a).

Given a CGF F = (Σ,S, s0, d, δ) with s, s′ ∈ S, we say that s′ is a successor
of s (an s-successor) if s′ = δ(s, σ), for some σ ∈ D(s).
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Definition 4. Let |Σ| = k and let A ⊆ Σ be a coalition. An A-move σA at
s ∈ S is a k-tuple such that σA(a) ∈ D(a, s) for every a ∈ A and σA(a′) = ∗
(i.e. an arbitrary move) for every a′ 6∈ A. We denote by D(A, s) the set of all
A-moves at state s.

Definition 5. A move vector σ extends an A-move σA, denoted by σA v σ or
σ w σA, if σ(a) = σA(a) for every a ∈ A.

Given a coalition A ⊆ Σ, an A-move σA ∈ D(A, s), and a Σ \ A-move
σΣ\A ∈ D(Σ \ A, s), we denote by σA t σΣ\A the unique σ ∈ D(s) such that
both σA v σ and σΣ\A v σ.

Definition 6. A Concurrent Game Model (CGM) over Σ and Π with root s0
is a tuple M = (F , Π, π), where F = (Σ,S, s0, d, δ) is a CGF; Π is the set of
propositional symbols; and π : S −→ 2Π is a valuation function.

Definition 7. Let M = (Σ,S, s0, d, δ,Π, π) be a CGM with s ∈ S. The satis-
faction relation, denoted by |=, is inductively defined as follows.

– 〈M, s〉 |= p iff p ∈ π(s), for all p ∈ Π;
– 〈M, s〉 |= ¬ϕ iff 〈M, s〉 6|= ϕ;
– 〈M, s〉 |= (ϕ→ ψ) iff 〈M, s〉 |= ϕ implies 〈M, s〉 |= ψ;
– 〈M, s〉 |=

∧n
i=1 ϕi iff 〈M, s〉 |= ϕi for all i, 1 ≤ i ≤ n;

– 〈M, s〉 |=
∨n
i=1 ϕi iff 〈M, s〉 |= ϕi for some i, 1 ≤ i ≤ n;

– 〈M, s〉 |= [A]ϕ iff there exists an A-move σA ∈ D(A, s) s.t.
for all σ ∈ D(s) σA v σ implies 〈M, δ(s, σ)〉 |= ϕ;

– 〈M, s〉 |= 〈A〉ϕ iff for all A-moves σA ∈ D(A, s)
exists σ ∈ D(s) s.t. σA v σ and 〈M, δ(s, σ)〉 |= ϕ.

Definition 8. Let M be a CGM. A CL formula ϕ is satisfied at the state s in
M if 〈M, s〉 |= ϕ and ϕ is satisfiable inM, denoted by M |= ϕ, if 〈M, s0〉 |= ϕ.
A finite set Φ ⊂WFFCL is satisfiable in a state s inM, denoted by 〈M, s〉 |= Φ,
if for all ϕi ∈ Φ, 0 ≤ i ≤ n, 〈M, s〉 |= ϕi, and Φ is satisfiable in M, denoted by
M |= Φ, if 〈M, s0〉 |= Φ.

As discussed in [11,18,23] three different notions of satisfiability emerge from the
relation between the set of agents occurring in a formula and the set of agents in
the language. It turns out that all those notions of satisfiability can be reduced
to tight satisfiability [23]. We denote by Σϕ ⊆ Σ, the set of agents occurring in
a well-formed formula ϕ or the set {a} for some arbitrary agent a ∈ Σ if the set
of agents occurring in ϕ is empty. If Φ is a set of well-formed formulae, ΣΦ ⊆ Σ
denotes

⋃
ϕ∈ΦΣϕ.

Definition 9 (Tight satisfiability). A CL formula ϕ is satisfiable if there is
a Concurrent Game Model M = (Σϕ,S, s0, d, δ,Π, π) such that 〈M, s0〉 |= ϕ. A
finite set Φ of CL formulae is satisfiable, if there is a CGM M over ΣΦ and Π
with root s0 such that 〈M, s0〉 |= Φ.
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3 Unrefined Resolution for CL

The resolution method presented in [16] proceeds by translating a CL formula
ϕ that is to be tested for (un)satisfiability into a clausal normal form C, a coali-
tion problem in Divided Separated Normal Form for Coalition Logic (DSNFCL),
to which then resolution-based inference rules are applied. The application of
these rules always terminates, either resulting in a coalition problem C′ that is
evidently contradictory or, otherwise, satisfiable. The formula ϕ is satisfiable iff
C′ is satisfiable.

Definition 10. A coalition problem is a tuple (I,U ,N ), where I, the set of
initial formulae, is a finite set of propositional formulae; U , the set of global
formulae, is a finite set of formulae in WFFCL; and N , the set of coalition for-
mulae, is a finite set of coalition formulae, i.e. those formulae in which a coalition
modality occurs.

The semantics of coalition problems assumes that initial formulae hold at the
initial state; and that global and coalition formulae hold at every state of a
model. Formally, the semantics of coalition problems is defined as follows.

Definition 11. Given a coalition problem C = (I,U ,N ), we denote by ΣC
the set of agents ΣU∪N . If C = (I,U ,N ) is a coalition problem and M =
(ΣC ,S, s0, d, δ,Π, π) is a CGM, then M |= C if, and only if, 〈M, s0〉 |= I and
〈M, s〉 |= U ∪N , for all s ∈ S. We say that C = (I,U ,N ) is satisfiable, if there
is a model M such that M |= C.

In order to apply the resolution method, we further require that formulae within
each of those sets are in clausal form.

Definition 12. A coalition problem in DSNFCL is a coalition problem (I,U ,N )
such that I, the set of initial clauses, and U , the set of global clauses, are
finite sets of propositional clauses

∨n
j=1 lj, and N , the set of coalition clauses,

is a finite set of formulae in WFFCL of the form
∧m
i=1 l

′
i → [A]

∨n
j=1 lj ( positive

coalition clauses) or
∧m
i=1 l

′
i → 〈A〉

∨n
j=1 lj ( negative coalition clauses), where

m,n ≥ 0 and l′i, lj, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, are literals such that within
every conjunction and every disjunction literals are pairwise different.

Definition 13. A coalition problem in unit DSNFCL (I,U ,N ) is a coalition
problem in DSNFCL such that coalition clauses in N have the following forms
(where p is a propositional symbol):

positive coalition clauses
∧m
i=1 l

′
i → [A]p

negative coalition clauses
∧m
i=1 l

′
i → 〈A〉p

The transformation of a CL formula ϕ into a coalition problem in DSNFCL or
unit DSNFCL uses a set of rewrite rules that transforms ϕ into negation normal
form, removes propositionally redundant subformulae, and uses renaming [19]
in order to bring coalition problems closer to DSNFCL. For a description of the
transformation rules and proofs of the following theorem see [16,25].
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IRES1 C ∨ l ∈ I
D ∨ ¬l ∈ I ∪ U
C ∨D ∈ I

GRES1 C ∨ l ∈ U
D ∨ ¬l ∈ U
C ∨D ∈ U

CRES1
A ∩ B = ∅

P → [A](C ∨ l) ∈ N
Q → [B](D ∨ ¬l) ∈ N

P ∧Q → [A ∪ B](C ∨D) ∈ N

CRES2 C ∨ l ∈ U
Q → [A](D ∨ ¬l) ∈ N
Q → [A](C ∨D) ∈ N

CRES3
A ⊆ B

P → [A](C ∨ l) ∈ N
Q → 〈B〉(D ∨ ¬l) ∈ N

P ∧Q → 〈B \ A〉(C ∨D) ∈ N

CRES4 C ∨ l ∈ U
Q → 〈A〉(D ∨ ¬l) ∈ N
Q → 〈A〉(C ∨D) ∈ N

RW1
Vn

i=1 li → [A]false ∈ NWn
i=1 ¬li ∈ U

RW2
Vn

i=1 li → 〈A〉false ∈ NWn
i=1 ¬li ∈ U

where (I,U ,N ) is a coalition problem in DSNFCL; P , Q are conjunctions of literals; C,
D are disjunctions of literals; l, li are literals; and A,B ⊆ Σ are coalitions.

Figure 1. Resolution Calculus RESCL

Theorem 1 (Preservation of satisfiability). Let ϕ be a WFFCL. Then we
can compute in polynomial time a coalition problem C in DSNFCL or a coalition
problem C′ in unit DSNFCL such that C and C′ are satisfiable iff ϕ is satisfiable.

The resolution calculus RESCL, introduced in [16], consists of the inference rules
shown in Figure 1.

Theorem 2 (Soundness, Completeness, Termination). Let C be a coali-
tion problem in unit DSNFCL. Then any derivation from C by RESCL terminates
and there is a refutation for C using the inference rules IRES1, GRES1, CRES1–
4, and RW1–2 iff C is unsatisfiable.

This corrects the completeness result stated in [16] which claims completeness
of RESCL for coalition problems in DSNFCL instead of unit DSNFCL

4.

4 Ordered Resolution for CL

Ordering refinements are a commonly used approach to reducing the search space
of resolution for classical propositional and first-order logic. They are utilised by
all state-of-the-art resolution-based theorem provers for first-order logic, includ-
ing E [21], SPASS [24], and Vampire [15]. Ordering refinements have also been
used in the context of hybrid, modal and temporal logics including H(@) [3],
PLTL [14] and CTL [25].

An atom ordering is a well-founded and total ordering � on the set Π. The
ordering � is extended to literals such that for each p ∈ Π, ¬p � p, and for each
4 Proofs for all results in this paper can be found in http://cgi.csc.liv.ac.uk/

~ullrich/publications/Tableaux2015proofs.pdf.

http://cgi.csc.liv.ac.uk/~ullrich/publications/Tableaux2015proofs.pdf
http://cgi.csc.liv.ac.uk/~ullrich/publications/Tableaux2015proofs.pdf
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q ∈ Π such that q � p then q � ¬p and ¬q � ¬p. A literal l is maximal with
respect to a propositional disjunction C iff for every literal l′ in C, l′ 6� l.

We could use the ordering � to restrict the applicability of the rules IRES1,
GRES1, CRES1 to CRES4 so that a rule is only applicable if and only if the
literal l in C∨ l is maximal with respect C and the literal ¬l in D∨¬l is maximal
with respect to D. One would normally expect that the calculus we obtain by
way of this restriction is complete for any ordering, see, for example [4,13,14,25].

However, it turns out that such a restriction would render our calculus in-
complete. Consider the following example, a coalition problem corresponding to
the unsatisfiable CL formula [1](p ∧ ¬p):

1. t0 [I]
2. ¬t1 ∨ p [U ]

3. ¬t1 ∨ ¬p [U ]
4. t0 → [1]t1 [N ]

Assume that the ordering on propositional symbols is t0 � t1 � p. Then the
only inferences possible are the following:

5. t0 → [1]p [N , CRES2, 2, 4, t1] 6. t0 → [1]¬p [N , CRES2, 3, 4, t1]

A resolution inference using CRES1 with Clauses (5) and (6) as premises is
not possible as the sets of agents in the two clauses is not disjoint. Using the
unrefined calculus RESCL or using a different ordering, namely, p � t1 � t0 allows
us to construct a refutation for this example:

5’. ¬t1 [U , GRES1, 2, 3, p]
6’. t0 → [1]false [N , CRES2, 4,5’, t1]

7’. ¬t0 [U , RW1, 6’]
8’. false [U , IRES1, 1,7’, t0]

Note that if we were to use other refinements of resolution that are not con-
sequence complete to restrict the applicability of the rules of RESCL, then this
would also result in an incomplete calculus. For example, instead of an ordering
refinement, we could use a selection function [4] to restrict inferences on clauses
(2) and (3) to the negative literal ¬t1. Then again the only clauses immediately
derivable from the clauses (1) to (4) are the clauses (5) and (6), with no further
inferences being possible.

The incompleteness of a naive ordering refinement of RESCL is related to
the fact that a derived clause does not accurately reflect the constraints on the
agents’ moves inherited from the premises of a resolution inference. In order
to overcome this problem we need a better representation of these constraints,
essentially we need to skolemize implicitly existentially quantified variables in
coalition modalities. To this end we introduce Vector Coalition Logic incorpo-
rating the notions of coalition vector and use these vectors to replace coalition
modalities in coalition clauses.

Definition 14. Let |Σ| = k. A coalition vector #�c is a k-tuple (m1, . . . ,mk)
such that for every a, 1 ≤ a ≤ k, #�c [a] = ma, the component with index a, is
either an integer number not equal to zero or the symbol ∗ and for every a, a′,
1 ≤ a < a′ ≤ k, if #�c [a] < 0 and #�c [a′] < 0 then #�c [a] = #�c [a′].

A coalition vector #�c is negative if #�c [a] < 0 for some a, 1 ≤ a ≤ k. Otherwise,
#�c is positive. We denote by #�c + that #�c is positive and by #�c − that #�c is negative.
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For example, given Σ = {1, . . . , 6}, #�c 1 = (1, ∗, ∗, 3, 1, ∗), #�c 2 = (∗,−2, ∗, 3, ∗,−2),
and #�c 3 = (1,−2, ∗, 3, ∗,−2) are coalition vectors, #�c 1 is positive, while #�c 2 and
#�c 3 are negative.

Definition 15. The set WFFVCL of Vector Coalition Logic (VCL) formulae is
inductively defined as follows.
– if p is a propositional symbol in Π, then p and ¬p are VCL formulae;
– if ϕ is a propositional formula and ψ is a VCL formula, then (ϕ → ψ) is a

VCL formula;
– if ϕi, 1 ≤ i ≤ n, n ∈ N0, are VCL formula, then so are (ϕ1 ∧ . . . ∧ ϕn), also

written
∧n
i=1 ϕi, and (ϕ1 ∨ . . . ∨ ϕn), also written

∨n
i=1 ϕi; and

– if #�c is a coalition vector and ϕ is a VCL formula, then so is #�c ϕ.

Note that negation is restricted to propositional symbols. In particular, we do
not allow formulae of the form ¬ #�c ϕ. Since such formulae do not occur in our
normal form, this is not a restriction for our purposes.

In order to define the semantics of WFFVCL formulae we can reuse Concur-
rent Game Frames, but need to extend Concurrent Game Models with choice
functions that give meaning to coalition vectors.

Definition 16. A Concurrent Game Model with Choice Functions (CGMCF)
is a tuple M = (F , Π, π, F+, F−), where

– F = (Σ,S, s0, d, δ) is a CGF;
– Π is the set of propositional symbols;
– π : S −→ 2Π is a valuation function;
– F+ = {f i | i ∈ N} is a set of functions such that f i : S × Σ −→ N and
f i(s, a) ∈ D(a, s) for every i ∈ N, a ∈ Σ, and s ∈ S;

– F− = {gin | i, n ∈ N and n ≤ |Σ|} is a set of functions such that gin : S ×Σ ×
Nn −→ N and gin(s, a, (m1, . . . ,mn)) ∈ D(a, s) for every i ∈ N, a ∈ Σ, s ∈ S,
(m1, . . . ,mn) ∈ Nn.

Definition 17. Let M = (F , Π, π, F+, F−) be a CGMCF and let s be a state
in S. Let #�c be a coalition vector where {a | 1 ≤ a ≤ |Σ| ∧ ( #�c [a] > 0 ∨ #�c [a] =
∗)} = {a1, . . . , an} with a1 < · · · < an. A move vector σ instantiates the coalition
vector #�c at state s, denoted by #�c v σ, if:
– σ(a′) = f

#�c [a′](s, a′) for each a′, 1 ≤ a′ ≤ |Σ| and #�c [a′] > 0,
– σ(a) = g

| #�c [a]|
n (s, a, (σ(a1), . . . , σ(an))) for each a, 1 ≤ a ≤ |Σ| and #�c [a] < 0.

The intuition underlying Definition 17 is the following. A coalition vector such
as, for example, (1,−2, ∗, 3, ∗,−2), indicates that agents 1 and 4 are committed
to moves m1 and m4 that depend only on the state s they are currently in and
are determined by the choice functions f1 and f3: m1 = f1(s, 1) and m4 =
f3(s, 4), respectively. Agents 3 and 5 will perform arbitrary moves m3 and m5

of their choice in s. Finally, agents 2 and 6 will choose their moves m2 and
m6 in reaction to the moves of all the other four agents and their moves are
determined by the choice function g

|−2|
4 = g2

4 : m2 = g2
4(s, 2, (m1,m3,m4,m5))

and m6 = g2
4(s, 6, (m1,m3,m4,m5)), respectively.
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Definition 18. Let M = (F , Π, π, F+, F−) be a CGMCF with s ∈ S. The
satisfaction relation |= between M, s and VCL formulae is inductively defined
as follows.

– 〈M, s〉 |= p iff p ∈ π(s), for all p ∈ Π;
– 〈M, s〉 |= ¬ϕ iff 〈M, s〉 6|= ϕ;
– 〈M, s〉 |= (ϕ→ ψ) iff 〈M, s〉 |= ϕ implies 〈M, s〉 |= ψ;
– 〈M, s〉 |=

∧n
i=1 ϕi iff 〈M, s〉 |= ϕi for all i, 1 ≤ i ≤ n;

– 〈M, s〉 |=
∨n
i=1 ϕi iff 〈M, s〉 |= ϕi for some i, 1 ≤ i ≤ n;

– 〈M, s〉 |= #�c ϕ iff for all σ ∈ D(s), #�c v σ implies 〈M, δ(s, σ)〉 |= ϕ.

The notions of satisfiability of a VCL formula and a set of VCL formulae are
defined as in Definitions 8 and 9 but with respect to CGMCF’s instead of CGM’s.

We can now present a normal form for Coalition Logic using VCL formulae:

Definition 19. A coalition problem in DSNFVCL is a tuple (I,U ,N ) where I is
a set of initial clauses, U is a set of global clauses, and N , the set of coalition
clauses, consists of VCL formulae of the form

∧m
i=1 l

′
i → #�c

∨n
j=1 lj where m,n ≥

0 and l′i, lj, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, are literals such that within every
conjunction and every disjunction literals are pairwise different, and #�c is a
coalition vector.

The notion of satisfiability of a coalition problem in DSNFVCL is defined as in
Definition 11 but with respect to CGMCF’s instead of CGM’s.

Given a coalition problem C in DSNFCL we can obtain a coalition problem in
DSNFVCL by exhaustive application of the following two rewrite rules:
τ[A] (I,U ,N ∪ {t→ [A]ψ}) ⇒[ ] (I,U ,N ∪ {t→ #�c iAψ})

where ψ is a disjunction of literals, i is a natural number not occurring
as an index of some coalition vector in N , and #�c iA is a coalition vector
such that #�c iA(a) = i for every a ∈ A and #�c iA(a′) = ∗ for every a′ 6∈ A.

τ〈A〉 (I,U ,N ∪ {t→ 〈A〉ψ})⇒〈 〉 (I,U ,N ∪ {t→ #�c −iA ψ})
where ψ is a disjunction of literals, i is a natural number not occurring
as an index of some coalition vector in N , and #�c −iA is a coalition vector
such that #�c −iA (a′) = −i for every a′ 6∈ A and #�c −iA (a) = ∗ for every
a ∈ A.

Theorem 3. Let C be a coalition problem in DSNFCL and let C′ be obtained by
exhaustively applying the rewrite rules τ[A] and τ〈A〉 to C. Then C′ is a coalition
problem in DSNFVCL and C′ is satisfiable if and only if C is satisfiable.

Before we can present the inference rules for coalition problems in DSNFVCL, we
need to define when two coalition vectors are ‘unifiable’. To this end we introduce
the notion of a merge of two coalition vectors.

Definition 20. Let #�c 1 and #�c 2 be two coalition vectors of length n. The coalition
vector #�c 2 is an instance of #�c 1 and #�c 1 is more general than #�c 2, written #�c 1 v
#�c 2, if #�c 2[i] = #�c 1[i] for every i, 1 ≤ i ≤ n, with #�c 1[i] 6= ∗. We say that a
coalition vector #�c 3 is a common instance of #�c 1 and #�c 2 if #�c 3 is an instance
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IRES1
C ∨ l ∈ I
D ∨ ¬l ∈ I ∪ U
C ∨D ∈ I

GRES1
C ∨ l ∈ U
D ∨ ¬l ∈ U
C ∨D ∈ U

VRES1
P → #�c 1(C ∨ l) ∈ N
Q → #�c 2(D ∨ ¬l) ∈ N

P ∧Q → #�c 1↓ #�c 2(C ∨D) ∈ N
VRES2

C ∨ l ∈ U
Q → #�c (D ∨ ¬l) ∈ N
Q → #�c (C ∨D) ∈ N

RW

Vn
i=1 li →

#�c false ∈ NWn
i=1 ¬li ∈ U

where (I,U ,N ) is a coalition problem in DSNFCL; P , Q are conjunctions of literals;
C, D are disjunctions of literals; l, li are literals; #�c , #�c 1, #�c 2 are coalition vectors; in
VRES1, #�c 1 and #�c 2 are mergeable; and in IRES1, GRES1, VRES1 and VRES2, l is
maximal with respect to C and ¬l is maximal with respect to D.

Figure 2. Resolution Calculus RES�CL

of both #�c 1 and #�c 2. A coalition vector #�c 3 is a merge of #�c 1 and #�c 2 if #�c 3 is a
common instance of #�c 1 and #�c 2, and for any common instance #�c 4 of #�c 1 and
#�c 2 we have #�c 3 v #�c 4. If there exists a merge for two coalition vectors #�c 1 and
#�c 2 then we say that #�c 1 and #�c 2 are mergeable. We denote the merge of #�c 1 and
#�c 2 by #�c 1↓ #�c 2 and write #�c 1↓ #�c 2 = undef if #�c 1 and #�c 2 are not mergeable.

For example, the merge of #�c 1 = (1, ∗, ∗, 3, 1, ∗), #�c 2 = (∗,−2, ∗, 3, ∗,−2) is #�c 4 =
(1,−2, ∗, 3, 1,−2), while #�c 1 and #�c 5 = (1, ∗, ∗, 4, 1, ∗) are not mergeable nor are
#�c 2 and #�c 6 = (−5, ∗, ∗, 3, ∗, ∗).

Remark 1. Let #�c 1 and #�c 2 be two coalition vectors. If there is a common instance
#�c 3 of #�c 1 and #�c 2 then there exists a merge of #�c 1 and #�c 2.

The resolution calculus RES�CL, where � is an atom ordering, consists of the
inference rules shown in Figure 2. Note that VRES1 and VRES2 in RES�CL, just
as CRES1 to CRES4 in RESCL, do not allow to resolve on literals on the left-hand
side of an implication in a coalition clause.

Definition 21. A derivation from a coalition problem C in DSNFVCL by RES�CL

is a sequence C0, C1, C2, . . . of coalition problems in DSNFVCL such that C0 = C,
Ci = (Ii,Ui,Ni), and Ci+1 is either
– (Ii ∪ {E},Ui,Ni), where E is a conclusion of IRES1;
– (Ii,Ui ∪ {E},Ni), where E is a conclusion of GRES1 or RW; or
– (Ii,Ui,Ni ∪ {E}), where E is a conclusion of VRES1 or VRES2.
A refutation of C0 by RES�CL is a derivation C0, . . . , Cn = (In,Un,Nn) from C0
by RES�CL such that false ∈ In ∪ Un.

We return to our previous example on page 7. The corresponding coalition prob-
lem in DSNFVCL consist of the following clauses:
1. t0 [I]
2. ¬t1 ∨ p [U ]

3. ¬t1 ∨ ¬p [U ]
4. t0 → (1)t1 [N ]
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Note that the number 1 in the vector (1) does not refer to agent 1, but to
a specific move by agent 1. Assume again that the ordering on propositional
symbols is t0 � t1 � p. Then a refutation using RES�CL proceeds as follows:
5. t0 → (1)p [N , VRES2, 2, 4, t1]
6. t0 → (1)¬p [N , VRES2, 3, 4, t1]
7. t0 → (1)false [N , VRES1, 5, 6, p]

8. ¬t0 [U , RW, 7]
9. false [I, IRES1, 1, 8, t0]

The derivation of Clause (7) is the crucial step as it takes advantage of the fact
that (1)p and (1)¬p can be resolved by RES�CL while [1]p and [1]¬p cannot be
resolved by RESCL.
Soundness. Soundness of the inference rules of RES�CL is shown model-theoretic-
ally: For each rule we show that if the premises of an application of the rule have
a model M, then M is also a model for the conclusion of that application.

Theorem 4 (Soundness of RES�CL). Let C be a coalition problem in DSNFVCL.
Let C′ be the coalition problem in DSNFVCL obtained from C by applying any
of the inference rules IRES1, GRES1, VRES1, VRES2 and RW to C. If C is
satisfiable, then C′ is satisfiable.

Termination. Consider a derivation from the coalition problem C. The set of
propositional symbols ΠC occurring in C is finite and the inference rules do not
introduce new propositional symbols, so the number of possible literals is finite.
We keep propositional conjunctions and disjunction in simplified form, so there
are only finitely many that may occur in any clause. Also, in C only a finite set
IC ⊂ Z of numbers occurs in coalition vectors and all coalition vectors in C have
the same length, say, k. Then the number of coalition vectors that may occur
in a derivation is bounded by (|IC |+ 1)k. Thus, only a finite number of clauses
can be expressed (modulo simplification). So, at some point either we derive a
contradiction or no new clauses can be generated.

Theorem 5. Let C = (I,U ,N ) be a coalition problem in DSNFVCL. Then any
derivation from C by RES�CL terminates.

Completeness. In our completeness proof for RES�CL we show that a refutation
of a CL formula ϕ by Goranko and Shkatov’s tableau procedure TATL for ATL [11]
can be used to guide the construction of a refutation of the coalition problem Cϕ
corresponding to ϕ by RES�CL. The tableau procedure proceeds in two phases, a
construction phase in which a graph structure for ϕ is build, and an elimination
phase in which parts of the graph that cannot be used to create a CGM for ϕ
are deleted. The formula ϕ is satisfiable iff at the end of the elimination phase a
non-empty graph with a node containing ϕ remains. In the proof, we first define
a mapping trCϕ

of coalition problems in DSNFVCL to ATL formulae. Second,
we show that if in the graph G constructed for trCϕ(C) by TATL there is an
elimination step possible, then we can derive from C a coalition problem C′ by
RES�CL such that the graph G′ constructed for trCϕ

(C′) by TATL is a sub-graph
of G. By induction we can then show that if a sequence of elimination steps by
TATL produces an empty graph, then the corresponding derivation by RES�CL is
a refutation of Cϕ.
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Theorem 6. Let ϕ ∈ WFFCL and C = (I,U ,N ) be the corresponding coalition
problem in DSNFVCL. If ϕ is unsatisfiable then there is a refutation of C by RES�CL.

Complexity. The satisfiability problem for CL is PSPACE-complete [18]. How-
ever, since coalitions problems allow to state succinctly that global and coalition
clauses hold in all states of a model, the satisfiability problem for coalition prob-
lems in unit DSNFCL, DSNFCL, and DSNFVCL is EXPTIME-hard [16].

As we have argued above, the number of distinct initial, universal and coali-
tion problems that can be formed over the set of propositions ΠC occurring in
a coalition problem C in DSNFVCL and set of numbers IC occurring in coalition
vectors in C, is exponential in the size of ΠC and IC , and therefore also expo-
nential in the size of C. Each inference step by RES�CL requires polynomial time
in the size of the clause set. Overall, this implies a decision procedure based on
RES�CL is in EXPTIME.

Theorem 7. The complexity of a RESCL based decision procedure for the satis-
fiability problem in CL is EXPTIME.

5 Implementation and Evaluation

CLProver++ [8] is a C++ implementation of the resolution based calculus RES�CL

described in Section 4. CLProver++ also implements unit propagation, pure lit-
eral elimination, tautology elimination, forward subsumption and backward sub-
sumption. Feature vector indexing, a non-perfect indexing method first intro-
duced by Schultz in [20], is used to store coalition problems and to retrieve a
superset of candidates for subsumption or resolution efficiently. When selecting
the next clause as main premise for resolution inferences, CLProver++ will choose
the smallest clause in a coalition problem and will prefer universal clauses over
initial clauses over coalition clauses of the same length.

To evaluate the performance of CLProver++ we will compare it with CLProver
and TATL (September 2014 version). CLProver [17] is a prototype implementation
in SWI-Prolog of the calculus RESCL. It also implements forward subsumption
but uses no heuristics to guide the search for a refutation. TATL [6] is an imple-
mentation in OCaml of the two-phase tableau calculus by Goranko and Shkatov
for ATL. Note that the construction phase for CL is the same as for ATL (there
is no additional overhead) and the additional elimination rule required for ATL
in the elimination phase does not need to be engaged for CL.

While a limited number of coalition logic formulae can be found in the litera-
ture [18], they prove to be insufficiently challenging to evaluate the performance
of decision procedures for coalition logic.

We therefore use randomly generated CL formulae for that purpose, in par-
ticular, we have devised two classes of benchmark formulae5, B1 and B2. B1

consists of randomly generated formulae without any particular structure con-
taining at most 5 propositional symbols and at most 2 agents. A feature of these

5 Available at http://cgi.csc.liv.ac.uk/~ullrich/CLProver++/

http://cgi.csc.liv.ac.uk/~ullrich/CLProver++/
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Figure 3. Performance of CLProver, CLProver++, and TATL on B1.

formulae is their relatively high modal depth. For lengths6 L between 100 and
1200, in steps of 100, we have generated 100 such formulae. B2 consists of ran-
domly generated formulae in conjunctive normal form where half the conjuncts
are unary disjunctions and half are binary disjunctions, and each disjunct is of
the form [A](l1 ∨ l2) or ¬[A](l1 ∨ l2), written (¬)[A](l1 ∨ l2), with l1 and l2 being
random propositional literals over 5 propositional symbols, A is a random subset
of {1, 2}, and the probability of a disjunct or propositional literal being negative
is 0.5:

(¬)[A1
1](l11 ∨ l12) ∧ ((¬)[A2

1](l21 ∨ l22) ∨ (¬)[A2
2](l23 ∨ l24))

∧ . . .∧ (¬)[AL−1
1 ](lL−1

1 ∨ lL−1
2 ) ∧ ((¬)[AL1 ](lL1 ∨ lL2 ) ∨ (¬)[AL2 ](lL3 ∨ lL4 )).

For numbers L of conjuncts between 2 and 24, in steps of 2, we have again
generated 100 such formulae.

For both classes, the number of agents and propositional variables were cho-
sen to allow all provers to solve most of the formulae involved while also not
being trivial for all provers. The particular structure of the formulae in B2 was
chosen for the same reasons.

Figures 3 and 4 show the performance of the three provers on B1 and B2,
respectively, measured on PCs with Intel i7-2600 CPU @ 3.40GHz and 16GB
main memory. The labels on the x-axis take the form ‘s nS|mU’ where s is the
length or number of conjuncts of the formulae (their size), n is the number of
satisfiable formulae and m is the number of unsatisfiable formulae among the 100
formulae of size s. For B1 we also indicate by ‘kD’ the average modal depth k
of formulae. For each formula ϕ we have measured the time it took each of the
provers to solve ϕ, stopping the execution of a prover after 1000 CPU seconds
The time to transform a formula into a coalition problem is not included, but
is negligible. The figures show the total number of CPU seconds it took each
prover to attempt or solve the 100 formulae of size s.

We can see that almost all formulae in B1 are satisfiable, independent of
the value of L. We can also see that CLProver++ performs better than TATL for
6 The length of a CL formula ϕ is the number of occurrences of propositional symbols,

propositional logical operators, and modal operators in ϕ.
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Figure 4. Performance of CLProver, CLProver++, and TATL on B2.

L < 800, but falls behind for values of L ≥ 800. This is because formulae in
B1 contain numerous occurrences of the five propositional symbols at various
different modal depths. In Coalition Logic, just as in basic modal logic, the truth
values of propositional symbols occurring at different modal depths are indepen-
dent of each other, something that TATL takes advantage of. In contrast, the
transformation to DSNFCL ‘flattens’ formulae, leading to unnecessary inferences
by CLProver++ and CLProver. It is possible to pre-process CL formulae using the
‘layered modal translation’ technique by Areces et al. [2, Definition 4.1] which
replaces a propositional symbol p occurring at modal depth n by a new, unique
propositional symbol pn. If we do so for B1 formulae before transformation to
DSNFCL, the performance of CLProver++ improves dramatically, to near zero
time, as indicated by the data for ‘CLProver++ (layered modal translation)’ in
Figure 3. CLProver also shows a considerable improvement while, as one would
expect, TATL shows no improvement, as indicated by the data for ‘CLProver
(layered modal translation)’ and ‘TATL (layered mod. trans.)’, respectively.

Regarding B2, we see the expected decline in the proportion of satisfiable
formulae as the number L of conjuncts in the formulae increases. This class
proves to be very easy for CLProver++ while CLProver and TATL take increasingly
more time to solve formulae as L increases and the number of formulae that can
be solved within the time limit drops sharply. The runtime of TATL appears
to be dominated by the time required for the construction phase and pre-state
deletion phase, meaning satisfiable formulae are on average not solved faster than
unsatisfiable formulae of the same size. On more challenging formulae than those
in B1 and B2, CLProver++ is, as expected, considerably faster on unsatisfiable
formulae than on satisfiable formulae. In contrast, CLProver has no heuristics to
guide its search for a refutation, so, just as for TATL, unsatisfiable formulae are
not solved significantly faster than satisfiable formulae of the same size.

It is clear from Figures 3 and 4 that CLProver++ performs much better than
CLProver. To understand the contribution made by the ordering refinement, we
look at the number of inferences performed by each of the two provers on for-
mulae from B2 in unit DSNFCL solved by both provers when using the same
function to select the next clause for resolution inferences. The difference in the
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Inferences by
Size Solved CLProver CLProver++ Ratio

2 100 1335 176 7.6
4 100 9475 969 9.8
6 100 39220 2046 19.2
8 100 169707 3357 50.6

10 100 394952 4824 81.9
12 100 1835089 6746 272.0

Inferences by
Size Solved CLProver CLProver++ Ratio

14 98 2519336 8766 287.4
16 93 5098117 10300 495.0
18 64 4299430 9145 470.1
20 29 1743043 4788 364.0
22 30 1879064 6173 304.4
24 16 1008285 3749 269.0

Figure 5. Total number of inferences by CLProver and CLProver++ on B2.

number of inferences performed by CLProver and CLProver++ is independent of
the differences between DSNFCL and DSNFVCL, the different programming lan-
guages used for the implementation of the provers, the different data structures
they use to store clauses, and, as far as this is possible, their heuristics for se-
lecting clauses. Figure 5 shows that, on average, CLProver++ performs 220 times
fewer inferences than CLProver.

6 Conclusion and Future Work

We have described a calculus RES�CL based on ordered resolution for Coalition
Logic and sketched proofs of its soundness and completeness. We have also shown
that any derivation by RES�CL terminates. The prover CLProver++ provides an
implementation of RES�CL. Our evaluation of CLProver++ indicates that the or-
dering refinement improves performance by several orders of magnitude com-
pared to unrefined resolution as implemented in CLProver. Our evaluation also
shows that similar improvements can be gained by optimising the normal form
transformation that is used to obtain coalition problems from CL formulae.

Our work on Coalition Logic is a first step towards the development of resolu-
tion calculi for more expressive logics for reasoning about the strategic abilities of
coalitions of agents. A wide variety of such logics can be found in the literature,
starting with Alternating-Time Temporal Logic ATL. The notion of coalition
vectors that we have introduced in this paper are closely related to the notion
of k-actions in Coalition Action Logic [5] and to the notion of commitment
functions in ATLES [22]. We believe that the combination of the techniques de-
veloped in this paper with the techniques for temporal logics with eventualities
provide a good basis for the development of effective calculi for logics such as
ATL, Coalition Action Logic and ATLES.
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