
A Comparison of Solvers for Propositional Dynamic Logic
Ullrich Hustadt

Department of Computer Science, University of Liverpool, Liverpool, UK
U.Hustadt@liverpool.ac.uk

Renate A. Schmidt
School of Computer Science, The University of Manchester, UK

Renate.Schmidt@manchester.ac.uk

Abstract

Calculi for propositional dynamic logics have been investigated since the introduction of this
logic in the late seventies. Only in recent years have practical procedures been suggested and imple-
mented. In this paper, we compare three such systems, namely, the Tableau Workbench by Abate,
Goré, and Widmann (2009), thepdlProver system by Goré and Widmann (2009), and the ML-
SOLVER system by Friedmann and Lange (2009).

1 Introduction

Propositional dynamic logic (PDL) is an expressive logic for reasoning about programs and actions [7].
Initially intended for program verification, it has found applications in a wide range of areas including
verification of rule-based expert systems, synthesis of composite web services, and the formalisation of
multi-agent systems.

In recent years there has been renewed interest in PDL and, inparticular, in complexity optimal cal-
culi and implementations of theorem provers for PDL [10, 13,16]. The aim of this paper is to investigate
the effectiveness of the current generation of PDL decisionprocedures. In particular, we are interested in
evaluating two features recently introduced into such systems, namely, caching and on-the-fly eventuality
checking. To this end we introduce two classes of benchmark formulae for PDL and test the performance
of three implemented PDL decision procedures on them.

In Section 2 we give a brief definition of the syntax and semantics of PDL. In Section 3 we discuss
the earliest decision procedures for PDL while in Section 4 we do the same for the most recent efforts
to develop efficient calculi and implemented systems. In Section 5 we then describe two classes of
benchmark formulae that we have used to compare these systems. Section 6 presents the results of
benchmarking the Tableau Workbench,pdlProver, and MLSOLVER on these two classes.

2 Propositional dynamic logic

The language of PDL is defined over a countable setAP = {p,q, . . .} of propositional variablesand a
countable setAA = {a,b,c, . . .} of atomic actions. The connectives of PDL are the Boolean connectives
¬, ∧, ∨, the dynamic logic connectives∨, ; ∗, ?, and the modal operators[] and〈 〉.

The setF of formulaeandA of action formulaeare the smallest sets such that (i)AA ⊆ A, AP ⊆ F,
(ii) if ϕ andψ are formulae inF andα andβ are action formulae inA thenϕ?,α∗, α∪β , α ;β are action
formulae inA and¬ϕ , ϕ ∧ψ , [α]ϕ , and〈α〉ϕ are formulae inF. Additional connections including⊤,
⊥, ∨, and→ are defined as usual.

The semantics of PDL is based on Kripke structures. Aframe is a pair(W,R) whereW is a non-
empty set ofworldsandR is a function that maps each atomic actiona to a binary relationR(a) overW.
A model(W,R, I) consists of a frame(W,R) together with aninterpretation function Ithat maps each

1

U.Hustadt@liverpool.ac.uk
Renate.Schmidt@manchester.ac.uk

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

propositional variablep to a setI(p) of worlds. The functionsR andI can then be extended to arbitrary
action formulae and formulae as follows:

I(¬ϕ) = W− I(ϕ) I(ϕ ∧ψ) = I(ϕ)∩ I(ψ)

I([α]ϕ) = {w|∀v∈W.(w,v) ∈ R(α) → v∈ I(ϕ)}

I(〈α〉ϕ) = {w|∃v∈W.(w,v) ∈ R(α)∧v∈ I(ϕ)}

R(ϕ?) = {(w,w) |w∈ I(ϕ)} R(α ∪β) = R(α)∪R(β)

R(α ;β) = {(w,v) |∃u∈W.(w,u) ∈ R(α)∧ (u,v) ∈ R(β)}

R(α∗) = {(w,v) |∃n∈ N∃u0, . . . ,un ∈W.(u0 = w∧un = v∧∀1≤ i ≤ n−1.(ui ,ui+1) ∈ R(α)}

Given a model(W,R, I) and a formulaϕ , we sayϕ is true at a world w∈ W iff w ∈ I(ϕ). A model
(W,R, I) satisfiesa formulaϕ iff I(ϕ) is non-empty. In this case we also say thatϕ is satisfiable in
(W,R, I). A formulaϕ is satisfiableiff there exists a model(W,R, I) satisfyingϕ .

As is described in more detail in the following two sections,given a formulaϕ , tableau-based deci-
sion procedures for PDL try to build a representation of a model satisfyingϕ . Such a representation can
be viewed as a directed graph whose nodes represent worlds and whose edges represent, and are labelled
with, atomic actions linking two worlds. The nodes of the graph are not just labelled with propositional
variables, but are also labelled with PDL formulae. The intended meaning is that each of the formulae
labelling a noden is true at the world represented byn. If two nodesn andn′ are connected via a directed
edge fromn to n′ labelled with an atomic actiona, then we say thatn′ is a-reachable fromn. Given the
labelling of nodes and edges, we can extend this notion of reachability to arbitrary action formulae.

A particular problem in the construction of a model graph areso-calledeventualities. Eventualities
are formulae of the form〈α∗〉ϕ . Suppose a noden in the model graph is labelled with an eventuality
〈α∗〉ϕ . In order for the graph to represent a model in which〈α∗〉ϕ is true at the world represented by
n, we need a noden′ in the graph which isα-reachable fromn and which is labelled with the formula
ϕ . In the absence of such a node our model will not adhere to the truth conditions for〈α∗〉ϕ as set out
by the semantics of PDL. In such a situation,〈α∗〉ϕ is also called anunfulfilled eventuality. Detecting
unfulfilled eventualities as early as possible in the construction process is a key concern for PDL decision
procedures.

3 Early PDL decision procedures

Decision procedures for the satisfiability problem for PDL were first presented by Fischer and Ladner
[7] and Pratt [17]. The satisfiability problem for PDL is EXPTIME-complete and already the decision
procedure by Pratt [17] was complexity optimal.

Pratt’s procedure proceeds in stages. Given a formula, in the first stage a directed graph is constructed
with each node being labelled with a set of (labelled) formulae. The construction ensures that there are
no two nodes with the same labelling set and that the number ofnodes is at most exponential in the size of
the given formula. The graph represents a class of potentialmodels of the given formula, but may contain
nodes and subgraphs which cannot occur in a model, for example, nodes labelled with inconsistent sets
of formulae or subgraphs with unfulfilled eventualities. Insubsequent stages these are deleted from the
graph. The given formula is satisfiable iff a non-empty graphremains after all necessary deletions have
been performed. The construction stage of the procedure canbe completed in exponential time in the
size of the given formula, each deletion step requires polynomial time in the size of the graph obtained
from the construction stage, and there can be at most as many deletion stages as there are nodes in the
graph. Overall, this leads to an EXPTIME decision procedure.

2

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

Pratt’s method has drawbacks which make it impractical for alot of applications. Most importantly,
the initial construction stage can lead to a structure of exponential size even if the satisfiability or un-
satisfiability of the given formula only depends on a small subgraph of the whole structure. This means
that by the time the procedure enters the second stage, and may detect the satisfiability or unsatisfiability
relatively quickly, exponential effort has already been expended on the construction stage.

The tableau calculus for PDL and Converse PDL by De Giacomo and Massacci [6] aims to address
this problem. It uses a more traditional approach in which a tableau tree is constructed and explored using
depth-first, left-to-right search. Each branch of the tree represents a single candidate model. Proposition-
ally inconsistent sets of formulae are recognised immediately while a check for unfulfilled eventualities
is conducted as soon as the construction of a candidate modelis completed. This approach leads to a
NEXPTIME algorithm. De Giacomo and Massacci claim that storing the whole tableau tree, instead of
just a branch, the re-use of tableau nodes across different branches of the tableau, and an “on-the-fly”
propagation of information about unsatisfiable sets of formulae leads to an EXPTIME algorithm. In this
approach a check for fulfilled and unfulfilled eventualitiesis still necessary. Important details of this
check are however missing in [6].

4 Current PDL calculi and systems

An approach combining features of both Pratt’s procedure and De Giacomo and Massacci’s tableau
calculus is the on-the-fly tableau-based decision procedure by Abate, Goré and Widmann [3]. The pro-
cedure constructs a tableau tree where nodes are not only labelled with sets of formulae but also with
so-called histories and variables. Histories are used to prevent cyclic applications of the tableau rules.
Variables pass information from child nodes to parent nodes, in particular, information about the satisfi-
ability status of a node and information about unfulfilled eventualities. The rules of the calculus specify
how the formula sets of child nodes are computed from the formula set of a parent node as well as how
the values of variables of a parent node are computed from thevalues of the corresponding variables in
its child nodes. Side conditions on the rules ensure that no infinite branches are constructed thus ensuring
termination. Since branches can be at worst exponentially long, a tableau can be of double exponential
size. Overall, this results in a 2EXPTIME algorithm. The Tableau Workbench (TWB) [1, 2] includes an
implementation of a this algorithm.

In its tableau construction the procedure by Abate, Goré and Widmann is close to that of De Giacomo
and Massacci. However, an important difference between thetwo is the way the check for unfulfilled
eventualities is performed. In the tableau calculus of De Giacomo and Massacci, this check can be
performed as soon as the construction of one branch of the tableau is completed. The check takes into
account information from all the nodes in that branch. If no unfulfilled eventualities are found (and
none of the nodes is labelled with an inconsistent set of formulae), then the candidate model associated
with the branch is indeed a model for the given PDL formula. However, if the check identifies an
unfulfilled eventuality, then the construction moves to an alternative branch of the tableau and another
check for unfulfilled eventualities takes place as soon as its construction is completed. Since branches
share nodes, this means that nodes will be considered again and again in consecutive checks. In contrast,
the tableau calculus of Abate, Goré, and Widmann uses information passed from child nodes to parent
nodes through variables in order to compute whether there are unfulfilled eventualities. The advantage is
that the computation is only done once for each node. However, the disadvantage is that the computation
can only take place when the information required for the computation is available for all child nodes.
This also includes the case where the child nodes are generated by application of aβ -rule, e.g., a rule
performing a case distinction for a disjunctive formula. Consequently, the value of the variable used for
the check for unfulfilled eventualities associated with theroot node can potentially only be determined

3

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

once the whole tableau has been constructed. Thus, while thecheck for unfulfilled eventualities is not
separated into a separate stage of the procedure, the overall behaviour is quite similar to that of Pratt’s
procedure.

The PDL decision procedure by Goré and Widmann [13] deviates from the classical tableau approach
by constructing an and-or graph instead of a tree. Again nodes are labelled by sets of formulae plus ad-
ditional attributes recording the satisfiability status ofa node, information on which eventualities present
in the set of formulae associated with the node have been expanded in the node, and which nodes might
potentially be used to fulfil each of the eventualities. The construction process ensures that there are no
two nodes with the same set of formulae and the same set of eventualities expanded in the node. That is,
whenever the application of a tableau rule generates a set offormulae and set of expanded eventualities
already present in the graph, the corresponding node is re-used, a technique also calledcaching. As there
are at worst an exponential number of distinct sets of formulae and sets of eventualities generated by the
tableau rules, the size of the and-or graph is at worst exponential. Just as in the tableau-based decision
procedure by Abate, Goré and Widmann [3] the value of the attributes for the satisfiability status of a
node and for the information which nodes might potentially be used to fulfil each of the eventualities are
computed taking into account information on its successor nodes. The way in which this information is
computed appears to differ in that an unsatisfiable status ispropagated earlier, but there is no detailed
description of the process in [13]. The overall result is an EXPTIME decision procedure. ThepdlProver
system [12] provides an implementation of that procedure.

LoTREC 2.0 [11, 18] is a generic tableau-based system for building models of formulae in modal and
description logics. It includes a module for PDL, however, it cannot be used as a ‘black-box’ decision
procedure like the other systems and is consequently not included in our comparison.

Finally, Friedmann and Lange [10] have proposed a platform for satisfiability checking for various
modal fixpoint logics, including PDL. Given a formula their approach generates a parity game as a
product of a tableau for the formula and a deterministic automaton recognising ‘bad branches’ in the
tableau. The satisfiability of the formula is then determined by solving the parity game. A generator
for these parity games and a solver for them are implemented in the MLSOLVER system [8] and the
PGSOLVER [9] system, respectively.

5 Benchmark formulae for PDL

Benchmarking implemented systems for non-classical logics is not easy. The number of non-classical
logics far outstrips the number of available implemented decision procedures. While each logic is usually
reasonably well-motivated by potential applications, thelack of implemented systems usually means that
there is no motivation to formalise a large number of problems in one of these logics. Commonly, all
one can find is a small number of illustrative formalisationsof problems. In the worst case, all one can
find is an axiomatisation of the logic which allows one to use instances of the axioms to be used as test
cases for an implemented decision procedure. Neither illustrative formalisations nor instances of axioms
typically turn out to be particularly challenging and do notallow us to infer much about the properties of
the implemented systems.

As an alternative to using real world problems, Balsiger, Heuerding, and Schwendimann [5] sug-
gested the use of synthetic benchmarks consisting of sets ofscalable formulae. The selection of suitable
benchmarks was supposed to be guided by the following principles: (i) the benchmark sets should contain
provable as well as non-provable formulae; (ii) the benchmark sets should vary in structure; (iii) some
of the benchmark sets should be hard enough for future decision procedures; (iv) for each formula the
satisfiability status should be known; (v) simple ‘tricks’ should not help to solve the formulae; (vi) a
‘complete test’ should be possible in reasonable time; and (vii) it should be possible to concisely sum-

4

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

marise the benchmarking results.
In particular, for each of the modal logics K, KT, and S4 they proposed nine sets of scalable sat-

isfiable formulae and nine sets of scalable unsatisfiable formulae. These benchmark sets were used in
a comparison of decision procedures for modal logics conducted in conjunction with the TABLEAUX
conference in 1998 [4]. Based on the benchmark results obtained by the various systems at the time,
it appears that the benchmark sets have shortcomings regarding the three most important of the seven
principles, namely, (iii), (v), and (vii). In particular, it turned out that most of the 18 sets of benchmark
formulae were easily solvable. The reason seemed to be that these benchmark formulae were amenable
to techniques like Boolean constraint propagation, non-chronological backtracking or the use of proof
methods not based on tableau calculi, e.g., translation methods and resolution methods. A few bench-
mark sets were hard for all the systems involved, for example, pigeon hole formulae disguised by adding
occurrences of modal operators. Pigeon hole formulae are known to possess only exponential length
refutation in most calculi and obtaining shorter proofs requires conceptually different methods, e.g., the
use of cutting plane proof methods. Another problem is that while the results of performance tests for the
eighteen classes can be easily summarised, there is no sufficiently fine-grained metric, which one could
use to say that one system performs better than another. In general, given the number of benchmark sets
the most likely situation is that a system performs slightlybetter on some and slightly worse on others.
For example, in 1998 none of the systems participating in thecomparison outperformed all others on all
benchmarks sets.

A consequence of these problems is that these benchmark formulae do not provide a motivation for
developers of modal theorem provers to further improve their systems. If the system is already reasonably
well-developed, then it will solve most of the benchmark formulae easily. Those that remain hard seem
to require other methods than the automata, tableau, or resolution methods that most modal theorem
provers are based on.

In [15], we have proposed an alternative benchmarking approach, calledscientific benchmarkingor
hypothesis-driven benchmarking. In this approach benchmark problems are chosen to verify a particular
hypothesis concerning the decision procedures under consideration.

In the following, we want to test two hypotheses for the PDL solvers TWB,pdlProver and ML-
SOLVER. The first hypothesis concerns the type of formulae for whichthe re-use of nodes in a tableau
construction is advantageous. This should be the case if thenumber of distinct nodes in a tableau is
rather small, but without caching the tableau would still berather large. The second hypothesis concerns
the drawbacks of the two stage approaches or approaches which can only determine the satisfiability of
a formula once a tableau has been fully explored.

To test these hypotheses, we re-use two classes of benchmarkformulae originally introduced for
propositional linear time temporal logic (PLTL) in [15], but reformulated for PDL. The first class,C 1

PDL,
consists of formulae of the form

[a∗]〈a〉⊤∧ [a∗]([a]L1
1∨ . . .∨ [a]L1

k)∧ . . .∧ [a∗]([a]Lℓ
1∨ . . .∨ [a]Lℓ

k)
∧ [a∗](¬p1∨〈a∗〉p2)∧ [a∗](¬p2∨〈a∗〉p3)∧ . . .∧ [a∗](¬pn∨〈a∗〉p1),

while the second class,C 2
PDL , consists of formulae of the form

[a∗]〈a〉⊤∧ (r1∨L1
1∨ . . .∨L1

k)∧ . . .∧ (r1∨Lℓ
1∨ . . .∨Lℓ

k)∧ (¬r1∨q1)
∧(¬r1∨¬qn)∧ [a∗](¬rn∨ [a]r1)∧ [a∗](¬rn−1∨ [a]rn)∧ . . . ∧ [a∗](¬r1∨ [a]r2)
∧ [a∗](¬rn∨ [a]¬qn)∧ . . .∧ [a∗](¬r1∨ [a]¬qn)∧ [a∗](¬q1∨〈a∗〉s2)
∧ [a∗](¬s2∨q2∨ [a]qn∨ . . .∨ [a]q3)∧ . . .∧ [a∗](¬qn−1∨〈a∗〉sn)∧ [a∗](¬sn∨qn).

For benchmarking purposes, theLi
1, . . . , Li

k are propositional literals generated by choosingk distinct
variables randomly from a set{p1, . . . , pn} of n propositional variables and by determining the polarity

5

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

of each literal with probabilityp. The remainder of each formula only depends on the parametern.
To use these formulae for benchmarking purposes we fix the parametersk, n and p. Then, for each of
the values ofℓ between 1 and 8n we have generated a test set of 100 formulae, which are testedfor
satisfiability using the various systems under consideration. Similar to randomkSAT formulae, formulae
in C 1

PDL andC 2
PDL are likely to be satisfiable if the numberℓ is small and likely to be unsatisfiable ifℓ is

large.
Most of the observations made in [15] about the corresponding PLTL formulae carry over to their

PDL counterparts. For example, if a formula inC 1
PDL is satisfiable, then it is satisfiable in a model with

just n worlds. If a formula inC 2
PDL is satisfiable, then it is satisfiable in a model with just one world and

r1 has to be false at that world.
Given these model-theoretic insights about the formulae, their satisfiability is relatively easy to check,

in particular, they are as easy to solve as propositionalkSAT formulae overn propositional variables. But
the classes are constructed in such a way that PDL decision procedures, which have to rely on proof-
theoretic means, find them challenging.

In the case ofC 1
PDL, each formulaϕ1 in it imposes a uniform set of constraints on all worlds of a

model which gives little guidance in the search for a satisfying model. Furthermore, if the propositional
formula (L1

1∨ . . .∨L1
k)∧ . . .∧ (Lℓ

1∨ . . .∨Lℓ
k) is satisfiable, then potentially every sequence of satisfying

truth assignments for this formula could be a modelM1 of ϕ1. Only when we check whether all even-
tualities 〈a∗〉pi are satisfied withinM1 will we know that our search for a model has been successful.
We thus expect that naive tableau-based systems and systems, which like Pratt’s method only perform an
eventuality check after some exhaustive search for candidate models, will perform poorly. On the other
hand, decision procedures which use caching should be able to take advantage of the small number of
distinct truth assignments that exist forp1, . . . , pn.

The classC 2
PDL is meant to illustrate how quickly a tableau-based system can find a model for a

formula provided it makes the right choices for disjunctiveformulae and how efficiently it can recover
from making the wrong choices. Decision procedures which use a two stage approach or which can
only determine the satisfiability of a formula once a tableauhas been fully explored will always consider
the part of the tableau on which the propositional variabler1 is true. However, constructing this part
of the tableau is computationally costly and fruitless as nomodel can be constructed in whichr1 is
true. In contrast, a decision procedure which can test candidate models one by one, and happens to first
consider models in whichr1 is false, will quickly find a model for satisfiable formulae inthis class. For
unsatisfiable formulae we do not expect to see a significant difference between the two types of decision
procedures as both would need to consider the two cases ofr1 being true andr1 being false.

The class can also be used to illustrate problems with transferring variable selection heuristics used
in SAT solvers to more complex logics. Commonly used heuristics select the variable with the highest
number of occurrences first. InC 2

PDL this is the variabler1. If in addition, the first truth assignment used
is the one which maximises the number of clauses that are satisfied, thenr1 will be made true first. The
fallacy here is to focus solely on a Boolean abstraction of a modal formula. This ignores that in modal
logics not all indecomposable subformulae are ‘equal’.

6 Benchmarking results

We conducted the benchmarks with the Tableau Workbench,pdlProver and MLSOLVER on the two
classesC 1

PDL andC 2
PDL. The benchmarks were performed on PCs with Intel Core 2 Duo E6400 CPU @

2.13GHz with 3GB main memory using Fedora 11. For each individual satisfiability test a time-limit of
1000 CPU seconds was used.

In all experiments, for both classes, the parametersk, n andp were fixed to 3, 5, and 0.5, respectively.

6

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

C 1
PDL (n=5,k=3,p=0.5) C 2

PDL (n=5,k=3,p=0.5)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

Ratio l over n

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

Ratio l over n

Figure 1: Satisfiability of formulae inC 1
PDL andC 2

PDL

Remember that the satisfiability problem of propositional 2SAT formula is solvable in polynomial time.
So, fork= 2, the satisfiability problem ofC 1

PDL andC 2
PDL is also solvable in polynomial time andk= 3 is

the minimal value fork that ensures that the satisfiability problem ofC 1
PDL andC 2

PDL is NP-complete. The
particular choice ofp means that the randomly generated literals in our formulae have an equal proba-
bility of being positive or negative. Regarding the parameter n, the number of propositional variables we
can use in our formulae, note that forn= 3 there is only one way of choosingk = 3 distinct propositional
variables. Forn= 5 there are ten different ways of choosing three distinct propositional variables, which
in turn allows us to build a sufficiently large number of distinct formulae for our experiments.

Figure 1 shows the percentage of satisfiable formulae inC 1
PDL andC 2

PDL for these parameter values.
For C 1

PDL we see that for ratiosℓ/n smaller than 2 almost all formulae are satisfiable while for ratios
ℓ/n greater than 5 almost all formulae are unsatisfiable. For ratios ℓ/n between 2 and 5 we see a phase
transition in the satisfiability of formulae. For a ratioℓ/n equal to 3.4 half the formulae are satisfiable.
For C 2

PDL we see that for ratiosℓ/n smaller than 3.5 almost all formulae are satisfiable and onlyfor ℓ/n
greater than 8.0 almost all formulae are unsatisfiable. Here, for the ratioℓ/n equal to 5.7 half of the

C 1
PDL (n=5,k=3,p=0.5) C 2

PDL (n=5,k=3,p=0.5)

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of l over n

TWB (PDL module)
pdlProver
MLSolver

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of l over n

TWB (PDL module)
pdlProver
MLSolver

Figure 2: Performance of the decision procedures

7

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

formulae are satisfiable.
Figure 2 shows the median CPU time graphs for all three procedures onC 1

PDL andC 2
PDL. In each

graph the vertical line indicates the ratioℓ/n at which test sets contain 50% satisfiable and 50% unsatis-
fiable formulae.

As can be seen in Figure 2,C 1
PDL separatespdlProver, the only system which uses caching, from the

other two. As suggested, caching allows a prover to take advantage of the uniformity of the constraints
imposed on the worlds of a model by formulae inC 1

PDL. Thus, the good performance ofpdlProver
on this class was predictable. The absence of similar optimisations in the PDL module of the Tableau
Workbench and in MLSOLVER are the most likely explanation for their poor performance.However,
even then one might have expected both systems to be able to solve formulae inC 1

PDL with ℓ/n > 6,
which are almost all unsatisfiable and have a very constrained and limited search space for models.

ForC 2
PDL the ideal system has negligible median runtime forℓ/n< 5.7, as up to this point the majority

of formulae is satisfiable and a model for a satisfiable formula can easily be found. OnlypdlProver could
be ‘guided’ to behave in the expected way (by inputting formulae in the ‘right’ form, that is, exactly the
form given on page 5; changing the order of conjuncts or the order of disjuncts within each conjunction
seems to lead to worse results) and to make the right choices in the model construction up toℓ/n≤ 5.4
that is almost ‘optimal’. In contrast, the Tableau Workbench and MLSOLVER fail to show a similar
behaviour. For MLSOLVER we also observe a marked difference betweenC 1

PDL andC 2
PDL. While for

C 1
PDL MLSOLVER was able to solve the majority of formulae for each ratioℓ/n, on C 2

PDL the opposite
is true and it solved not a single formula in this class. On both classes the behaviour of the Tableau
Workbench and MLSOLVER is as expected.

Figure 3 shows the CPU time percentile graphs for the three systems onC 1
PDL andC 2

PDL. The graphs
provide additional insight into their behaviour. The x-axis indicates the ratioℓ/n as in previous figures.
The y-axis indicates the percentile, from 10th percentile up to the 100th percentile. The 50th percentile
corresponds to the median shown in Figure 2. The z-axis indicates the CPU time. In particular, for ML-
SOLVER andpdlProver the graphs confirm our expectations. As a two stage procedure, the performance
of MLSOLVER does not greatly depend on whether a formula is satisfiable orunsatisfiable. Similarly, for
pdlProver on C 1

PDL, there is little variation in the performance of the system.However, caching allows
pdlProver to perform much better than MLSOLVER. In contrast, onC 2

PDL the performance ofpdlProver
is closely related to whether a formula is satisfiable or not.We clearly see that in Figure 3 that as the
percentage of unsatisfiable formulae increases so does the percentage of formulae for whichpdlProver
needs non-negligible time (more than 40 CPU seconds) to solve them.

Overall,pdlProver shows the best performance on these two classes of PDL formulae. The experi-
ments illustrate the importance of caching and of detectingsatisfiability as early as possible. In addition,
the experiments show that the two classes of benchmark formulae originally devised for PLTL are also
useful for ’black-box’ performance evaluations of PDL solvers.

7 Conclusion

In this paper we presented benchmarking results for three implemented system for the satisfiability prob-
lem in propositional dynamic logic following the hypothesis-driven benchmarking methodology.

The benchmarks presented were intended to test two hypotheses for PDL solvers, namely, (i) that
caching is important to control the search space of a system,and (ii) that the possibility of early detection
of satisfiability is an essential feature of an efficient PDL solver. The benchmark results seem to support
the validity of both hypotheses.

An additional aim of the hypothesis-driven benchmarking methodology is to highlight strengths and
weaknesses of particular methods or systems and the benchmark results clearly do so as well.

8

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

C 1
PDL (n=5,k=3,p=0.5) C 2

PDL (n=5,k=3,p=0.5)

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

TWB (PDL module)

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

TWB (PDL module)

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

pdlProver

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

pdlProver

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

MLSolver

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

MLSolver

 990

 995

 1000

 1005

 1010

Figure 3: CPU time percentile graphs

Finally, the benchmarking approach is intended to motivateimplementers to improve their systems.
By using formulae for benchmarking whose satisfiability or unsatisfiability is far easier to detect than the
worst-case complexity of the satisfiability problem for PDLsuggests, there is little excuse for a system
to perform badly on these.

References

[1] P. Abate and R. Goré. The Tableau Workbench (TWB).http://twb.rsise.anu.edu.au/.

[2] P. Abate and R. Goré. The Tableau Workbench.Electron. Notes Theor. Comput. Sci., 231:55–67, 2009.

9

http://twb.rsise.anu.edu.au/

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

[3] P. Abate, R. Goré, and F. Widmann. An on-the-fly tableau-based decision procedure for PDL-satisfiability.
Electr. Notes Theor. Comput. Sci., 231:191–209, 2009.

[4] P. Balsiger and A. Heuerding. Comparison of theorem provers for modal logics: Introduction and summary.
In Harrie de Swart, editor,Automated reasoning with analytic tableaux and related methods: international
conference (TABLEAUX ’98), volume 1397 ofLNAI, pages 25–26. Springer, 1998.

[5] P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for the propositional modal logics
k, kt, s4.J. Autom. Reasoning, 24(3):297–317, 2000.

[6] G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux and algorithms for
converse-PDL.Info. and Comp., 162:117–137, 2000.

[7] M. J. Fischer and R. Ladner. Propositional dynamic logicof regular programs.J. Comp. and System Sci.,
18:194–211, 1979.

[8] O. Friedmann and M. Lange. MLSOLVER. http://www2.tcs.ifi.lmu.de/mlsolver/.

[9] O. Friedmann and M. Lange. PGSOLVER. http://www2.tcs.ifi.lmu.de/pgsolver/.

[10] O. Friedmann and M. Lange. A solver for modal fixpoint logics. InPrelim. Proc. M4M-6, pages 176–187.
Roskilde University, Denmark, 2009.

[11] O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC:Logical tableaux research engineering com-
panion. InProc. TABLEAUX’05, volume 3702 ofLNAI, pages 318–322. Springer, 2005.

[12] R. Goré and F. Widmann.pdlProver. http://users.cecs.anu.edu.au/~rpg/PDLProvers/.
[13] R. Goré and F. Widmann. An optimal on-the-fly tableau-based decision procedure for PDL-satisfiability. In

Proc. CADE-22, volume 5663 ofLNCS, pages 437–452, 2009.

[14] B. Hill and F. Poggiolesi. A contraction-free and cut-free sequent calculus for propositional dynamic logic.
Studia Logica, 94(1):47–72, 2010.

[15] U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal logic decision procedures. InProc.
KR2002, pages 533–544. Morgan Kaufmann, 2002.

[16] L. A. Nguyen and A. Szalas. Optimal tableau decision procedures for pdl.CoRR, abs/0904.0721, 2009.

[17] V. R. Pratt. A near-optiomal method for reasoning aboutactions. J. Comp. and System Sci., 20:231–254,
1980.

[18] B. Said. LoTREC generic tableau prover.http://www.irit.fr/Lotrec/.

10

http://www2.tcs.ifi.lmu.de/mlsolver/
http://www2.tcs.ifi.lmu.de/pgsolver/
http://users.cecs.anu.edu.au/~rpg/PDLProvers/
http://www.irit.fr/Lotrec/

	Introduction
	Propositional dynamic logic
	Early PDL decision procedures
	Current PDL calculi and systems
	Benchmark formulae for PDL
	Benchmarking results
	Conclusion

