A Comparison of Solvers for Propositional Dynamic Logic

Ullrich Hustadt
Department of Computer Science, University of Liverpoaverpool, UK
U.Hustadt@liverpool.ac.uk
Renate A. Schmidt
School of Computer Science, The University of Manchest&r, U
Renate.Schmidt@manchester.ac.uk

Abstract

Calculi for propositional dynamic logics have been invgstéd since the introduction of this
logic in the late seventies. Only in recent years have pralgirocedures been suggested and imple-
mented. In this paper, we compare three such systems, namelyableau Workbench by Abate,
Goré, and Widmann (2009), thmdIProver system by Goré and Widmann (2009), and the ML-
SOLVER system by Friedmann and Lange (2009).

1 Introduction

Propositional dynamic logic (PDL) is an expressive logicreasoning about programs and actidns [7].
Initially intended for program verification, it has foundmigations in a wide range of areas including
verification of rule-based expert systems, synthesis ofpumite web services, and the formalisation of
multi-agent systems.

In recent years there has been renewed interest in PDL apdrticular, in complexity optimal cal-
culi and implementations of theorem provers for PDL [10/36], The aim of this paper is to investigate
the effectiveness of the current generation of PDL decipracedures. In particular, we are interested in
evaluating two features recently introduced into suchesyst namely, caching and on-the-fly eventuality
checking. To this end we introduce two classes of benchnuaraulae for PDL and test the performance
of three implemented PDL decision procedures on them.

In Sectio® we give a brief definition of the syntax and seiardf PDL. In Sectiofil3 we discuss
the earliest decision procedures for PDL while in Sedilonedde the same for the most recent efforts
to develop efficient calculi and implemented systems. Inti8e@ we then describe two classes of
benchmark formulae that we have used to compare these syst8ectior[I6 presents the results of
benchmarking the Tableau Workbengil|Prover, and MLSOLVER on these two classes.

2 Propositional dynamic logic

The language of PDL is defined over a countableAdet= {p,q,...} of propositional variablesand a
countable sebA = {a,b,c,...} of atomic actions The connectives of PDL are the Boolean connectives
-, A, V, the dynamic logic connectives, ; *, ?, and the modal operator$ and(_).

The setF of formulaeandA of action formulaeare the smallest sets such thatAi) C A, AP C F,
(i) if ¢ andy are formulae irF anda andf are action formulae iA then¢?,a*, aU S, a ;B are action
formulae inA and—¢, ¢ A, [a]¢, and(a)¢ are formulae irF. Additional connections including,
1, V, and— are defined as usual.

The semantics of PDL is based on Kripke structuresfrafneis a pair(W,R) whereW is a non-
empty set ofvorldsandR s a function that maps each atomic act@to a binary relatiorR(a) overW.
A model(W,R,1) consists of a framéW, R) together with arinterpretation function lthat maps each

U.Hustadt@liverpool.ac.uk
Renate.Schmidt@manchester.ac.uk

A Comparison of Solvers for Propositional Dynamic Logic kuk and Schmidt

propositional variable to a setl (p) of worlds. The function®k andl can then be extended to arbitrary
action formulae and formulae as follows:

1(=¢) =W—1(¢) g Ay)=1(g)N1(Y)

I ([a]¢) = {w|YWeW.(w,v) e R(a) —vel(d)}
[((a)p) ={w|Ive W.(w,v) e Rla)Avel(P)}

R(¢?) ={(ww)|wel(¢)} R(aUB) =R(a)UR(B)
R(a;B)={(w,v)|JFueW.(w,u) € R(a) A (u,v) e R(B)}

R(a*) = {(w,v)|3n € N3ug,...,un e W.(Up = WA U, =VAVL<i<n-—1(u,u1)€R(a)}

Given a modelW,R 1) and a formulag, we say¢ is true at a world we W iff we 1(¢). A model
(W,R1) satisfiesa formula¢ iff 1(¢) is non-empty. In this case we also say thais satisfiable in
(W,R1). A formula ¢ is satisfiableiff there exists a modeW, R, |) satisfyingé.

As is described in more detail in the following two sectiogsien a formulag, tableau-based deci-
sion procedures for PDL try to build a representation of aehsdtisfyingg. Such a representation can
be viewed as a directed graph whose nodes represent woddghmse edges represent, and are labelled
with, atomic actions linking two worlds. The nodes of thegirare not just labelled with propositional
variables, but are also labelled with PDL formulae. Therided meaning is that each of the formulae
labelling a noden is true at the world represented bylf two nodesn andn’ are connected via a directed
edge fromn to n’ labelled with an atomic actioa, then we say that’ is a-reachable fronrm. Given the
labelling of nodes and edges, we can extend this notion chedality to arbitrary action formulae.

A particular problem in the construction of a model graphswrecalledeventualities Eventualities
are formulae of the formja*)¢. Suppose a node in the model graph is labelled with an eventuality
(a*)¢. In order for the graph to represent a model in whiati)¢ is true at the world represented by
n, we need a nodg’ in the graph which igr-reachable fromn and which is labelled with the formula
¢. In the absence of such a node our model will not adhere tatitie ¢conditions fora*)¢ as set out
by the semantics of PDL. In such a situatido,”) ¢ is also called amnfulfilled eventuality Detecting
unfulfilled eventualities as early as possible in the cartsion process is a key concern for PDL decision
procedures.

3 Early PDL decision procedures

Decision procedures for the satisfiability problem for PDerefirst presented by Fischer and Ladner
[[] and Pratt[1lF]. The satisfiability problem for PDL is EXRME-complete and already the decision
procedure by Pratt[17] was complexity optimal.

Pratt's procedure proceeds in stages. Given a formulagifirdt stage a directed graph is constructed
with each node being labelled with a set of (labelled) foeulThe construction ensures that there are
no two nodes with the same labelling set and that the numberdsds is at most exponential in the size of
the given formula. The graph represents a class of potentdkls of the given formula, but may contain
nodes and subgraphs which cannot occur in a model, for exampdles labelled with inconsistent sets
of formulae or subgraphs with unfulfilled eventualities.sisequent stages these are deleted from the
graph. The given formula is satisfiable iff a non-empty gregahains after all necessary deletions have
been performed. The construction stage of the procedurdeaompleted in exponential time in the
size of the given formula, each deletion step requires otyal time in the size of the graph obtained
from the construction stage, and there can be at most as nedetyod stages as there are nodes in the
graph. Overall, this leads to an EXPTIME decision procedure

2

A Comparison of Solvers for Propositional Dynamic Logic kuk and Schmidt

Pratt’'s method has drawbacks which make it impractical fiot af applications. Most importantly,
the initial construction stage can lead to a structure obagptial size even if the satisfiability or un-
satisfiability of the given formula only depends on a smatiggaph of the whole structure. This means
that by the time the procedure enters the second stage, andateat the satisfiability or unsatisfiability
relatively quickly, exponential effort has already beepended on the construction stage.

The tableau calculus for PDL and Converse PDL by De Giacondovemssaccil[] aims to address
this problem. It uses a more traditional approach in whicbéeu tree is constructed and explored using
depth-first, left-to-right search. Each branch of the tegra@sents a single candidate model. Proposition-
ally inconsistent sets of formulae are recognised immelgiathile a check for unfulfilled eventualities
is conducted as soon as the construction of a candidate risodempleted. This approach leads to a
NEXPTIME algorithm. De Giacomo and Massacci claim thatistpthe whole tableau tree, instead of
just a branch, the re-use of tableau nodes across differantlbes of the tableau, and an “on-the-fly”
propagation of information about unsatisfiable sets of foam leads to an EXPTIME algorithm. In this
approach a check for fulfilled and unfulfilled eventualitissstill necessary. Important details of this
check are however missing inl [6].

4 Current PDL calculi and systems

An approach combining features of both Pratt's procedui e Giacomo and Massacci’'s tableau
calculus is the on-the-fly tableau-based decision proecbyrAbate, Goré and Widmanhl [3]. The pro-
cedure constructs a tableau tree where nodes are not oeljeldlwith sets of formulae but also with
so-called histories and variables. Histories are useddegnt cyclic applications of the tableau rules.
Variables pass information from child nodes to parent nphgsarticular, information about the satisfi-
ability status of a node and information about unfulfillee@etualities. The rules of the calculus specify
how the formula sets of child nodes are computed from the ditarset of a parent node as well as how
the values of variables of a parent node are computed fromatlies of the corresponding variables in
its child nodes. Side conditions on the rules ensure thatfirdte branches are constructed thus ensuring
termination. Since branches can be at worst exponentiatlg,la tableau can be of double exponential
size. Overall, this results in a 2EXPTIME algorithm. The lealn Workbench (TWB)11.12] includes an
implementation of a this algorithm.

In its tableau construction the procedure by Abate, Godd/diimann is close to that of De Giacomo
and Massacci. However, an important difference betweeitvibds the way the check for unfulfilled
eventualities is performed. In the tableau calculus of Dac@mno and Massacci, this check can be
performed as soon as the construction of one branch of theatalis completed. The check takes into
account information from all the nodes in that branch. If mdulfilled eventualities are found (and
none of the nodes is labelled with an inconsistent set of fitaie), then the candidate model associated
with the branch is indeed a model for the given PDL formula. wieeer, if the check identifies an
unfulfilled eventuality, then the construction moves to #araative branch of the tableau and another
check for unfulfilled eventualities takes place as soonsasanstruction is completed. Since branches
share nodes, this means that nodes will be considered aghegain in consecutive checks. In contrast,
the tableau calculus of Abate, Goré, and Widmann usesnvition passed from child nodes to parent
nodes through variables in order to compute whether therardulfilled eventualities. The advantage is
that the computation is only done once for each node. Howthedisadvantage is that the computation
can only take place when the information required for the ataion is available for all child nodes.
This also includes the case where the child nodes are geddgitapplication of 8-rule, e.g., a rule
performing a case distinction for a disjunctive formula.nSequently, the value of the variable used for
the check for unfulfilled eventualities associated with tbet node can potentially only be determined

3

A Comparison of Solvers for Propositional Dynamic Logic kuk and Schmidt

once the whole tableau has been constructed. Thus, whilehttek for unfulfilled eventualities is not
separated into a separate stage of the procedure, theldanaliour is quite similar to that of Pratt’s
procedure.

The PDL decision procedure by Goré and Widman [13] desifitem the classical tableau approach
by constructing an and-or graph instead of a tree. Againsiade labelled by sets of formulae plus ad-
ditional attributes recording the satisfiability statusaafode, information on which eventualities present
in the set of formulae associated with the node have beemdergan the node, and which nodes might
potentially be used to fulfil each of the eventualities. Thastruction process ensures that there are no
two nodes with the same set of formulae and the same set diualigies expanded in the node. That is,
whenever the application of a tableau rule generates a $etrntilae and set of expanded eventualities
already present in the graph, the corresponding node isaé;a technique also calledching As there
are at worst an exponential number of distinct sets of foamand sets of eventualities generated by the
tableau rules, the size of the and-or graph is at worst exgi@he Just as in the tableau-based decision
procedure by Abate, Goré and Widmaihh [3] the value of thébates for the satisfiability status of a
node and for the information which nodes might potentiaiyused to fulfil each of the eventualities are
computed taking into account information on its successden. The way in which this information is
computed appears to differ in that an unsatisfiable statpsogagated earlier, but there is no detailed
description of the process in|13]. The overall result is 2PEIME decision procedure. TpgdIProver
system[[1R] provides an implementation of that procedure.

LoTREC 2.0[[11[.1B] is a generic tableau-based system fddibgimodels of formulae in modal and
description logics. It includes a module for PDL, howevegannot be used as a ‘black-box’ decision
procedure like the other systems and is consequently nloiied in our comparison.

Finally, Friedmann and Lang& [10] have proposed a platfamnsétisfiability checking for various
modal fixpoint logics, including PDL. Given a formula theip@oach generates a parity game as a
product of a tableau for the formula and a deterministic maton recognising ‘bad branches’ in the
tableau. The satisfiability of the formula is then deterrdify solving the parity game. A generator
for these parity games and a solver for them are implememte¢dei MLSOLVER system [[8] and the
PGSOLVER [9] system, respectively.

5 Benchmark formulaefor PDL

Benchmarking implemented systems for non-classical $ogicot easy. The number of non-classical
logics far outstrips the number of available implementedsien procedures. While each logic is usually
reasonably well-motivated by potential applications,|#uk of implemented systems usually means that
there is no motivation to formalise a large number of proldeémone of these logics. Commonly, all
one can find is a small number of illustrative formalisatiofigroblems. In the worst case, all one can
find is an axiomatisation of the logic which allows one to usgances of the axioms to be used as test
cases for an implemented decision procedure. Neithetriitige formalisations nor instances of axioms
typically turn out to be particularly challenging and do atfow us to infer much about the properties of
the implemented systems.

As an alternative to using real world problems, Balsigeruétding, and Schwendimanh! [5] sug-
gested the use of synthetic benchmarks consisting of sstsatdble formulae. The selection of suitable
benchmarks was supposed to be guided by the following jpiex:i (i) the benchmark sets should contain
provable as well as non-provable formulae; (ii) the benatinsats should vary in structure; (iii) some
of the benchmark sets should be hard enough for future decsiocedures; (iv) for each formula the
satisfiability status should be known; (v) simple ‘trick$iosild not help to solve the formulae; (vi) a
‘complete test’ should be possible in reasonable time; &iidi should be possible to concisely sum-

4

A Comparison of Solvers for Propositional Dynamic Logic kuk and Schmidt

marise the benchmarking results.

In particular, for each of the modal logics K, KT, and S4 thegpgomsed nine sets of scalable sat-
isfiable formulae and nine sets of scalable unsatisfiabladtare. These benchmark sets were used in
a comparison of decision procedures for modal logics caeduin conjunction with the TABLEAUX
conference in 199¢ [4]. Based on the benchmark resultsredgtaby the various systems at the time,
it appears that the benchmark sets have shortcomings negdie three most important of the seven
principles, namely, (iii), (v), and (vii). In particulart iurned out that most of the 18 sets of benchmark
formulae were easily solvable. The reason seemed to behse benchmark formulae were amenable
to techniques like Boolean constraint propagation, naublogical backtracking or the use of proof
methods not based on tableau calculi, e.g., translatiohadstand resolution methods. A few bench-
mark sets were hard for all the systems involved, for exanmideeon hole formulae disguised by adding
occurrences of modal operators. Pigeon hole formulae avevkito possess only exponential length
refutation in most calculi and obtaining shorter proofsuiegs conceptually different methods, e.g., the
use of cutting plane proof methods. Another problem is tHatanthe results of performance tests for the
eighteen classes can be easily summarised, there is naentffidine-grained metric, which one could
use to say that one system performs better than anotherngrajegiven the number of benchmark sets
the most likely situation is that a system performs sligliter on some and slightly worse on others.
For example, in 1998 none of the systems participating irctmeparison outperformed all others on all
benchmarks sets.

A consequence of these problems is that these benchmarklé®rdo not provide a motivation for
developers of modal theorem provers to further improve gystems. If the system is already reasonably
well-developed, then it will solve most of the benchmarkniaiae easily. Those that remain hard seem
to require other methods than the automata, tableau, olutesomethods that most modal theorem
provers are based on.

In [15], we have proposed an alternative benchmarking ambr,ocalledscientific benchmarkingr
hypothesis-driven benchmarkiniy this approach benchmark problems are chosen to verifytecplar
hypothesis concerning the decision procedures underdsmasion.

In the following, we want to test two hypotheses for the PDlvers TWB, pdIProver and ML-
SOLVER. The first hypothesis concerns the type of formulae for wiitghre-use of nodes in a tableau
construction is advantageous. This should be the case iiuh#er of distinct nodes in a tableau is
rather small, but without caching the tableau would stilté@ther large. The second hypothesis concerns
the drawbacks of the two stage approaches or approacheb edniconly determine the satisfiability of
a formula once a tableau has been fully explored.

To test these hypotheses, we re-use two classes of benclionarilae originally introduced for
propositional linear time temporal logic (PLTL) in[15], taeformulated for PDL. The first clasg;p, ,
consists of formulae of the form

[@j(@TAfa](j@Liv...v[aL) A...Afa]([@Li V... v[aL})
Afa](=paV (@) p2) Ala](—p2 V(@) ps) A ... Afa](=pn V (a") pa),

while the second clas$;,, , consists of formulae of the form

[@J@TA(rvVLIV.. VLY AL A (i VLIV VL) A (-r1Van)

A(=rLV =an) A (=rpVi[ars) Al (-rp-aV[am) A... Ala](-riV[ara)
Aa](=rnV[al=gn) A AT (511 V [8]=0n) AT (-a V(@7 s2)

A@](-s2vaaViaan V... v[ads) A... Afa](=0n-1V (@)s) A[a7](=%h V Gn).

For benchmarking purposes, thif, LL are propositional literals generated by choosingjstinct
variables randomly from a s¢ps, ..., pn} of n propositional variables and by determining the polarity

5

A Comparison of Solvers for Propositional Dynamic Logic kuk and Schmidt

of each literal with probabilityp. The remainder of each formula only depends on the parameter
To use these formulae for benchmarking purposes we fix trenptersk, n and p. Then, for each of
the values of between 1 andr8we have generated a test set of 100 formulae, which are tésted
satisfiability using the various systems under considamatsimilar to randonkSAT formulae, formulae
in ¢35 and%3;,, are likely to be satisfiable if the numbeéis small and likely to be unsatisfiabledfis
large.

Most of the observations made in_[15] about the correspen&iTL formulae carry over to their
PDL counterparts. For example, if a formulad@y, is satisfiable, then it is satisfiable in a model with
justnworlds. If a formula in62,, is satisfiable, then it is satisfiable in a model with just oreldand
r1 has to be false at that world.

Given these model-theoretic insights about the formuleey satisfiability is relatively easy to check,
in particular, they are as easy to solve as propositikBAIT formulae oven propositional variables. But
the classes are constructed in such a way that PDL decisamegures, which have to rely on proof-
theoretic means, find them challenging.

In the case ofé7p,, each formulag, in it imposes a uniform set of constraints on all worlds of a
model which gives little guidance in the search for a satigfynodel. Furthermore, if the propositional
formula(LIv... VLY A.. A (L] V... VL) is satisfiable, then potentially every sequence of safigfyi
truth assignments for this formula could be a mad#l of ¢;. Only when we check whether all even-
tualities (a*) p; are satisfied within#; will we know that our search for a model has been successful.
We thus expect that naive tableau-based systems and sysithidls like Pratt’'s method only perform an
eventuality check after some exhaustive search for catedidadels, will perform poorly. On the other
hand, decision procedures which use caching should be @ldde advantage of the small number of
distinct truth assignments that exist for, . . ., pn.

The classé2,, is meant to illustrate how quickly a tableau-based systemfical a model for a
formula provided it makes the right choices for disjunctivemulae and how efficiently it can recover
from making the wrong choices. Decision procedures whiahai$wo stage approach or which can
only determine the satisfiability of a formula once a tableas been fully explored will always consider
the part of the tableau on which the propositional variahlés true. However, constructing this part
of the tableau is computationally costly and fruitless asmardel can be constructed in which is
true. In contrast, a decision procedure which can test datelimodels one by one, and happens to first
consider models in whichy is false, will quickly find a model for satisfiable formulaethis class. For
unsatisfiable formulae we do not expect to see a significffiereince between the two types of decision
procedures as both would need to consider the two casgdefng true and; being false.

The class can also be used to illustrate problems with ®amsf variable selection heuristics used
in SAT solvers to more complex logics. Commonly used heosstelect the variable with the highest
number of occurrences first. #{%,, this is the variable; . If in addition, the first truth assignment used
is the one which maximises the number of clauses that aidiedtitherr, will be made true first. The
fallacy here is to focus solely on a Boolean abstraction ofdahformula. This ignores that in modal
logics not all indecomposable subformulae are ‘equal’.

6 Benchmarking results

We conducted the benchmarks with the Tableau WorkbepdliRrover and MLSOLVER on the two
classest;p, and%3,, . The benchmarks were performed on PCs with Intel Core 2 DUOEEPU @
2.13GHz with 3GB main memory using Fedora 11. For each iddadi satisfiability test a time-limit of
1000 CPU seconds was used.

In all experiments, for both classes, the paramétensand p were fixed to 3, 5, and.B, respectively.

6

A Comparison of Solvers for Propositional Dynamic Logic kuk and Schmidt

%P (n=5,k=3,p=0.5) %2, (n=5k=3,p=0.5)

100 - 100 -

80 80

60 60

40 b 40t

20 20

0 1 2 3 4 5 6 7 8
Ratio | over n

Ratio | over n

Figure 1: Satisfiability of formulae i35, and% 2,

Remember that the satisfiability problem of propositioraAZ formula is solvable in polynomial time.
So, fork = 2, the satisfiability problem ¢35, and%3;, is also solvable in polynomial time ad= 3 is
the minimal value fok that ensures that the satisfiability problen¥gf,, and32,, is NP-complete. The
particular choice op means that the randomly generated literals in our formutae lan equal proba-
bility of being positive or negative. Regarding the paramnet the number of propositional variables we
can use in our formulae, note that foe= 3 there is only one way of choositkg= 3 distinct propositional
variables. Fon = 5 there are ten different ways of choosing three distingppsdgional variables, which
in turn allows us to build a sufficiently large number of distiformulae for our experiments.

Figure[l shows the percentage of satisfiable formulagii and%2y, for these parameter values.
For 43, We see that for ratiog/n smaller than 2 almost all formulae are satisfiable while &dios
¢/n greater than 5 almost all formulae are unsatisfiable. Farsrétn between 2 and 5 we see a phase
transition in the satisfiability of formulae. For a ratign equal to 3.4 half the formulae are satisfiable.
For ¢35, we see that for ratio&/n smaller than 3.5 almost all formulae are satisfiable and forly/n
greater than 8.0 almost all formulae are unsatisfiable. Herethe ratio//n equal to 5.7 half of the

1 - — - 2 — — —
Gpp (N=5,k=3,p=0.5) %ppL (N=5,k=3,p=0.5)
' ' ' TWB (PDL module) —v— ' ' ' ' TWB (PDL module) —v—
pdIProver —&— pdIProver —&6—
MLSolver —e— MLSolver ——
1000 £ | AAAASEEEA S AS vy —o 2 4 1000 @ ° ° e — 9 0 0 0 0000 ®
‘ o 0%¢00°®®
|
w00t | 1 100 1
|
‘\ po—o—H4
2 \ g _— ¢4
& 10F | & 10—
£ i £
[[
£ q £
2 1o u
O O
ol W a
0.01 F 0.01 F
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Ratio of | over n Ratio of | over n

Figure 2: Performance of the decision procedures

A Comparison of Solvers for Propositional Dynamic Logic kuk and Schmidt

formulae are satisfiable.

Figure[2 shows the median CPU time graphs for all three proesdoné?,, and %2, . In each
graph the vertical line indicates the rafign at which test sets contain 50% satisfiable and 50% unsatis-
fiable formulae.

As can be seen in Figulé 27, separatepdIProver, the only system which uses caching, from the
other two. As suggested, caching allows a prover to takerdgdga of the uniformity of the constraints
imposed on the worlds of a model by formulae4#, . Thus, the good performance péliProver
on this class was predictable. The absence of similar ogditioins in the PDL module of the Tableau
Workbench and in MLBLVER are the most likely explanation for their poor performanegwever,
even then one might have expected both systems to be abléveofeamulae iné;3, with £/n > 6,
which are almost all unsatisfiable and have a very constizane limited search space for models.

For%,gDL the ideal system has negligible median runtime/for< 5.7, as up to this point the majority
of formulae is satisfiable and a model for a satisfiable foencain easily be found. OnpdIProver could
be ‘guided’ to behave in the expected way (by inputting fdameun the ‘right’ form, that is, exactly the
form given on paggl5; changing the order of conjuncts or therof disjuncts within each conjunction
seems to lead to worse results) and to make the right chaidbe imodel construction up tfn < 5.4
that is almost ‘optimal’. In contrast, the Tableau Workbdemnd MLSOLVER fail to show a similar
behaviour. For ML®LVER we also observe a marked difference betwegg, and%;2, . While for
%2, MLSOLVER was able to solve the majority of formulae for each rdfia, on 62, the opposite
is true and it solved not a single formula in this class. Orhbmasses the behaviour of the Tableau
Workbench and MLBLVER is as expected.

Figure[3 shows the CPU time percentile graphs for the thres)s or63,, and%2y, . The graphs
provide additional insight into their behaviour. The xsakidicates the ratié/n as in previous figures.
The y-axis indicates the percentile, from 10th percenti¢aithe 100th percentile. The 50th percentile
corresponds to the median shown in Fiddre 2. The z-axisatekcthe CPU time. In particular, for ML-
SoLVER andpdIProver the graphs confirm our expectations. As a two stage procetha@erformance
of MLSOLVER does not greatly depend on whether a formula is satisfiahlasatisfiable. Similarly, for
pdIProver on %;3p,, there is little variation in the performance of the syste#owever, caching allows
pdIProver to perform much better than ML VER. In contrast, oﬁngL the performance gidIProver
is closely related to whether a formula is satisfiable or Wde clearly see that in Figufé 3 that as the
percentage of unsatisfiable formulae increases so doetbenpage of formulae for whighdIProver
needs non-negligible time (more than 40 CPU seconds) te sham.

Overall, pdIProver shows the best performance on these two classes of PDL faemiihe experi-
ments illustrate the importance of caching and of detectatgsfiability as early as possible. In addition,
the experiments show that the two classes of benchmark faenauiginally devised for PLTL are also
useful for 'black-box’ performance evaluations of PDL sats.

7 Conclusion

In this paper we presented benchmarking results for threkemented system for the satisfiability prob-
lem in propositional dynamic logic following the hypothesiriven benchmarking methodology.

The benchmarks presented were intended to test two hymstties PDL solvers, namely, (i) that
caching is important to control the search space of a systath(ii) that the possibility of early detection
of satisfiability is an essential feature of an efficient P@Llver. The benchmark results seem to support
the validity of both hypotheses.

An additional aim of the hypothesis-driven benchmarkinghudology is to highlight strengths and
weaknesses of particular methods or systems and the berichesalts clearly do so as well.

8

A Comparison of Solvers for Propositional Dynamic Logic khat and Schmidt

©pp1 (=5,k=3,p=0.5) %3 (n=5,k=3,p=0.5)

TWB (PDL module) TWB (PDL module)

pdiProver pdiProver

MLSolver MLSolver

1010
1005
1000
995

990

Figure 3: CPU time percentile graphs

Finally, the benchmarking approach is intended to motiimfdementers to improve their systems.
By using formulae for benchmarking whose satisfiability nsatisfiability is far easier to detect than the
worst-case complexity of the satisfiability problem for PBliggests, there is little excuse for a system
to perform badly on these.

References

[1] P. Abate and R. Goré. The Tableau Workbench (TWHB)tp://twb.rsise.anu.edu.au/.
[2] P. Abate and R. Goré. The Tableau WorkberErectron. Notes Theor. Comput. S&@31:55-67, 2009.

9

http://twb.rsise.anu.edu.au/

A Comparison of Solvers for Propositional Dynamic Logic kuk and Schmidt

(3]
[4]

[5]
[6]
[7]
(8]
(9]
[10]

[11]

[12]
[13]

[14]
[15]

[16]
[17]

[18]

P. Abate, R. Goré, and F. Widmann. An on-the-fly tabléased decision procedure for PDL-satisfiability.
Electr. Notes Theor. Comput. S@31:191-209, 2009.

P. Balsiger and A. Heuerding. Comparison of theorem grevor modal logics: Introduction and summary.
In Harrie de Swart, editoAutomated reasoning with analytic tableaux and relatedhmés: international
conference (TABLEAUX '98Yyolume 1397 of NAI, pages 25—-26. Springer, 1998.

P. Balsiger, A. Heuerding, and S. Schwendimann. A berashmrmethod for the propositional modal logics
k, kt, s4.J. Autom. Reasonin@4(3):297-317, 2000.

G. De Giacomo and F. Massacci. Combining deduction andehchecking into tableaux and algorithms for
converse-PDLInfo. and Comp.162:117-137, 2000.

M. J. Fischer and R. Ladner. Propositional dynamic lagficegular programsJ. Comp. and System Sci.
18:194-211, 1979.

O. Friedmann and M. Lange. MLEBVER. http://www2.tcs.ifi.1lmu.de/mlsolver/,
O. Friedmann and M. Lange. P@SVER. http://www2.tcs.ifi.1lmu.de/pgsolver/.

O. Friedmann and M. Lange. A solver for modal fixpointilsy InPrelim. Proc. M4M-6 pages 176-187.
Roskilde University, Denmark, 2009.

0. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREGQgical tableaux research engineering com-
panion. InProc. TABLEAUX'05volume 3702 of-NAl, pages 318-322. Springer, 2005.

R. Goré and F. WidmanmdIProver. http://users.cecs.anu.edu.au/ rpg/PDLProvers/.

R. Goré and F. Widmann. An optimal on-the-fly tableaséd decision procedure for PDL-satisfiability. In
Proc. CADE-22volume 5663 oL NCS pages 437—-452, 2009.

B. Hill and F. Poggiolesi. A contraction-free and cugd sequent calculus for propositional dynamic logic.
Studia Logica94(1):47-72, 2010.

U. Hustadt and R. A. Schmidt. Scientific benchmarkingwtemporal logic decision procedures. Rroc.
KR2002 pages 533-544. Morgan Kaufmann, 2002.

L. A. Nguyen and A. Szalas. Optimal tableau decisiorcprures for pdiICoRR abs/0904.0721, 2009.

V. R. Pratt. A near-optiomal method for reasoning abaetions. J. Comp. and System S0:231-254,
1980.

B. Said. LOTREC generic tableau provettp://wuw.irit.fr/Lotrec/.

10

http://www2.tcs.ifi.lmu.de/mlsolver/
http://www2.tcs.ifi.lmu.de/pgsolver/
http://users.cecs.anu.edu.au/~rpg/PDLProvers/
http://www.irit.fr/Lotrec/

	Introduction
	Propositional dynamic logic
	Early PDL decision procedures
	Current PDL calculi and systems
	Benchmark formulae for PDL
	Benchmarking results
	Conclusion

